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Abstract

Agriculture has consistently been an essential component of our day-to-day life over
the centuries. Because of its contribution to our country’s revenue, the importance
of agriculture has been steadily growing over the course of the years. However, there
are some counter factors that prevent us from reaping the full benefits that crops
have to offer. The presence of a wide variety of natural diseases on plant leaves is
one such factor. The most prominent causes of these problems are typically severe
weather conditions and excessive use of pesticides, both of which put a strain on
the economy of Bangladesh as a whole. To reduce the severity of the problem, we
are going to design an image processing system that utilizes Deep Learning and
Convolutional Neural Networks (CNN) to classify plant leaf diseases. Our primary
demographic of interest consists of farmers and other people willing to tend to crops.
We have concluded that the best way to go about this is by constructing a website
and making it as simple and straightforward as possible. The user will select im-
ages of the diseased leaf, and our CNN model will predict and categorize the leaf’s
condition based on the chosen images.

After implementing CNN, we introduce another model, namely LIME, which is
based on the concept of Explainable AI (XAI). An XAI is an artificial intelligence
that mainly helps humans to understand the decisions or predictions made by an
AI. In this scenario, after our CNN model classifies the diseased leaves, the XAI aids
us in understanding the reason and cause behind the leaves mentioned above being
classified as how they are by the CNN model.

Conclusively, following the completion of running our models, we managed to get a
99.54% accuracy rate in our testing phase.

Keywords: Neural Network. Convolutional Neural Network (CNN). Plant Leaf
Disease Identification. Deep Learning. XAI. Image Processing.
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Chapter 1

Introduction

1.1 Problem Statement

Agriculture is the process of improving the soil, growing crops, and caring for animals
for human use. The marketplace is where processed products, which can include
both plants and animals, are offered for sale. [79] The income of around 87 percent
of farmers living in rural parts of Bangladesh is primarily dependent on the growing
of crops in order to make a living. On the other hand, the component that was
indicated before that has a tendency to do the most damage is one that involves
plant diseases or viruses.[11] Viruses and diseases have a propensity to undergo
genetic alteration over the course of time and adapt to their environments in order
to survive harsh conditions. Because of this, identifying a virus can be a difficult
and time-consuming task. [3]In a nation like Bangladesh, where research and studies
are scarce, farmers have very limited access to financial resources. As a consequence
of this, it ends up being an expensive process for people who put in a lot of effort
to discover a reliable answer to their issues. [31]For example, late blight, a disease
very commonly found in potatoes which in turn results in a loss of around 25%-
57% in the yield of potatoes annually. Therefore, rather than the farmer having
to go around seeking assistance from botanists and phytologists, we have devised
a solution that will enable the farmer to determine the type of illness that their
crops possess within the palm of their hand. It is difficult to keep track of the
vast amounts of different combinations of symptoms that are present due to the
fact that multiple diseases can share similar symptoms. This can lead to a possible
misidentification of the condition if it is not treated with the assistance of a trained
professional. Employing a specialist to diagnose the illness will incur expenditures,
both monetarily and in terms of the amount of time it will take.

1.2 Background Information

The proliferation of agriculture paved the stage for the rise of civilizations at var-
ious points throughout history. Before agriculture became widely practiced, most
people subsisted on the land by foraging, hunting, and gathering various wild plants
and animals to add variety to their diets. [94] Around 12,000 years ago, our an-
cestors transitioned from a hunter-gatherer lifestyle to one more closely associated
with agriculture by beginning the cultivation of grain and root crops. Even though
agriculture is a branch of science, agriculture and science have had an equal im-
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pact on each other’s development. It has been of great assistance to the goals of a
great many researchers and also has been the source of many important discover-
ies made. This connection is responsible for the transformation and modernization
of agriculture; it has paved the way for the mass production of crops through the
development of technologies such as genetic modification, pesticides, and fertilizers,
amongst other advancements. Agriculture research has been crucial in advancing
our understanding of various aspects of the natural world, such as the flora and
fauna, weather, climate, soil, and seasonal shifts. We have the power to oversee and
take care of the food we eat, thereby guaranteeing that it is produced in an ethical
manner and does not include any harmful chemicals.

