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Abstract

Development in information and technology has made the communication easier
in the recent decades. Easy access of social media is creating restraints amid of
di↵erentiating fake and real news. In the recent period the problem has increased
drastically and use of image is making the news more impactful. Even though news
websites are publishing the news and provide the source of authentication still there
are other portals and platform which intentionally spread fake news to exploit an
event. In this paper we proposed a hybrid system where we are combining CNN
and RNN to detect fake news . We applied two techniques to reduce the model
complexity and increase accuracy based on text data and image.With this system,
detecting fake news it’ll stop misleading people and creating an unstable situation
as well as taking benefits of the situation

Keywords: Natural Language Processing, Fake News, Real News, Classification,
Support Vector Machine, Multinomial Naive Bayes, BERT, Bi-GRU, Bi-LSTM,
Word-Embedding.
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Chapter 1

Introduction

1.1 Thoughts behind the Fake or Real News de-

tection model

Today, ”Fake News” is a common occurrence in our daily lives. But we frequently
give little thought to what it implies or how it might erect our lives. False infor-
mation is disseminated and presented as actual news in an eect to influence people.
Additionally, the employment of many photo types has increased the issue’s sen-
sitivity and plausibility. In earlier decades, the issue could not have attracted as
much attention due to a lack of internet access and current technology. Today’s
advancements in the information and communication fields have greatly accelerated
the dissemination of false information and other forms of images. The usage of
images makes it harder for the locals to distinguish between true and false news.
Social media is an extremely e�cient method for quickly getting news out to a big
audience. A group of people are using websites like Facebook, Twitter, Instagram,
and others to distribute this false information. The general public is terrified by this
fake news, which also causes them to form misconceptions about society that are
not supported by facts. The motivation behind spreading fake news diers depending
on the subject. In the past, fake news about political matters has had a disastrous
influence on people’s daily lives. A million people were misled by this information
in under a minute. The purpose of disseminating these false reports is primarily to
incite unrest among communities and disturb the peace. The graphics are used to
call attention to the news. On social media, spreading false information occasion-
ally serves the purpose of gaining popularity. Even though popularity tends to fade
quickly, its influence on people’s lives endures. The way people think can also have
an impact on a society’s framework. Social media users are currently most likely to
disseminate news without verifying the appropriate credentials. The scenes under-
lying the growth of fake news concerning sports, aside from politics, are most likely
to incite the supporters of one group against the members of other groups and cause
anarchy. The regular people, whose daily lives are impeded, are the victims of these
social and community disruptions. In order to recognize fake news and prevent it
from spreading, we are attempting to oer a model in this article. By doing so, we
can expect to have a better society with greater peace and harmony. By separating
bogus from real, our approach aims to aid the populace. We utilized an RNN model
to analyze the text, and a CNN model to analyze the images.In order to classify the
news into two categories—Fake and Real—this hybrid model will first aggregate the
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data from the news and compare it to the dataset. In order to simplify the process
and increase accuracy, two strategies will be integrated. Basically, regarding the task
of predicting fake news, we declare news headlines, societal situations, and related
ancillary data as input and output will label either as ”fake” or ”real” depending
on the input. The goal of fake news identification is to evaluate whether a news
item is authentic or fraudulent given a multi-source news dataset and the social
circumstances of news consumers. Our model must be able to handle the number
of co inputs since fake news uses multimedia data to deceive readers and prolifer-
ate. As far as we are aware, we suggested fake news identification for brand-new
and time-sensitive events, which can recognize fake news based on multiple aspects
and learn portable aspects by deleting the occurrence aspects. We suggest an edge
event adaptive perceptron to do this. To lessen the negative consequences fake news
can have, the spread of false information across various venues, particularly online
ones, has not yet been totally stopped or reduced back. The cause is that there is
currently no mechanism in place that can manage fake news with minimal to no
human intervention. With a starting collection of instances to be built on, finding
demonstrated that machine and learning algorithms could be able to recognize fake
news. The task of detecting bogus news has considerable potential for deep learning
approaches. But little research indicates the value of neural networks throughout
this field. The structure of this essay is as follows: A overview of earlier investi-
gations is included in Section 2. The description of the dataset, the pre-processing
steps in section 3, and the classification models as well as the workflow are included
in Section 4. Explanation of the suggested technique. Results of the models as well
as result analysis are described in section 5. Finally, the summary of this paper is
found in Section 6.

1.2 Problem Statement

The challenge of determining if a news story is fabricated or not utilizing both
conventional methods and cutting-edge machine learning techniques.

1.3 Description of the Problem

For a very long time, fake news has been an issue in the mainstream media, and any
news organization can disseminate fake news pieces. As a problem of authenticity
score prediction, the fake news identification problem is defined. Online news con-
sumers are generally the targets of fake news because the majority of social media
platforms do not have rigid standards governing overall information flow on their
websites. Additionally, news in online platforms is easily accessible and relatively
inexpensive, allowing ”Fake News” to be widely disseminated. Even major social
media platforms like Facebook, Twitter, and Google are finding it di�cult to com-
bat the rise of fake news on a worldwide scale. Fake news is written with a intention
to mislead readers into believing false information, trying to make it challenging
and complicated to identify based solely on news content. Hence, we must consider
assistant information like the news source, comments on the article, photos used in
the article, headline etc. to make an accurate decision whether the news article is
fake or not. Using this supplementary data fake news detection is troublesome due
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to the fake news article’s massive, imperfect, unstructured, and noisy data. In this
research, we tried to create a solution that may be utilized to identify and filter out
the articles that include fake news in order to assist consumers in avoiding being
attracted in by click baits. Disguised information can also have major detrimental
e↵ects on a person as well as the entire society by skewing people’s perceptions of
the world and causing social chaos. As a result, it’s critical to identify a method
for detecting fake information that will be beneficial for both readers and legitimate
news organizations. Here, we have suggested a method that can e↵ectively identify
fake news using several machine learning techniques. We intended to concurrently
detect fake news from the websites relying on many sorts of diverse sources of infor-
mation, including both linguistic documents and the copyright and linkages among
them. We constructed this collaborative filtering problem as a reliability reasoning
problem, in which the validity of accurate news will be higher whereas that of fake
news would be lower. An entire concept and formulation of the issue are essential
and important before exploring the new research challenge of fake news identifica-
tion which is called problem formulation. From the web-based media, a collection of
text documents on the profiles, titles, and substance of the news pieces, authors, and
topics can be obtained. It will be necessary to use a powerful extraction of features
and training models to gather data demonstrating their authenticity. The author
and section linkages between them also serve as indicators of the reliability labeling
of news headlines, writers, and topics, which have very significant associations. For
more accurate results in determining the legitimacy of fake news, it will be helpful
to e↵ectively include these connections into the structure of learning.

1.4 Research Objective

By o↵ering an automatic fake news detection approach for both long sequence tex-
tual data, like news articles, and short sequence textual data, like tweets, this re-
search aims to supplement existing research. We will try to create our model by
tuning di↵erent ML models. The objectives of this research are:

1. To comprehend the detrimental e↵ects of fake news in this modern world.

2. To develop a model that can classify a given piece of news is whether true or
false.

3. To implement the proposed model and evaluate it.

4. To overcome some of the drawbacks of other existing fake news detection
models.

5. To make suggestions for upgrading the other models.

This research will help people:

1. Distinguishing fake or real contents

3



2. By informing others about the rumors

3. In taking political or business decisions

4. To avoid clickbait

5. Preventing people from being manipulated by fabricated news
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Chapter 2

Related Work

Despite being a relatively new concept, fake news detection has gained a lot of in-
terest due to how quickly it is propagating. In current history, researchers have
made multiple attempts to build models that can classify and filter fake news using
multiple techniques. The majority of analyses and research have concentrated on
various sorts of fake news on numerous platforms. This section contains a review
of the literature on fake news from several categories, including existing and related
works. We have divided the issue of detecting fake news up into di↵erent subgroups:

Social Media :
Misinformation frequently spreads due to a user’s online status on social media,
which is the fastest venue for doing so. Users are more likely to have their post-
ings accepted and disseminated as fact if a group of people trusts them. There
are millions of robots, or bots, living within social media in addition to the billions
of people that use it. Bots aid in the spread of false information and increase its
perceived popularity on social media. Moreover Trolls are persons who use their
social media accounts for one main purpose: to quarrel with others, to attack and
denigrate other users and celebrities, to try to discredit views they disagree with,
and to frighten others who publish those beliefs. Additionally, they promote and
support false news that aligns with their ideologies. Some research work has been
conducted on this regard.
By utilizing the CNN and RNN models from the social media platform ”Twitter,”
Ajao et al.,[1] attempted to develop a system that can distinguish between real and
fraudulent news. The system recognized significant traits related to the news with-
out any prior domain knowledge. Zubiaga’s contribution to the PHEME dataset,
which only had the two categories of rumors and non- rumors, was used in the
research to compile a collection of roughly 5,800 authentic tweets related to five
rumors. False news was broken down into two categories in order to be controlled
by the system: a. characteristics identification without prior information, and b.
determining and classifying the false news. There are three deep neural network
models has been used for text and image analysis which are LSTM, LSTM with
dropout regularization, and LSTM with CNN. Di↵erent RNN methods, including
truncated propagation, penalties, gradient clipping echo state networks, and others
were employed to analyze the texts, but the major focus of the article is on LSTM
because it can keep track of previous phase’s memories. After all was said and done,
the system’s LSTM approach produced an accuracy of 82%. Additionally, when
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comparing LSTMDrop and LSTM-CNN, LSTM performed best in terms of preci-
sion, recall, and f-measure (80% accuracy). LSTMDrop had the lowest accuracy
(74%) as a result of underfitting.
In another similar research work done by Nasir et al.,[6] attempted to identify the
research gap on pertinently fresh datasets and o↵ered a new model to address the
holes. This new model is the innovative hybrid deep learning model integrating
CNN and RNN.. In an e↵ort to identify bogus news, they also aimed to provide
future research with a direction. They used Elhadad’s ”FA- KES” dataset (804
articles), which is a publicly accessible dataset, to carry out their investigation. In
addition, they used the ”ISOT” dataset (45000 articles) provided by Ahmed as well
as another dataset to help guide future studies. There are seven supervised machine
learning approaches employed. Word2Vec and GloVe have been used to manage
word embedding. Additionally, they employed tokenization and LSTM. For the one
dimensional CNN layer, they employed the Rectified Linear unit (ReLu) function
and for the LSTM layer, they used the Sigmoid activation function. Additionally,
decision trees, stochastic gradient descent, naive bayes, and logistic regression were
employed. For the ISOT dataset, the system produced results with almost 100accu-
racy, whereas for the FA-KES dataset, it produced results with 60% accuracy. For
both datasets, the hybrid CNN and RNN results were noticeably superior to the
non-hybrid ones.
Furthermore, in another research paper which has been attempted by Abbas et al.,[9]
have proposed a deep learning-based system that incorporates CNN and RNN is used
in a fake news detection model that intends to investigate the identification of false
news in online social networks using particular news articles, their authors, and
their subject. They used the feasible dataset called LIAR which consists of 12,800
remarks of varying length that were gathered from POLITIFACT.COM more than
ten years ago. The dataset includes an external link for every case that leads users
to an external source for in-depth analysis. The RNN, LSTM, and CNN algorithms
serve as the baselines for learning techniques based on this dataset. 70% of the data
taken into consideration will be used for model training and 30% for testing in order
to increase the precision and accuracy of the proposed fake news detection model.
This model will generate a conclusion based on the inference of credibility, where
genuine news will be given a higher credibility rating than false news. In this model,
the result of the preprocessed data was taken as the input of RNN models while the
output was considered as input for the CNN models. The CNN section produces
a vector output that, taken as a digital representation of the sentence’s properties,
describes the sentence’s characteristics. Due to their e�ciency in determining if a
news item is legitimate (V) or false (F) using the output from the CNN layer, LSTM
was chosen as the final step. In comparison to individual CNN and RNN models,
the suggested model’s (a hybrid LSTM-CNN-RNN architecture) accuracy will be
about 5% higher.

