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Abstract

Deep learning technologies developed at an exponential rate throughout the years.
Starting from Convolutional Neural Networks (CNNs) to Involutional Neural Net-
works (INNs), there are several neural network (NN) architectures today, including
Vision Transformers (ViT), Graph Neural Networks (GNNs), Recurrent Neural Net-
works (RNNs) etc. However, uncertainty cannot be represented in these architec-
tures, which poses a significant difficulty for decision-making given that capturing
the uncertainties of these state-of-the-art NN structures would aid in making spe-
cific judgments. Dropout is one method that may be implemented within Deep
Learning (DL) networks as a technique to assess uncertainty. Dropout is applied
at the inference phase to measure the uncertainty of these neural network models.
This approach, commonly known as Monte Carlo Dropout (MCD), works well as a
low-complexity estimation to compute uncertainty. MCD is a widely used approach
to measure uncertainty in DL models, but majority of the earlier works focus on
only a particular application. Furthermore, there are many state-of-the-art (SOTA)
NNs that remain unexplored, with regards to that of uncertainty evaluation. There-
fore an up-to-date roadmap and benchmark is required in this field of study. Our
study revolved around a comprehensive analysis of the MCD approach for assessing
model uncertainty in neural network models with a variety of datasets. Besides,
we include SOTA NNs to explore the untouched models regarding uncertainty. In
addition, we demonstrate how the model may perform better with less uncertainty
by modifying NN topologies, which also reveals the causes of a model’s uncertainty.
Using the results of our experiments and subsequent enhancements, we also discuss
the various advantages and costs of using MCD in these NN designs. While working
with reliable and robust models we propose two novel architectures, which provide
outstanding performances in medical image diagnosis.

Keywords: Deep Learning · Neural Network · Monte Carlo Dropout · Uncertainty
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Chapter 1

Introduction

1.1 Problem Statement

The British statistician George E. P. Box. is attributed a rather famous aphorism,
“all models are wrong”, which is typically extended to “all models are wrong, but
some are useful”. This proverb recognizes that statistical and empirical models can
be beneficial in spite of their inevitable limitations due to the complexity of the ac-
tual world. In deep learning, our predicted results are considered non-deterministic,
making the model uncertain. This property of deep learning is said to be stochas-
tic. However, a model’s uncertainty is a major key factor in its decision making
capability. In medical and financial fields especially, uncertain predictions may lead
to complexity issues. Thus, the reliability of a deep neural network model’s results
need to be validated using uncertainty approximation [1], [2].
In the field of Bayesian machine learning, we frequently deal with uncertain out-
comes and probabilistic models. In order to understand the most likely and least
likely ways to infer from observable data, models like Gaussian processes are uti-
lized. These models, which describe distributions of probability over functions, are
applied to quantify the probability of each possible outcome. This stochastic view
of machine learning provides a new boundary of confidence for tasks such as data
analysis and automated decision making. This knowledge could be put to use by
a biologist to examine her data, or by an autopilot system to determine whether
or not it should halt. When it comes to being able to make decisions or evaluate
data, a model is frequently required to have the ablility to figure out whether its
output is definitive, that is to be able to pose the question, “Do I need to use a more
diverse dataset? or modify the model? or possibly exercise caution while making
decisions?”. Such concerns are crucial to Bayesian machine learning, where they
have been the subject of substantial research [3]. In contrast, when employing deep
learning models [4], we typically just have baseline estimations of predictions and
parameters. In order to employ such models, we have to give up the resources we
rely on to answer the questions posed at the beginning of this article, which could
lead to a scenario wherein we have no idea whether or not the model is producing
reasonable predictions. Deterministic functions are often considered to be appro-
priate representations for the greater part of deep learning models. Consequently,
they are regarded as working in an environment that is very dissimilar to that of
probabilistic models, which contain uncertainty information. It could be for this
reason that the closeness of current deep learning to probabilistic modeling comes
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as such a surprise.
Understanding and defining the questions at hand is an essential first step in model-
based prediction. As opposed to problems where the dataset is quite enriched, for
which both the queries and accompanying frameworks are often unknown. Suc-
cessful models that identify spontaneous patterns in datasets are sought for by a
variety of AI-based technologies, from cutting-edge hardware to machine learning
(ML) techniques. The complexity, multimodality, inconsistency, noise, and incom-
pleteness of these data are all too common. Numerous decision-making procedures,
such as those involving nuclear safety, risk assessment, and accompanying expen-
ditures, can indeed be supported by the quantification of uncertainty nowadays,
and these procedures may usually involve managing billions of dollars. No amount
of forecasting is useful if it lacks the ability to quantify uncertainty. Similar dif-
ficulties can be found in the data-heavy field of ML, particularly with the robust
deep learning (DL) models. There is a critical obligation to co-develop uncertainty
quantification for this area in order to create useful decision support from ’learned’
models constructed on complicated datasets. The future of prediction resides in the
intersection of model-based and data-based approaches. Uncertainty quantification
for AI-based techniques is a prerequisite for achieving this goal.
There are profound social and psychological ramifications in outsourcing to com-
puters for decisions that influence people’s life, and hence the basic concepts of
the DL models vary greatly. Nevertheless, in order to render DL and other data-
driven methods and techniques practically applicable, advancements in the compre-
hension of the architecture of these predicting models, the integration of model and
data-driven methodologies with firmly justifiable uncertainty quantification, as well
as the establishment of the uncertainty quantitative analysis for the DL discipline
will be required.
Uncertainty in deep learning is important because it allows models to quantify their
confidence in predictions, which may be especially useful in safety-critical applica-
tions where a high level of credence is needed before taking action. In addition,
deep learning models incorporated with uncertainty quantification can also help in
enhancing the its own robustness and performance. The model’s effectiveness can
be further improved by modeling uncertainty, which in turn increases the model’s
ability to make well-informed choices. For example, a model that is uncertain about
its predictions may choose not to make a prediction, or it may choose to make a
conservative prediction that is less likely to be incorrect [5].
Furthermore, modeling uncertainty aids in comprehending the judging and deciding
process of the model, which is something that can be helpful for both debugging and
interpreting the model. For example, if a model is uncertain about its predictions, it
may be possible to identify the features of the input that are causing the uncertainty
and to use this information to improve the model [6].
Without the quantification of uncertainty to substantiate the deep learning models’
decisions, it would make faulty predictions [7], [8].
Engineering breakthroughs in machine learning sector led to the application of pre-
viously experimental systems with practical data. One such context would be the
transfer of decision-making authority to an automated process under potentially fa-
tal risks. Control of critical systems, medical decision-making or recommendation
systems, drone and autonomous vehicle operation, high-frequency trading’s poten-
tial to disrupt the global economy and so on are examples of such processes. All of
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these mentioned scenarios pertain to the wider scope of AI security.

1.2 Background Information

1.2.1 What is Uncertainty in Deep Learning

Uncertainty, as it relates to deep learning, is the degree to which a deep learning
model exhibits either confidence or ambiguity in the predictions or decisions that
it makes. It is a measurement of how effectively the model generalizes to data
that has not been seen before and measures the amount of randomness or lack of
information that is present in the model’s output. This may be measured in a variety
of ways, including probability distributions and measurements of entropy, amongst
other possible approaches.
Projected probabilities seem acceptable as an indicator of model uncertainty in
terms of categorization, as there is a great deal of logic behind this. Consider the
case where we are training our model for a categorization task for handwritten
digit identification, however we only ever provide the values 0 through 8 as training
examples, however the value 9 is not used. Next, we presume that this model would
produce reliable results for 0-8 data samples.
Consider the following scenarios: we see the number 2 (Figure 1.1) on the input im-
age, and sure enough, our network is able to make a strong prediction.

Figure 1.1: Example of Predicting the Digit 2

Example 7 (Figure 1.2) is more challenging since assigning the correct class to the
sample (no matter it be class 7 or 1) is more complicated. This serves as a perfect
demonstration of the aleatoric uncertainty that will be discussed in greater detail
later on.
Moving forward, we start the network with a sample of data from the class “9”
(Figure 1.3). Since the model has never encountered this kind of data before, the
results it produces are likely to be highly inaccurate. Although there may be good
reason to believe that the predicted distribution will be flattened and high in entropy,
our model’s output can be totally unpredictable.
It is almost a trait of neural networks to provide overly confident forecasts [9], and as
a consequence of this, it is conceivable to make a confident projection with highest
probability in the value “4” even when the scenario involves a sample model of “9”.
As a result, the findings of the model cannot be used as an indicator for uncertainty.

3



Figure 1.2: Example of Predicting the Digit 7

Figure 1.3: Example of Predicting the Digit 9

1.2.2 What Causes Uncertainty in Deep Learning

Gawlikowski et al. [10] discuss the elements that influence the occurrence of uncer-
tainty. We shall address the causes of uncertainty from the next paragraph.

Factor I: Variability in Real World Situations

When it comes to the actual world, the entirety of our surroundings are notori-
ously unpredictable and subject to being impacted by frequent changes. Attributes
like congestion, light level, temperature and the shape and size of physical items
are all influenced by these modifications. Environmental factors can also have an
impact on how things appear; for instance, the appearance of plants can change
dramatically from after rainfall to after droughts. A distribution shift occurs when
out-of-sample data (unexpected external conditions) does not fit the same pattern
as the training data. When there is a change in the distribution over which the
network is trained, the results can be dramatically different.

Factor II: Error and Noise in Measurement Systems

In some cases, the reliability of the neural network’s prediction can be affected by
the reliability of the observations themselves. It may be the result of inadequate
data being included in the observations, such as the picture quality, or the failure
to account for false or minimally available data modalities. Another probable ex-
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planation is that the image resolution was too low. In addition, this could result
from mechanical tension, motion, or sensor noise, all of which contribute to erro-
neous measurements. Furthermore, improper labeling contributes to the overall level
of measurement uncertainty through noise and error. Label noise is a causative fac-
tor in machine learning models; it causes a loss of credibility in the model’s accurate
classifications when it is being trained.

Factor III: Errors in the Model Structure

The accuracy, precision as well as the level of uncertainty of a neural network’s
predictions are directly tied to the its architecture. Over-fitting and under-fitting
on the training dataset might occur, for example, when there are too many fea-
tures limiting the memory space. In terms of neural network uncertainty, it has
been proven that deeper networks are more likely to exhibit overconfidence in their
softmax output [15], which implies that they are all the more likely to predict with
excessively greater probability the category with the greatest probability score [9].

Factor IV: Errors in the Training Procedure

During the train phase of a neural net, there are a great deal of parameters that
need to be provided (stopping criteria, learning rate, optimizer, regularization, batch
size, etc.). There are also stochastic actions taken during the learning phase itself
(in terms of both batch size and initialization of weights). Because of how the local
optima are affected by all these changes, it is highly implausible that two training
cycles will result in the exact same model parameterization. Uncertainties on the
network’s learning variables are also introduced by a training dataset with lack
of balance or poor representation of particular areas in the data distribution, as
has already been previously discussed in the data procurement process. This could
be mitigated through the use of augmentation to boost diversity, or through the
modification of the loss function so that the influence of individual groups or areas
is minimized.

Factor V: Errors Caused by Unknown Data

The ability of a neural network learned using samples from a particular environ-
ment W1 to handle data from another environment W2 has been demonstrated,
in particular for classification tasks. Such is the situation, for instance, when a
model which is trained on pictures of dogs and cats is presented with a picture
of a bird. Here, we presume an environment has only realistic input sources for a
forecasting job, thus we believe that the uncertainty does not stem from the data col-
lection procedure. In spite of the fact that the actual outcome could be equivalent
to an excessive amount of noise on the sensor or the full malfunction of the sen-
sors, the data that we have reviewed here constitute a legitimate sample, albeit for
another endeavor or domain.
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1.2.3 Types of Uncertainty

Data uncertainty emerges due to coinciding class or noisy data [11], whereas knowl-
edge uncertainty arises due to misalignment of training and testing data [12]. How-
ever, measuring uncertainty based on knowledge seems more challenging. Aleatoric
and epistemic uncertainty are two prior erratic forms [13].
There are two distinct types of uncertainty: epistemic uncertainty and aleatoric
uncertainty. Epistemic uncertainty is often referred to as model uncertainty. Mean-
while, aleatoric uncertainty is sometimes called data uncertainty.These ambiguities
are often combined into a single number and forecasted as a whole, which is re-
ferred to as the predictive uncertainty [12]. Recovering the two different aspects of
uncertainty might be useful in a few different situations.

Aleatoric Uncertainty

The term “aleatoric” (sometimes known as “statistical”) uncertainty is used to de-
scribe the inherent unpredictability in every experiment’s results. This suggests
that our observed labels may contain noise, maybe as a result of inaccuracies in our
measurements. Utilized data is the source of this form of uncertainty.

Epistemic Uncertainty

Uncertainty due to a lack of information, or the agent’s epistemic condition, is
referred to as epistemic (or systematic) uncertainty. There are two components
to this kind of uncertainty: uncertainty from within the model parameters and
uncertainty in the structure. In the first situation, we may not know which model
parameters to use for prediction since several models may be able to describe a
particular dataset. Is there a preferred model structure? is another way of putting
it. How can we properly parameterize our model to extrapolate and interpolate
data?

Predictive Uncertainty

Predictive uncertainty, or the degree to which we trust a given forecast, can be
cultivated by introducing elements of chance (or “aleatoric uncertainty”) and of
knowledge-based (or “epistemic”) doubt. Figure 1.4 represents the types of uncer-
tainty how aleatoric and epistemic uncertainty build up predictive uncertatinty.
Uncertainty in forecasts can be attributed to aleatory factors, which are the data’s in-
herent imprecision (also known as uncertainty in data). Due to the fact that it is not
a property of the model, this type of uncertainty cannot be mitigated. Conversely,
lack of information, results in epistemic doubt (otherwise called knowledge uncer-
tainty). Models may be defined in model-based prediction to handle a wide range
of problems. The data sets for information-rich problems may be quite large yet
lacking in detail [14]. In certain cases, it may be possible to use AI-based techniques
to develop effective prototypes that define input’s potential aspects. Sometimes the
information we have is sketchy, loud, contradictory, or spans many categories [15].
Several important decisions nowadays rely on uncertainty quantification (UQ), and
estimates supplied without UQ are often inaccurate. Knowing the function of UQ in
deep learning (DL) is essential for understanding its stages [16], [17]. Deep learning
(DL) models are built on top of extensive and pertinent data samples that may be
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Figure 1.4: Predictive Uncertainty and sub-parts

accessed during the decision-making process. Then, prototype training is initiated
with input data once the DL scenario has been constructed to accomplish certain
performance goals using the best DL architecture. By iteratively refining the train-
ing process, the network’s learning parameters may be fine-tuned to optimal levels
of performance.
Bayesian techniques such as Bayesian neural networks (BNNs) and Gaussian pro-
cesses are popularly used in cases where uncertainty measurements are classified
along with predictions. These architectures create predictive distributions wherein
the BNN weights are added to the prior distribution [18] and Gaussian processes
include priors over functions [19]. Maddox et al. [20] propose a method to determine
uncertainty using stochastic weight averaging. These methods are effective theoret-
ically, but tough to implement in practice. Gal and Ghahramani [21] have proposed
feasible and uncomplicated method for representing model uncertainty. They have
noticed that unpredictable nature in model can be determined with utilization of
dropouts, which also decrease model complexity and reduce overfitting [22]. It is a
technique that generates an ensemble of predictions by conducting several stochastic
forward passes within a neural network employing active dropout during the test
phase. This approach is popularized as the Monte Carlo Dropout (MCD) [23]–[28].
The method is well-favored as it can calibrate well with huge datasets without al-
tering the existing architectural structure of the model. In simple terms, MCD is a
arithmetic mean of several networks’ ensemble. [26], [29], [30].
In our study, we utilize this method to determine uncertainty in deep learning mod-
els. Our experiment highlights factors which are responsible for high uncertainty
and depicts how to resolve the issue of high uncertainty in multiple fields of DL. We
provide a full overview of MCD in NNs, and propose a reliable framework for ECG
trace image classification.
The confidence score or softmax score is the resultant of the final layer of a deep
neural network when trained with a categorical cross-entropy loss. This is not a
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reliable measure of uncertainty for a few reasons:

• First, it is only a point estimate of the model’s output, meaning that it only
gives the most likely class label without providing any information about the
uncertainty of the prediction.

• Second, the softmax function used to compute the confidence score is designed
to produce outputs that are easy to interpret as probabilities, but these prob-
abilities are not always well-calibrated, meaning that the confidence score may
not accurately reflect the true likelihood of the predicted class label.

Monte Carlo dropout is a way of approximating Bayesian deep learning and it pro-
vides a more robust measure of uncertainty by averaging over multiple models.
During training, dropout is applied to the activations of some neurons in the net-
work, effectively training an ensemble of models with different architectures. During
inference, dropout is applied to the activations of the same neurons and then nu-
merous forward passes of the model are performed with different dropout masks.
The output of these forward passes can be utilized to assess the uncertainty of the
model’s predictions by computing the variance of the predicted class probabilities.
Therefore, Monte Carlo dropout is preferred over other methods because it provides
a probabilistic measure of uncertainty that is better calibrated and more robust to
overfitting.