Agriculture has an extremely significant role in Bangladesh’s economy. The modern-
ization of irrigation techniques, the introduction of high-yielding genetically modified
crops, the streamlining of market operations by eliminating the need for intermedi-
aries, and the increased use of automation are all factors that have contributed to
the expansion of the agricultural sector. Agriculture is vital to the lives of people
living in rural areas of Bangladesh. [79] More than 87 percent of rural residents are
dependent, at least somewhat, on income from agriculture. In this way, approxi-
mately two-thirds of rural families are able to provide for themselves. An increase
in farm profits of 10% results in a 6% gain in non-farm incomes. This is one of how
Bangladesh’s nonfarm sector has been bolstered by the agricultural boom that helps
the poor. As incomes from non-farming activities continue to climb, the government
should concentrate on expanding the market in rural areas.

As a result, this is the stage in which our proposed Deep Learning (DL) model
performs its duties. Image processing of plant leaves, which is accomplished by de-
ploying Deep Learning models, is a tried-and-true method that is also up to date.
This method enables accurate disease identification. [39]It is possible to get test
accuracy rates of above 90% by utilizing Convolutional Neural Networks (CNNs)
like VGG and ResNet. Now, thanks to developments in technologies for machine
learning, it is possible to train lightweight models to be used through mobile ap-
plications with sufficient accuracy so that they can be practically deployed in field
applications. This is made possible because these models can now be used through
mobile applications. This would be beneficial to farmers since it is simple to obtain,
it would save them time, and it would be cost-effective.

[13]One of the importance in ‘precision agriculture’ research fields is the plant dis-
ease diagnosis using visual evidence from leaves. The broadening of our horizons
and the improvement of the precision with which we protect and nurture plants can
be assisted by the development of artificial intelligence, graphical processing units,
and image processing. [24]Visible symptoms can vary widely across the spectrum
for most plant diseases; hence, models should have excellent observational skills so
that they can detect the distinctive signs of every disease.

Currently, a variety of artificial intelligence methods are employed for the detec-
tion as well as classification of plant diseases. [35](Deep CNN) Deep convolutional
neural network, (SVM) Support vector machine, (KNN) K-nearest neighbors, lo-
gistic regression, and decision tree are among the most popular methodologies. In
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order to improve feature extraction, these strategies are merged with various image
preprocessing techniques. The KNN relies primarily on a similarity score to place
data into categories which are mostly classified based on memory.This method was
used to determine the identities of unlabeled items by comparing them to nearby
identified items. The decision tree is a form of supervised learning in which the
neurons stand for individual choice characteristics, the leaves for the many classes,
and the branches for the various possible outcomes. However, data overfitting and
overlapped nodes are significant drawbacks of this algorithm. As a subset of linear
regression, logistic regression uses probability distributions to arrive at a categor-
ical output value.[2] The SVM, an algorithm for machine learning in the presence
of supervision, is built using a separating hyper-plane in which statistical learning
techniques can be utilized for tasks like regression and classification. [26]In the last
couple of years, SVMs have undergone widespread use in many different areas, par-
ticularly those involving the classification of images and texts.

A deep learning method, known as deep CNN, was employed in this investiga-
tion. Deep learning goes beyond traditional machine learning by incorporating hi-
erarchical data representations and increasing computational complexity. [42]Deep
convolutional neural networks have a wide variety of uses in image classification,
recommendation systems, audio recognition, object detection, and natural language
processing. In comparison to conventional pre-trained models, the Deep CNN model
we propose is fairly lightweight, consuming a fair amount fewer computational re-
sources. However, vast quantities of training data is needed to enhance Deep CNN’s
efficiency. To overcome this issue, image augmentation is applied that produces
additional training images from the given images using a range of image processing
techniques, such as rotations, image flip, and shifting, among others.
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Chapter 2

Related Work

2.1 Machine Learning

In this review, a comparative study of related works in automated plant disease
classification is conducted. Some commonly used ML (Machine Learning) methods
are studied as they have reached excellent efficiency in achieving related objectives.
The flexible framework provided by ML algorithms for making automated expert
decisions makes it a powerful tool in feature extraction and classification, which the
field of agriculture would also undoubtedly benefit from. But through observation,
it is seen that these algorithms are popularly used as classifiers rather than feature
extractors, as CNNs are generally better at it.