Epidemic :
SARS-CoV-2, a coronavirus that first surfaced in December 2019, is the cause of
COVID-19, the illness it causes. COVID-19 can be deadly, and it has resulted in
millions of deaths worldwide as well as long-lasting health issues in some survivors.
However, there were numerous news stories on various platforms that led to the erro-
neous information spreading, which made people quite confused and anxious.Many
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people even refused to receive vaccinations due to erroneous information. Numerous
deaths were also brought on by false information about COVID-19. Because of this,
researchers have worked to develop a technique that can determine whether or not
news about COVID-19 is real.
In order to stop the spread of widespread false information regarding the COVID-19
pandemic, Gundapu and Mamidi[3] looked for a technique to evaluate the accuracy
of the information in their work from 2021. They used a dataset made available
by the Constraint AI–2021 shared task organizers, which contained the COVID-19
dataset for fake news in English, which collected 10,700 data points from various
online social networks, such as Facebook, Instagram, and Twitter. In order to dis-
cover faults in the errors in the dataset that was provided, they frst constructed
machine learning (ML) methods employing Term Frequency and Inverse Document
Frequency (TF-IDF) feature vectors. LSTM, BiLSTM with Attention, CNN, and
CNN + BiL- STM were among the deep learning models used. Then, using three
transformer models (BERT, XL- Net, and ALBERT), they developed an e↵ective
ensemble model for detecting bogus news on social media sites. The findings re-
vealed that for COVID-19 misinformation detection tasks, Transformer-based mod-
els outperform other machine and deep learning models by a signifcant margin. The
transformer model approximation is pretty comparable to the f1-score bidirectional
LSTM with attention technique. The BERT, XLNet, and ALBERT outperform
deep learning models. The ensemble of the transformer-based model generates the
fnest Result on the testing set, 0.9855.
In an additional related study on the epidemic fake news in 2021, Kaliyar, Goswami,
and Narang [4] suggested a hybrid model for fake news detection that combined con-
volutional layers with various kernel sizes and LSTM layers followed by three dense
layers. The FN-COV dataset was utilized. Around 69,976 news articles totalling
44.84% bogus were gathered for the dataset creation from the GDELT project 1,
which was funded by Google. Additionally, they used the PHEME dataset, which is
a corpus of tweets pulled from Twitter that were posted during five di↵erent events
related to breaking news. Using both real-world fake news datasets and their pro-
posed C-LSTM network, experiments have been done in this study. In their neural
network, three thick layers have been taken into account. To avoid overfitting, they
chose a value for dropout and utilized binary cross-entropy as the loss function.
Their suggested models, which combine CNN and LSTM layers and are deep and
hybrid in nature, have done very well, achieving accuracy levels of 98.62% with the
FN-COV dataset and over 90% with the PHEME dataset, which is 5% better than
state-of-the- art techniques. They attained the F1-score with FN-COV at 99.40%
and PHEME at 90.30%.
Another similar research was conducted by Wani et al.,[7] where they have evaluated
various supervised text classification methods in 2021 using the Contraint@AAAI
2021 Covid-19 Fake news detection dataset. For the purpose of detecting fake news,
they assessed current developments in deep learning-based text classification algo-
rithms.They used the Contraint@AAAI 2021 Covid-19 Fake news detection dataset,
which contained tweets and the labels that went along with them. 10,700 media
articles and posts were gathered from multiple platforms, including 6420 samples
from the train data, 2140 samples from the test data, and 2140 samples from the
validation data. They used long short-term memory (LSTM), bi-LSTM + attention,
hierarchical attention networks (HAN), transformer-based designs like BERT and
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DistilBERT, convolutional neural networks, and LSTM. TensorFlow 2.0 was used
to train all of the models.Each model was trained for a total of 10 epochs, and the
optimal epoch was chosen using validation loss. Additionally, BERT and DistilBert
models were manually pre-trained on a Covid tweets dataset using the huggingface
library. After reviewing the outcome, The best accuracy recorded when employing
the SVM model is referred to as the baseline accuracy. The Covid-19 tweets cor-
pus pretrained BERT and DistilBERT models outperform the ones that were just
fine tuned on the dataset. The non-transformer versions do the best overall, with
an accuracy of 94.25%, according to HAN. With an absolute accuracy di↵erence
of 3–4%, transformer-based models perform better than other fundamental mod-
els. We improved accuracy over the baseline accuracy of 93.32% to a maximum of
98.41% using the sung language model pre-training on BERT.

Politics :
Political news has a greater impact on a country as well as the world. We can see
from previous experiences, during an election, war or di↵erent national or interna-
tional crisis, fake news like rumors, propaganda spread a lot. Many international
and national social media based newspapers spread clickbait news articles for more
people engagement to their sites. However, it distracts people from the main prob-
lem and creates political and economic unrest to a country.
To work on the fake news related to political issues, this study by Mr. Nishant
Rai et al.,[10] demonstrates a content-based approach to classification that uses a
BERT model with output coupled to an LSTM layer. Based on the news title, a
classification is made. A feed-forward network with 768 hidden sizes has been em-
ployed with the model. To train and evaluate the model, researchers used the Fake
News Net dataset. Politifact and GossipCop are the two subsets that make up the
Fakenews Net dataset. Politics and entertainment news are included in the subsets,
though. Accuracy, precision, recall and F1 score have been calculated to evaluate
the data. The accuracy of the BERT and BERT-LSTM based model is followed by
86.25 percent and 87.75 percent on the Politifact subset. On the other hand, for
GossipCop subset the accuracy of BERT and BERT-LSTM based models is 83.00
percent and 84.10 percent respectively. Here, the BERT-LSTM based model per-
forms better. The precision, accuracy and recall for BERT and BERT-LSTM based
models are followed by 0.90, 0.87, 0.88 and 0.91, 0.90, 0.90. The training was done
on 80 percent of the data for training and 20 percent of data for testing which have
been selected randomly. The proposed model can achieve greater performance by
fine tuning both the BERT and other following layers.
In continuation of the work this paper by Kaliyar et al.,[4] suggested a deep learning
method based on BERT called ”FakeBERT” that combines BERT with numerous
CNN layers. From di↵erent social media networks, including Facebook, Twitter, In-
stagram, and others, they have gathered real-world news data from the 2016 U.S.A.
General Presidential Election. CNN, LSTM, and the proposed model FakeBERT
are deep learning models that were used in the studies. The suggested model, how-
ever, obtained validation accuracy of 98.90%, whereas CNN and LSTM based model
reached 92.70% and 97.55% correspondingly with 10 epochs. This was done by using
multiple layers of CNN with dropout and activation function RELU. The FakeBERT
model has the lowest cross entropy loss among these three. In this study, Mr. Kali-
yar et al. have shown the efectiveness of their suggested model (FakeBERT), which
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combines BERT with three parallel blocks of 1d CNN that have varied kernel sized
convolutional layers to get a higher level of accuracy.
In the research conducted by Khan et al.,[5] tried to show a benchmark study of
diferent models to identify fake news for online platform. In this research they
performed several models to compare the accuracy. In this research Khan et al.,
used total three datasets. First, they choosed the ”LIAR” dataset which is publicly
available dataset and it includes short statements from POLITIFACT.COM which
involves 56% true data and 44% fake data. Another dataset they used is ”Fake or
Real News ” by George Mclntire. It involves around 6300 data regarding 2016 USA
election cycle where half were true data and half were false data. The third dataset
they used was ”Combined Corpus” dataset which contains about 80000 news regard-
ing economy,politics, health,sports etc. where 51% were real data and 49To identify
the fake and real news tgey used lexical and sentiment features to identify positive
and negative sentiments, n-gram features ( both bi-gram and uni-gram), empath
generated features to fnd violence, crime, pride etc. They used GloVe algorithm for
unsupervised data. For frst three model they used SVM, LR (logistics regression),
Decision tree etc. Then they used Naive bayes classifer, k-NN classifer. They fur-
ther evaluated six deep learning models CNN, LSTM, Bi-LSTM, C-LSTM, HAN
and convolutional HAN. They also evaluated the dataset using BERT, RoBERTa,
DistiBERT, ELECTRA, ELMo. In the study they found that BERT-based models
did really well with small datasets in which RoBERTa achieved over 90% accuracy.
They also observed that LSTM based models had gradually improved when dataset
increased from smaller to larger. The models of HAN showed best performance on
LIAR dataset (accuracy 75%). C-LSTM also showed the best performance on com-
bined corpus dataset. But comparing overall performance they found that RoBERTa
showed the best among all.

Financial :
Now, investors rely heavily on financial news as a basis for research and making
investment choices. On the other hand, fake financial news is overflowing into daily
lives of individuals. Such types of fake news may have an influence on public per-
ception and o↵er some crooks an opportunity to manipulate the financial market.
In order to resolve the issues introduced by financial fake news, Zhi et al.,[8] have
proposed a multi fact CNN-LSTM model to outperform the existing machine learn-
ing models that work manually by extracting features to identify the financial fake
news so that investors can use the valid source of news when making investment
decisions. They obtained the dataset for this model from a number of financial web-
sites, including East Money Information, Sina, Headline, and others. A collection
of 8000 labelled samples was created by using the 100 events from the previous five
years to label other samples and associate them as labelled samples. Every sam-
ple contained titles, texts, sources, as well as responses of the data was set aside
for model tuning and holding, while the train dataset, validation dataset, and test
dataset were distributed in a 3:1:1 ratio. The input of this model was divided into
two sections in order to perform better than the other models: the combination of
news, sources and market data; and the comments. Character-level features were
extracted using character convolutional layers, and when the character features se-
quence was encoded to a vector, an LSTM layer was implied. Prior to decoding, an
attention mechanism was used to determine the relationship between the contents
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and the comments, and two LSTM layers were then used as decoders to predict the
output characters. Their evaluation shows that CNN-LSTM model achieved 92.1%
accuracy whereas LSTM, SVM, Tree LSTM models achieved 73.1%, 77.2%, 80.8%
accuracy respectively. This study demonstrated that the fundamental LSTM and
char CNN can successfully learn the di↵erential features.
We observed another comparable research paper by Zhang et al.,[2] where on plat-
forms that crowd-source content for the financial system, they have examined fake
news. They used a special dataset of clear-cut fake news articles that were inves-
tigated by the Securities Exchange Board, dissemination statistics of these kind of
news on other online platforms, and financial performance data of the focal organi-
zation to develop a well-justified and clear machine-learning structure to anticipate
fake financial news on social networks. To improve its consistency and comprehen-
sibility, they accomplished the Truth-Default Theory (TDT), a cutting-edge deceit
theory. Based on TDT and earlier case study, researchers have o↵ered a compre-
hensive set of quantifiable indications of financial news’s background and purpose,
author mindset, 3rd parties’ response, material consistency, and data coherence.
Their in-depth research and comparative evaluation demonstrate that this approach
is more e↵ective at identifying bogus financial news than previous parameter al-
lows and sensory information models. They chose Seeking Alpha as the resource
for financial news due to its substantial influence on the stock market and since the
SEC examined and fled money laundering charges involving people and companies
in April 2017 for propagating FFN, the bulk of which had been released on this
website. Their sample comprised of 381 financial fake news and 6866 true financial
news. They employed various methods of text mining (word2vec, LSA, LDA, LIWC,
etc.) to extricate benchmarks of information cooperation and communications from
unstructured information. For every news item in the survey, they used the latest
details: headline, date of publication, URL, primary contents, writer profile, list of
stocks, remark document discussed in the article. They started by randomly split-
ting their dataset together into training sample and a test sample set with something
like a 4:1 ratio.
The reliable news in the training phase was then under sampled, and the data in
the test dataset was kept in its initial, innately state. This allowed them to create
a symmetrical training set. They do sample t-test on F1 scores contrasting TDT
based systems and the benchmark model to ascertain whether the higher level is
statistically relevant. After reviewing the outcome, they discovered that Random
Forest, when using all the characteristics, linguistic inquiry and word count, has the
highest F-1 score of 94.1%, which is pretty close to Gradient Boosting’s score of
92.7%. However, when employing the chosen features, gradient boost outperformed
Random Forest, scoring 93.6% instead of 90% on the F-1 score. They split the finan-
cial news articles into a training set for the classifiers to learn from, and a test set to
assess how well the classifiers performed during the previous time period. They used
to 2013-publish financial news items as a test set to gauge how well the classifiers
performed over time. Models containing all TDT features outperform others in both
earlier and later times, they discovered. Additionally, when applying all TDT char-
acteristics, the deprecation of F1 scores is substantially slower for ensemble learning
methods (RF and GB).
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Chapter 3

Dataset

3.1 For Recurrent Neural Network :

3.1.1 Description of the Data :

A dataset from Kaggle called WELFake dataset was used for the study. (WELFake)
is a dataset comprising 72,134 news stories, 35,028 of which are true and 37,106
of which are fraudulent. To avoid classifier overfitting and to give more text data
for better ML training, authors combined four well-known news datasets (Kaggle,
McIntire, Reuters, and BuzzFeed Political) for this purpose. Four columns make
up the dataset: Serial number (beginning at 0), Title (pertaining to the text news
heading), Text (pertaining to the news content), and Label (0 = fake and 1 = real).
Out of the 78098 data entries in the csv fle, only 72,134 are accessed in accordance
with the data frame.