1.3 Thesis Structure

The upcoming part of this thesis has been constructed as follows:

• In the first part of Chapter 2, an overview is given of the various approaches
currently in use to assess uncertainty in DL models. After that, we talk about
the work that has already been done using MCD, as well as the findings from
MCD.

• In Chapter 3, we illustrate our research objectives and workflow.

• Chapter 4 includes the datasets that were utilized in the experiments of our
thesis.

• Chapter 5 contains the detailed descriptions of our methodologies; such as,
Monte Carlo Dropout, Neural Network Models. It also contains the descrip-
tions of two proposed models. One of them was previously presented in [31].

• In Chapter 6, we provide the results of our experiments as well as the experi-
mental process we utilize.

• In Chapter 7, we go through the main takeaways and findings that we made
from our experiments.

• The extent of our study as well as the areas in which it may be expanded in
the future are presented in Chapter 8. In addition to that, it digs into the
topic of extending the model that we have proposed.

• Finally, Chapter 9 synopsizes the whole thesis and concludes our thesis.

8



Chapter 2

Literature Review

2.1 Uncertainty Quantification

There are several studies on representing uncertainty in deep learning models. Such
as Bayesian Methods, SGD Based Approximations, Methods for Calibration of
DNNs. Abdar et al.[32] presented a comprehensive survey of the uncertainty quan-
tification approaches.

2.1.1 Bayesian Methods

In Bayesian model averaging, a distribution is placed atop model specifications,
which are marginalized to build a full predictive distribution. The foundational
studies of Neal [18] and MacKay [33] established Bayesian techniques to learn using
NNs in the late 1990s. Modern NNs, in constrast, frequently include hundreds of
thousands of parameters, and the posterior probability inference of these parameters
is very non-convex, necessitating mini-batch techniques to get to a suitable solution
space [34]. Bayesian techniques have been essentially intractable for current neural
networks as a result of these factors.

2.1.2 Markov Chain Monte Carlo (MCMC)

MCMC was widely used for reasoning with other NNs evident in Hamiltonian Monte
Carlo (HMC) discovery of Neal [18]. Yet, HMC requires full gradients that are an-
alytically complex for utilization in advanced NNs. Chen et al. [35] introduced
Stochastic Gradient HMC (SGHMC) where the usage of stochastic gradients is al-
lowed in bayesian method for conclusion. For this reason, SGHMC is important
for expandability and exploration for a solution with respect to high generalization.
In the stochastic gradient situation, first order Langevin dynamics is employed in
stochastic gradient Langevin dynamics (SGLD) [36]. SGHMC and SGLD asymp-
tomatically sample from the posterior in case of indefinitely tiny sizes of increments.
Changing stochastic gradient MCMC can be complicated and using limited learning
models can cause approximation inaccuracy in reality.

9



2.1.3 Variational Inference

Graves [19] proposes that the weights of NNs be fitted with a Gaussian variational
posterior approximation. The reparameterization strategy was suggested by Kingma
and Welling [37] for training deep latent variable models, and numerous variational
inference techniques using adjusted parameters were developed for deep NNs. While
variational approaches function well on modestly sized networks, they are challeng-
ing to train on bigger designs like deep residual networks, according to other studies.

2.1.4 SWA-Gaussian for Bayesian Deep Learning

Uncertainty approximation can also be completed using a method known as SWA-
Gaussian (SWAG) [20] . SWA stands for Stochastic Weight Averaging, and it it-
erates with an adjusted rate of learning routine and it is capable of calculating the
moment of stochastic gradient descent (SGD). A Gaussian is then fitted in order
to establish an approximation of the posterior probability distribution over neural
network weights. This gaussian distribution is used to process the Bayesian model
averaging. SWAG approximates the shape of the actual posterior estimate, accord-
ing to their experiments.

2.1.5 SGD Based Approximations

Mandt et al.[38] introduced a new idea where the iterates of the average form of SGD
as an MCMC archetype after using stochastic calculus method to study the dynamics
of SGD. Using SGD, Chen et al. [39] figured out the problem of statistical conclusion
of true model parameters when the population loss function is substantially convex
and the certain conditions of smoothness are fulfilled.

2.1.6 Methods for Calibration of DNNs

The authors Lakshminarayanan et al. [29] suggest that in order to improve calibra-
tion of Deep Learning Models, it is best to use ensembles of many networks and an
antagonistic loss function to describe uncertainty. To get reliable results from your
training data, it’s important that your testing data follows the same distributional
guidelines as your training data, as suggested by Hu et al.[40]. There are many cases
when knowing the distributions of the testing dataset is impossible, especially those
involving uncertainty prediction problems. As a result, achieving superior results is
tough for conventional learning algorithms. Temperature scaling is a process that
rescales the logits of DNN outcomes. Guo et al. [8] were able to construct it for
the purpose of achieving better calibration using only a single hyperparameter and
a validation set. Kuleshov et al. [41] propose calibrated regression by making use
of a rescaling procedure that is comparable to the one shown here. These methods
are considerably more difficult to implement in comparison.

2.1.7 Evidential Deep Learning

Sensoy et al. [42] presented a direct model similar to the stance of Theory of Evi-
dence [43], [44]. The idea is to evaluate the softmax, which is the usual result in a
classification system. This softmax evaluation is used as a parametric collection of
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unambiguous distribution. In our work, this collection is replaced with the param-
eters of a Dirichlet density. This allows us to display the predictions of the learned
model in the form of a distribution spread over several viable softmax outputs in-
stead of a singular value estimated for the result. Thus, we can say that the density
can be instinctively interpreted as a clockwork system of these exact estimates.With
the help of regular backdrop, neural network weights are used to miniaturize the
resulting model’s loss function. The data which is unfamiliar is sent back to prior
belief as the system evaluates that the data itself admits its lack of awareness. Lastly,
uncertainty approximation is authorized in a solitary model, while the forward pass
is permitted through sorting multiple distributions.

2.1.8 Active Learning

Active learning is a type of machine learning technique that allows for the auto-
mated assembly of the training dataset based on either a list of data or a statistical
distribution. In general, this kind of learning is referred to as “active learning.” The
estimates, as well as the measurements used to assess the degree of uncertainty, such
as entropy, have typically been of a probabilistic character.
“Sampling strategy” or “query strategy” refers to the process of determining the
most useful instances to label next. This may also be thought of as “query strategy.”
The term “acquisition function” refers to the scoring function that is used in the
sampling procedure. If the data points with the better scores are labeled, it is
anticipated that this will generate a higher value for the model training. There are
many alternative approaches to sampling, such as the Uncertainty Sampling Method,
the Diversity Sampling Method, the Expected Model Change Sampling Method, and
so on. The term “uncertainty sampling” refers to a collection of methods that may
be used to locate unlabeled elements in your existing machine learning model that
are close to a decision boundary. In spite of the fact that it is simple to determine
when a model is confident — there is one result with a very high level of confidence
— there are many ways to calculate uncertainty, and the method that you select to
use will be contingent on the use case you have in mind as well as the information
that you have available. The cases for which the classifier has the least amount of
confidence provide the most useful information. The underlying assumption here is
that the cases for which the model has the least amount of confidence will almost
certainly be the examples that provide the most challenge; more specifically, the
examples that are located close to the class borders. Observing cases that are
difficult to understand will provide the learning algorithm with the most valuable
information on the class boundaries. There are several works regarding this way of
measuring uncertainty[45]–[48].

2.2 Monte Carlo Dropout Implementations and

Applications

MCD applications are increasing day by day. It can be seen in many fields of deep
learning, especially in cases where risk factors are high. MCD allows uncertainty
quantification, which can measure the robustness and reliability of a model. We will
discuss some previous applications which were based on MCD.
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The use of MCD is often seen in the healthcare or medical applications. Since,
the risk factor is quite high. Camarasa et al. [25] propose a quantitative compari-
son of carotid artery lumen and vessel wall segmentation using numerous sequences
of magnetic resonance (MR) images. They use four uncertainty metrics over 144
models. Stoean et al. [23] exhibits necessity and advantages of MCD in medi-
cal applications, where the major complication stems from the unusual nature of
sensor-derived data. Milanés-Hermosilla et al.[49] categorize motor images using
Convolutional Neural Network with a shallow depth and an ensemble model. In
addition, they utilise MC Dropout in order to assess the level of ambiguity associ-
ated with their estimates, which contributes to the increased dependability of the
framework. Avci et al.[50] also propose using dropout throughout training and test
phases as well as averaging several predictions to increase accuracy while minimiz-
ing and measuring uncertainty. Tabarisaadi et al. [51] propose the computer aided
image-based dermatological treatment of cutaneous malignancies. To diagnose skin
cancer, uncertainty measurement processes like MCD, Bayesian Ensembling, and
Spectral Normalized Neural Gaussian Process are employed. The comparison of the
aforementioned algorithms’ levels of performance are examined from a variety of
perspectives. The cardiac cine data was used to train a U-Net segmentation algo-
rithm. MCD sequencing of the U-Net architecture was used to each frame of the
robust circulatory datasets in order to evaluate Standard deviation(SD) maps. The
best frames for epicardial and endocardial segmentations were chosen with the use of
an uncertainty estimate calculated from the total of the SD values. Their results[52]
show that it is possible to accomplish robust and automated myocardial segmenta-
tion by using a model trained on cardiac cine imaging data to dynamic myocardial
perfusion data. Subjects having higher degree of ambiguity in terms of endocardial
and epicardial segmentation might be forwarded for additional review and rectifica-
tion by medical specialists using the uncertainty estimates as their screening tool.
An uncertainty-based criterion for decision referral, as demonstrated by Chagas et
al. [53], may significantly boost the performance of Membranous nephropathy clas-
sification, bringing accuracy up to 96%. As a last step, they analyzed the relation
between uncertainty and complexity results as described by pathologists. Gour and
Jain [54] construct a model with the foundation of convolutional neural networks,
termed UA-ConvNet, that includes an evaluation of correlated uncertainty in the
model’s predictions for the automated identifcation of COVID-19 illness via chest
X-Ray scans. The suggested method makes use of the EfficientNet-B3 model and
MCD, where it has been modified using the chest X-ray pictures. They show that
their proposed approach is more effective than the current methods in identifying
COVID-19 patients from chest X-ray images. Xia et al.[55] provide a framework
(MCD, Bayesian, Ensemble) to assess the estimated uncertainty’s capacity to cap-
ture variations in biosignal datasets of varying kinds and intensities. Five exemplary
uncertainty quantification approaches are evaluated on three classification tasks us-
ing breathing sounds and electrocardiography data.
In case of other applications, Ma et al. [28] propose the categorization of radio
frequency transmitters and show that the suggested method outperforms the basic
ensemble average techniques. To save the computational cost, they simply enable
dropout layers near the neural network’s output and reuse the computation from
previous levels during testing, leaving any additional dropout layers off. Three In-
sulated Gate Bipolar Transistors(IGBTs) were used for aging experiments, which
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are run until the transistors fail to operate, by Xiao et al.[56]. A MCD and pre-
dictive model depending on its own attention is presented for Health indicator(HI)
estimation and Remaining Useful Life(RUL) calculation of the tested transistors to
ensure the dependability of the electric system. By including uncertainty into the
prediction of the multi-step-ahead data, MCD is coupled to offer prediction con-
fidence in this experiment. Laakom et al.[57] present a technique that aggregates
several deep learning approaches based on their output uncertainty to eliminate the
effect of lighting on the scene’s colorful pigments and return them to their natural
state. They have used MCD for assessing the relative uncertainty of each method,
and estimating the final illumination by summing the estimates from the several
models and weighting them by the log-inverse of their respective uncertainties. In
order to accurately record the human face’s movement throughout the performance
of a emotional gesture, Heidari and Iosifidis [58] use a spatio-temporal bilinear layer
as their skeleton. As an added bonus, it uses MCD for uncertainty quantification
of the model, which is crucial for analyzing and treating such scenarios. To make
YOLOv3’s crater detection more trustworthy, Myojin et al. [59] set out to remove
false positives from detection results by measuring uncertainty reflecting variance
while detecting several times using MCD. Since the U-Net architecture design of
YOLOv3 model may catch objects of varying sizes and is effective for identifying
craters, they suggested a way of calculating uncertainty for the setting criteria for
each object detection layer that captures an item of a different size. Furthermore,
we analyzed uncertainty by disentangling its axial position and diameter in order
to assess it from a variety of perspectives. Therefore, more false positives might
be weeded out in comparison to assessment utilizing mixed detection layers, where
the position and size are not separated. By giving more weight to the models with
the highest MCD prediction confidence, a new ensemble technique is proposed by
Yang and Staib [60]. Classification performance is improved above the results of
a single model thanks to their ensemble technique, which substantially reduces the
likelihood of overfitting. More importantly, they show that the model can recog-
nize outliers in the dataset and achieved a prediction score of 0.8929. In another
paper[61], authors propose using MCD to improve the generalizability of a DNN
for voice augmentation. We demonstrate the DNN’s improved enhancement per-
formance under unseen noise and SNR circumstances using MCD. The dilemma of
amplitude versus offset inversion is addressed by Junhwan et al.[62] using a CNN
model with MCD. Aleatoric uncertainty is capable of determining the anomalous
data, while the epistemic uncertainty allowed us to evaluate the model’s performance
on test data and reveal that the risk of prediction increased as one moved further
away from the train data. Thereby, we may use the data based upon the degree
of uncertainty to interpret the forecasts with less danger. In order to determine
the pixel-by-pixel error in their predictions, Fisher et al.[63] train a U-Net model
with the application of MCD on satellite photos. Results reveal that the suggested
model is superior to the prior state-of-the-art model, with better performance and
reduced uncertainty when evaluated on an unknown geographical location. Ghoshal
et al.[64] assess uncertainty in deep learning approaches using drop-weights-based
BNN. They demonstrate that the prediction performance of the model was signif-
icantly correlated with its degree of uncertainty. When attempting to foretell the
amount of organic carbon in the soil, Padarian et al.[65] examine the ambiguity of
a deep learning soil spectral model using two different assessment methods. If the
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model is aware of generating forecasts that varies from the training data when it is
supposed to give higher prediction ranges, then both methodologies may be used to
quantify uncertainty. As part of the ensemble-building procedure of BatchEnsemble,
Jain and P.K.[66] integrate MC-dropout. As long as a few parameters are tweaked,
the suggested method, Monte-Carlo BatchEnsemble, may generate ensembles with
lower prediction correlation. The experimental outcomes verify the efficacy of the
suggested method for image classification. By using sequential Monte Carlo adap-
tation of the masks in a dropout regularisation network layer, Carreno-Medrano et
al.[67] present a straightforward method of neural network adaptation. As seen in
a real-world application of human behavior modeling, these masks provide for some
interpretability by collecting both local and some global contextual information.
When combined with multi-task training, the results reveal that this straightforward
adaptation technique may outperform computationally complicated meta-learning
schemes and help avoid the catastrophic forgetting issues that plague gradient de-
scent in online adaptation contexts. A reversible form of steganography using deep
learning is proposed by Chang [68], and the uncertainty of prediction models is an-
alyzed using a Bayesian approach. The MCD is used to provide an approximation
of the speculative distribution, from which both random and systematic errors in
our predictions may be calculated. To achieve unsupervised uncertainty estimation,
a two-headed network of neurons is built. The contribution of uncertainty analysis
is confirmed by experimental findings showing exemplary steganographic results in
comparison to a non-Bayesian standard. Unmanned aerial vehicle building video
and satellite-captured post-disaster pictures are used to develop and train two dis-
tinct networks by Cheng et al [69]. Digital damage assessment with the help of
Artificial Intelligence can yield results that are more explicable and risk-aware by
employing MCD for the investigation of ambiguity, estimating reliability of model
based on its confidence score and attention region.
In order to demonstrate effectively methods of predictive uncertainty perform in
practice in the research area of NLP, Landeghem et al.[70] study the application of
predictive uncertainty techniques focusing on classification of texts using a number of
different labels and classes. To be able to analyze the reason for well-known scalable
uncertainty estimation methods like MCD and Deep Ensemble, as well as notable ex-
tensions like Heteroscedastic and Concrete Dropout, consistently under-estimating
uncertainty, the authors perform experiments to test 1-D CNNs and prior-trained
transformers on 6 hand written text categorization datasets. Using current findings
on how variational Bayesian and ensembles approaches handle the loss landscape,
they argue that combining posterior approximation processes improves uncertainty
estimates. By examining in-domain calibration, classification via cross-domain, and
novel class resilience, the authors conclude that their suggested technique combining
Deep Ensemble with Concrete Dropout displays improved performance, even at a
lower ensemble size. In another work, Shelmanov et al.[71] compare multiple un-
certain estimates in text classification tasks for the cutting-edge Transformer model
ELECTRA and the speed-oriented DistilBERT model. They use many stochastic
passes with the MCD and a dropout based on Determinantal Point Processes to de-
rive uncertainty estimates. Hu et al.[72] also suggest using empirical uncertainty in
out-of-distribution identification for tasks involving text classification. They present
a low-cost framework that uses auxiliary outliers as well as pseudo off-manifold sam-
ples to train the model along with prerequisite understanding of a specific class that
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has a large absence for non-uniformly dispersed data.
In computer vision, MCD-based Transformer models have also been implemented.
Using ViT and a semi-supervised framework, Wang et al. [73] propose medical
picture semantic segmentation using the capabilities of ViT. Utilizing MCD and an
uncertainty estimation approach, they enhance the semi-supervised performance. In
the training process, the method of filtering out unclear images based on an uncer-
tainty value and the weighted sum of two losses is being looked into more. Moreover,
Zhao et al.[74] offer a novel Transformer-based architecture mixed with Bayesian
theory for facial emotion recognition. They also adjust the feature extractor mod-
ule and training approach to account for the uncertainty of the training data. For
camouflaged object recognition, Yang et al.[75] introduce uncertainty-guided trans-
former reasoning, a technique that use a stochastic representation architecture and
transformers to effectively deliberate under uncertainty. Initial estimates and related
uncertainty are obtained by learning a conditional distribution across core output.
Consequently, reasoning about these uncertain areas using an attention approach
yields conclusive forecasts.
Other than these applications on CNN, Transformers, RNNs, there have been no
significant work on INNs and GNNs based on MCD particularly. Dwivedi et al.
[76] provide a benchmark framework that can be utilized to evaluate novel GNN
architectures and findings. However, the primary emphasis of this work is on the
performance of GNN and its insights. Only considering model performance may
lead to a lack of attention for model’s reliability when applied to out-of-scope data.
In our work, we explore the unexplored area of these architectures utilizing MCD.