2.1.1 Logistic Regression

A discrete outcome’s probability can be modeled using the logistic regression tech-
nique given an input variable. The most important factor in this approach is the
input. This method is mostly used for probabilities that have only two outcomes.
Therefore they can only have one of two potential values, such as yes or no, true
or false, etc. Multinomial logistic regression may be used to describe scenarios with
more than two discrete potential outcomes. It is a helpful analysis tool that is
used for situations involving classification. [52]The authors of the paper employed
Haralick’s technique to extract features and use logistic regression to classify them.
They achieved an accuracy of 67.3% using these two methods on a Kaggle dataset
of 14000 photos. [69]The paper managed to achieve a 96.60% success rate in iden-
tifying tomato leaves that are diseased. Their dataset contained 15,989 (254x254
pixel) pictures of tomato leaves from plantvillage.com, which were then categorized
into ten different classes. They created a new method for feature extraction by mak-
ing use of attention-based dilated CNN. This allows them to extract the important
features in the shortest amount of time. During their preprocessing, they employed
bilateral filtering and Otsu image segmentation. For the purpose of handling unbal-
anced, noisy, or incorrectly labeled data and achieving accurate prediction results, a
synthetic image has been created using the Conditional Generative Adversarial Net-
work (CGAN). Then they are categorized using a logistic regression (LR) classifier
that is both quick and easy to understand.
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2.1.2 Decision Tree

A decision tree is a useful and widespread method of classification and prediction. It
follows a binary tree data structure resembling a flowchart. Each leaf node (terminal
node) of our decision tree has a class label, whereas the internal nodes examines an
attribute, and each branch represents its potential outcome. [57]This paper proposed
an accuracy of 95% in identifying four diseases across five different types of leaves
by implementing a decision tree algorithm on a dataset of 1000 images (254 x 254
pixels) taken from kaggle.com. The authors based their proposal on a dataset of 1000
images taken from kaggle.com. After first smoothing the image with a refinement
filter, the sheet image is subsequently trimmed to isolate an interesting portion of
the picture for further processing. Increasing the contrast of an image is another
aspect of image enhancement. The process of segmentation includes splitting an
image into groups of pixels according to a number of different criteria. An image
serves as the input for the segmentation algorithm, which then produces a curated
selection of results. The size of a picture can be reduced by a process known as
feature extraction, which displays the interesting aspects of an image as a condensed
vector. [51]The authors of this paper introduced the Random Oversampling (RO)
method for class branching and also implemented 3 different techniques for feature
selection to enhance the algorithm. As a result, the accuracy increased to 98.10%.
These techniques are the 1. Consistency filter (Cons), 2. Correlation-based Feature
Selection filter(CFS), and 3. Random Forest Importance filter (RFI). The strategy
that was presented was used to analyze the SBL dataset that was obtained through
UCI Repository of ML. This dataset contains information regarding a wide variety of
soybean illnesses that are influenced by a variety of meteorological elements as well
as the global and local characteristics of plants. In total, the SBL dataset contains
683 occurrences that are missing certain values. These cases were dealt with using
the random forest imputation approach.

2.1.3 SVM Algorithm

Support Vector Machines or SVM’s goal is to draw the optimal decision line or
boundary to partition or separate and classify clusters of data in any number of
dimensions. This boundary may be either linear or nonlinear. This allows us to
appropriately categorize any new data points in the future. [52]Authors of used
Haralick’s algorithm as a feature extractor and SVM as a classifier and got 87.6%
accuracy on a Kaggle dataset of 14000 images. SVM was used for detecting vine leaf
diseases and bacterial genome associations in [18][19] and detecting citrus greening
of lemon trees in [7][33]. In [7][33], using multi-band imaging sensor inputs improves
the accuracy up to 85% in [7] and 92.8% by fluorescence imaging in [33]. In papers
[4][10][37], hyperspectral images were used with SVM [4][10]. Detecting Tomato
yellow leaves and leaf curls with 90% accuracy was done through SVM in [15].
Authors of [21] obtained 88.89% accuracy by using Downy Mildew color features
and Powdery Mildew texture as feature extractors, then passing them through SVM
classifiers.
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2.1.4 Naive Bayes Algorithm

A family of classification algorithms that assumes that every pair of characteristics
being categorized are not dependent on each other. As these algorithms are based
on Bayes’ Theorem, they are known as Naive Bayes classifiers. [29]In plant disease
diagnosis was made by processing the images through Naive-Bayes classification,
which achieved 81% accuracy in field conditions. To robustly characterize the color
characteristics that are present in an infected picture, they created a primary seg-
mentation approach that makes use of a Naive Bayes classifier. During the first
segmentation, just a few color channels, including Lab and HSL, are used. The pic-
ture is divided into several feature clusters based on these features, where a cluster
denotes a collection of pixels with comparable visual or textural feature values. A
Naive Bayesian segmentation model is fed by each picture cluster. The choice of
the Bayesian model acceptance limit ensures that any blob in the picture that has
a chance of displaying the desired illness gets labeled as a candidate.