3.1.2 Data Exploration :

Data exploration helps provide a more comprehensive picture of particular topics to
be researched.Users evaluate information using manual and automated approaches
to choose the optimal model for the succeeding stages of data analysis. ML algo-
rithms or exploration software are frequently used to rapidly identify relationships
between di↵erent data parameters and data frameworks and provide data values
that can indicate patterns or exciting areas. We evaluated several dataset using
manual and automated approaches to choose the optimal model for the succeeding
stages of data analysis. Given that we are working with massive amounts of data,
data exploration was necessary for our solution.

3.1.3 Data Pre-processing :

The most important phase in the machine learning workflow is preparing data before
using it with a model. It aids in increasing the model’s precision, decreasing the
time and resources needed to train it, avoiding overfitting, and making it easier to
understand.
We pre-processed the dataset after analyzing. The steps that were followed to pre-
process the data are given below:
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1. Removing special characters: The most common places to find these characters
are in remarks, references, currency figures, etc. These characters introduce
noise into algorithms and don’t improve text comprehension.

2. Lower casing: All data should be converted to lowercase as this will aid in
preprocessing and later parsing stages of the NLP application.

3. Stopwords removal: Stop words include a, an, the, is, has, of, are, and others.
Most of the time, they amplify the features. In order to create a cleaner
dataset with better features for a machine learning model, stop words should
be removed. To improve search performance, all stop words are eliminated
from multiple word queries, including frequent words like a and the.

4. Lemmatization: Lemmatization reduces any word to its fundamental root
mode. Lemmatization allows end users to search for any variation of a ba-
sic term and get relevant results. Lemmatization reduces a term to its logical
base form, or lemma, while taking context into consideration. Sometimes a
word will have numerous distinct lemmas.

5. Clean sentence: By removing meaningless words from the dataset, such as zzzz
and aaaa, using the NLTK package clean sentence, it was possible to obtain
meaningful terms for the model’s training.

Figure 3.1: Data Pre-processing Steps

Following that, we ran several searches to see if there was any correlation between
the data. We discovered that, on average, fake news titles contained seven words,
whereas real news titles contained fewer words. However, the text of the fake news
contained fewer words than the text of the actual news, which contained 228 and
261, respectively.
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3.1.4 Pre-processing Techniques :

Count Vectorization :

Count Data preprocessing for natural language processing (NLP) tasks frequently
uses a technique called vectorization. It works to transform a group of text files into
a matrix representation, with each document being represented as a vector of term
frequencies.

Following are the steps involved in count vectorization:

1. Tokenization : Each document is initially divided into separate words or to-
kens. Whitespace splitting and more sophisticated approaches like word tok-
enization libraries can also be used for tokenization.

2. Vocabulary Creation : The process of developing a vocabulary involves build-
ing a list of unique words—also referred to as terms or features—that exist
throughout the entire collection of materials. The vocabulary contains words
that are each given a di↵erent index.

3. Count calculation : Each term’s count in the vocabulary is determined for
each document. This is accomplished by calculating the number of times each
term appears in the text.

4. Vector Representation : Each document is represented as a vector, with the
length of the vector being equal to the vocabulary’s size. The count of the
matching term in the document is represented by the value at each index. A
”term frequency” vector is a common name for the vector.

Text data can be easily and e↵ectively converted into a numerical format that can be
utilized as the input for machine learning algorithms using count vectorization. The
classification of documents, sentiment analysis, topic modeling, and information re-
trieval are only a few NLP activities that frequently use it. It o↵ers a straightforward
yet useful model of text data that may show how words are distributed throughout
various manuscripts. The resulting matrix is also known as a term-document matrix
or a count matrix. The matrix’s rows stand in for documents, and the columns for
terms.

Term Frequency-Inverse Term Frequency (TF-IDF):

Information retrieval and text mining use the TF-IDF (Term Frequency-Inverse
Document Frequency) statistic to quantify the importance of a term inside a docu-
ment or a collection of documents. It is commonly employed in tasks like document
classification, information retrieval, and text analysis.

By taking into account two parameters, the TF-IDF score assesses the significance
of a term in a document.

1. Term Frequency (TF) : Term Frequency (TF) is a measure of how often a term
appears in a document. It displays the frequency of a term in relation to the
total number of terms in a document. A term’s TF score increases with how
frequently it appears in a document. The formula for TF(t, d) is (Number of
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times term t appears in document d) / (Total number of terms in document
d).

2. Inverse Document Frequency (IDF) : A term’s rarity over the whole document
collection is evaluated using the Inverse Document Frequency (IDF) method.
IDF downplays the significance of terms that are frequently used in documents
because they are probably less specific and ubiquitous. IDF scores are typically
higher for uncommon phrases that appear in fewer documents.

IDF(t, D) = log e(Total documents in the collection / Total documents with
term t)

The TF and IDF numbers are multiplied to produce the TF-IDF score:

IDF(t, d) * TF(t, d) = TF-IDF(t, d, D)

A phrase may include significant information that is unique to a certain doc-
ument if it is frequent in that document and relatively uncommon overall, as
shown by a higher TF-IDF score.

Before using machine learning methods, text input is frequently preprocessed using
TF-IDF. Unstructured text is converted to a numeric representation that can be
utilized as input for a number of natural language processing tasks, including text
classification, clustering, and information retrieval. The performance of these tasks
can be enhanced by TF-IDF by giving larger weights to phrases that are more
discriminative and informative.

Max-pooling :

The max pooling operation separates the input feature map into rectangular, non-
overlapping ”pooling windows” or ”kernels,” and outputs the highest value found
within each window. The spatial dimensions are decreased while the number of
channels is left unchanged since it functions independently on each feature map
channel.

1. Pooling Window : A fixed-size pooling window is established, usually with a
stride that is equal to the window size. A typical pooling window is 2x2 or
3x3.

2. Non-overlapping areas: Based on the size and stride of the pooling window,
the input feature map is separated into non-overlapping areas.

3. Maximum Value: The highest value is chosen for each region. The trait that
dominates or is most significant in that area is represented by this value.

4. Output Feature Map: A feature map that has smaller spatial dimensions than
the input feature map is created using the highest values from each region.

Several benefits of max pooling in CNNs include:

1. Translation Invariance: By choosing the highest value possible inside a pooling
window, max pooling can accurately capture the most prominent feature in
a region, regardless of its precise location. As a result, the model is more
resistant to minor spatial translations in the input and achieves a certain
amount of translation invariance.
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2. Reduced Dimensions: Maxpooling shrinks the feature map’s spatial dimen-
sions, which reduces the number of parameters and layer-upon-layer compu-
tational complexity. By doing so, e�ciency is increased and overfitting is
reduced.

3. Feature Robustness: Maxpooling keeps the most noticeable features while
removing unimportant or noisy information. To make the network more re-
sistant to changes and noise in the input data, it helps to highlight the most
discriminative characteristics.

Dropout :

Neural networks, particularly those used in natural language processing (NLP) ap-
plications, commonly use a regularization technique known as dropout. Dropout
improves the models’ ability to generalize while preventing overfitting.
In NLP, dropout is widely used in the neural network layers of recurrent neural
networks (RNNs) or transformer-based models like the Transformer or BERT.
The dropout approach works during the training phase by randomly setting some of
the output values or neural activations to 0. This dropout chance typically ranges
from 0.1 to 0.5. If the dropout probability is set at 0.1, for example, 10% of the
outputs will be zeroed out. Dropout has several benefits in NLP tasks, including:

1. Regularization : Dropout is a regularization technique that reduces the model’s
reliance on certain features or hidden units, hence preventing overfitting. As a
result, the network is less likely to memorize noise or oddities in the training
data.

2. Ensemble e↵ect : Dropout can be explained by the ensemble e↵ect, when
a number of models are trained simultaneously utilizing di↵erent subsets of
neurons. Dropout is often inhibited at test time, and predictions are made by
the entire network. The ensemble e↵ect of training dropouts helps the model
perform better.

3. Reducing Co-Adaptation : Co-adaptation can be lessened by dropout, which
helps network neurons. Co-adaptation occurs when neurons depend on one
another so heavily that it is di�cult for the model to generalize to novel
inputs. Dropout destroys these connections, forcing the network to produce
more independent and revealing representations.

A popular NLP technique called dropout can be used to a number of network levels,
including the input embeddings, hidden layers, and output layers. Where to employ
dropout depends on the architecture and details of the current NLP task. It is often
determined by experimentation and performance analysis of validation sets.

Early Stopping :

Early stopping is a machine learning approach that is used, especially while training
neural networks, to decrease overfitting and increase generalization. Early stopping
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is founded on the idea that training should be terminated as soon as a model’s per-
formance on a validation set starts to deteriorate.

The performance of the model is evaluated using a di↵erent validation set or a sub-
set of the training data that is not used for training. The validation set is used as
a substitute for the model’s performance on unseen data. It is common practice to
evaluate the performance of the model using an appropriate assessment statistic,
such as accuracy, loss, or validation error.

The training procedure is carried out until the model’s performance on the valida-
tion set begins to decline rather than continue to improve. When this deterioration
is noticed, an early stop is made. The training phase is then completed when the
model’s parameters are set to the point where it performs best on the validation set.

The likelihood that a model will start to overfit the training set when it becomes
too complex or begins to detect noise in the training data justifies early stopping.
Overfitting is the term used to describe when a model performs well on training
data but struggles to generalize to new, untested data. Monitoring the model’s per-
formance on the validation set helps prevent overfitting since early stopping blocks
training before the model starts to memorize the training data too closely.

Early stopping enables balancing the performance of generalization and model com-
plexity. Selecting a model that performs well on unobserved data without making
too many compromises by overfitting the training data is beneficial.

The best time to cease training might vary depending on the dataset, the model
architecture, and other variables. It is crucial to remember that early stopping is
not always the best option. The optimal stopping criteria for a given work must be
determined through experimentation and validation set performance analysis.

GloVe Word Embeddings :

The terms ”Word GloVe embedding” seem to combine GloVe andWord Embeddings,
two related ideas.
Word embeddings: These are dense vector representations of words in a continuous
vector space that capture the semantic and syntactic relationships between words.
Algorithms for machine learning can understand and interpret natural language be-
cause of these numerical representations, or embeddings.

GloVe : Using unsupervised learning, the word embedding generation algorithm
GloVe (Global Vectors for Word Representation) creates new word embeddings. Its
name, ”Global Vectors,” emphasizes the fact that it takes into account a corpus’s
statistics of word co-occurrence around the globe. GloVe creates word embeddings,
which represent the semantic relationships between words, by analyzing the statis-
tics of word co-occurrence in a significant text collection.

GloVe embeddings have gained popularity in the NLP community because of their
e�ciency and capacity to capture a variety of language features. They are frequently
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employed in activities like sentiment analysis, machine translation, and word simi-
larity searches.