2.3 Monte Carlo Dropout Analysis and Findings

Other than applications, there are several works on MCD analysis and findings. The
literature described below, shows many analytical aspects of MCD and its behaviour.
The number of studies focusing on MCD is increasing day by day. Seoh et al. [77]
propose a qualitative analysis of Monte Carlo Dropout, where they propose potential
benefits and costs from their results. Another study suggested by Verdoja et al. [22]
focuses on behaviour of MCD. Their findings suggest that the MCD characteristics
found on a single-layer linear NN remain intact as the NN expands in scale and
complexity.
Sicking et al. [78] established that in the case of indefinitely wide layers, random
neural networks with constant parameters under dropout converge to Gaussian pro-
cesses. A proposed rationale raises expectations that poorly correlated, indefinitely
broad networks trained with (full-batch) gradient descent may exhibit comparable
behavior.
A total of three semi-artificial data generators were developed and compared by Miok
et al [79]. The architecture of the variational autoencoder serves as the foundation
for the VAE generator. Both the MCD-AE as well as the MCD-VAE make use of
Monte Carlo Dropout within the systems of autoencoders and variational autoen-
coders, respectively. Their research shows that MCD-AE and MCD-VAE produce
results more quickly than VAE. Data is generated by MCD-AE and MCD-VAE the
same way as that of selected seeding instances. If the seed instances supplied are
anomalous or otherwise noteworthy, this can be a really helpful feature.
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In addition to enhancing the majority of classification metrics for ordinal, multi-
class, as well as binary models, Lemay et al [80]. establish that MCD models
also allow a substantial rise in repeatability — in other words, enhancement of
at least one repeatability metric. Consistency in results is an essential part of
having a reliable model. Predictions from ideal repeatable models are consistent
across multiple experiments performed under the same conditions. In practice, this
translates to more consistency between the retest and test results with regards to
class and score agreement. No matter what disease was being addressed or the
way the models were constructed (DenseNet or ResNet), repeatability improved.
Not all regression models benefited from MC iterations, and in other cases (such as
knee osteoarthritis and preterm birth retinopathy classification), it even worsened
classification performance.
For increased resistance to noisy labeling, Goel and Chen [81] propose using MCD
to further sparsify and regularize deterministic neural networks. As a result of its
sparser yet less volatile representation, MCD is more capable to perform and gen-
eralize in noisy-label circumstances. Regularization is provided by MCD to ensure
that neurons are not too impacted by the noisy labels. However, these neurons
do not undergo regularization at the time of testing, which contributes to their re-
silience against noisy labels. MCD models construct representations that are less
susceptible to overfitting to noisy labels because there are fewer available parameters
to over-explain the training label noise.
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Chapter 3

Research Objective

In chapter 2, we have learned about several applications of MCD in computer vi-
sion, natural language processing, etc. In spite of this, we identified the following
limitations in the existing research works:

• They focus on one particular application

• Most of them only focus on increase in performance

• There is no benchmark for uncertainty quantification with MCD

• Lack of any comparative analysis or application among state-of-the-art NNs
despite several works being published with ANNs, CNNs and Transformers (in
NLP).

Our study compensates for the absence of such important aspects by focusing on
the following research objectives.

• Providing a complete roadmap for MCD in state-of-the-art NNs

• Exploring the unexplored area of uncertainty estimation using MCD

• Analysis of difference in performance after using MCD

• Comparison between different models for same tasks

• Providing a reliable framework for risky tasks such as medical image diagnosis

• We propose two novel architectures, one in ECG trace image classification and
other one in skin cancer identification and malaria detection from parasitized
cell images

• We use popular datasets in this work for benchmarking the NN models in
terms of uncertainty measure.

Figure 3.1 represents our whole workflow, where we visualize the tasks performed in
this thesis.
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Figure 3.1: Block Diagram of our Research Workflow
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Chapter 4

Dataset Description

4.1 California Housing Price

Dataset used in this experiment is known as ‘California Housing Dataset’. This
dataset was initially featured in [82]. The California Housing Price dataset is a
collection of information about housing prices in California. It contains information
about the location, size, and price of homes in California, as well as other features
such as median income, median house age, and number of rooms. The dataset
contains 20,640 observations, with has 9 feature columns, where the ’median house
value’ is column generally taken as the target.

Figure 4.1: First 5 Samples of the California Housing Price Dataset

The dataset includes the following features:

• longitude: a measure, in degrees, from the east to west position of a location

• latitude: a measure, in degrees, from the north to south position of a location

• housing median age: the median age of homes in the area

• total rooms: the total number of rooms in all homes in the area

• total bedrooms: the total number of bedrooms in all homes in the area

• population: the total population in the area

• households: the number of households in the area

• median income: the median income of households in the area

• median house value: the median value of homes in the area (target variable)
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Besides its obvious relevance as a standard for evaluating the efficacy of various
machine learning models, this dataset also finds extensive application in the field of
housing price research. For predicting the median house value in a region based on
other variables in the dataset, it is often used to train and assess regression models.
The dataset is often used to study the relationship between housing prices and var-
ious socio-economic factors, such as median income, population density, and age of
housing. Additionally, this dataset can be used to study the impact of geographical
factors such as latitude and longitude on housing prices.
In our experiment, we use a split dataset with a train to test ratio of 7.5:1.5. There
are 17000 train data and 3000 test data used in the experiment. We use the raw
dataset, therefore it did not require any preprocessing. Figure 4.1, shows first five
samples of the dataset.

4.2 Yelp Review Polarity

The Yelp Review Polarity dataset [83] is a collection of reviews, labeled as either
positive or negative, retrieved from the Yelp website. This dataset is compiled by
interpreting negative polarity for 1 and 2 ratings and positive polarity for 3 and 4
ratings.

Figure 4.2: First 10 Samples of the Yelp Review Polarity Dataset

The dataset contains 560,000 reviews, with as many of positive reviews as there
are negative reviews. It also comprises 280,000 instances for training and 19,000
instances for testing, which are further grouped by polarity type. Each review is
represented as a sequence of words, and the dataset includes a total of 1.6 million
unique words. Negative and positive polarity are represented by class 1 and class
2 respectively. In our experiment, the positive class is converted to 0 while the
negative class remains the same since binary classification is performed. Figure 4.1,
shows first ten samples of the processed dataset.
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The dataset includes the following features:

• Review text: the text of the review

• Sentiment: either the positive or the negative sentiment of the review

The dataset is widely used for research in NLP tasks and sentiment analysis. It
is widely utilized in the training and evaluation of ML and DL models for text
sentiment classification. The dataset is useful for studying the relationship between
the words used in a review and the sentiment of the review. It can also be used to
study the influence of various factors on the sentiment of reviews, such as the length
of the review, the use of specific words, and the presence of punctuation.

4.3 ECG Trace Images

We use a [84] consisting of ECG scans of patients with cardiovascular conditions and
COVID-19 in our research. This dataset comprises information on 1937 individual
patients. Data is collected through electrocardiogram machines named “EDAN
SERIES-3” which are installed in hospitals and clinics all over Pakistan.

(a) Covid-19 (b) Abnormal Heartbeat

(c) Myocardial Infarction (MI) (d) Normal

(e) Previous History of MI

Figure 4.3: Sample of each classes from the dataset

The dataset consists of 12-lead standard electrocardiogram (ECG) scans from a vari-
ety of patients, labeled as to whether or not they exhibit the following five conditions:
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Normal Person, Myocardial Infarction (MI), Abnormal Heartbeat (HB),
Previous History of MI (PMI), and COVID-19. Small shifts in the ECG read-
ings are typical with cardiac issues. For instance, the time between two peaks or
a specific wave. Oftentimes, these variations are employed as diagnostic markers.
Some excerpts from the dataset are displayed in Figure 4.3.
The version that was processed was obtained from the source [85]. The data are
trimmed from this source so that they only include the most relevant parts of the
signal [86]. A reduction in computing time and an increase in classification accuracy
is resultant because of this. In addition, the ECG scans from the dataset have been
modified by transforming them to grayscale (one channel) from RGB (three channel)
images and scaling them to a resolution of 70× 70.

4.4 Malaria Parasitized Blood Cell Dataset

This research makes use of a dataset that was obtained from the National Institutes
of Health [87]. It is made up of segmented cells that were taken from pictures of
thin blood smears on slides that were taken during the Malaria Screener research
activity. Slides smeared by thin blood and stained with Giemsa were obtained from
150 patients infected by P. falciparum and 50 healthy individuals at the Chittagong
Medical College Hospital in Bangladesh. These slides were then photographed.

Figure 4.4: Sample Images of Normal Cells

An experienced slide reader at the Mahidol-Oxford Tropical Medicine Research Unit
was responsible for the manual annotation of the photographs. There are a total
of 27,558 segmented cell photos in the database, with an equal number of para-
sitized and uninfected red blood cell images which are segmented. Both sets consist
of 13,779 images individually. Those that were considered positive included plas-
modium, whereas samples that were considered negative did not contain plasmodium
but might contain other sorts of items, such as staining artifacts or contaminants.
The segmented red blood cell patches range in size from 110 to 150 pixels and feature
three color channels (RGB). These patches were later re-sampled to have an output
dimension of 200 by 200 pixels, where channel depth is three, and the floating point
precision used is 32-bit (FP32). This was done in order to ensure compatibility
with the data input specifications of the different classification algorithms employed
in this study. In addition, a variety of pre-processing strategies are utilized, the
specifics of which will be elaborated upon in a subsequent section of this discussion.
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Figure 4.5: Sample Images of Parasitized Cells

Figure 4.4 shows some samples from the dataset that have segmented red blood
cells that have not been infected, and Figure 4.5 shows some samples that contain
segmented red blood cells that have been parasitized.

4.5 HAM10000: Skin Cancer Dataset

Due to its limited size and insufficient variety, the current collection of dermatoscopic
pictures poses considerable obstacles when it comes to the neural net training for the
computer - aided diagnosis of skin lesions with pigmentation. These obstacles can
be particularly difficult to overcome. We have made use of the dataset HAM10000
[88], also known as Human Against Machine with 10000 training photographs, in
order to assist with this situation.

Figure 4.6: Sample Images of Bowen’s disease, also known as “actinic keratoses and
intraepithelial carcinoma” or “akiec”

Figure 4.7: Sample Images of basal cell carcinoma (bcc)

The final dataset contains 10,015 dermoscopic images, all of which may be utilized
in the training dataset for machine learning research in the academic world. The
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Figure 4.8: Sample Images of benign keratosis-like lesions (bkl)

dataset includes a sample population that is representative of the entire range of im-
portant diagnostic subcategories that are relevant to the study of pigmented lesions.
These cases include but are not limited to: melanoma (mel), Bowen’s disease (akiec,
abbreviated from actinic keratoses and intraepithelial carcinoma), melanocytic nevi
(nv), lesions like benign keratosis (seborrheic keratoses or solar lentigines and lichen-
planus like keratoses, bkl), vascular lesions ( angiokeratomas, angiomas, pyogenic
granulomas and hemorrhage, vasc), dermatofibroma (df), as well as basal cell car-
cinoma (bcc). Figure 4.6 represents some samples of akiec disease. Other diseases
such as, bcc, bkl, df, mel, nv and vasc samples are shown in Figures 4.7, 4.8, 4.9,
4.10, 4.11 and 4.12 respectively.

Figure 4.9: Sample Images of dermatofibroma (df)

Figure 4.10: Sample Images of melanoma (mel)

Figure 4.11: Sample Images of melanocytic nevi (nv)

In the remaining cases, the final result will be determined by either a further inves-
tigation, the consensus of the experts, or verification by invivo confocal microscopy.
Histopathology is used to confirm more than fifty percent (50%) of all lesions. The
collection contains lesions that have several photos attached to them.
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Figure 4.12: Sample Images of vascular lesions (vasc)

This dataset is widely used for research on skin lesion classification and is consid-
ered as one of the largest publicly available datasets for this purpose. The dataset
was created by collecting images from different sources and different patients. The
dataset is useful for developing and evaluating machine learning models that can
assist in the diagnosis of skin lesions.

Figure 4.13: Frequency of Each Class in HAM10000

4.6 CIFAR10

For the purpose of our experiment, we make use of the CIFAR-10 dataset [89]. The
CIFAR-10 dataset is comprised of 60,000 RGB images with a resolution of 32× 32
pixels, organized into 10 classes with 6,000 images each.
There are 50,000 training images and 10,000 testing images. The 10 classes are:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. The dataset
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Figure 4.14: Image Samples from the CIFAR10 Dataset

allocate 10,000 images to five batches for training and one batch for testing, each,
from the entire collection. 1000 images are selected at random per class for the test
batch. The rest of the images are distributed in equal amounts to each batch of the
train set, meaning they consist of exactly 5000 images. However, there may be more
images of a particular class than another in each batch. For validation, 10% data is
used from the training set. We do not process the images here, we use raw dataset
for benchmarking. Figure 4.14 shows some samples of the dataset.
The scans used in the CIFAR-10 dataset are small and low resolution, making it a
good dataset to use for developing and testing image classification models that are
designed to work with small images. Additionally, the dataset’s small size allows for
fast experimentation and iteration, which makes it a popular choice for researchers
and practitioners.

4.7 CORA

The CORA dataset [90] is a compilation of scientific publications on various topics
in computer science. It contains 2,708 machine-readable research papers, each la-
beled with one or more of seven classes: Probabilistic Methods, Genetic Algorithms,
Neural Networks, Case Based, Rule Learning, Reinforcement Learning, and Theory.

26



Each paper is represented by a bag-of-words feature vector and a citation graph
that represents the connections between papers. Each distinct publication available
in the dataset is characterized by a word vector of either 0 or 1 denoting the non-
appearance or appearance of the relevant dictionary word containing 1433 distinct
terms. The CORA dataset consists of a collection of items and their relationships,
allowing for the testing of machine learning techniques that can handle relations.