2.1.5 K-NN Algorithm

K-Nearest Neighbor is a robust Supervised Learning machine learning algorithm that
places new instances in classes that are comparable to the other available classes. It
does this based on the similarity between the new instance and previous instances.
This indicates that when fresh data comes, it will readily be able to be classified
into a category that is best suited to it by utilizing the K- NN algorithm. The
K-NN technique has applications in both Regression and Classification, although
the classification problems are where it sees the greatest use. Regression is not
its primary focus. Unlike SVM and other machine learning methods, It does not
require any kind of prior training experience. It doesn’t need to be retrained if
new training patterns are integrated into the current batch of data. 96.76% disease
classification accuracy was obtained in [47] on a dataset of 273 images by using K-
NN Classifiers. The model classifies five types of diseases of various plant species.
Considering color space conversion and color segmentation for feature extraction
provides a useful way to read important color information of diseased leaves. In
[50] K-NN classifiers are done to classify groundnut leaf diseases. In this study,
the k-nearest neighbor classifier is removed from the process of segmenting colored
images. A distance measure is also employed to determine similarity by comparing
a pixel’s characteristics to those of its closest neighbors. The Euclidean distance
measure is applied in this study. Three sample areas are first taken from a leaf
picture, converted to LAB space, and then divided into three groups using distinct
colors.Throughout this research, K-NN classifiers having 3 neighbors were utilized for
the segmentation. The segmented parts of the leaf, the disease, and the background
are shown in green, red, and blue, respectively.

2.1.6 Random Forest Algorithm

RF (Random Forest) algorithm concatenates the results of many decision trees used
on various sections of the input, combines them, and then utilizes the combined
results to improve prediction accuracy. RF takes the predictions made by each tree
and determines the outcome by taking into account which tree’s predictions received
the most votes, rather than relying on a single decision tree. Because there are so
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many trees in the forest, it is impossible to overfit the data and achieve greater
accuracy. [73]Researchers were able to achieve an accuracy rate of 96.1% in their
study by putting enhanced photos into a CNN, which then used the Random Forest
algorithm as a classifier. This analysis made use of a dataset from plantvillage.com
that had 37,315 photos of five different plant species: apple, corn, potato, tomato,
and rice.[52] On a Kaggle dataset consisting of 14000 photos, the authors of this
paper employed Haralick’s approach as a feature extractor and the Random Forest
algorithm as a classifier. They achieved an accuracy of 70.05 percent.

2.2 Deep Learning Models

2.2.1 CNN

ANNs (Artificial Neural Networks) are computerized input processors that deal with
complex data through mathematical models. They are highly utilized in this field,
and their function is inspired by the natural input processors and neuron-neuron
communication found in the animal brain.

The authors in [21][36] presented high parameter CNNs using varying datasets for
detecting different plant leaf diseases. They also used various convolution and pool-
ing layers for each plant. In [38], several research papers are studied based on
DL (Deep Learning) technologies. They then tried to tackle several agricultural
problems using the studied techniques. A staggering 98.77% was achieved by the
authors in [41] by using techniques such as Stochastic Pooling, Batch Normalization,
Dropout, and on a 14-layered CNN to detect brain Sclerosis. [34]In another study, a
data augmented 13-layered CNN reached 94.94% final accuracy in classifying fruits
using momentum-based stochastic gradient descent. [14][16]Deep CNNs were used
by authors of these papers to identify multiple diseases of plants; it can be done for
pest detection, too, as used in [27] for tomatoes. 85.54% accuracy was reached for
identifying multi-temporal crops in [43].

[45]The paper handles a huge issue, which is the dataset or the number of images.
However, we can use data augmentation, but that does not solve many real-life
issues. In this paper, what they did was focus on individual lesions and diseased
spots. Using this technique can also handle cases like if any leaves have more than
one disease. They tested on Original images and background removed images, com-
plete and reduced images. In the paper [48], the author focuses on a big dataset
and various types of plant leaf diseases. The usage of CNN is clearly mentioned,
a large dataset of images has been trained, and data augmentation has also been
implemented. Furthermore, the Adam optimizer was incorporated into the method-
ology alongside image pre-processing. The paper reached a decent average of 96.5%
accuracy with different results across 32 different types of disease identification.