A significant collection of text is utilized as input to produce GloVe embeddings.
In a sliding window across the collections the method determines the co-occurrence
statistics of terms. A word co-occurrence matrix is then built, and dimensional-
ity reduction methods like Singular Value Decomposition (SVD) are used to create
lower-dimensional word embeddings.

Because they record both local and global context, GloVe embeddings are advan-
tageous. The embeddings serve a variety of NLP tasks by representing the overall
word relationships in the text.

Padding :

Padding is a technique used in data pre-processing to ensure that each data point is
the same length or dimensionality by adding extra elements or values to a dataset.
When working with sequential data, such text or time series, where the inputs could
have varied durations, padding is typically used.

The fundamental purpose of padding is to provide the data a consistent shape or size,
which is typically required by machine learning algorithms or neural networks that
demand constant input dimensions. By adding extra elements to shorter sequences
to make them equal in length, shorter sequences can be processed and computed
more quickly.

It is usual practice to include di↵erent tokens or values in order to represent padding.
For instance, using a specific padding token to stretch shorter phrases to the length
of the largest sentence in the dataset is a common method in natural language pro-
cessing applications.

The data can then be handled in a batch mode, which is more e�cient computa-
tionally, once the padding has been applied. The masking or attention mechanisms
in neural networks often do not support learning during the training phase because
they ignore the padding bits.

Tokenization :

When a textual sequence is broken up into tokens, such as a sentence or document,
it is said to have been tokenized. These tokens could be single words, subwords, or
even characters, depending on the specific tokenization method used.

Tokenization is an essential step in natural language processing (NLP) and text
mining tasks because it enables more detailed analysis and interpretation of textual
data. Text can be broken up into tokens in order to extract valuable information.
Tokens can then be further analyzed using a variety of techniques, such as word
frequency analysis, word sequence analysis, or machine learning models.
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The process for tokenization that is used will depend on the unique requirements of
the project at hand. Tokenization can be done in many di↵erent ways.

1. Word Tokenization: This technique separates the text into discrete words de-
pending on punctuation or whitespace. For instance, the phrase ”Tokenization
is important!” would be tokenized into the following tokens: ”Tokenization”,
”is”, ”important”, ”!”

2. Subword Tokenization: This method divides text into smaller units, like sub-
words or character n-grams, rather than treating each word as a separate
token. This method is e↵ective for dealing with words that are not commonly
used or languages with complicated morphology. Byte-Pair Encoding (BPE)
and SentencePiece are two common subword tokenization techniques.

3. Character tokenization: In this technique, every character in the text is turned
into a distinct token. When working with languages where words are not
clearly separated or when doing tasks requiring fine-grained analysis, character
tokenization is helpful.

Dense Layer :

A crucial sort of layer in the context of neural networks and deep learning is a
dense layer, also known as a completely linked layer, which links every neuron in
the layer below to every neuron in the layer above. The subsequent layers’ neurons
are intricately connected to one another.
Every neuron in the layer beneath it contributes information to the neurons in the
layer above it. After calculating a weighted total of the inputs to determine each
neuron’s output, an activation function is used. Since these weights are acquired
during training, the dense layer can detect complex connections and patterns in the
data. An illustration of the result of the dense layer is as follows:

output = activation(W*input+b)

Here,
input = the previous layer’s input vector.
W = The weights connecting the neurons from the previous layer to the current
layer are contained in the weight matrix. The weights connected to each row of the
weight matrix correspond to a specific neuron in the current layer.
b = The weighted total is increased by the bias vector.
activation = In order to incorporate non-linearity into the network, the activation
function is element-wise applied to the weighted sum. Rectified Linear Unit (ReLU),
sigmoid, and tanh are frequently used activation functions.

Dense layers play a key role in deep neural networks because they may replicate
intricate relationships between input data and objective variables. The ability to
learn hierarchical representations of the data is provided to the network as input
flows through successive layers, which enables it to extract high-level characteristics
and generate predictions while learning these features.
In a typical deep learning model, a number of dense layers are stacked together to
form an architecture known as a multi-layer perceptron (MLP). The output of each
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thick layer is fed into the input of the layer below it, allowing the network to learn
increasingly abstract and complex representations of the data.

BERT Tokenization :

Understanding the nuances of human language is a challenging task in the field of
natural language processing. However, advances in deep learning have produced
ground-breaking models that excel in language understanding tasks, such as BERT
(Bidirectional Encoder Representations from Transformers). The advanced tok-
enization method used by BERT is the key to its success. Language modeling’s
core is tokenization, the division of text into smaller pieces. In the case of BERT,
tokenization extends beyond just words and includes subword units, allowing it to
collect fine-grained data and address the problems presented by words that are not
commonly used. The fundamental mechanisms that enable this model to interpret
and handle natural language at a remarkable level of sophistication are revealed by
probing the depths of BERT tokenization.

BERT tokenization is a sophisticated method that divides text into manageable
chunks, enabling the model to successfully comprehend and analyze natural lan-
guage. By breaking down words into subwords via WordPiece tokenization, BERT
is able to capture morphological variants and handle words that are not commonly
used. BERT is able to understand linguistic nuance thanks to the fine-grained in-
formation provided by these subwords. Text is mapped to the model’s vocabulary,
which is made up of distinct tokens with individual IDs, during the tokenization
process. The model can extract richer meaning from text thanks to BERT’s tok-
enization method, which fills the gap between simple language understanding and
raw text.

BERT adds unique tokens that improve the model’s capacity for language compre-
hension. The [CLS] token, which denotes the start of the input sequence, aids BERT
in comprehending the overall context. To distinguish various sentences inside the
input, utilize the [SEP] token. BERT is able to recognize the relationships between
sentences, carry out tasks like text classification and question answering, and keep
a cohesive understanding of the input text thanks to the use of these specific tokens
and positional embeddings.

To distinguish between distinct sentences in the input, BERT makes use of segment
embeddings. A segment ID identifying each token’s involvement in a phrase is as-
signed to it. By identifying the connections and dependencies between sentences
and recording contextual information throughout the text, BERT is able to compre-
hend the relationships and dependencies between sentences. BERT can now perform
tasks requiring many sentences, including document categorization or inferring nat-
ural language, by incorporating segment embeddings.

In order for BERT to maintain positional information inside the input sequence, po-
sition embeddings are essential. BERT recognizes the text’s sequential structure by
taking the order of the tokens into account. Each token is given a distinct position
ID thanks to position embeddings, which also preserve the context of the input and
enable BERT to capture the sequential dependencies between words. For BERT
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to accurately represent the input text and provide predictions based on the token
sequence, it has to be aware of its position.

For e↵ective processing, BERT requires fixed-length input sequences. A sequence
needs to be trimmed if it exceeds the maximum length allowed in order to fit. To-
kens towards the end of the sequence are removed during truncation, but the most
important data is kept. On the other hand, if a sequence is too short, it needs to be
padded with unique [PAD] tokens to make it the desired length. By ensuring ho-
mogeneity in the input size, padding enables BERT to process batches of sequences
at once and retain accurate calculations for various inputs.

BERT uses masked language modeling during pre-training to learn contextual repre-
sentations. A certain proportion of the input tokens are in this procedure randomly
masked, or replaced, with a [MASK] token. Then, based on the context, the model
is trained to forecast what these masked tokens’ original values will be. By using
the context to the left and right of the masked token, this method enables BERT
to comprehend the bidirectional links between words. By using masking, BERT is
better able to interpret words and capture contextual information.

BERT Encoder :

The core element of the BERT model that is in charge of encoding the contextual
representations of input text is the BERT (Bidirectional Encoder Representations
from Transformers) encoder. It is intended to alleviate the drawbacks of conven-
tional language models that only partially or unidirectionally parse text. The BERT
encoder provides bidirectional learning by utilizing a transformer-based design, al-
lowing the model to access both preceding and subsequent words while creating
representations for each token.
Multiple layers make up the BERT encoder, which are frequently referred to as trans-
former encoder layers. A position-wise feed-forward neural network and a multi-head
self-attention mechanism are the two sub-layers that make up each layer. Together,
these sub-layers capture the relationships and contextual information included in
the incoming text.
The BERT encoder can evaluate the significance of various tokens based on their
context thanks to the self-attention mechanism, a crucial component of the trans-
former architecture. By giving relevant tokens larger attention weights and less
important ones lower weights, it enables the model to understand the relationships
between words. The self-attention mechanism captures long-range dependencies
and the overall context of the input text by taking into account the full sequence of
tokens.
The BERT encoder includes position-wise feed-forward neural networks in addition
to self-attention. The output of the self-attention layer is processed by these net-
works, which then use non-linear transformations to improve the representations of
specific tokens. The BERT encoder can recognize intricate patterns and connec-
tions within the input text because to the feed-forward networks, which are made
up of numerous completely connected layers with a nonlinear activation function in
between.
The BERT encoder hierarchically improves the representations of each token across
the levels of the transformer encoder. Each token’s meaning is captured within the
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context of the full input sequence as the first word embeddings gradually develop
into rich, contextualized representations. As they capture the semantic and syn-
tactic links required for precise predictions, these contextualized representations are
essential for downstream tasks like text classification.
The BERT model has accomplished exceptional success in a variety of natural lan-
guage processing applications by utilizing the strength of the BERT encoder. In
tasks including sentiment analysis, question-answering, and named entity identifi-
cation, it has shown cutting-edge performance. The BERT encoder’s contextual
representations give the model the ability to comprehend linguistic complexity, ac-
curately capture word dependencies, and produce context-based predictions.
In conclusion, to extract the contextual representations of input text, the BERT
encoder employs a transformer-based architecture with self-attention and position-
wise feed-forward neural networks. Bidirectional learning is made possible by it,
enabling the model to comprehend the connections between tokens and produce
detailed representations that produce precise predictions for a variety of language
understanding tasks.

3.1.5 Data Analysis and Visualization

Analyzing the dataset is needed because we are implementing a big dataset for our
research. Our dataset had around 72 thousand data consisting of both fake and
real news. The data set had 4 columns and out of these 4 columns the data type
of the ‘Label’ and ‘Unnamed: 0’ column was int64 and ‘text’, ‘title’ was object
data datatype. The proportion of fake and real news was 48.56% and 51.44% re-
spectively in the data-set. Here 0 means fake and 1 means real. When cleaning

Figure 3.2: Proportion of Real and Fake news

the data, we looked to see if the dataset had any null data of any type. We re-
moved 558 null data records during the data cleaning process. In the dataset, we
also looked for duplicate information. The dataset did not contain any duplicate
data. We also removed redundant columns from the dataset, such as” Unnamed: 0”.

For a clearer understanding of the dataset alongside the advantages of pre-processing,
we further divided this data evaluation process into two segments: before pre-
processing visualization and after pre-processing visualization.
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Figure 3.3: Word cloud of Real and Fake news Title Before Cleaning the data

Figure 3.4: Word cloud of Real and Fake news Text Before Cleaning the data
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Figure 3.5: Word cloud of Real and Fake news Text Before Cleaning the data

After merging the news’s title and body content, we cleaned and processed them to
create this word cloud.

Frequent words in the dataset :

Additionally, we utilized some data visualization to determine the words or phrases
that appeared the most frequently in the fake news and actual news datasets both
for the title and the text. The two results are provided below:
Afterwards, using TF-IDF, we attempted to determine the top 20-word frequencies
in both the fake and real news texts in the dataset. We know, significant words or
phrases in any article can be found using TF-IDF based on term frequency. This
method assists in separating common words from precise and meaningful ones, help-
ing in locating the most pertinent and important words within a paper. A word’s
term frequency (TF) within a document is defined as the number of times it appears
in that document. It is considered that a word with higher term frequency is more
important or relevant to the text document as it appears more times in the text
document. The inverse document frequency (IDF) takes consideration of a word’s
significance throughout the whole document. Based on their relevance to the text
itself and the lack of them in the dataset we tried to identify significant words or
keywords inside the dataset.