Figure 4.15: Graph Visualization of CORA dataset

The dataset is widely used for evaluating machine learning models, especially for
graph-based algorithms, and is commonly used as a benchmark dataset in the field
of scientific literature analysis. Our work is based on node classification benchmark,
based on uncertainty. Therefore, this dataset is a great choice for our study.
Figure 4.15 is the the visualization of citation graph for the CORA dataset. Each
paper is represented by a node in the graph, and the node’s color indicates the topic
of the paper. Please be aware that we are only displaying a subset of the papers
that are included in the collection; the subset size is 3,000.
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Chapter 5

Methodology

5.1 Monte Carlo Dropout

5.1.1 Dropout

Deep neural network models are known to have numerous non-linear hidden layers,
thus they are immensely expressive, which allows them pick up on subtle nuances in
the connection between outputs and inputs. However, if training data is insufficient,
many of these intricate connections will be due to sampling noise. Due to this, the
noise will remain in the set for training but will not be included in the actual test
data, despite the fact that both sets of data are derived from the same distribution.
Since this causes overfitting, numerous strategies have been devised to address the
problem. One such strategy involves pausing the training when the validation set’s
performance begins to deteriorate, followed by implementing weight restrictions of
varying types, for instance, the L1 and L2 regularization as well as sharing of soft
weight (Nowlan and Hinton, 1992) [91]. If computing power is unlimited, then the
most effective method for “regularizing” a model having a set number of parameters
is to take an average of predictions obtained from all possible configurations of
those parameters and then weight them based on the posterior probability that
each configuration would have given the training data. For basic or small models,
this can be estimated very effectively (Xiong et al., 2011; Salakhutdinov and Mnih,
2008)[92], [93], however it is desirable to obtain a level of performance close to that
of the Bayesian gold standard with significantly less computational power expended.
Our goal is to accomplish this through approximation of the geometric mean of the
predictions made by an exponentially large amount of learning models which share
parameters. Each prediction will have the same weight.
Combining several models is typically effective in improving machine learning tech-
niques. Averaging the outputs of multiple individually trained nets is too costly for
big neural networks. If Neural Network models are to be merged, we must ensure
that they have different designs or were trained using different sets of data. Finding
suitable hyperparameters for each model is difficult, and training big networks needs
a lot of computational power. Having enough data to train multiple networks inde-
pendently on distinct subsets of data can be challenging when working with large
networks. Even if multiple large networks could be trained, it would be unrealistic
to use them all at once during testing for swift-responding systems.
These two problems can be solved through the implementation of dropout [26]. In
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NNs, “dropout” is used to define the action of omitting certain hidden and invisible
units. Figure 5.1 depicts how this is done, i.e, the neuron along with its inbound
and outbound links are momentarily disconnected. However, the neuron which gets
“dropped” is chosen at random. Basically, an individual unit has an independent and
predetermined probability “p”. The probability “p” may be selected by a validation
set. It may also be set at 0.5 which is the optimal value for many networks and
its applications. The best probability of retention for input units is almost 1. In
summary, the output of every neuron is proliferated using a binary mask which is
derived from Bernoulli distribution, in the training stage. This is how the neurons
are initialized to zero, following which the NN is applied at the testing stage.
Simply put, when dropout is applied to a neural network, a relatively “thin” network
is sampled from the original network. All the nodes that were able to avoid being
dropped due to dropout make up the shortened network (Figure 5.1). It is feasible
to view an n-unit neural network as a network comprised of a collection of 2n thin
networks. All the weights in these networks are shared, thereby limiting the overall
amount of parameters to less than or equal to O(n2). A freshly sampled and trained
thin network is developed for every demonstration of a learning instance. In other
words , training a neural network with dropout is comparable to training a set of
2n thinned networks where there is heavy weight sharing although training of each
thinned network is not frequent. Predictions from an increasingly large number of
thinned models cannot be explicitly averaged during testing phase. Nevertheless, in
real life cases, a straightforward approximation of the mean performs excellently. For
experimental purposes, the target is to employ a singular neural network without the
use of any dropout. In this network, the weights are reduced versions of the originals
used during training. As illustrated in Figure 5.2, the output weights of units at
testing time, that are maintained at fixed probability of “p” during training are
multiplied by p. This guarantees that the output of every hidden unit during testing
phase is identical to the expected performance (under the distribution utilized to
exclude units during training phase). A single neural network can be created with
shared weights from 2n networks by employing this scaling strategy during testing.
We observed that compared to training with alternative regularization approaches,
training a network with dropout and utilizing this approximation averaging strategy
during testing phase leads towards relatively lower misclassifications on a large array
of classification tasks.
The use of dropout in neural network models assists in minimizing cases of overfit-
ting. Standard backpropagation learning generates fragile co-adaptations that func-
tion for the training data but are inapplicable to unseen data. This co-adaptation
is disrupted by random dropout, which renders the existence of any concealed unit
untrustworthy. This approach was discovered to enhance the performance of neural
networks in a wide variety of application areas, including natural language process-
ing, computer vision, and almost anything else involving neural networks. This
shows that dropout is a generic strategy that is not domain-specific.

5.1.2 Dropout as a Bayesian Approximation for Represent-
ing Uncertainty in Deep Learning Models

The idea of employing dropout was brought forth by Gal and Ghahramani [21], who
used it as an estimation of probabilistic Bayesian models for deep Gaussian processes.
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Figure 5.1: Dropout in Neural Networks

Figure 5.2: Presence of an neural unit during training(a) and testing(b) time

A set of predictions showcasing the uncertainty estimations can be produced using
MCD. The MCD method involves executing several stochastic forward passes in a
NN by employing activated dropout during the testing stage.
An NN model which is trained with dropout fnn can obtain uncertainty for a certain
sample x by collecting the predictions of T inferences with different dropout masks.
Here fdi

nn depicts the model with dropout mask di. Therefore, we get a representation
of the range of model results for some given sample x shown below:

fd0
nn(x), ....., f

dT
nn (x) (5.1)

Calculating the mean and variance yields an ensemble prediction. In this case, the
model’s uncertainty about x is estimated, and the forecast refers to the sample-
average of the posterior probability distribution for this model.

Predictive PosteriorMean, p =
1

T

T∑
i=0

fdi
nn(x) (5.2)

Uncertainty, c =
1

T

T∑
i=0

[fdi
nn(x)− p]2 (5.3)

The dropout NN is not modified, only the outcomes of the stochastic forward passes
are collected. Through this technique, the predictive mean and model uncertainties
are evaluated. As a result, existing dropout trained NN models can have the data
applied to them.
The probabilistic interpretation of dropout known as MCD enabled the deep learn-
ing community to get model uncertainty from already existing deep learning models.
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Figure 5.3: How Monte Carlo Dropout Works

Authors that were responsible for the introduction of MCD demonstrate uncertainty
analysis and measurement in tasks including regression, classification, and reinforce-
ment learning. In this investigation, we are particularly interested in regression and
classification problems. In our thesis of MCD for uncertainty analysis, we make use
of both well-known and state-of-the-art NN architectures.

5.1.3 How Do We Measure Uncertainty with Monte Carlo
Dropout

Regression

For uncertainty representation from regression, we look at the MCD prediction plot.
The way of interpreting uncertainty in regression tasks is to look at the predictions
spread. When comparing multiple plots, if one prediction plot is more spread than
the other, it means, the model is more uncertain. We put more importance on
vertical spread. This is a clear example of aleatoric uncertainty. Horizontal spread
usually refers to epistemic uncertainty.

Classification

We locate the most uncertain cases. This will be beneficial for comprehending our
dataset or identifying problematic areas of the model. We select the most uncertain
samples from the monte carlo prediction, using the variance of their softmax score.
The accuracy of the Monte Carlo ensemble is a representation of how well the model
performs in terms of uncertainty. The greater the accuracy of the Monte Carlo
ensemble, the more the confidence one may have in the model.
When comes to data-wise uncertainty analysis we use predictive entropy. The pre-
dictive entropy is utilized for evaluating the model uncertainty on a specific image.

31



An uncertain sample is selected, and the predictive entropy relays how “surprised”
the model is to see the particular image. The model is said to be sure about its
prediction’s accuracy if the value is “low”. Similarly, a “high” value insinuates that
the model is uncertain about the image.

Entropy, H ≈ −
C∑
c

(µc)log(µc) (5.4)

We calculate entropy using (5.4) where, µc =
1
N

∑
n pc

n is the class-wise mean soft-
max score.By computing the variance of the anticipated softmax score, we choose
the images. Softmax turns the actual values into probabilities, therefore the score we
get are simply probabilities. Additionally, the image indexes are sorted to locate an
uncertain sample from the test set of data. We compare the uncertainty by taking a
random sample from the test dataset to see how well the model performs with a new
meaningful data. Moreover, to determine the model’s uncertainty of an out-of-scope
input, we randomly create a noise image and show the predictive behaviour.
Figure 5.4 is a probability distribution graph. Here is an example of binary classi-
fication softmax score/probability distribution. The model predicts class 1 as the
output. In the figure, x-axis is the softmax score distribution and y-axis is the num-
ber of samples. Meaning, how many samples have provided a particular softmax
score. In a correct prediction we want most of the bars in the right most position
(comparing to the other class). Also, the number of samples has to be as high as
possible. In simple words, we want the bars to be in the right most position and
the height or the value of y-axis to be as high as possible. Also, we want it to be
very thin, meaning most of the predictions are indicating the same outcome. But in
wrong predictions, we want the opposite. This indicates that the model is uncertain
about its prediction and necessary steps should be taken to avoid this low level of
confidence.

Figure 5.4: How to Analyze Classification Uncertainty

This is how we examine uncertainty sample by sample, which is a vital step whenever
we are working with risky applications. In this research, we demonstrate prediction
on a sample-by-sample basis for every classification task.
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5.2 Neural Network Models

We will discuss about all of the NN models used in our study. We explain the
neural network architecture and describe our development and modifications of the
NN models.

5.2.1 Artificial Neural Network

ANNs, a specific kind of predictive model, can process data and make forecasts
accordingly. With the help of accessible research and statistical data, they are in-
tended to gain knowledge and programmed to perform data categorization, envision
of results and facilitate inference. Comparable to the surface response approach,
an inculcated Artificial Neural Network maps input parameters to a specific output
and generates frequent consistent outcomes than traditional arithmetical analytic
methods, for example regression analysis, while requiring substantially less computer
work. [94]–[108]. ANNs operate in a manner analogous to that of the biological net-
work of neurons. [109]–[121]. Synthetic nerve cell is considered as ANN’s building
block and a quantitative model that mimics the behaviour of a biological neuron.
The input is transmitted via synthetic nerve cell and output is generated after non-
linear function processing. Additionally, weights are added to the input parameters
prior to their arrival at the neuron to imitate the stochastic character of the bio-
logical nerve cell. In order to construct an Artificial Neural Network, three major
processes are necessary: First, building ANN’s structure; second, defining prepara-
tion procedure necessary for the ANN’s development stage; and third, identifying
the arithmetical functions that define the quantitative model. The training phase
of an artificial neural network plays significant decision making role since it selects
best weight parameters and reduces loss function. Consequently, diverse artificial
NNs adopt diverse enhancement methodologies. Each neuron’s behavior is defined
by the summation and activation functions, which are mathematical functions.

Figure 5.5: ANN Diagram
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Layer Output Shape Parameters
Dense (None, 100) 200
MCD (None, 100) 0
Dense (None, 200) 20200
MCD (None, 200) 0
Dense (None, 200) 40200
MCD (None, 200) 0
Dense (None, 100) 20100
MCD (None, 100) 0
Dense (None, 1) 101

Total 80,801

Table 5.1: Model Summary of Lightweight MCD Model

Layer Output Shape Parameters
Dense (None, 1000) 2000
MCD (None, 1000) 0
Dense (None, 1000) 1001000
MCD (None, 1000) 0
Dense (None, 2000) 2002000
MCD (None, 2000) 0
Dense (None, 2000) 4002000
MCD (None, 2000) 0
Dense (None, 1000) 201000
MCD (None, 1000) 0
Dense (None, 1) 1001

Total 9,009,001

Table 5.2: Model Summary of Heavyweight MCD Model

5.2.2 ANN models for Regression

For our regression task, we utilize two ANN variants, where one of the model
is lightweight and the other one is heavyweight. As Table 5.1 represents, the
lightweight model contains 4 layers with 100 nodes in each and another layer as
the classifier layer. On ther other hand, the heavyweight model has 5 layers with
1000 nodes in each. Table 5.2 shows the full architecture of the heavyweight model.
In both of the ANN models, we use 40% dropout rate, which is for extracting vari-
ations in predictions.

5.2.3 Convolutional Neural Networks

Animals’ image perception is a remarkable process and a simple one for them. Never-
theless, there are several underlying complexities in the process by which a machine
grasps a picture. What animals see is the image collected by their eyes, which is
subsequently carried to the cerebral cortex for decoding by neurons. The central
nervous system of animal brains[122] was the foundation for the creation of the Con-
volutional Neural Network (CNN), a machine learning architecture that attempts
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to simulate the ocular characteristics of animals. In terms of picture comprehen-
sion tasks such as classification, segmentation, detection, localization and so on, the
convolutional neural architecture offers a significant improvement. Convolutional
NNs are widely used because of their impressive picture understanding capabili-
ties. CNNs are constructed using convolutions and contain biases and weights that
may be learnt and are akin to human neurons. CNNs are made up of four main
parts: fully-connected layers, convolutional layers, activation functions, and pooling.
This paper offers a very concise introduction to CNNs, as described in [123]. The
region of the mammalian brain responsible for sight is composed of neurons that
isolate image characteristics. Each brain cell extracts unique features, facilitating
the comprehension of pictures. The convolutional layer is modeled atop nerve cells
in order to retrieve attributes such as colors, edges, textures, and gradient direction.
Learning-capable convolutional filters, also called kernels, take the form n×m× d
where d denotes thickness of image. The forward propagation involves convolution
operation, that is the kernels are mapped over the height and width of the input
matrix. The inner product of the input with the filter components is computed
afterwards. CNN automatically detects kernels which are triggered by edges, colors,
textures, etc. A layer of activation function receives the hidden layer’s convoluted
output, which creates non-linearity and produces classification results.
Let us take into account an input tensor denoted by the letter X, which has the
dimensions H, W, and Cin. To begin, we have a set of convolution kernels with Cout

that are of the form K, K, Cin. Then, multiplication-addition operation is executed
on the input tensor and the kernels result in the production of an output tensor
denoted by Y that has the dimensions H, W, and Cout.

In Figure 5.6 above Cout = 3. Now we have the shapes H, W, and 3 for the output
tensor. Since the convolution kernel does not take into account the location of the
input tensor, it is considered to be geographically independent. However, the output
vector is unique for every channel due to the fact that the convolution filter used to
generate each channel is not the same.

Proposed Model for ECG Trace Image Classification

An image with a resolution of 70×70 pixels serves as the basis for our CNN model’s
initialization process. Subsequently, we employ a network of six 2D convolutional
layers, each with a 3×3 kernel size. As an additional measure against model overfit-
ting, we placed a batch normalization layer following every layer of convolution. We
utilize batch normalization since it permits each layer in the network to learn more
autonomously, allowing us to increase the learning rate. Furthermore, to lessen the
computation cost, we implement a max pooling layer following every layer of batch
normalization which has a pool size of 2× 2. We employ the default strides for all
of the convolutional layers, which are (1,1). We implement Relu as the activation
function because, unlike the Sigmoid/Tanh function, its gradient is not saturated,
speeding up the convergence of stochastic gradient descent (SGD). Finally, we uti-
lize a 20% dropout from the aforementioned layer once we have flattened the values
into 1 dimension. Our suggested model incorporates dropout to increase its robust-
ness and eliminate any trivial relationships among the neurons. The dropout rate is
fixed according to our experiments, which suggests that 20% dropout rate provides
the best raw performance along with reliability. Additionally, we implement the
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Table 5.3: Number of Parameters and Layer Details of Proposed CNN

Layer Output Shape Parameter
2D Convolution Layer (None, 70, 70, 16) 160
Batch Normalization (None, 70, 70, 16) 64
2D Max Pooling (None, 35, 35, 16) 0

2D Convolution Layer (None, 35, 35, 32) 4640
Batch Normalization (None, 35, 35, 32) 128
2D Max Pooling (None, 17, 17, 32) 0

2D Convolution Layer (None, 17, 17, 64) 18496
Batch Normalization (None, 17, 17, 64) 256
2D Max Pooling (None, 8, 8, 64) 0

2D Convolution Layer (None, 8, 8, 96) 55392
Batch Normalization (None, 8, 8, 96) 384
2D Max Pooling (None, 4, 4, 96) 0

2D Convolution Layer (None, 4, 4, 128) 110728
Batch Normalization (None, 4, 4, 128) 512
2D Max Pooling (None, 2, 2, 128) 0

Monte Carlo Dropout (None, 2, 2, 128) 0
2D Convolution Layer (None, 2, 2, 256) 295168
Batch Normalization (None, 2, 2, 256) 1024
2D Max Pooling (None, 1, 1, 256) 0

Monte Carlo Dropout (None, 1, 1, 256) 0
Flatten (None, 256) 0

Monte Carlo Dropout (None, 256) 0
Dense (None, 5) 1285

Total parameters: 488,229
Trainable parameters: 487,045
Non-trainable parameters: 1,184
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Figure 5.6: CNN Diagram

MCD layer as the dropout layer itself. Batch normalization and dropout are both
methods of regularization, however they serve other purposes as well. When the
model is being trained, dropout has an influence on the standard deviation of the
distribution. However, when the model is being validated, dropout has no effect on
the distribution. In other words, batch normalization does not eliminate any data
but dropout does. Since all nodes have been classified at this stage, the softmax
activation function is applied to the final result. The data that is passed into the
function is converted into a value that falls between 0 and 1. In order to accomplish
the same task again, we make use of MCD in the final two convolutional blocks.
The model incorporates a total of 488229 parameters. Our proposed architecture is
illustrated in Table 5.3.

5.2.4 Involutional Neural Networks

Most state-of-the-art computer vision neural networks are built on a framework of
convolution. Being both spatially agnostic and channel-specific, convolution kernels
are used in signal processing. Due to this, it has trouble adapting to unique visual
patterns in relation to new physical locations. As a result of both locational and
receptive-area-of-convolution-related challenges, recording lengthy spatial connec-
tions is a complex task.
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Reassessing the convolution’s key features might help in preventing the previously
mentioned complications [124]. The “Involution kernel” is proposed by the authors
as it is both channel-agnostic and may be used in any given location. The authors
contend that self-attention is an instance of the Involution design paradigm due to
the geographically specific nature of the operation.

Figure 5.7: INN Diagram

Comprehension of convolution is a prerequisite for the firm understanding of the
concept of involutions. Tensor X with dimensions H, W, and Cin is the input. In
the beginning, we have a collection of K, K, Cin form of Cout convolution kernels.
Multiplying and adding the input tensor with the kernels yields a tensor Y with the
dimensions H, W, and Cout.

In Figure 5.7, Cout = 3 resulting in a tensor output of the form H, W, and 3. It is
also notable that the geographical location of the input tensor has no effect on the
convolution kernel, making it location agnostic. On the other hand, since each chan-
nel is based on a unique convolution filter, the resulting tensor is channel-specific.

The goal is to devise a mechanism that is both geographically specific and channel-
agnostic. It’s not easy to develop those qualities. Since the resolution of the input
tensors varies, a fixed number of Involution kernels cannot be used to process them
(one for each spatial point).

The authors suggest that this problem be resolved by basing the creation of each
kernel on a set of spatial coordinates. This approach should simplify the handling
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of input tensors with varying degrees of resolution. Figure 2 depicts this method of
kernel creation. Here, we generate K, K, C filters, where C is the total number of
subchannels. We generate C filters and send each of them to each of the C input
channels instead of utilizing a singular filter and sending it to all of the channels at
once.

Proposed UnIC-Net Model for Skin Cancer and Malaria Classification

One involution layer is used at the beginning of our proposed hybrid model, and
then the ReLU activation function is applied. Subsequently, we implant 2 convo-
lution layers powered by ReLU activation functions. Following the involution and
convolution blocks, a dropout layer with a rate of 15% is added. Our investigations
reveal that a dropout rate of 15% offers the best raw performance together with the
highest level of dependability. Accordingly, we have decided to keep the dropout
rate at this level. Any other rate either provide very poor performance or lackings
in the reliability issue. In the final step, we convert all of the information that we
retrieved into one-dimensional data using the fully connected block. It is composed
of 6 dense layers with a total of 256, 128, 96, 64, 32, 16 nodes. The reason of using
this particular number of dense layers with the respective number of nodes is, the
utilized data requires multiple dense layers to extract all features properly. This is
also visible in our preliminary experiments. Using less number of layers and nodes
gives less accuracy and giving more increases the problem of overfitting. Softmax
is used as the activation function for the classifier layer. The weight parameters in
our model totals at 3,324,861. The overview of our model is included in Table 5.4.

5.2.5 Recurrent Neural Networks

The neural networks’ capacity to instantly self-learn and self-adapt allows them to
model and predict complicated nonlinear patterns given a series of input points with
predefined outputs. RNNs are one such type of neural network that creates cycles
as a result of one or more connections between the neurons. These cycles in RNN
store the data and transmit feedback from one neuron to another. This method
creates an internal memory and makes it easier to learn sequential facts. A RNN’s
usage of loops enables information to be carried while input is being read. They are
distinct from other neural networks because their memory enables them to identify
relationships between events. Theoretically, these loops can be deployed everywhere
in the network and in any direction [125]. Figure 5.8 represents the internal structure
of RNN.
Both LSTM and GRU are common RNN subtypes used in sequential data.

Long Short-Term Memory & Gated Recurrent Unit

Since its first introduction in 1997 by Sepp Hochreiter and Jurgen Schmidhuber,
LSTM has been extensively employed and has given rise to several versions. Input
gates and forget gates are added to LSTM in comparison to conventional RNNs to
address the gradient disappearance and explosion issues. This allows for the collec-
tion of long-term information and improved performance in lengthy sequence text.
GRU’s internal structure is comparable to LSTM, while its input and output struc-
ture is identical to that of a standard RNN [126]. Figure 5.9 and Figure 5.10 below
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Table 5.4: Number of Parameters and Layer Details of Proposed UnIC-Net (1 layer
Involution)

Layer Output Shape Parameter
Input Layer [(None, 28, 28, 3)] 0

Involution Layer
((None, 28, 28, 3),

(None, 28, 28, 9, 1, 1))
43

ReLU (None, 28, 28, 3) 0
Batch Normalization (None, 28, 28, 3) 12

ReLU (None, 28, 28, 3) 0
2D Convolution Layer (None, 26, 26, 64) 1792
2D Convolution Layer (None, 24, 24, 64) 36928
Batch Normalization (None, 24, 24, 64) 256
2D Convolution Layer (None, 22, 22, 64) 36928
Batch Normalization (None, 22, 22, 64) 256
2D Max Pooling (None, 11, 11, 64) 0

Monte Carlo Dropout (None, 11, 11, 64) 0
Flatten (None, 7744) 0
Dense (None, 256) 1982720
Dense (None, 128) 32896
Dense (None, 96) 12384
Dense (None, 64) 6208
Dense (None, 32) 2080
Dense (None, 16) 528
Dense (None, 2 or 7) 34

Total parameters: 2,113,065
Trainable parameters: 2,112,799
Non-trainable parameters: 266
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Figure 5.8: RNN Diagram

Figure 5.9: LSTM Diagram

illustrate a comparison of the internal structures of LSTM and GRU. Information
cannot be encoded from back to front using either LSTM or GRU. In situations
with greater categorization granularity, like the five-category jobs of strong and
weak commendatory terms, weak disparaging term, and neutrality, the interplay
amongst words of degree, emotion negativity words should be considered. This
problem is overcome with a device known as a bi-directional long-short-term mem-
ory (Bi-LSTM), as well as a bi-directional gate recurrent unit (Bi-GRU). Forward
and backward LSTMs or GRUs are stacked in order to improve the bidirectional
semantic dependence. Bi-LSTM or Bi-GRU are frequently superior to LSTM or
GRU, however training will take longer.
In our research, we have compared stacked Bi-LSTM and stacked Bi-GRU models
to rather strong transformer models; hence, we have employed stacked versions of
both of these models. The model is comprised of two Bi-LSTM layers, and the
embeddings layer is where it all begins. After the classifier layer comes the MCD
layer, which is inserted just before it. In a similar manner, the GRU model consists
of 2 Bi-GRU layers, and the other parts of the model are the same as those found
in the LSTM model. Both of them possess MCD layers that have a dropout rate of
30%. We use 30% dropout rate because all of the utilized models tends to provide
optimal results with this rate, which will be a fair evaluation in our experiments.

5.2.6 Transformers

In practice, it is simpler to express the relationship between each pair of words using
a fully connected graph and then to allow the model to determine the structure on its
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Figure 5.10: GRU Diagram

own. Frequently, the self-attention mechanism dynamically calculates link weights,
inferring the relationship between words. Figure 5.11 shows the self-attention mech-
anism. An effective fully-connected self-attention model is the Transformer [127].
Moreover, it necessitates extra modules, including residual connections, positional
embeddings, layer normalization, and position-wise feed-forward network (FFN) lay-
ers. Because they learn the contextual representation of a word with a localization
bias, sequence models have difficulty capturing long-distance interactions between
words. Figure 5.12 shows the encoding and decoding mechanism of transformers.

Figure 5.11: Self Attention Network

BERT

Simultaneously conditioning both the right and the left context in every layer, BERT
[128] architecture is capable of pre-training deep bidirectional representations from
unlabeled text. Thus, the BERT model simply requires a final output layer in order
to produce popular models which are viable for handling a comprehensive amount
of tasks.
These tasks range from answering questions to inferencing languages without having
to majorly alter the architecture for a specific task. As we know, a directional model
reads a given text either from right-to-left or left-to-right. In contrast, encoders in
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Figure 5.12: Transformer Encoder

Figure 5.13: BERT Diagram

Transformer models scan the full string of words in one go, hence earning the name
bidirectional or non-directional. This key attribute enables the model to learn all
surrounding-based contexts of a particular word. Figure 5.13 illustrates the workflow
of BERT.

XLNet

One major issue with BERT is essentially its pre-training objective on masked se-
quences i.e the Denoising Autoencoding objective. An autoregressive pretraining
technique called XLNet[129] is a rather generic option for enabling the learning of
bidirectional contexts. The task is accomplished via maximization of the antici-
pated likelihood over all permutations of the factorization order. Furthermore, the
autoregressive formulation allows the system triumph over the drawbacks of BERT.It
doesn’t have the denoising of inputs as in the autoencoding objective and removes
the unidirectionality from a traditional autoregressive objective. Figure 5.14 shows
the mechanism of XLNet.
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Figure 5.14: XLNet Diagram

Baseline Vision Transformer

However, sequence models can usually be trained easily and tend to perform well
across a variety of NLP applications. Vision Transformer (ViT) [130] is the earliest
research which illustrates how Transformers may “completely” take-over standard
convolutions in DNNs on huge picture datasets. The initial Transformer model is
employed [131] on a sequence of picture “patches”. These patches were flattened as
vectors with few modifications. The system was already trained on a substantial pri-
vate dataset (JFT dataset [132] with 300 million pictures). It was later calibrated to
conform to downstream recognition criteria, such as ImageNet classification. Trans-
formers acquire information from exceptionally elaborate datasets whereas ViTs are
pre-trained using a medium-range dataset. The two models would not yield com-
parable results. This is due to the fact that prior knowledge regarding the pictures
(inductive biases, such as translation equivariance), is encoded by CNNs, which
reduces the data requirements.
ViT were first introduced by Dosovitskiy et al. [133] in order to criticize the sig-
nificance of CNN in attention-based models for vision-related tasks, as they were
previously implemented with convolutions [134], [135], or at least some of its proper-
ties [136]. Despite the fact that self-attention based models had a number of benefits,
such as extended range connections, there was still potential for advancements like
scalability. As a result, Positional Embedding, Image Tokenization, the Transformer
Encoder, Classification Token, and a Classification Head were the mechanics used
to create ViT. The basic illustration of ViT can be seen in Figure 5.15.

Swin Transformer

According to Liu et al. [137], Swin Transformer (SWT), a modified version of ViT
with a hierarchical design, is proposed. For rendering purpose, Shifted windows are
integrated with the modification. This approach is strongly advised since it lim-
its self-attention evaluation to non-intersecting local windows, which improves the
model’s efficacy. Additionally, the method allows for connections between windows.
As long as the computational cost is maintained linearly with regard to image size,
this form of ViT’s architecture allows for modeling at various calibrations. Hence,
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Figure 5.15: VIT Diagram

Figure 5.16: SWT Diagram

these qualities make SWT very adaptable to a variety of visual tasks. Figure 5.16
shows the key mechanism of SWT and the difference with ViT.
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Compact Convolutional Transformer

Compact Convolutional Transform (CCT), which incorporates convolutions into
transformer models, is the idea put out by Hassani et al [138]. The CCT tech-
nique improves inductive bias and eliminates the need for positional embeddings
by using sequence pooling and patch embedding in place of convolutional embed-
ding. One of the numerous benefits of the CCT is that input parameter flexibility
is proliferated along with precision. Figure 5.17 shows the architectural design of
CCT.

Figure 5.17: CCT Diagram

5.2.7 Graph Neural Network

Artificial neural networks like Graph Neural Networks (GNNs) can be used to make
predictions on the node, edge, and graph levels. The concept behind graph neural
networks is to calculate a state for every node in a graph, which is then repeatedly
updated based on the states of nearby nodes. These models spread information and
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provide node representations that can be “conscious” of the more extensive network
structure because of layering[139] or recursive techniques[140]. In the past, using
kernel functions to compute task-agnostic features was the most common method
to deal with complicated structures. However, GNNs have lately gained favor since
they can quickly and automatically extract pertinent characteristics from a graph.
GNNs are more appealing since such kernels are non-adaptive and frequently com-
putationally costly. Figure 5.18 is a basic representation of a GNN model.

Figure 5.18: GNN Diagram

Graph Convolutional Neural Networks

The mathematical background of Graph Convolutional Neural Networks(GCNNs)
is found in the fields of graph signal processing [141], [142] and spectral graph
theory, where signal operations such as the Fourier transform and convolutions are
generalized to signals existent on graphs.
In particular, Bruna et al. [143] and Henaff et al. [144] presented spectral graph
theory, which gave rise to GCNNs. CNN-like parameterized filters may be created
using GCNNs based on spectral graph theory but such filters are computationally
costly, which makes them sluggish. Several studies have suggested employing Cheby-
shev polynomials or a first-order approximation of spectral graph convolutions to
approximate smooth filters in the spectrum domain to circumvent the processing
bottleneck of spectral GCNNs [145], [146]. Due to its quicker training durations and
greater prediction accuracy, we adopt the GCNN formulation developed by Kipf and
Welling [146] in this study. Figure 5.19 is a simple illustration of a GCN model.
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Figure 5.19: GCN Diagram

Graph Attention Networks

A SOTA neural network architecture, GAT (Graph attention network) [147] employs
data in the form of graph. It leverages masked self-attention layers as a method of
compensating for the drawbacks of any previous techniques which used convolutions
or estimations of graphs. Nodes are explicitly attached with different weights in a
neighborhood, the nodes are stacked in layers in order to attend to the neighboring
features. No costly matrix operations are applied and no graph construction knowl-
edge is applied. Our model is made relevant for inductive and transductive issues
by taking into account many fundamental problems of spectral-based graph neural
networks simultaneously.
Graph attention layers are the foundation of a GAT since they allow the model to
prioritize different nodes in the graph when producing a prediction. As part of this
process, a value is initialized to each node in the graph depending on its attention
weight, which is then included into the final forecast.
The GAT’s self-attention-based attention mechanism allows the model to prioritize
different aspects of the input while producing a prediction. By applying the self-
attention mechanism to the graph-structured data, GATs enable the model to assign
relative priority to the various nodes and edges in the graph. The model is trained
to learn a function that maps a node’s local neighborhood to its own representation.
To do this, the model applies a neighborhood sampling strategy to randomly select a
fixed number of neighbors for each node. The selected neighbors’ representations are
then concatenated, and passed through a neural network architecture such as MLP
to produce the final representation of the node. The output of the neural network
can be passed through multiple layers, where each layer applies the same process of
neighborhood sampling and aggregation. The final output of the last layer is used
for the task at hand, for example, node classification. Figure 5.20 illustrates the key
mechanism of GAT.
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Figure 5.20: GAT Diagram

GraphSAGE

To efficiently construct node embeddings for unseen data, Hamilton et al. [148] pro-
pose GraphSAGE, a comprehensive, empirical technique that leverages node feature
information. It accomplishes this by learning a function that generates embeddings
through sampling and integrating neighborhood information rather than training
separate embeddings for each node.
The model is trained to learn a function that maps a node’s local neighborhood to its
own representation. To do this, the model applies a neighborhood sampling strategy
to randomly select a fixed number of neighbors for each node. The selected neigh-
bors’ representations are then concatenated, and passed through a neural network
architecture such as MLP to produce the final representation of the node.
The output of the neural network can be passed through multiple layers, where
each layer applies the same process of neighborhood sampling and aggregation. One
interesting property of GraphSAGE is that we can train our model on one subset of
the graph and apply this model on another subset of this graph. Figure 5.21 shows
the main structure of GAT.

PPNP and APPNP

Gasteige et al. [149] exploit the connection between graph convolutional networks
(GCN) and PageRank to develop a more effective propagation technique using indi-
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Figure 5.21: GraphSAGE Diagram

vidualized PageRank. Using this propagation method, they develop a basic model
called personalized propagation of neural predictions (PPNP) and a speedy approxi-
mation called APPNP. It may be simply integrated with any existing neural network
and makes use of a wide, malleable neighborhood for categorization.
PPNP is a GNN model that aims to improve the performance of node classifica-
tion tasks by utilizing the graph structure of the data, it’s based on the idea of
personalized PageRank, where the model learns a personalized transition matrix for
each node. The model learns a separate linear classifier for each node and uses the
personalized transition matrix to propagate the classifier’s predictions to the neigh-
borhood of the node. PPNP has been shown to be accurate but it can be slow when
training on large graphs.
APPNP (Approximate Personalized Propagation of Neural Predictions) is a faster
approximation of PPNP. APPNP is a model which is similar to PPNP but it uses an
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approximated personalized transition matrix which is computed by using a sparse
approximation of the graph Laplacian. This allows the model to be faster to train
and also it makes it more scalable to larger graphs. APPNP have been shown to be
faster and more scalable than PPNP while still achieving similar or slightly better
performance.
In the case of PPNP and APPNP, both models have been proposed for node clas-
sification tasks and have been shown to be effective in this task. PPNP is more
accurate but APPNP is faster and more scalable.
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Chapter 6

Experimental Analysis

6.1 Experimental Setup

The training and testing methods for this experiment are developed using Python
libraries such as Tensorflow, and Keras. An NVIDIA RTX 3080TI GPU with 34.1
TeraFLOPS of performance is used to train and assess the models.