From the fake news texts, we initialized the TF-IDF Vectorizer and then the texts
were fitted and transformed. Afterwards, we get the feature names to calculate TF-
IDF score for each word. Finally, we retrieved the top 20 words by sorting them
according to their TF-IDF score in descending order. The following two outcomes
are given:
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Figure 3.6: Top 20 Words of Fake and Real news Text (Before pre-processing)

Figure 3.7: Top 20 Words of Fake and Real news Text (After pre-processing)

In the end, to figure out the sequence of words that frequently showed up together
in the dataset, we implemented TF-IDF on bigrams and trigrams of words for better
visualization. This is necessary so that we can di↵erentiate between fake and appro-
priate news as we are aware that word sequences convey meaning more accurately
than a single word itself does.

The terms ”bigram” and ”trigram” represent word sequences of two and three re-
spectively. In this instance, we create the TF-IDF vectorizer of length two for
bigrams and length three for trigrams. After that, we implemented TF-IDF as ear-
lier of this analysis and obtained the top 20 bunch of word sequences for bigrams
along with trigrams. The outcomes:
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Figure 3.8: Top 20 Bigrams of Real news Text

Figure 3.9: Top 20 Bigrams of Fake news Text

3.2 For Convolutional Neural Network :

3.2.1 Dataset Description :

The model has been trained using the well-known and frequently used CASIA
dataset. It is a collection of photographs that was especially selected for the purpose
of countering spoofing, which seeks to di↵erentiate between authentic images and
those produced using various spoofing methods.

The CASIA collection consists of up of a significant amount of photos, both actual
(authentic) and spoof (false) samples. The authentic examples are taken from real
people in a variety of stances, expressions, and lighting situations to produce a wide
and accurate collection of photographs from everyday life.

Several spoofing methods and approaches, including printed pictures, video replays,
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and 3D masks, are used to produce the spoofed samples. These expertly constructed
spoof examples test the model’s ability to distinguish between actual and phony im-
ages by simulating real-world situations.

The CASIA dataset o↵ers a complete and realistic collection of photos, making it
appropriate for anti-spoofing model training and evaluation. The model can be
trained on this dataset to identify and generalize features that distinguish actual
photographs from fake images, improving the model’s capacity to identify and cat-
egorize unfamiliar images in practical applications.

We got a total number of 12616 images where 80 percent of these will be used to
train the model.

Image Width:

-Minimum: 160

-Maximum:900

-Average: 379.5425618710906

26



Image Height:

-Minimum: 160

-Maximum: 901

-Average: 315.2483002447648

Image Channels:

- Most common: 3

- Count: 1

3.2.2 Data Pre -processing :

Before training the model, the data was preprocessed using the following steps:

1. Normalization : The pixel values of the input images were normalized to a
range between 0 and 1. This ensures that all features have a similar scale and
prevents any particular feature from dominating the learning process.

2. Resizing : The images in the CASIA dataset were resized to a uniform size
of 128x128 pixels. Resizing the images to a consistent size allows for e�cient
processing and ensures that all images have the same dimensions, which is
required by the model architecture.

3. Data Split : The dataset was split into training and validation sets. The
training set was used to train the model, while the validation set was used to
evaluate the model’s performance and make adjustments if needed.

4. Label Encoding : The target labels, indicating whether an image is genuine or
spoofed, were encoded into numerical format. For example, the labels may be
encoded as 0 for genuine and 1 for spoofed. This encoding allows the model
to understand and learn from the target variable during training.

These preprocessing steps help to prepare the data for e↵ective training of the model.
By normalizing the pixel values, resizing the images, splitting the dataset, and
encoding the labels, the data is made suitable for input into the model and facilitates
the learning process.

3.2.3 Model Description :

1. Convolutional Layers: The model includes two convolutional layers that per-
form feature extraction on the input images. Each layer applies a set of 32
filters to the input, with each filter learning to detect di↵erent patterns or fea-
tures in the image. The filters slide over the input image, performing element-
wise multiplications and summing up the results to create feature maps. The
use of convolutional layers allows the model to capture spatial relationships
and local patterns in the images.
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Real Image Fake/Edited Images

Figure 3.10: Before converting to ELA images

Real Images Fake/Edited Images

Figure 3.11: After converting to ELA images

2. Max Pooling Layer: Following the convolutional layers, a max pooling layer is
introduced to reduce the spatial dimensions of the feature maps. Max pooling
divides the feature maps into non-overlapping regions and outputs the maxi-
mum value within each region. This downsampling operation helps to retain
the most important features while reducing the computational complexity and
extracting the dominant features from the previous layers.

3. Dropout Layer: To prevent overfitting, a dropout layer is added after the
max pooling layer. Dropout randomly sets a fraction of the input units (in
this case, 25%) to zero during each training iteration. By doing so, dropout
helps to reduce the interdependency between neurons, forcing the model to
learn more robust and generalized features. It acts as a form of regularization,
making the model less sensitive to specific patterns and reducing the chances
of overfitting.

4. Flattening Layer: The output from the previous layers is then flattened into a
1-dimensional vector. This flattening operation reshapes the multi-dimensional
feature maps into a single vector, preserving the learned features while discard-
ing spatial information. Flattening prepares the data for the fully connected
layers, which require input in the form of a vector rather than a matrix.

5. Dense Layers: Following the flattening layer, two dense layers are added to per-
form classification based on the learned features. The first dense layer consists
of 256 units and applies the rectified linear unit (ReLU) activation function.
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ReLU introduces non-linearity to the model, allowing it to learn complex re-
lationships between features. The second dense layer, with 2 units, serves as
the output layer for binary classification. It applies the sigmoid activation
function, producing probabilities for each class (fake and real) independently.

Each layer in the model plays a crucial role in the overall architecture. The convolu-
tional layers extract relevant features from the input images, the max pooling layer
reduces spatial dimensions, the dropout layer prevents overfitting, the flattening
layer reshapes the data, and the dense layers perform the final classification.

Figure 3.12: CNN Model
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Chapter 4

Description of the Models

To build the whole model we have applied algorithms from three di↵erent tech-
niques. These subgroups include Machine learning algorithms, RNN algorithms,
CNN algorithm. These are described below :

4.1 Machine Learning Models :

Total four number of machine learning models will be described here that includes
Support Vector Machine (SVM), Multinomial Naive Bayes, Logistic Regression,
Random Forest.

4.1.1 Support Vector Machine (SVM):

Support Vector Machine (SVM) classification is the technique we frst employed for
training. An example of a machine learning algorithm is SVM, which was inspired
by statistical learning theory. Although Support Vector Machines are often thought
of as a classification method, they can be used to solve both classification and regres-
sion issues. It can deal with a variety of categorical and continuous variables with
ease. In order to distinguish between several classes, SVM creates a hyperplane in
multidimensional space. Error minimization is accomplished through SVM, which
iteratively constructs the best hyperplane. Finding a maximum marginal hyper-
plane (MMH) that most e↵ectively categorizes the dataset into classes is the central
goal of SVM. These methods are advantageous over Naive Bayes algorithm in that
they predict outcomes more quickly and with higher accuracy. As a result of only
using a portion of the training points during the choice phase, they also consume
less memory. When the margin of separation is distinct and the space is large, SVM
performs e↵ectively. Here is a detailed description of how SVM functions:

Working Principle :

1. Data Preparation: To start, you must format your data appropriately. A
feature vector should be used to represent each data point, with each feature
standing for a di↵erent property or feature of the data.
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2. Class Labeling: Give each data point a class label. The most typical situation
in SVM is binary classification, where each data point is given either a posi-
tive (+1) or negative (-1) label. SVM can be expanded to handle multi-class
problems utilizing strategies like one-vs-one or one-vs-all.

3. Hyperplane Selection: The primary objective of SVM is to choose the appro-
priate hyperplane for separating the data points of various classes. In the
feature space, the hyperplane serves as a decision boundary. The hyperplane
for a binary classification problem is either a line in two dimensions or a hy-
perplane in higher dimensions.

4. Maximizing the Margin : The margin, or the distance between the hyperplane
and the nearest data points from each class, also known as the support vectors,
is what SVM seeks to maximize. For accurate generalization of unknown data,
the margin is essential. The most ideal hyperplane is that which maximizes
the margin.

5. Margin Calculation : The margin is calculated by locating the nearest data
points from each class and figuring out how far away from the hyperplane
they are. Data points that are outside of the margin or that otherwise defy
the margin constraint are known as support vectors.

6. Solving the Optimization Problem : Using SVM, the issue is framed as an op-
timization task that needs to be solved. The goal is to reduce misclassification
error while increasing margin. Solving a convex optimization problem that
requires minimizing a cost function while meeting certain constraints allows
for this to be accomplished.

7. Kernel Trick: The kernel trick is a technique that SVM can use when the
data cannot be separated linearly. The original data is changed by the kernel
function into a higher-dimensional feature space, where it might be linearly
separable. After that, an ideal hyperplane is discovered using the altered
data. The following kernel functions are frequently used: linear, polynomial,
sigmoid, and radial basis function (RBF).

8. Training and Testing: After being trained on the labeled data, the SVM model
may be used to forecast the class labels of omitted data points. The trained
model determines the position of fresh data points in relation to the hyperplane
and labels them with the appropriate class.

Figure 4.1: SVM workflow
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4.1.2 Multinomial Naive Bayes :

Multinomial naive Bayes was the second technique we employed. Depending on the
Bayes rule, the Multinomial Naive Bayes approach predicts the label of a text, like
an e - mail or newspaper article. For a specific sample, it calculates the likelihood of
each tag, then outputs the tag with the highest likelihood. The advantage of using
this method is that it simply necessitates the calculation of probability, making it
easy to put into practice. This method works for both continuous and discrete data.
P(A—B) is calculated as P(A) * P(B—A)/P. (B) In this case, we are determining
probability A given that B is known. Prior Probability of B = P(B) Prior probability
of class A is P(A). P(B—A) = likelihood that predictor B will occur given class A
probability. The steps listed below can be used to summarize the Multinomial Naive
Bayes’ basic operation:

Working Principle :

1. Data Preparation: To prepare the training data, each document is represented
as a feature vector. In text categorization, the features often match the word
counts or frequencies in the text. The document classes are represented by the
target variable.

2. Feature Probability Calculation: The algorithm determines the probability
distribution of each feature (word) conditioned on each class in the training
set. This is accomplished by calculating the number of times each word appears
in the documents belonging to a given class, then dividing that number by the
total number of words in that class.

3. Class Prior Probability: The prior probability of each class is calculated by
adding up all the documents in the class and dividing that sum by the number
of documents in the class.

4. Conditional Probability Calculation : When a new document needs to be clas-
sified, the method determines the conditional probability that the document
belongs to each class. The probabilities of the characteristics (word proba-
bilities) for each class are multiplied in this manner, assuming independence
between the features (words). Numerical underflow is frequently prevented by
using the logarithm of probability.

5. Class Prediction: For the new document, the predicted class is chosen to
be the one with the highest conditional probability. The algorithm places the
document in the class with the highest likelihood based on the observed feature
values.

In applications like spam detection, emotion analysis, and topic classification where
word frequencies are important, multinomial Naive Bayes is frequently utilized.
When working with feature spaces that have a lot of dimensions and training datasets
that aren’t very big, it is particularly appropriate. Multinomial Naive Bayes’ The-
orem, which is probabilistic in nature, is used to: Based on word frequencies and
the likelihood of each class given the observed attributes, Bayes o↵ers a quick and
e�cient method for classifying text texts.
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Figure 4.2: Multinomial Naive Bayes workflow

4.1.3 Logistic Regression :

Logistic regression is a statistical algorithm that is used to classify data. It pre-
dicts the outcome as binary depending on an independent variable set. A flexible
and popular approach for binary classification applications is logistic regression. It
handles both numerical and category information, provides findings that are easy to
understand, and calculates class probabilities.

A logistic regression model makes predictions about a dependent data variable by
investigating the correlation between one or more independent variables that are
already present.

1. Data Preparation : To prepare the training data, feature values (input vari-
ables) and categorical target labels or similar binary values are collected. A
feature vector and an associated target label serve as representations for each
instance or observation in the collection.