6.2 Evaluation Metrics

6.2.1 Regression

Commonly, two performance measures are kept in consideration while analyzing the
prediction results to evaluate the performance of the proposed model: Mean Square
Error (MSE), and Root Mean Square Error (RMSE). The metrics are represented
as follows:

MSE =
1

n

n∑
t=1

(Fp − Ft)
2 (6.1)

RMSE =

√√√√ 1

n

n∑
t=1

(Fp − Ft)
2 (6.2)

where Fp is the predicted value and Ft is the actual value.

6.2.2 Classification

Several performance evaluation metrics such as accuracy, precision, recall, loss, F1
score, AUC are used to compare and validate the model’s performance. Although
accuracy is the most common metric used in classification tasks, we used several
metrics to evaluate our model from different perspectives. Different evaluation met-
rics used in this research can be expressed using the following equations:

Accuracy =
TP + TN

TP + TN + FP + FN
(6.3)

Precision =
TP

TP + FP
(6.4)
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Recall =
TP

TP + FN
(6.5)

Precision =
TP

TP + FP
(6.6)

F1Score =
2×Recall × Precision

Recall + Precision
(6.7)

Here, TP and TN represent the data points that are correctly classified as true and
false, respectively. On the other hand, FP and FN refer to the data points that the
model inaccurately classifies as true or false. These are for binary classifications.
For multi-class categorization, we go for micro and macro averaging. The scores
obtained by macro-averaging are the arithmetic mean of the scores obtained by
separate classes with regard to precision, recall, and F1-score. Precision scores are
calculated by taking the total number of true positives for each particular class and
dividing that number by the total number of expected positives for all classes. In
most of our multi-class categorizations, we use the macro averaging. Only for the
skin cancer identification task, we prefer, micro averaging since there is an imbalance

6.3 Model Performance and Uncertainty Estima-

tion Results

Figure 6.1: Selected Feature: Population; a) Lightweight Regular model b) Heavy-
weight Regular model c) Lightweight MC model d) Heavyweight MC model

6.3.1 Regression

ANN in Regression

As the goal and motivation of this experiment is to represent uncertainty, we do not
focus on the evaluation metrics such as Accuracy, Mean Squared Error etc. The
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Figure 6.2: Selected Feature: Median Income; a) Lightweight Regular model b)
Heavyweight Regular model c) Lightweight MC model d) Heavyweight MC model

Figure 6.3: Selected Feature: Total Rooms; a) Lightweight Regular model b) Heavy-
weight Regular model c) Lightweight MC model d) Heavyweight MC model

models were created to show the difference of uncertainty between two different
models and not to achieve high performance. In Table 6.1, we show the epochs
taken to train each model in different scenarios.
In Figure 6.1 , we select the feature “Population”. We get two separate results here.
Taking decisions from the regular prediction is risky and tough, as we can no be
sure which one is the better fit. But when we look at our MC model representations,
we can be sure that the heavyweight model is the better model as the model is less
spread and more packed comparing to the lightweight MC model. In Figure 6.2, we
select the “Median Income” feature. In this case the predictions look pretty similar
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Figure 6.4: One Feature (a) vs Multiple Features (b) vs All Features (c)

but the uncertainty graphs gives us a more concrete visualization of the strength of
these two models. In Figure 6.3, the decisions are pretty similar until we increase
the input value. In this case, the model gets very uncertain when the input value
gets high. This is a very helpful representation for us, as we can not get these in-
formation using regular neural networks.

Now, in Figure 6.4, we use different number of features to train our model and
the results we get are quite self explanatory here. In Figure 6.4 (a) the model is
quite confident with one feature (which is a very important feature for this dataset).
The distribution looks more packed than the other two. In Figure 6.4 (b) the dis-
tribution is pretty similar but more wide and spread. When we use all features to
train our model, the model gets very uncertain as there are unimportant features in
the dataset and multiple features can add unwanted factors to the model. In Figure
6.4 (c) we get to see the result of taking all features.

The results lead us to conclude that representing uncertainty considering different
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Table 6.1: Number of epochs for different tests

Feature Selected Lightweight Model Heavyweight Model Lightweight MC Model Heavyweight MC Model
Population 23 12 25 11
Median Income 23 12 22 13
Total Rooms 16 23 32 21
Multiple 39 31 31 14
All 22 19 28 15

conditions can help us to take major decisions with less risks.

6.3.2 NLP Application Result Analysis

RNN Variants - LSTM and GRU in Text Classification

We use LSTM and GRU in our experiments. Both LSTM and GRU takes 10 epoch
to complete the training process. The rate of learning is 0.0000006. LSTM has
59,009,325 parameters and GRU has 55,049,235 parameters. LSTM achieved 91.93%
test accuracy and GRU got 88.43% test accuracy. We select a random text from the
test sample, the text is shown in Figure 6.5.

Figure 6.5: Randomly selected text for RNN variants and Transformer uncertainty
estimation

From Figure 6.6 we see that, LSTM and GRU are quite identical in terms of pre-
dictive certainty. LSTM has 0.63 and GRU has 0.71 entropy of it’s softmax score.
We compare it with the performance of BERT and XLNet next.

Transformers in Text Classification

We train the transformer models - BERT and XLNet with 5 epochs. We set the
dropout rate to 30% in both models. For Monte Carlo sampling we have predicted
the models 50 times with 50 samples. Both of them have MCD layers embedded
after the post-processing layers of the moodels. In every experiment model, we set
the learning rate at 0.0000006. The number of parameters for BERT, and XLNet
are 109 Million, and 110 Million respectively. All tests have a fixed batch size of 64.
From Figure 6.7 and Figure 6.8 we can see BERT has a better fit in the training
phase. BERT has achieved 87.11% training accuracy and 86.88% validation accu-
racy. The test accuracy of the BERT model is 87.02%. It has 86.22% precision and
88.11% recall. On the other hand, XLNet did not perform as well as BERT, having
only 68.17% test accuracy, 65.53% precision and 80.68% recall.
We use the same text (Figure 6.5) used in LSTM and GRU experiment for the
out-of-distribution prediction to measure uncertainty. From Figure 6.9 we see how
well BERT performed comparing to XLNet. Even though both of them correctly
predicted the randomly selected test sample, BERT is more certain. BERT has
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Figure 6.6: Probability Distributions of LSTM and GRU

Figure 6.7: Train vs Validation Accuracy Curve and Train vs Validation Loss Curve
of BERT-MCD

Figure 6.8: Train vs Validation Accuracy Curve and Train vs Validation Loss Curve
of XLNet-MCD

0.31 entropy and XLNet has 0.85 entropy. From the results of RNN variants and
Transformers, we can conclude that BERT outperforms all then LSTM, GRU and
XLNet comes respectively.
For overall performance, BERT has 89.6% Monte Carlo ensemble accuracy. The rest
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Figure 6.9: Probability Distributions of BERT and XLNet

Table 6.2: Results obtained from CNN-MCD method

Accuracy Precision Recall Loss F1 Score AUC Score
93.9% 94.0% 93.0% 0.031 93.5% 97.6%

of the models, has 88.1% (LSTM), 86.3% (GRU), and 83.7% (XLNet).

6.3.3 Computer Vision Application Result Analysis

CNN in ECG Trace Image Classification

Metrics for evaluating the performance are essential for assessing the model’s re-
liability after any image classification task has been completed. Precision, Recall,
F1-score, and Accuracy are some of the well-known measures of performance eval-
uation that are used in the quantitative evaluation process to identify how well the
CNN-MCD technique performs. The Area Under the Curve of the Receiver Operat-
ing Characteristic (ROC), also known as the AUC of ROC, is another useful metric
for assessing performance. The CNN-MCD method’s findings are shown in Table
6.2. Our results revealed 0.939 as the accuracy, with 0.940 as the precision. The
results demonstrate that the recall is 0.930 and the loss is 0.031. Both the F1 and
AUC scores sum up to 0.935 and 0.976 respectively. The usage of a dataset from
the physical world causes the CNN-MCD technique to underperform with a smaller
number of epochs; however, as demonstrated in Figure 6.11, the results become
more consistent when 20 epochs have been used. After 70 iterations of the training
process, we decide to stop because the validation performance is not incresing and
overfitting might occur.
The distributions of the MCD forecasts and the ensemble’s prediction are displayed
in Figure. 6.12. Calculating the mean and variation of all potential model out-
puts yields these distributions. Similarly, performing these computations on the
predictions are used to determine the samples of uncertainty. Table 6.3 displays two
uncertain samples with a spectrum of their outcomes. In doing so, the dataset is
refined and model issues are highlighted. The graph shows the classes 0 through
4 labelled as covid-19, HB, MI, Normal, and PMI. The first sample has a correct
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Figure 6.10: Training and Validation Accuracy Curves for CNN-MCD Method

Figure 6.11: Training and Validation Loss Curves for CNN-MCD Method

label prediction of “HB”, however it can be seen from the table, the model is rather
confused about this prediction, mislabeling the input as “PMI” as well. The label
cannot be predicted for the second sample. The model is unsure whether to iden-
tify its resultant predictions as “PMI” or “covid-19”. As a result, MCD assists the
model in highlighting uncertainty in a manner which precludes dubious diagnoses,
that is uncertain diagnoses.
Comparing our suggested model to the state-of-the-art models in multi-class cat-
egorization, displayed in table 6.4, we find that ours performs significantly better.
Widely used models like ResNet-50, VGG-16, and InceptionV3 could very well ob-
tain an accuracy ranging from 79% to 83%. Our five-class classification performance
is superior to that of the other methods listed in Table 6.4, which only classify data
into three or four categories. Despite not being able to exceed the competition in
terms of recall and precision in certain circumstances, it is nevertheless, quite close
to those results.
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Figure 6.12: Distributions of the monte carlo prediction accuracies and prediction
accuracy of the ensemble (Red).

Table 6.3: Uncertain samples and their predictions

Uncertain Sample Probability Distribution of Prediction

Involution-Convolution Hybrid in Skin Cancer and Malaria Disease Clas-
sification

The combination of involution and convolution show promising results. For com-
parison, we have tested two variations of UnIC-Net, one having 1 involution layer
and the other having 2 layers. Even though the performance is very close, but a
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Table 6.4: Comparison among different models.

Method Classes Accuracy Precision Recall
ResNet-50, InceptionV3,

VGG-16[150]
5

78.08%, 79.35%,
83.74%

NA NA

Proposed CNN Model of [150] 5 83.05% 96.12% 95.39%
Attention-based CNN with
Residual Connections [151]

4 92.00% 95.99% 82.00%

ECG-BiCoNet [152] 3 91.70% 91.90% 95.90%
Proposed CNN-MCD 5 93.90% 94.00% 93.00%

Table 6.5: Performance of UnIC-Net on Malaria Parasitized Cell Images

Model Type Accuracy Precision Recall
1 Layer Involution 96.81% 96.20% 97.45%
2 Layer Involution 94.95% 97.10% 92.65%

critical analysis show how they can be different in performance.
We will compare the involution kernels, so that we can visualize how the model is
taking decision. First in Figure 6.13, we can see how the involution layer is focusing
on the spatial features, especially the parasitized locations. It is signifying the
parasitized area and making the feature extraction process easier. But, in Figure
6.14 we can see how 2 layers of involution learns too much from the data and makes
the performance unstable. In most of the cases, this issue occurs. 1 layer involution
does not create this problem. The same happens in the skin lesion dataset (Figure
6.16 and Figure 6.15).
Figure 6.17 and Figure 6.18 show the training vs validation curves, which show that
our proposed model do not face any serious case of overfitting. Table 6.5 and Table
6.6 show the performance of our proposed UnIC-Net model. From the tables, it is
clear that single layer involution works better in UnIC-Net. Moreover, UnIC-Net
model has a very high recall, which means it is able to capture more diseased class
images, which is very crucial for computer-aided-diagnosis.
Finally, we compare the results obtained from UnIC-Net with other existing models.
From Table 6.8 and Table 6.7 we can come to a decision that, our model outperforms
the mentioned work.
Now coming to the uncertainty analysis. UnIC-Net with 1 layer involutions has a
better Monte Carlo ensemble accuracy than that of 2 layers. We have taken 500
samples and tested 500 times. In Malaria Parasitized Cell Images, UnIC-Net with 1
layer involution has 97.03%Monte Carlo ensemble accuracy and the one with 2 layers
has 94.4% Monte Carlo ensemble accuracy. In HAM10000, UnIC-Net with 1 layer
involution has 97.8% Monte Carlo ensemble accuracy and the one with 2 layers has
96.01% Monte Carlo ensemble accuracy. Table 6.9 is a comparison between these

Table 6.6: Performance of UnIC-Net on HAM10000 Images

Model Type Accuracy Precision Recall
1 Layer Involution 98.79% 98.93% 99.03%
2 Layer Involution 97.39% 97.12% 98.33%
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Table 6.7: Performance Comparison with Existing work on HAM10000

Model Accuracy
Fixcaps[153] 96.49%

IRv2+Soft Attention[154] 93.4%
Skin lesion classification
using loss balancing and

ensemble of multi-resolution
efficient nets[155]

92.6%

Classification Model - 2
with two path CNN model[155]

88.6%

ISIC 2019 Skin lesion analysis
towards melanoma detection[155]

85.1%

Skin lesion analysis towards
melanoma detection

using siamese network[155]
83.2%

Our Model 98.79%

Table 6.8: Performance Comparison with Existing work on Malaria Parasitized Cell
Images

Model Accuracy Recall
ResNet50 [156] 88.47% 89.61%

DenseNet121 [157] 90.94% 92.51%
DPN92 [158] 87.88% 86.81%

Customized CNN [159] 94.00% 93.10%
Designed CNN [87] 94.61% 95.20%

Our Model 96.81% 97.45%

Table 6.9: Monte Carlo Ensemble Accuracy in UnIC-Net Model Variants

Dataset Model Type MC Ensemble Accuracy
Malaria Parasitized

Cell Images
UnIC-Net (1 layer involution) 97.03%
UnIC-Net (2 layer involution) 94.4%

HAM10000
UnIC-Net (1 layer involution) 97.8%
UnIC-Net (2 layer involution) 96.01%
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Figure 6.13: Involution Kernels of UnIC-Net (1 Layer Involution) on Malaria Para-
sitized Cells

two variants in terms of Monte Carlo ensemble accuracy, which indicates overall
reliability.
A more detailed analysis also proves that UnIC-Net with 1 layer involution is more
reliable. Since we want high entropy in wrong prediction, the 1 layer involution
based UnIC-Net is preferred. Figure 6.19 is the sample where both variants of the
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Figure 6.14: Involution Kernels of UnIC-Net (2 Layer Involution) on Malaria Para-
sitized Cells

proposed model predicted wrong. Figure 6.20 shows that it is more uncertain about
the prediction, which has an entropy of 0.76. On the other hand, Figure 6.21 is
more certain about it’s prediction, with 0.62 entropy.
When we choose an uncertain sample (Figure 6.22), in this case. UnIC-Net (1 layer
involution) predicted it correctly but UnIC-Net (2 layer involution) predicted it
wrong. In this case, UnIC-Net (1 layer involution) has 0.32 entropy and UnIC-Net
(2 layer involution) has 0.73 entropy. This means, UnIC-Net (1 layer involution) is
a bit less confident about its correct prediction. But UnIC-Net (2 layer involution)
is uncertain about its wrong prediction. Both of them are quite equal in this case.
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Figure 6.15: Involution Kernels of UnIC-Net (1 Layer Involution) on HAM10000

Transformers in Vision

For the performance evaluation, we use baseline transformer models (ViT, SWT,
CCT), MCD-based transformer models with a dropout rate of 50% (ViT-MCD (0.5),
SWT-MCD (0.5), CCT-MCD (0.5)), and MCD-based transformer models with a
dropout rate of 10% (ViT-MCD (0.1), SWT-MCD (0.1), CCT-MCD (0.1)).
In table 6.10 we can see that, in most of the cases, MCD has increased the perfor-
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Figure 6.16: Involution Kernels of UnIC-Net (2 Layer Involution) on HAM10000

mance. Both SWT-MCD models have the best performance gain after the MCD
embedding. Although, CCT-MCD model has the highest accuracy. Unlike the re-
call and precision measure of CCT models, ViT and SWT models have a higher
precision than recall.
Using MCD embedded models with 50% dropout rate, to determine the distribution
of predictions, we utilize 500 test samples and predict each sample 500 times. In
other words, we employ Monte Carlo Sampling. The uncertainty resulting from the
anticipated class-wise softmax value spread of the 500 test specimens necessitates
this to be done. We get 10.59%, 71.8%, and 77.6% ensemble accuracy from ViT-
MCD, SWT-MCD, and CCT-MCD respectively. Unlike regular accuracy score, this
ensemble accuracy is achieved from the Monte Carlo Sampling with the 500 sample
data. Figure 6.25 shows the Monte Carlo accuracies achieved from the experimented
model.
Figure 6.24 represents the most uncertain samples. Figure 6.26a(left) is the ran-
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Figure 6.17: Training vs Validation Curves of Malaria Infected Cell

Figure 6.18: Training vs Validation Curves of HAM10000

domly selected image from the dataset. We can see the distribution of the predicted
softmax score of three MCD-embedded models in Figure 6.28. The quantitative
outcomes can be seen in Table 6.11 It shows that, both SWT-MCD and CCT-MCD
models successfully classified the image with low predictive entropy. On the contrary,
ViT-MCD could not identify the image and the predicitive entropy is comparatively
higher, which means the predictions are more disordered than others.
We generate a random image and predict the image in the same way we did for the
randomly selected test image. Figure 6.26b(right) is the randomly generated image
which is basically a completely noisy data. Figure 6.27 shows the mean softmax
score of the distribution. This represents that, the model is not very confident
about it’s decision as the gap between mean softmax score is not too significant.
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Figure 6.19: Sample of a Data with wrong predictions for all

Figure 6.20: Softmax score distribution of the wrong prediction (1 layer)

Figure 6.21: Softmax score distribution of the wrong prediction (2 layer)

The prediction of the SWT-MCD model is comparatively more confident about it’s
decision although this is not a good sign for the model, because the model’s softmax
scores should be disordered when dealing with a fully noisy data like the one we
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Figure 6.22: Sample of a Data with uncertain prediction

Figure 6.23: Softmax score distribution of UnIC-Net with 1 and 2 Involution Layer

have used. For that reason, CCT-MCD has the best outcome here.
Unlike the predictive performance, CCT and ViT have more similar characteristics
in terms of uncertainty measurement and decision making. If we only consider the
distribution of the softmax score, and the mean softmax score of the random image
prediction; we’ll see that ViT has more similarity with CCT in terms of uncertain
behaviour.