2. Logistic Function (Sigmoid Activation) : The logistic function, also called the
sigmoid function, is used in logistic regression to translate the input features
into a probability score. The logistic function transforms the input character-
istics into a linear combination before compressing the values between 0 and
1.The logistic function is defined as :

3. Hypothesis Function : The logistic regression model specifies a hypothesis
function that converts the properties of the input data into the projected
probabilities of the target variable. Logistic regression’s hypothesis suggests
that the cost function should be constrained to a range between 0 and 1. In
light of the fact that it can have a value larger than 1 or less than 0, which
is not feasible according to the logistic regression hypothesis, linear functions
are therefore unable to accurately describe it.The hypothesis function can be
defined as :
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4. Model Training (Parameter Estimation): A procedure known as maximum
likelihood estimation is used to estimate the model parameters . Finding
the parameters that maximize the likelihood of the observed target labels
given the input features is the objective. Usually, a cost function, such as
the cross-entropy loss or the negative log-likelihood, is minimized by using
an optimization algorithm like gradient descent, which iteratively changes the
parameters.

5. Decision Boundary: Following the learning of the model parameters, a decision
boundary is established using the predicted probabilities. The decision bound-
ary divides the data points into various classes according to a given threshold
probability (for example, 0.5). Instances with predicted probabilities over the
threshold are categorized into one class, and those below the threshold are
categorized into the opposite class.

6. Model Evaluation: A separate validation or test dataset is used to assess the
trained logistic regression model using evaluation metrics including accuracy,
precision, recall, and F1. These metrics measure how well the model performs
in correctly predicting the class labels for the target variable.

Figure 4.3: Logistic Regression workflow

4.1.4 Random Forest :

A popular machine learning approach called random forest which produces the out-
put combining various decision trees together. Its widespread use is motivated by its
adaptability and usability because it can solve classification and regression issues.
Key characteristics and working principles of Random Forest :
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1. Ensemble of Decision Trees: Random Forest is composed of a combination
of decision trees. Each decision tree is individually constructed, and it based
its forecasts on the categorization or regression of the average of each of its
individual tree forecasts.

2. Random Sampling: Random Forest employs a technique called bootstrapping,
which comprises randomly sampling the training dataset with replacement.
Each decision tree in the ensemble is trained using a di↵erent bootstrapped
sample of the data to add diversity to the training process.

3. Random selection features : Random Forest selects a subset of features at
random for each split point in a decision tree from the available features. This
ensures that di↵erent trees focus on di↵erent feature subsets and reduces the
link between trees. The number of features to consider at each split point is
typically the square root or a user-specified value.

4. Construction of decision trees : Using a recursive process, each decision tree
in the Random Forest is constructed by selecting the best split at each node in
accordance with a predetermined criterion, such as information gain or Gini
impurity. The splitting procedure goes on until a preventing condition is met,
such as when the maximum tree depth or the minimum number of samples
are achieved at a node.

5. Prediction aggregation: Once all the decision trees have been trained, predic-
tions are made by merging the individual forecasts of each tree. The class
that earned the most votes among the decision trees is the final prediction in
classification problems. In regression problems, the average of the individual
tree forecasts is used to get the final prediction.

Figure 4.4: Random Forest workflow
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4.2 Recurrent Neural Network :

All total three di↵erent algorithms has been used for Recurrent Neural Network.
These are Bi LSTM ,Bi GRU, BERT (state of the art).

4.2.1 Bidirectional Long Short Term Memory (Bi LSTM)

By accurately preserving and deleting data over a lengthy period of time, recur-
rent neural networks (RNNs) with Long Short-Term Memory (LSTM) can handle
long-term dependencies. The LSTM design combines the three basic types of gates
known as the input gate, forget gate, and output gate. The input gate is active
for the whole data stream. While the input gate selects how much of the current
input should be added to the cell state, the forget gate selects which fraction of
the previous state should be maintained. The output gate will select how much of
the cell state will be used for output since it makes the final forecast. A sigmoid
function is used by the input gate, forget gate, and output gate to generate values
between 0 and 1.

Input gate, i t = (W i[x t, h t-1] + b i)
Forget gate, f t = (W f[x t, h t-1] + b f)
Output gate, o t = (W o[x t, h t-1] + b o)

Here, Weight matrices W i, W f and W o bias vectors b i, b f and b o the input at
time t, the hidden state from the previous time step h t-1.

The hyperbolic tangent (tanh) function is used in the equation for the candidate
cell state to provide a vector of potential values that can be added to or removed
from the cell state. Candidate cell state, g t = tanh(W c[x t, h t-1] + b c)

The equations for the current hidden state(h t )and the current cell state(C t) up-
date the current cell state and hidden state using values from the gates and the
candidate cell state. Current cell state: C t = f t * C t-1 + i t * g t
Current hidden state: h t = o t * tanh(C t)
LSTMs were developed to address the vanishing gradient problem that could arise
when training standard RNNs

A version of LSTM called Bidirectional Long Short-Term Memory (Bi-LSTM) is
frequently employed for the processing of sequential input. It is an update on the
traditional LSTM architecture, which works for processing sequences with long-term
dependencies. A Bi-LSTM’s architecture includes two independent LSTM layers,
one of which analyzes input sequences in a forward direction and the other in a
backward direction. The final output of the Bi-LSTM is created by concatenating
the output of these two layers at each time step. The input sequence of input vectors
x = [x1, x2, . . . ...xn], where xi is the value of the input vector at time i, is provided
to the forward LSTM layer. The forward LSTM layer uses the input vector and the
prior hidden state and cell state to derive a hidden state (ht) and a cell state (Ct) at
each time step t. The transmission of information through the cell state is managed
by the input gate, forget gate and output gate.
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The same series of input vectors x = [x1, x2,..., xn], but in the opposite direction,
i.e., [xn, xn-1,.....x1], are used as input by the backward LSTM layer. With the
input vector and the prior hidden state and cell state, the backward LSTM layer
determines a hidden state (ht’) and a cell state (Ct’) at each time step t. The
input gate, forget gate, and output gate all control how information moves inside
the cell state. The outcome of the Bi-LSTM is the sum of the forward and backward
hidden states at each time step. Utilizing a Bi-LSTM over a regular LSTM has the
benefit of being able to detect both forward and backward dependency in the order
of inputs, which can be advantageous for ML projects.

Figure 4.5: Workflow diagram of Bi LSTM

4.2.2 Bidirectional Gated Recurent Unit (Bi GRU ):

Gated recurrent units (GRU), a type of neural network model, are widely used to
process sequential input, much like LSTM. The architecture of a GRU is made up of
just one layer of GRU units, which process the input sequences sequentially. Each
GRU unit has an update gate and a reset gate that control the flow of data through
the unit. The update gate decides the amount of the new input should be absorbed
into the present hidden state, while the reset gate defines how part of the prior hid-
den state should be forgotten. A hidden state vector is the product from every GRU
unit, and it is transferred to the following one in the chain. A GRU unit calculates
reset gate and the update gate using the prior hidden state and the input vector
. zt = sigmoid(Wz * xt + Uz * ht-1 + bz)
rt = sigmoid(Wr * xt + Ur * ht-1 + br) ;
here Wz, Uz, Wr, Ur, bz, and br are learnable weight matrices and bias vectors and
xt is the input vector at time t, ht-1 is the prior hidden state.
The candidate hidden state of the GRU unit, h t = tanh(W * xt + U * (rt * ht-1)
+ b). Here, where b is a bias vector and W and U are learnable weight matrices.
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The candidate hidden state and the previous hidden state are combined linearly to
get the final hidden state of the GRU unit, ht = (1 - zt) * ht-1 + zt * h t.

The hidden state sequence that is generated by every GRU unit in the sequence is
the output of the GRU layer. Because a GRU has fewer parameters than an LSTM,
it can be trained more quickly and with less memory usage. However, it has been
demonstrated that LSTMs performed better in some situations, particularly when
dealing with longer sequences or intricate interactions among sequence parts.

The Bidirectional Gated Recurrent Unit (Bi-GRU), a variant of the GRU architec-
ture, is designed to process sequential data in both forward and backward directions.
Bi-GRU is a type of bidirectional recurrent neural network that is frequently used
in sequential data applications, such as NLP and speech recognition.
The Bi-GRU’s architecture consists of two GRU layers, one of which processes the
input sequence forward and the other of which processes it backward. At each time
step, the hidden state vectors of the two layers are concatenated to produce the
output vector of the Bi-GRU unit. Every layer of a Bi-GRU unit has the update
gate and the reset gate, which control the flow of data across the unit. The internal
memory of the unit is represented by the hidden state vector of the layers.

Bi GRU is ideal for applications like sentiment analysis and sequence labeling be-
cause it can record both the previous and prospective context relating to the input
sequence. On several comparison datasets, it has been demonstrated that it exceeds
other varieties of bidirectional RNNs.

Figure 4.6: Workflow diagram of Bi GRU

4.2.3 Bidirectional Encoder Representations from Trans-

formers (BERT) :

The Bidirectional Encoder Representations from Transformers (BERT) pre-trained
deep learning model is employed in natural language processing applications. The
transform structure handles sequential data, including text written in natural lan-
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guage, by using self-attention techniques. With the use of the self-attention mech-
anism, the model can assess each token while focusing on diverse elements of the
input sequence.

Each transformer encoder layer in the BERT system has several heads of self-
attention and position-wise fully interconnected feed-forward networks. Before mov-
ing on to the following layer, each layer’s output is subjected to a layer normalization
procedure. A sequence of tokens that are initially transformed into embeddings us-
ing an embedding matrix form the input to BERT. An embedding vector in the
d-dimensional range, where d is the dimension of the embedding space, is used to
represent each token. To represent the meaning of each token in the input sequence,
the embedding matrix is learned during pre-training.
Calculating the self-attention scores between all token pairs in the input sequence
is the initial step in each transformer encoder layer. The self-attention mechanism
calculates a weighted total of the embeddings of all tokens in the input sequence,
where the weight given to each token is based on how similar it is to the other
tokens in the sequence. The self-attention score, Here, d k is the dimensionality of

the key matrix, Q, K, and V are the query, key, and value matrices, respectively,
and softmax is the softmax function that normalizes the attention scores.

The model conducts a weighted sum of the embeddings of all tokens in the input
sequence after computing the self-attention scores, with the weights being based on
the self-attention scores. The output of the self-attention process is subsequently
transmitted via a positionally fully linked feed-forward network, which is made up
of two linear transformations separated by a ReLU activation function. Before mov-
ing on to the following layer, the output from every transformer encoder layer is
normalized. The output from each layer is normalized using the layer normalization
approach to have a unit variance and zero mean. This aids in enhancing the model’s
performance and stabilizing the training process.

Two unsupervised learning tasks: masked language modeling and next sentence
prediction—are used to train Bert on vast volumes of text data during pre-training.
The model is trained to predict the original tokens based on the masked tokens and
the surrounding context in masked language modeling, which randomly masks a
particular percentage of the input sequence’s tokens. Due to the need to infer the
proper token from the surrounding context, this drives the model to learn framed
representations of each token in the input sequence.

When predicting the next sentence, the model is trained to determine whether or
not two sentences in the input sequence are consecutive. This exercise improves the
model’s comprehension of the links between sentences. During fine-tuning, a task-
specific output layer is placed on top of the previously trained BERT model, and the
entire model is trained on the appropriate labeled dataset. During the fine-tuning
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stage, the parameters of this model’s pre-trained version are changed to better suit
the task at hand. BERT’s cutting-edge performance on a number of NLP tasks
has led to its acceptance by various academics and business executives. Numerous
further transformer-based variations have been produced as a result of its popularity.

Figure 4.7: Workflow of BERT

4.3 Convolutional Neural Network (CNN) :

For the analysis of visual data a convolutional neural network (CNN) is a popular
deep learning approach as CNNs are composed of several layers such as Convolution
layer, Activation layer, Pooling layer, Fully connected layer that have the ability to
learn and retrieve pertinent characteristics from the input data.

The convolutional layer is the most important component of a CNN. Convolutional
kernels or a set of learnable filters are added to the input data in this layer. In order
to create a feature map, each filter performs element-wise additions and multiplica-
tion with the input. This method hierarchically learns more sophisticated represen-
tations while capturing local spatial patterns. In order to introduce non-linearities,
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an activation function is applied elementwise following each convolutional layer. The
sigmoid, tanh and ReLU activation functions are frequently used and among them
ReLU is more e↵ective and simpler.

A pooling layer comes after convolution. Utilizing methods like average pooling or
maximum pooling, pooling decreases the spatial dimensions of the feature maps.
Although average pooling determines a median value within a pooling zone, maxi-
mum pooling chooses the maximum value. Downsampling helps to keep coordinates
while reducing the amount of computation required and extracting key features.

To improve the network’s architecture and enable the model to learn more and more
abstract and excellent information, many convolutional and pooling layers can be
stacked. Fully connected layers are used to process the learned features in more
detail. A vector representation of the feature maps is created, and they are then
joined to one or more fully connected layers. Based on the retrieved features, these
layers carry out decision-making and high-level analysis. The fully connected layer’s
neurons individually calculate the weighted total of their inputs, employ an activa-
tion function, and generate an output.

Due to the global receptive fields and combined weights utilized by convolutional
layers, one of the advantages of CNNs is their capacity to automatically learn perti-
nent features from unprocessed input data. The local receptive fields make sure that
each neuron concentrates on a specific area of the input, while the shared weights
enable the network to detect identical patterns in multiple points. These character-
istics enable CNNs to handle grid-like patterns and be resilient to changes in input
data.
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Figure 4.8: Workflow of CNN
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Chapter 5

Result Analysis

5.1 Precision, Recall and F1 score

Precision, recall, f1 score, and confusion matrix are just a few of the ways that the
models’ outputs might be shown. The precision, recall, and F1 score of a classifi-
cation model are important factors to take into account. They provide informative
information on various aspects of the model’s success and aid in evaluating the
model’s performance in certain situations.

True Positives (TP): Occurrences that the model accurately identified as positive.
Instances where the model accurately classifies positive outcomes as positive occur
in these situations.
True Negatives (TN): Occurrences that the model accurately identified as neg-
ative. In these situations, the model accurately classifies negative events as such.
False Positives (FP): Occurrences that the model mistakenly predicts as positive.
In some circumstances, the model misclassified negative events as positive ones.
False Negatives (FN): Situations that the model mistakenly predicts as negative.
In some circumstances, the model misclassified positive instances as negative ones.
Precision : Out of every single instance that the model predicted to be positive,
precision is a measure of the model’s ability to properly identify positive instances.
The goal is to reduce false positives. A high precision means that there is little
chance that the model would mistakenly categorize negative instances as positive.
For instance, in a scenario involving a medical diagnosis, precision is the percentage
of instances that are accurately diagnosed as positive out of all cases that were
projected to be positive.

Precision =
TP

TP + FP
(5.1)

Recall: The model’s capacity to accurately identify all of the positive instances
is measured by recall, sometimes referred to as sensitivity or true positive rate. It
emphasizes reducing false negatives. With a high recall, the model is less likely to
misclassify positive cases as negative. It assesses the model’s capacity to correctly
detect positive cases and is also known as sensitivity or true positive rate. It is
the proportion of accurate positive predictions to all instances of actual positive
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outcomes (TP + FN). The model’s recall tells us how many of the real positive
events it was able to identify.

Recall =
TP

TP + FN
(5.2)

F1 Score: The harmonic mean of recall and precision is the F1 score. It o↵ers a
single metric that balances recall and precision into a single measurement. If either
precision or recall is much lower than the other, the harmonic mean will give lower
values more weight, lowering the F1 score. In other words, rather than favoring
one over the other, the F1 score rewards models that have high precision and high
recall. The harmonic mean of recall and precision is the F1 score. When there is a
trade-o↵ between these two measurements, it o↵ers a balanced measure that takes
both precision and recall into account. The F1 score has a range of 0 to 1, with 1
being the highest attainable result.

F1 Score = 2 · Precision · Recall
Precision + Recall

(5.3)

5.2 Result of Machine Learning Models

A machine learning model is an algorithmic or mathematical representation that
uses input data to identify patterns and generate predictions or judgments. We
used machine learning models including SVM, Naive Bayes, Logistic Regression,
and Random Forest for our fake and true news detection task. We preprocessed
the data before dividing it into train, test, and validation subsets for the model
training: 80:10:10. Then, we converted the text data into numerical characteristics
that could be utilized as input for machine learning models by using the TF-IDF
(Term Frequency-Inverse Document Frequency) algorithm.

We used the linear linear kernel for the support vector machine. For data that can be
separated linearly, the linear kernel is frequently employed and is useful in a variety
of classification applications. The decision boundary is described as a hyperplane
dividing the classes. The validation accuracy for the SVM model was 93.26%, and
the test accuracy was 92.58%. Precision was 93.04%, Recall was 93.56%, and F1
score was 93.3% on the validation set. Precision: 93.26%, Recall: 91.76%, and F1
score of 92.68% on the test data.

A classification problem is classified using Multinomial Naive Bayes, which calculates
the probability of each class given the feature vector (input). The validation accu-
racy and test accuracy for the Multinomial Naive Bayes model, respectively, were
84.16% and 83.49%. Precision: 83.91%, Recall: 84.68%, and F1 score of 84.26%
were recorded on the validation set. Precision: 83.98%, Recall: 83.73%, and F1
score of 83.85% on the test data.

Additionally, logistic regression classifies a classification issue by simulating the like-
lihood that a single instance will belong to a certain class. It converts the input
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features into a probability score using a logistic function, also referred to as the sig-
moid function. The test accuracy and validation accuracy for the logistic regression
model, respectively, were 91.70% and 92.63%. Precision: 92.35%, Recall: 93.03%,
and F1 score of 92.69% were obtained on the validation set. Precision: 92.44%,
Recall: 91.25%, and F1 score of 91.84% on the test data.

Last but not least, we employed Random Forest classification, an ensemble learning
technique that combines the categorization predictions of various decision trees.
The validation accuracy for the Random Forest model was 92.28%, and the test
accuracy was 91.30%. Precision, Recall, and F1 scores on the validation set were
92.31%, 92.31%, and 92.31%, respectively. Precision: 91.57%, Recall: 91.41%, and
F1 score of 91.49% on the test data.

Model Name Test Validation Precision Recall F-1 score
SVM 92.58 93.26 93.26 91.76 92.68
Multinomial Naive Bayes 83.49 84.16 83.98 83.73 83.85
Logistic Regression 91.70 92.63 92.44 91.25 91.84
Random Forest 91.30 92.28 91.57 91.41 91.49

Table 5.1: Machiene Learing models result

Both validation accuracy and test accuracy are essential in determining how well a
model performs, but test accuracy is frequently regarded as being more significant
because it shows how well a model can generalize to new data. from every model that
has been examined. Following logistic regression and random forest classifier, we
discover that the Support vector machine model has the highest test accuracy.We
also extracted the precision, recall, and f1 score for test and validation. Since it
represents the model’s genuine ability to generalize to unobserved data, we are only
concentrating on the test data. The support vector machine also has the highest f1
score, recall, and precision.

5.3 Result of Recurrent Neural Networks Model

Recurrent neural networks (RNNs) are a subclass of artificial neural networks cre-
ated with the purpose of processing time-series and sequential data e�ciently. For
problem-solving, we employed models like Bi-LSTM and Bi-Gru.

We utilized the glove word embedding ”glove.6B.300d” for all embedding layers.GloVe
(Global Vectors for Word Representation) is a particular pre-trained word embed-
ding model that has been trained on a substantial corpus of text data, and is the
model referenced by the glove word embedding ”GloVe.6B.300d”. The word ”6B” in
”GloVe.6B.300d” stands for the vocabulary’s about 6 billion tokens or words. Each
word in the lexicon is represented as a dense vector of 300 dimensions, as indicated
by the ”300d” designation.

Basic ML models and RNNs are di↵erent in the following ways: RNNs deal with
sequential data and take temporal dependencies into account. They have a memory
inside of them that can store context over time. RNNs are able to generalize to
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sequences of various lengths because they share weights across time steps. Long-
term dependencies and complicated non-linear patterns can be captured by them.
Gradient-based optimization approaches are used to train RNNs. Basic ML models
lack the ability to model time and assume independence.

Bi LSTM: Recurrent neural networks of the Bi-LSTM variety are employed in
NLP tasks. It has two LSTM layers, one of which runs the sequence forward and
the other backward. This enables the model to grasp sequential data better by
capturing information from both past and future context.
The Bi LSTM layer employed the pre-trained GloVe embeddings. The embedding
layer in the model architecture has a 300 embedding dimension and is initialized
with pre-trained GloVe embeddings. The embedding layer is configured to be non-
trainable, and the input sequences have a maximum length of max sequence length
= 300.There are two bidirectional LSTM layers in the model. While the second
LSTM layer only has 128 units, the first LSTM layer has 256 units and returns
sequences. Following both LSTM layers are dropout layers with a 0.2 dropout rate.
The dense layer with a sigmoid activation function that makes up the last layer
produces a single value for binary classification. The layers and their correspond-
ing configurations, including the quantity of parameters, are displayed in the model
summary. A binary cross-entropy loss function and the Adam optimizer are used in
the model’s construction.

Figure 5.1: Architecture of Bi - LSTM

The input and output shapes of the embedding layer are (None, 300) and (None,
300, 300), respectively. There are 10,453,200 non-trainable parameters in all.The
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output form of the first bidirectional LSTM layer, which receives the output from the
embedding layer, is (None, 300, 512). 1,140,736 parameters make up this.Following
the initial LSTM layer is a dropout layer that has no trainable parameters and has
no impact on the output’s form.The output shape of the second bidirectional LSTM
layer, which accepts the output from the first LSTM layer, is (None, 256). There
are 656,384 parameters in it.Following the second LSTM layer is a dropout layer
that has no trainable parameters and has no impact on the output’s form.The dense
layer has 257 parameters and an output shape of (None, 1).The model includes
12,250,577 parameters in total. 10,453,200 of these parameters cannot be trained,
leaving 1,797,377 trainable parameters.

Figure 5.2: Validation accuracy and loss compared to training OF Bi-LSTM

20 epochs and a batch size of 128 are employed during training. The optimal weights
of the model based on validation loss are restored by using the early halting mecha-
nism with a patience of 3. The fit function is used to complete the training process,
and training data, validation data, and callbacks (including early terminating) are
all supplied. The training metrics, such as loss and accuracy, are stored in the his-
tory variable for further analysis and performance evaluation of the model.

Figure 5.3: Bi-LSTM confusion matrix
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The early stop was implemented as before. At the early halt, the weights of the
model were also reset to their best training-era values while we maintained an eye
on the validation loss. The batch size was increased to 128 with an epoch of 20. The
test loss was 13.64 percent, and the test accuracy we received was 94.96 percent.
The scores for precision, recall, and f1 are 96.51 percent, 93.54 percent, and 95.0%,
respectively.

Bi GRU: The Gated Recurrent Unit that is bidirectional. Due to its ability to
collect data from both the past and the future, the bi-GRU (bidirectional gated
recurrent unit) is frequently regarded as being preferable than a unidirectional GRU
in some situations. A pre-trained GloVe word embedding layer (glove.6B.300d) with
a vocabulary size of 10,453,200 words and an embedding dimension of 300 is the first
layer in the model architecture. The pre-trained embedding matrix is used to set
the weights of the embedding layer. The longest input sequences can be 300 tokens
long. Bidirectional GRU (Gated Recurrent Unit) layer with 256 units is the following
layer. The layer’s bidirectional nature enables the model to gather contextual data
moving both ahead and backward. This layer aids in the text data’s ability to
capture enduring dependencies. In order to avoid overfitting, a Dropout layer with
a rate of 0.2 is added after the GRU layer. This layer randomly removes 20% of the
neuron activations during training. The generalization of the model is enhanced by
this regularization method.