6.3.4 GNN Result Analysis

GNN

We will analyse the performance first, beginning with accuracy and F1 score. From
Table 6.12 we see that, GAT outperformed all in terms of accuracy and F1 score.
The results achieved from FFN clearly shows how weak FFNs are in this task. Other
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Table 6.10: Test Results of Transfomrer Models

Model Accuracy Top-3 Accuracy Recall Precision
ViT 67.8% 89.78% 49.78% 67.2%

ViT-MCD (0.5) 68.44% 91.21% 55.9% 69.6%
ViT-MCD (0.1) 68.2% 90.3% 51.70% 68.3%

SWT 68.78% 91.59% 53.78% 81.65%
SWT-MCD (0.5) 71.4% 92.31% 55.98% 84.50%
SWT-MCD (0.1) 67.2% 90.42% 49.70% 83.17%

CCT 77.9% 94.1% 93.39% 46.11%
CCT-MCD (0.5) 77.1% 94.87% 93.47% 46.71%
CCT-MCD (0.1) 78.4% 94.97% 93.64% 48.79%

Table 6.11: Uncertainty Estimates of a Randomly Selected Data

Model Predicted Class True Class Predictive Entropy
ViT-MCD (0.5) 0 2 0.88
SWT-MCD (0.5) 2 2 0.36
CCT-MCD (0.5) 2 2 0.19

Table 6.12: Performance and Uncertainty Report of GNNs

Models Case Accuracy F1 Predicted Actual Entropy

FFN
1

63.1% 59.13%
1 1 0.83

2 0 5 0.85

GCN
1

80.15% 79.33%
1 1 0.47

2 0 5 0.72

GAT
1

81.33% 82.41%
1 1 0.03

2 2 5 0.77

GraphSAGE
1

79.12% 79.54%
1 1 0.08

2 1 5 0.78

PPNP
1

80.89% 82.27%
1 1 0.33

2 3 5 0.67

APPNP
1

80.31% 81.04%
1 1 0.36

2 3 5 0.64
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Figure 6.24: Most Uncertain Samples Selected by Variance (32 x 32 Pixels)

Figure 6.25: Distributions of The Monte Carlo Accuracy and Accuracy of The En-
semble in Red (from left, ViT-MCD, SWT-MCD, CCT-MCD)

four GNN models: GCN, GraphSAGE, PPNP and APPNP performs quite identical,
although GraphSAGE has slightly low accuracy and F1 score. Table 6.13 contains
the accuracy and loss curves of all utilized models in this experiment. From the
figures of the PPNP and APPNP curves, we can see that they fit the graph better
than the other models. GraphSAGE and GAT have more stable curves, indicating
that they are learning steadily. Also, they take lesser epochs to complete their
training. We have used earlystopping method to finish the training process when
the model fails to increase performance.
Now coming to the overall reliability performance, GAT outperforms all here as
well. GAT has 83.4% Monte Carlo ensemble accuracy. Other models have respec-
tive Monte Carlo ensemble accuracies, 40.7% (FFN), 79.9% (GCN), 82.6% (Graph-
SAGE), 79.2% (PPNP), 78.9% (APPNP). This shows that, reliability performance
is different than the raw performance. Even though GraphSage has less accuracy,
it outperformed GCN, PPNP, APPNP, FFN in terms of Monte Carlo ensemble Ac-
curacy. This is an interesting finding that shows raw performance and uncertainty
can vary.
From Table 6.14, we see the distribution of the softmax scores. The x-axis represent
the score and the y-axis represents the number of samples, which means the chart
represents the distribution of the softmax score. For correct predictions, we would
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(a) (b)

Figure 6.26: Sample Test Image and Random Image For Uncertainty Estimation
(32 x 32 Pixels)

Figure 6.27: Mean Softmax Score of The Randomly Generated Image 6.26b (from
left, ViT-MCD, SWT-MCD, CCT-MCD)

Figure 6.28: Probability Distributions of Predictions (from left, ViT-MCD, SWT-
MCD, CCT-MCD)
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want the entropy to be as low as possible. On the other hand, for wrong predictions,
we would want high entropy. This means, the model is not confident about the pre-
diction, and it can lead to faulty decisions. Table 6.12 has the quantitative measure
of uncertainty estimation. In this uncertainty analysis, we have two cases, the first
one is a randomly selected sample where all of the models predicted correctly. On
the other hand, the second case is where a random uncertain sample was selected
from the dataset. In the second case, some of them predict correctly, and some not.
Considering both correct and incorrect predictions (in multiple samples), GAT out-
performs all in this task as well. Having the least entropy in correct prediction and
high in the wrong one (in multiple cases as well). GraphSAGE performs quite sim-
ilarly in this case as well. However, GraphSAGE is more uncertain about its wrong
prediction, which technically makes it better than GAT in terms of indicating faulty
predictions. However, GCN did not perform as good as the other methods (except
FFN). Even though it has a decent accuracy and F1 score. PPNP and APPNP
proved to be superior in terms of uncertainty measure. But, the problem with
PPNP and APPNP is, both are slightly more certain about its prediction even if
it is wrong. Therefore, PPNP and APPNP provide more certain predictions but
they do not ensure correct predictions. This issue is seen in the GCN model as well,
but GCN is not very certain about its predictions in most of the cases. From the
conducted experiment, we can say that spatial GNNs are performing much better
than spectral GNNs.
Spatial Convolution operates on the local neighborhood of nodes and deduces the
features of a node based on its local neighbors. For GCN, all nodes share the same
parameters for the convolution kernel. As the degree of association between neigh-
boring nodes varies, this influences the final outcome in some instances. To treat
distinct nodes, various convolution kernel parameters must be used. GraphSAGE
uses the same approach with a generalized aggregation function. GAT, on the other
hand, employs different convolution kernel parameter values to treat distinct nodes.
These modifications make the GAT more efficient and reliable than its competitors.
PPNP and APPNP capture the impact of infinitely neighborhood aggregation and
separate the feature transformation from propagation to simplify model construc-
tion, leading to confident predictions. Additionally, a good learning fit and a higher
F1 score is achieved from these two models.
From the above analysis, we can say that GAT and GraphSAGE are safer to use in
node classification tasks. They provide reliable predictions with highest or close to
the highest accuracy, which are important for real-world tasks.
Table 6.15 highlights the experimental outcomes of our thesis. Here, we can tell
which model has the highest level of raw performance and which is the most reliable.
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Table 6.13: Accuracy and Loss Curves of Training vs Validation Phase

Accuracy Loss

FFN FFN

GraphSAGE GraphSAGE

GCN GCN

PPNP PPNP

GAT GAT

APPNP APPNP
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Table 6.14: Softmax Score Distribution of Correct and Incorrect Predictions

Incorrect Prediction Correct Prediction

FFN FFN

GraphSAGE GraphSAGE

GCN GCN

PPNP PPNP

GAT GAT

APPNP APPNP
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Table 6.15: Summary of our Experiments

Task
Models
Utilized

Dataset Best Performer Most Reliable

Regression
Lightweight ANN,
Heavyweight ANN

California
Housing
Price

Heavyweight ANN Heavyweight ANN

Text
Classification

LSTM, GRU,
BERT, XLNet

Yelp Review
Polarity

LSTM BERT

Image
Classification

Proposed CNN
ECG Trace
Images

Proposed CNN -

Image
Classification

UnIC-Net 1 Layer,
UnIC-Net 2 Layer

HAM10000 UnIC-Net 1 Layer UnIC-Net 1 Layer

Image
Classification

UnIC-Net 1 Layer,
UnIC-Net 2 Layer

Malaria
Parasitized Cells

UnIC-Net 1 Layer UnIC-Net 1 Layer

Image
Classification

ViT, SWT, CCT CIFAR10 CCT CCT

Node
Classification

ANN, GCN,
GAT, GraphSAGE,
PPNP, APPNP

CORA GAT GAT
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Chapter 7

Discussion and Key Findings

7.1 ANNs in Regression

As we have mentioned previously, uncertainty measures are strongly related to fea-
ture selection and model size. California house price dataset has less data in the
end, which lead to uncertain predictions in that range. Therefore, data requirement
is also an important factor for certainty in regression predictions.

7.2 RNN Variants vs Tranformer Variants

In terms of performance, LSTM outperforms other models used in our experiments
on the Yelp Review Polarity dataset. LSTM is better in terms of both uncertainty
measures and performance. GRU is very close to the LSTM results. The structural
similarity is the main reason for them to perform similarly. Although LSTM could
not beat BERT in both ways.
From our study we find that BERT outperforms XLNet in terms of both performance
and uncertainty measurements. But LSTM and GRU outperformed in terms of
performance only but the predictions were not as certain as BERT, with the same
dropout rate of 35%. BERT also has has good fit during it’s training phase, unlike
XLNet. Currently, our experiments only include one particular dataset. We will be
using multiple datasets to solidify the great performance of BERT.

7.3 MCD-Based CNNmodel increases robustness

In clinical data analysis and diagnosis, MCD plays a vital role to reduce the risk
factors. Our proposed CNN model outperformed existing models in the particular
dataset and the uncertainty aware framework makes it more feasible. The data-wise
uncertainty analysis can play a key role when dealing with risky data. In addition
to this, the ensemble process of the prediction components in this specific scenario
raises the model’s degree of resilience. It is possible for us to draw the conclusion
that this kind of diagnostic framework may be extremely useful in the process of
computer-aided medical diagnosis [160].

77



7.4 How Good the Combination of involution and

convolution is

Frameworks such as Convolutional Neural Networks (CNNs) and Involutional Neural
Networks (INNs) have proven useful for picture categorization. Since CNNs can
grasp picture properties and patterns at the detailed level using convolutional layers,
they are particularly suited for working with image data. On the other hand, INNs
are a type of architecture that has been suggested to improve the interpretability
and robustness of neural networks by learning to invert the data.
When applied to cell-like images, the combination of CNNs and INNs can perform
better than either architecture alone because it can leverage the strengths of both
architectures. CNNs can learn the local patterns and features in the image that are
important for classification, while INNs can learn a more global, holistic represen-
tation of the image that is more robust to noise and variations in the image.
As described in the result analysis section, UnIC-Net with 1 layer involution is
enough for the spatial feature extraction. Multiple layers of involutions causes over-
fitting, unstable results and makes the kernels more confusing.
In addition, INNs can be used to generate images from a low-dimensional latent
space, which can be useful for data augmentation and for understanding the un-
derlying generative processes of the data. This can be beneficial in cell-like images
because it can be used to generate new examples of cells with various variations,
which can increase the model’s stability and applicability.
Therefore, the combination of CNNs and INNs can be beneficial in cell-like images
because it can leverage the strengths of both architectures to achieve improved
performance, robustness, and interpretability.

7.5 Best Among ViT, SWT and CCT

From the conducted experiments of transformers in vision, we can say that trans-
former based models are greatly affected by the use of MCD. The improvement in
accuracy, precision and recall is visible in all of the models. Larger model, ViT is
uncertain with it’s predictions and also provides wrong predictions. In contrast,
compact frameworks are performing better regarding certainty and as well as pre-
dictions. Even if the predictions are comparatively uncertain, it is classifying the
images correctly, hence the monte carlo accuracy gap between models are quite
large. Moreover, the test accuracy of ViT and the monte carlo accuracy is very far
away. Which indicates how uncertain and unstable the model is with less amount
of data. ViT and large-scale variations of ViT need a massive amount of training
data to perform optimally.[161], [162]. In that case, CCT gives the best of both
convolutional and transformer kinds.
The dropout rate also has a significant role in prediction, and certainty. Transformer
models without convolutions, ViT and SWT are achieving higher precision but lower
recall. And the CCT model is getting the opposite results. The main difference
here is the model architecture. SWT being an updated and compact variant of
ViT, both of them are showing similar performance in the test phase. But when it
comes to uncertainty measurement, ViT and CCT are showing similar characteristics
although the quantitative difference of the performance is quite significant. SWT is
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more certain with it’s decision if the input is out-of-scope.
From Figure 6.24, it is evident that ViT has difficulties recognizing automobile im-
ages. In contrast, SWT and CCT have mixed samples of uncertain predictions. Ad-
ditionally, the most uncertain samples were not prevalent in every model., indicating
that each model approaches its predictions differently. From both out-of-scope tests,
we can infer that the ViT model does not have a high degree of confidence in its pre-
dictions, but the CCT model performs comparatively better with less training data
than ViT. The same may be stated for the SWT model, however in this experiment,
the SWT model fails to accurately predict random noise.

7.6 Insights from Graph Neural Networks

Graph Networks could not perform the same but in node classification, embedding
of the attention network helped GAT performed much better in both areas. It has
given GAT 7% more accuracy and the entropy measures are much better. We can
see from Table 6.12 how certain the predictions are.
Graph Attention Networks (GATs), one kind of neural network, excel at processing
information that is already organized in a graph format. It is more certain with its
predictions because it uses self-attention mechanisms, which allow the network to
concentrate on the most notable features of the graph for each prediction. In tra-
ditional CNNs, the convolutional layers are applied locally to a small neighborhood
of the input, which is a fixed size regardless of the input size. However, in GATs,
the attention mechanism allows the network to adaptively weigh the importance
of different parts of the graph based on the specific input and task at hand, this
gives the network a better understanding of the underlying structure of the input
graph. Additionally, GATs also allow the network to acquire complex and abstract
properties of the graph by stacking multiple attention layers, this improves the net-
work’s ability to adapt to unknown data. Furthermore, GATs also can be trained
with Bayesian methods, which allows to model uncertainty in the predictions by
placing probability distributions over the network’s parameters, this can provide a
measure of uncertainty for each prediction, making the network more certain about
the predictions it is making.
In summary, GATs are more certain with its predictions because it uses self-attention
mechanisms that allow the network to concentrate on the most significant features
of the graph for each prediction, it also allows the network to learn more complex
and abstract features of the graph and also can be trained with Bayesian methods
to provide uncertainty estimates for the predictions.
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Chapter 8

Future Research

8.1 Uncertainty Analysis

In this thesis work, we focus only on investigating characteristics of neural networks
that have not before been investigated and have not been analyzed in terms of
uncertainty. Nevertheless, this thesis only provides extensive information about
classification and regression problems.
Deep learning with reinforcement is something that we are looking forward to work-
ing with. Due to the fact that uncertainty assessment is of utmost significance in
applications of deep reinforcement learning[163]–[165].
In addition, we are keen to investigate more approaches to assessing uncertainty,
evaluate how they compare favorably against MCD, and determine which method is
more effective in a given scenario based on the outcomes. Additionally, various types
of perturbation that might produce uncertainty will be investigated as part of this
project. In order to come up with a novel approach to assessing uncertainty, we may
combine the concepts of perturbation and the Monte Carlo simulation. Even though
there are a number of research concerning the concept that was just described [166]–
[170], we are hoping to come across one that concentrates on the data as well as the
model. MCD only perturbs the model. Additional research might be conducted on
the subject.