Figure 5.4: Architecture of Bi - GRU
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The layer beyond that has a sigmoid activation function and 128 units of density. It
gives the model more nonlinearity and aids in identifying intricate patterns in the
data. For binary classification, a Dense output layer with one unit and a sigmoid
activation function is added. The likelihood that the input belongs to the positive
class is represented by the probability value between 0 and 1 that the sigmoid
activation function outputs.
The binary crossentropy loss function, which is frequently employed for binary clas-
sification tasks, and the Adam optimizer, an e↵ective optimization tool, are used
in the model’s construction. The total number of parameters in each layer and the
overall model are displayed in the model summary. There are 11,376,081 total pa-
rameters in the model, 922,881 of which may be trained, and 10,453,200 of which
cannot be learned because of pre-trained embeddings.

Figure 5.5: Validation accuracy and loss compared to training Of Bi-GRU

This model’s test loss is 12.75% and test accuracy is 95.13%. The precision, recall
and F1-scores are 95.67%, 94.67% and 95.21% respectively.

Figure 5.6: Bi-GRU confusion matrix
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The model based on Bi-GRU architecture outperformed the model based on Bi-
LSTM architecture in the job of classifying bogus news. In comparison to the
Bi-LSTM model’s test accuracy of 94.96%, the Bi-GRU model attained a higher
test accuracy of 95.13%.

Model Name Test accuracy Test Loss Precision Recall F-1 score
Bi-LSTM 94.96 13.64 93.54 95.56 95.-0
Bi-GRU 95.13 12.75 95.67 94.70 95.21

Table 5.2: RNN models result

The model based on Bi-GRU architecture outperformed the model based on Bi-
LSTM architecture in the job of classifying bogus news. In comparison to the Bi-
LSTM model’s test accuracy of 94.96%, the Bi-GRU model attained a higher test
accuracy of 95.13%. The Bi-GRU model also performed better when precision, re-
call, and F1 scores were considered. The Bi-GRU model beat other machine learning
models including SVM, Multinomial Naive Bayes, Logistic Regression, and Random
Forest in the classification of fake news. Bi-GRU has a number of advantages,
such as the ability to gather sequential data, control long-term dependencies, learn
complicated representations, and e�ciently use trained word embeddings. These
factors contribute to its enhanced comprehension of the context and patterns in-
cluded in text data, which leads to better accuracy, precision, recall, and F1 score.
The model’s deep learning architecture, non-linear transformations, and usage of
word embeddings enable it to e↵ectively distinguish between fake and real news by
collecting relevant linguistic clues and nuances.

5.4 Result of BERT Model:

Language comprehension has been revolutionized by the groundbreaking natural
language processing technique known as BERT (Bidirectional Encoder Represen-
tations from Transformers). BERT captures the context-based meaning of words
and phrases thanks to its transformer-based architecture and bidirectional learn-
ing strategy. BERT creates educational representations by taking into account the
words around it, which enables it to comprehend intricate linguistic patterns. It
has attained cutting-edge performance across a variety of language tasks, making it
a crucial tool for NLP practitioners and researchers. The e↵ects of BERT on lan-
guage processing have created new opportunities for precise and complex language
comprehension.

The text and label columns from a DataFrame were first removed. Then, using the
’bert-base-uncased’ model, which changes all text to lowercase, we initialized the
BERT tokenizer.The definition of a preprocessing function follows. By tokenizing
the text, adding unique tokens, and making attention masks, this function encodes
the input text using the BERT tokenizer. The text is broken up into tokens or sub-
words, special tokens such [CLS] and [SEP] are added, and the sequence is padded
or cut o↵ at a maximum length of 128 tokens. The encoded inputs are returned
as PyTorch tensors by the function. Each sample in the text data is subsequently
subjected to the preprocessing function by the code. Both the attention masks and
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the decoded input IDs are kept in separate lists. In order to build tensors for the
input IDs and attention masks, the lists are finally concatenated along the relevant
dimension. Additionally, the labels are transformed into a tensor.The overall pre-
processing function transforms the input characteristics (token IDs and attention
masks) and labels into PyTorch tensors in preparation for additional classification
tasks with BERT. The text data is processed by encoding it with the BERT tok-
enizer.

The data was then divided into training, validation, and test sets, and data loaders
were developed for e↵ective data processing. It initially divides the data into train-
ing and remaining sets based on the ratios provided, and then further divides the
remaining set into a validation and test set. To maintain label distribution in each
set, the data splitting is stratified based on the labels. The token IDs, attention
masks, and labels are then combined to generate TensorDataset objects for each
set. In order to facilitate e↵ective batch-wise data loading during training, valida-
tion, and testing, DataLoader objects are lastly constructed for each set. Sequential
sampling is used by the validation and test data loaders, whereas random sampling
is used by the training data loader. This code snippet o↵ers an organized method
for getting the data ready for BERT-based classification tasks, making the training
and evaluation procedures that follow easier.

Then we initialize an optimizer for training as well as a BERT model for classify-
ing sequences. Pre-trained weights from the ’bert-base-uncased’ model, which was
trained on uncased English text, are fed into the BERT model. It is set up for a two-
label binary classification task. The model is configured to not output hidden states
or attention weights. The model’s parameters are updated throughout training by
the optimizer, AdamW. For numerical stability, the epsilon value is set to 1e-08 and
the learning rate to 1e-5. With the help of this code, the BERT model and optimizer
are ready to be trained on the input features and labels. This paves the way for fur-
ther training and fine-tuning of the model for tasks requiring sequence classification.

Word, position, and token type embeddings are all used as the model’s initial in-
put embeddings. These embeddings record the spatial and semantic details of the
incoming text. The BERT encoder, which comprises of numerous stacked layers
known as BertLayers, receives the input embeddings. For the purpose of capturing
contextual information and associations between words in the input sequence, each
BertLayer engages in self-attention and feed-forward operations. The top BertLayer
is used to extract the special [CLS] token’s last hidden state, which is then passed
through a pooler. The hyperbolic tangent activation function (Tanh) is applied by
the pooler after a linear translation. A fixed-size representation of the full input se-
quence is produced in this stage. The output of the BERT model is then subjected
to a dropout layer. Through the arbitrary removal of some units during training,
dropout helps avoid overfitting. The BERT model’s output is mapped to the appro-
priate number of output classes using a linear classifier, which receives the dropout
layer’s output as input. In this instance, the classifier has two binary output units.

The embedding layer used by the model has a vocabulary size of 30,522 words and
an embedding dimension of 768. An embedding layer with a maximum sequence
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Figure 5.7: Architecture of BERT
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length of 512 and an embedding dimension of 768 is used to encode positional data.
Token type information is encoded using an embedding layer with two types and an
embedding size of 768 to discriminate between various segments or sentences. The
embeddings are subjected to layer normalization using an epsilon value of 1e-12 and
a vector size of 768.

There are 12 stacked BertLayers in the model. There are many sublayers within
each layer. Self-attention method with a dropout rate of 0.1 and 768-byte linear
transformations (query, key, and value). output layer following self-attention with a
768-by-768-pixel linear transformation, layer normalization, and a 0.1 dropout rate.
Intermediate layer with an activation function (GELU) and a linear translation from
768 to 3072. After the intermediate layer, there is an output layer with a dropout
rate of 0.1, layer normalization, and a linear transformation from 3072 to 768. The
hyperbolic tangent activation function (Tanh) is used after a pooler layer with a lin-
ear transformation from 768 to 768. To regularize the output, a dropout layer with
a dropout probability of 0.1 is added after the BERT model. The model includes a
linear classifier with an output size of 2 for binary classification and an input size
of 768 (the output size of the BERT model). There is also a prejudice word. The
training is configured for 15 epochs, and variables for tracking the best validation
loss, patience for early stopping, and counter for epochs without improvement are
initialised. It ran for 4 epochs.

After running the model we got an Testing accuracy of 95.96% Test Precision:
94.72% Test Recall: 97.52 %.

Model Name Test accuracy Precision Recall
SVM 92.58 93.26 91.76
Multinomial Naive Bayes 83.49 83.98 83.73
Logistic Regression 91.70 92.44 91.25
Random Forest 91.30 91.57 91.41
Bi-LSTM 94.96 93.54 95.56
Bi-GRU 95.13 95.67 94.70
BERT 95.96 94.72 97.52

Table 5.3: Result of all the models
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5.5 Result of Covolutional Neural Network (CNN):

The given code snippet represents the training process and the resulting metrics of
a model. Here is a description of the key components:

1. Epochs : The model is trained for 18 epochs, where each epoch represents a
complete pass through the entire training dataset.

2. Batch Size : During training, the data is divided into batches, and each batch
contains 64 samples. The model’s weights are updated after processing each
batch.

3. Learning Rate : The initial learning rate is set to 0.0001 (1e-4). The learning
rate controls the step size at which the model’s parameters are updated during
training.

4. Optimizer : The Adam optimizer is used for updating the model’s parameters.
It utilizes adaptive learning rates and momentum to e�ciently optimize the
model’s performance.

5. Model Compilation : The model is compiled with the Adam optimizer, binary
cross-entropy loss function, and accuracy as the evaluation metric.

6. Early Stopping : An early stopping callback is defined to monitor the valida-
tion accuracy. If the accuracy does not improve for two consecutive epochs,
training is stopped early.

7. Training Process : The model is trained using the ‘fit‘ method. The training
data (‘X train‘ and ‘Y train‘) and validation data (‘X val‘ and ‘Y val‘) are
provided. The training progress is displayed for each epoch, showing the loss
and accuracy values for both the training and validation sets.

8. Model Saving : The trained model is saved to a file named ’model casia run1.h5’
for future use.

9. Plotting Loss and Accuracy : After training, the loss and accuracy curves
for the training and validation sets are plotted using Matplotlib. The first
subplot displays the loss values, while the second subplot shows the accuracy
values. The curves provide visual insights into the model’s learning progress
and performance.

Overall, the code represents the training of a model on the CASIA dataset for face
anti-spoofing, utilizing a specific configuration of epochs, batch size, learning rate,
and optimizer. The training progress and resulting metrics are visualized to evaluate
the model’s performance.

In the final result, the model achieved the following performance metrics:

1. Final Accuracy : The model achieved an accuracy of 95.08% on the training
data, indicating that it correctly classified 95.08% of the training samples.
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Figure 5.8: Number of parameter and metrices of CNN

2. Validation Accuracy : The validation accuracy of the model reached 92.92%,
demonstrating its ability to generalize well to unseen data.

3. Final Loss : The final loss value on the training data was 0.1273, indicating
the model’s ability to minimize the discrepancy between predicted and actual
values during training.

4. Validation Loss : The validation loss at the end of training was 0.1740. This
metric quantifies the model’s performance on unseen data, with lower values
indicating better generalization.

The training and validation loss curves plotted during training show a decreasing
trend, suggesting that the model is learning to make more accurate predictions and
reducing its training error over time. Similarly, the accuracy curves show an in-
creasing trend, indicating improved classification performance on both training and
validation sets.

These results indicate that the model was able to e↵ectively learn patterns and
features in the CASIA dataset, resulting in a high level of accuracy in classifying
face images as genuine or spoofed.
In the final evaluation, the model was tested on both real and fake/edited images.
Out of 2064 fake images, the model correctly identified 2029 images as fake, achiev-
ing an accuracy rate of 98.30%. Similarly, out of a total of 7354 real images, the
model accurately detected 6643 images, resulting in an accuracy rate of 90.331%.

Please note that these results indicate the model’s performance in distinguishing
between real and fake/edited images, with a high accuracy rate observed for fake
images and a slightly lower accuracy rate for real images.
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Chapter 6

Conclusion :

Even however, a lot of research has been done in the last 10 years to identify strate-
gies for halting the dissemination of misleading information. It still merits consider-
able attention, nevertheless, as a major problem. ICT growth is accelerating the 17
dissemination of misleading information, but we can also use technology to alleviate
the issue. In the past, the majority of research e↵orts focused mostly on text when
attempting to identify bogus news. It has been accelerated though after the adding
of the pictures. In this analysis, we have looked at a number of ways that have been
utilized in the past to discern between authentic news and fake news. We suggest
the hybrid system in an e↵ort to make the work more productive and e�cient.In
order to solve the problem more successfully, we expect to have both improved accu-
racy and a better solution. In the coming years, we intend to build a more peaceful
society by utilizing technology advancement.
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