8.2 Reliable and Robust Models

We propose two novel architectures in this thesis. The scope of UnIC-Net will be
broadened to include other medical images that share features with cell-like images.
Currently, we are dealing with a variety of medical data that has already shown
some interesting insights.
Aside from this, we are looking forward to delving further into NLP tasks, which has
high ambiguity issues [171]. Wang et al. [172] examine the problem of mislabeling
from the novel point of view of aleatoric uncertainty, which explains the underlying
unpredictability of missing data. This may be a fascinating subject to investigate
using MCD or any other strategy that can handle this problem more efficiently and
effectively.
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Chapter 9

Conclusion

When conducting AI practices in the real world, determining the level of uncertainty
is really important. The quantification of uncertainty is of utmost importance when
it comes to enhancing the trustworthiness of machine intelligence and lowering the
risk profile associated with working with such technologies. It has evolved into an
essential component of deep learning methods, particularly in deep learning appli-
cations that are used in the real world. Our research concentrates not only on
the analysis of MCD uncertainty quantification but also on the enhancement of
prediction performance and the identification of the factors that are significantly
responsible for the uncertainty of a model. We include the uncertainty analysis of
the most recent and SOTA techniques, such as INN, BERT, XLNet, ViT, CCT,
SWT, GCN, GAT, PPNP and APPNP. Additionally, we suggest two distinct mod-
els, one of which is based on CNN, and the other which is a combination of INN and
CNN. We present a visual analysis as well as a comparative examination of these
two, and based on both, we are able to deduce that the performance of these two
is superior based on all the datasets that were utilized. As a result, we have an
up-to-date overview of uncertainty quantification using MCD, including the two re-
liable architectures, that we have proposed for use in three distinct tasks. This leads
us to the conclusion that we have investigated recent developments in NN structures.

We believe that our extensive study will show researchers and practitioners how
a model’s level of confidence and raw performance can vary and prompt them to
consider the significance of measuring uncertainty while utilizing DL models. This
will result in more secure applications for forecasting in a variety of DL fields.
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data using monte carlo dropout,” in 2019 IEEE 15th International Confer-
ence on Intelligent Computer Communication and Processing (ICCP), 2019,
pp. 509–515. doi: 10.1109/ICCP48234.2019.8959787.

[80] A. Lemay, K. Hoebel, C. P. Bridge, et al., “Improving the repeatability of
deep learning models with monte carlo dropout,” npj Digital Medicine, vol. 5,
no. 1, p. 174, Nov. 2022, issn: 2398-6352. doi: 10.1038/s41746-022-00709-3.
[Online]. Available: https://doi.org/10.1038/s41746-022-00709-3.

[81] P. Goel and L. Chen, “On the robustness of monte carlo dropout trained
with noisy labels,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, Jun. 2021, pp. 2219–
2228.

[82] K. Pace and R. Barry, “Sparse spatial autoregressions,” Statistics Proba-
bility Letters, vol. 33, no. 3, pp. 291–297, 1997. [Online]. Available: https:
//EconPapers.repec.org/RePEc:eee:stapro:v:33:y:1997:i:3:p:291-297.

[83] X. Zhang, J. Zhao, and Y. LeCun, “Character-level Convolutional Networks
for Text Classification,” arXiv:1509.01626 [cs], Sep. 2015. arXiv: 1509.01626
[cs].

[84] A. H. Khan, M. Hussain, and M. K. Malik, “Ecg images dataset of cardiac
and covid-19 patients,” Data in Brief, vol. 34, p. 106 762, 2021, issn: 2352-
3409. doi: https://doi.org/10.1016/j.dib.2021.106762. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2352340921000469.

[85] M. J. NKENGUE, Ecg image cropped, https://www.kaggle.com/datasets/
marcjuniornkengue/ecg-image-cropped, version 4, 2022.

[86] M. Traina, S. Hernandez, D. Sanchez, et al., “Prevalence of chagas disease in
a u.s. population of latin american immigrants with conduction abnormalities
on electrocardiogram,” PLOS Neglected Tropical Diseases, vol. 11, e0005244,
Jan. 2017. doi: 10.1371/journal.pntd.0005244.

89

https://doi.org/10.1109/DSInS54396.2021.9670628
https://doi.org/10.48550/ARXIV.2003.00982
https://doi.org/10.48550/ARXIV.2003.00982
https://arxiv.org/abs/2003.00982
https://doi.org/10.48550/ARXIV.2007.01720
https://doi.org/10.48550/ARXIV.2007.01720
https://arxiv.org/abs/2007.01720
https://doi.org/10.48550/ARXIV.2007.05434
https://doi.org/10.48550/ARXIV.2007.05434
https://arxiv.org/abs/2007.05434
https://doi.org/10.1109/ICCP48234.2019.8959787
https://doi.org/10.1038/s41746-022-00709-3
https://doi.org/10.1038/s41746-022-00709-3
https://EconPapers.repec.org/RePEc:eee:stapro:v:33:y:1997:i:3:p:291-297
https://EconPapers.repec.org/RePEc:eee:stapro:v:33:y:1997:i:3:p:291-297
https://arxiv.org/abs/1509.01626
https://arxiv.org/abs/1509.01626
https://doi.org/https://doi.org/10.1016/j.dib.2021.106762
https://www.sciencedirect.com/science/article/pii/S2352340921000469
https://www.kaggle.com/datasets/marcjuniornkengue/ecg-image-cropped
https://www.kaggle.com/datasets/marcjuniornkengue/ecg-image-cropped
https://doi.org/10.1371/journal.pntd.0005244


[87] S. Rajaraman, S. K. Antani, M. Poostchi, et al., “Pre-trained convolutional
neural networks as feature extractors toward improved malaria parasite de-
tection in thin blood smear images,” en, PeerJ, vol. 6, e4568, Apr. 2018.

[88] N. C. F. Codella, V. Rotemberg, P. Tschandl, et al., “Skin lesion analysis
toward melanoma detection 2018: A challenge hosted by the international
skin imaging collaboration (ISIC),” CoRR, vol. abs/1902.03368, 2019. arXiv:
1902.03368. [Online]. Available: http://arxiv.org/abs/1902.03368.

[89] A. Krizhevsky, “Learning multiple layers of features from tiny images,” Tech.
Rep., 2009.

[90] A. McCallum, Cora Dataset, version V1, 2017. doi: 10.18738/T8/HUIG48.
[Online]. Available: https://doi.org/10.18738/T8/HUIG48.

[91] S. J. Nowlan and G. E. Hinton, “Simplifying neural networks by soft weight-
sharing,” Neural Computation, vol. 4, pp. 473–493, 1992.

[92] H. Y. Xiong, Y. Barash, and B. J. Frey, “Bayesian prediction of tissue-
regulated splicing using RNA sequence and cellular context,” en, Bioinfor-
matics, vol. 27, no. 18, pp. 2554–2562, Jul. 2011.

[93] R. Salakhutdinov and A. Mnih, “Bayesian probabilistic matrix factorization
using markov chain monte carlo,” in International Conference on Machine
Learning, 2008.

[94] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks
are universal approximators,” Neural networks, vol. 2, no. 5, pp. 359–366,
1989.

[95] E. Momeni, R. Nazir, D. J. Armaghani, and H. Maizir, “Prediction of pile
bearing capacity using a hybrid genetic algorithm-based ann,” Measurement,
vol. 57, pp. 122–131, 2014.

[96] A. R. Bunawan, E. Momeni, D. J. Armaghani, A. S. A. Rashid, et al., “Ex-
perimental and intelligent techniques to estimate bearing capacity of cohe-
sive soft soils reinforced with soil-cement columns,” Measurement, vol. 124,
pp. 529–538, 2018.

[97] G.-G. Wang, L. Guo, A. H. Gandomi, G.-S. Hao, and H. Wang, “Chaotic
krill herd algorithm,” Information Sciences, vol. 274, pp. 17–34, 2014.

[98] G. Wang, L. Guo, H. Duan, H. Wang, L. Liu, and M. Shao, “Hybridizing
harmony search with biogeography based optimization for global numeri-
cal optimization,” Journal of Computational and Theoretical Nanoscience,
vol. 10, no. 10, pp. 2312–2322, 2013.

[99] G. Wang, L. Guo, H. Wang, H. Duan, L. Liu, and J. Li, “Incorporating
mutation scheme into krill herd algorithm for global numerical optimization,”
Neural Computing and Applications, vol. 24, no. 3, pp. 853–871, 2014.

[100] P. G. Asteris and K. G. Kolovos, “Self-compacting concrete strength predic-
tion using surrogate models,” Neural Computing and Applications, vol. 31,
no. 1, pp. 409–424, 2019.

90

https://arxiv.org/abs/1902.03368
http://arxiv.org/abs/1902.03368
https://doi.org/10.18738/T8/HUIG48
https://doi.org/10.18738/T8/HUIG48


[101] P. Asteris, K. Kolovos, M. Douvika, and K. Roinos, “Prediction of self-
compacting concrete strength using artificial neural networks,” European
Journal of Environmental and Civil Engineering, vol. 20, no. sup1, s102–
s122, 2016.

[102] P. G. Asteris, A. K. Tsaris, L. Cavaleri, et al., “Prediction of the fundamen-
tal period of infilled rc frame structures using artificial neural networks,”
Computational intelligence and neuroscience, vol. 2016, 2016.

[103] P. G. Asteris, P. C. Roussis, and M. G. Douvika, “Feed-forward neural net-
work prediction of the mechanical properties of sandcrete materials,” Sensors,
vol. 17, no. 6, p. 1344, 2017.

[104] P. G. Asteris, A. Moropoulou, A. D. Skentou, et al., “Stochastic vulnera-
bility assessment of masonry structures: Concepts, modeling and restoration
aspects,” Applied Sciences, vol. 9, no. 2, p. 243, 2019.

[105] P. Psyllaki, K. Stamatiou, I. Iliadis, A. Mourlas, P. Asteris, and N. Vaxevani-
dis, “Surface treatment of tool steels against galling failure,” in MATEC web
of conferences, EDP Sciences, vol. 188, 2018, p. 04 024.

[106] G. M. Kotsovou, D. M. Cotsovos, and N. D. Lagaros, “Assessment of rc
exterior beam-column joints based on artificial neural networks and other
methods,” Engineering Structures, vol. 144, pp. 1–18, 2017.

[107] A. Ahmad, G. Kotsovou, D. M. Cotsovos, and N. D. Lagaros, “Assessing
the accuracy of rc design code predictions through the use of artificial neural
networks,” International Journal of Advanced Structural Engineering, vol. 10,
no. 4, pp. 349–365, 2018.

[108] E. Momeni, D. J. Armaghani, M. Hajihassani, and M. F. M. Amin, “Predic-
tion of uniaxial compressive strength of rock samples using hybrid particle
swarm optimization-based artificial neural networks,” Measurement, vol. 60,
pp. 50–63, 2015.

[109] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The bulletin of mathematical biophysics, vol. 5, no. 4,
pp. 115–133, 1943.

[110] B. D. Ripley, Pattern recognition and neural networks. Cambridge university
press, 2007.

[111] G. Zhang, B. E. Patuwo, and M. Y. Hu, “Forecasting with artificial neural
networks:: The state of the art,” International journal of forecasting, vol. 14,
no. 1, pp. 35–62, 1998.

[112] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural
networks, vol. 61, pp. 85–117, 2015.

[113] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[114] F. Rosenblatt, “The perceptron: A probabilistic model for information stor-
age and organization in the brain.,” Psychological review, vol. 65, no. 6, p. 386,
1958.

[115] M. Minsky and S. Papert, Perceptrons: An Introduction to Computational.
MIT press, 1988.

91



[116] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning algorithm for
boltzmann machines,” Cognitive science, vol. 9, no. 1, pp. 147–169, 1985.

[117] K. Fukushima, “Neocognitron: A hierarchical neural network capable of vi-
sual pattern recognition,” Neural networks, vol. 1, no. 2, pp. 119–130, 1988.

[118] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[119] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[120] B. Widrow and M. A. Lehr, “30 years of adaptive neural networks: Per-
ceptron, madaline, and backpropagation,” Proceedings of the IEEE, vol. 78,
no. 9, pp. 1415–1442, 1990.

[121] B. Cheng and D. M. Titterington, “Neural networks: A review from a statis-
tical perspective,” Statistical science, pp. 2–30, 1994.

[122] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in the
cat’s striate cortex,” The Journal of physiology, vol. 148, no. 3, p. 574, 1959.

[123] F. Ciompi, B. de Hoop, S. J. van Riel, et al., “Automatic classification of
pulmonary peri-fissural nodules in computed tomography using an ensem-
ble of 2d views and a convolutional neural network out-of-the-box,” Medi-
cal Image Analysis, vol. 26, no. 1, pp. 195–202, 2015, issn: 1361-8415. doi:
https://doi.org/10.1016/j.media.2015.08.001. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1361841515001255.

[124] D. Li, J. Hu, C. Wang, et al., Involution: Inverting the inherence of convolu-
tion for visual recognition, 2021. doi: 10.48550/ARXIV.2103.06255. [Online].
Available: https://arxiv.org/abs/2103.06255.

[125] M. Kubat, “Neural networks: A comprehensive foundation by simon haykin,
macmillan, 1994, isbn 0-02-352781-7.,” The Knowledge Engineering Review,
vol. 13, no. 4, pp. 409–412, 1999.

[126] H. Hettiarachchi and T. Ranasinghe, “Emoji powered capsule network to
detect type and target of offensive posts in social media,” in Proceedings
of the International Conference on Recent Advances in Natural Language
Processing (RANLP 2019), 2019, pp. 474–480.

[127] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,”
in Advances in Neural Information Processing Systems, I. Guyon, U. V.
Luxburg, S. Bengio, et al., Eds., vol. 30, Curran Associates, Inc., 2017.
[Online]. Available: https : / / proceedings . neurips . cc / paper / 2017 / file /
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[128] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, Bert: Pre-training of deep
bidirectional transformers for language understanding, 2018. doi: 10.48550/
ARXIV.1810.04805. [Online]. Available: https://arxiv.org/abs/1810.04805.

[129] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le, Xl-
net: Generalized autoregressive pretraining for language understanding, 2019.
doi: 10.48550/ARXIV.1906.08237. [Online]. Available: https://arxiv.org/
abs/1906.08237.

92

https://doi.org/https://doi.org/10.1016/j.media.2015.08.001
https://www.sciencedirect.com/science/article/pii/S1361841515001255
https://www.sciencedirect.com/science/article/pii/S1361841515001255
https://doi.org/10.48550/ARXIV.2103.06255
https://arxiv.org/abs/2103.06255
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.48550/ARXIV.1906.08237
https://arxiv.org/abs/1906.08237
https://arxiv.org/abs/1906.08237


[130] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” inAdvances
in Neural Information Processing Systems, C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Weinberger, Eds., vol. 26, Curran Associates, Inc.,
2013. [Online]. Available: https://proceedings.neurips.cc/paper/2013/file/
9aa42b31882ec039965f3c4923ce901b-Paper.pdf.

[131] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional neural
network for modelling sentences,” in Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), Baltimore, Maryland: Association for Computational Linguistics, Jun.
2014, pp. 655–665. doi: 10.3115/v1/P14-1062. [Online]. Available: https:
//aclanthology.org/P14-1062.

[132] W. Wang, B. Bi, M. Yan, et al., Structbert: Incorporating language struc-
tures into pre-training for deep language understanding, 2019. doi: 10.48550/
ARXIV.1908.04577. [Online]. Available: https://arxiv.org/abs/1908.04577.

[133] A. Dosovitskiy, L. Beyer, A. Kolesnikov, et al., An image is worth 16x16
words: Transformers for image recognition at scale, 2020. doi: 10 .48550/
ARXIV.2010.11929. [Online]. Available: https://arxiv.org/abs/2010.11929.

[134] I. Bello, B. Zoph, A. Vaswani, J. Shlens, and Q. V. Le, Attention augmented
convolutional networks, 2019. doi: 10.48550/ARXIV.1904.09925. [Online].
Available: https://arxiv.org/abs/1904.09925.

[135] F. Wang, M. Jiang, C. Qian, et al., Residual attention network for image
classification, 2017. doi: 10.48550/ARXIV.1704.06904. [Online]. Available:
https://arxiv.org/abs/1704.06904.

[136] P. Ramachandran, N. Parmar, A. Vaswani, I. Bello, A. Levskaya, and J.
Shlens, Stand-alone self-attention in vision models, 2019. doi: 10 . 48550 /
ARXIV.1906.05909. [Online]. Available: https://arxiv.org/abs/1906.05909.

[137] Z. Liu, Y. Lin, Y. Cao, et al., Swin transformer: Hierarchical vision trans-
former using shifted windows, 2021. doi: 10 . 48550 /ARXIV . 2103 . 14030.
[Online]. Available: https://arxiv.org/abs/2103.14030.

[138] A. Hassani, S. Walton, N. Shah, A. Abuduweili, J. Li, and H. Shi, Escaping the
big data paradigm with compact transformers, 2021. doi: 10.48550/ARXIV.
2104.05704. [Online]. Available: https://arxiv.org/abs/2104.05704.

[139] F. Errica, M. Podda, D. Bacciu, and A. Micheli, A fair comparison of graph
neural networks for graph classification, 2019. doi: 10.48550/ARXIV.1912.
09893. [Online]. Available: https://arxiv.org/abs/1912.09893.

[140] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Transactions on Neural Networks,
vol. 20, no. 1, pp. 61–80, 2009. doi: 10.1109/TNN.2008.2005605.

[141] S. Chen, A. Sandryhaila, J. M. Moura, and J. Kovačević, “Signal recovery on
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