Authors of [40] compare different types of CNN methods using a single dataset that
contains a decent number of images. Here, several parameters have been considered,
as well as the computing time for searching for the best possible architecture in a
convolutional neural network. Additionally, the amount of model loss has also been
counted in the paper. Finally, ResNet 101, 99.66%, was found with the highest test
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accuracy. [61]The research paper uses Loss function optimization (Softmax, Center-
loss) on their Data augmented CNN, which produces better results than AlexNet,
VGG16, ResNet-50, and GoogleNet on their dataset, with a test set accuracy of
98.93% on classifying plant diseases.

Joyanta and Farhadul et al.[72] propose a lightweight CNN model which used se-
rially decreasing dense layers in the fully connected classifying block. Their model
has very less amount of parameters than other existing models and reached 98.18%
accuracy.

In this paper [71], the authors have detected different plants by using transfer
learning on three different CNNs: 1. EfficientNetV2L, 2. MobileNetV2, and 3.
ResNet152V2. They showed EfficientNetV2L having the better accuracy among
them, an accuracy of 99.63%. They also explained the prediction reasonings be-
hind EfficientNetV2L by using LIME , an XAI framework. Their dataset was taken
from Kaggle which contained healthy and diseased images of apple, orange, soybean,
potato, corn etc. with a total of 14 plants and 38 diseases.

Another study [67], used 3 CNNs: InceptionV3, DenseNet201, and EfficientNetV2S
to identify five diseases of rice leaf in Bangladesh and showed detailed comparison
between the models. Among them, DenseNet201 achieved the highest accuracy of
92.05%.

This paper [66] proposes a more novel technique of plant disease identification. It
handles the separation of crops and disease classification independently. They pro-
posed a trilinear CNN model that used bilinear pooling operations and emphasized
that real world environment images require a different strategy as they are not
taken in perfect conditions as laboratory images. The crop identification accuracy
is 84.11% and disease identification accuracy is 75.58% on the PlantVillage dataset.

Another paper [56] used GoogLeNet architecture on a Kaggle dataset to detect rice
leaf diseases with 94% accuracy which they integrated into a website-based applica-
tion.

The authors of the paper [58] tested leading CNNs such as ResNet-50, VGG-16,
VGG-19 etc. to predict nitrogen deficiency of leaf. They replaced the models’ last
layers with SVM classifiers which increased the accuracy of the models. It is seen
that ResNet-50 with SVM had the best result of 99.84% accuracy. Their limitation
was that the images are in laboratory conditions and are trained over only 5790
images.

The paper [30] proposed a CNN which was inspired by LeNet-5 and AlexNet to
identify 10 common rice diseases. It only has 3 convolution layers and it achieves
an accuracy of 95.48%.

The authors of [44] suggested a CNN to identify leaf diseases focusing on the real
domain of images from PlantDisease.com. These images are gathered from various
settings, angles, and weather conditions and their method had a 93.67% test accu-
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racy. The author wants to do additional research on identifying diseases in various
stages and from various regions of the plant body.
A data augmented ResNet CNN was used to identify plant leaf disease in another
paper [55]. 500 plant images from a tailored dataset were utilized in it and a detailed
comparison of proposed models and handcrafted Non-deep ML approaches. In the
end, the model obtained a high accuracy of 98.96%.

In [60], the author used CNNs put forth a method for recognizing the Cassava dis-
ease of plants. To simulate real world scenarios, they used low-resolution images .
The model uses Chebyshev orthogonal functions for image color histograms. Pre-
trained MobileNet-v2 was used in this experiment and managed 99.7% accuracy on
the Cassava Disease 2019 dataset.

To identify plant diseases, the author of [54] highlights the use of Bayesian DL
models. The PlantVillage dataset was utilized for this study. The author fine-tuned
various CNN architectures like VGG16, SGD, SGLD etc. The improved VGG16 got
the highest accuracy among the models which is 96%.8.

2.3 Explainable Artificial Intelligence

Artificial intelligence (AI) applications are proliferating as a result of machine learn-
ing’s spectacular success. Despite their ubiquitous use, machine learning models
are still largely unexplored. Future developments should result in automated self-
learning systems that make decisions independently. However, their incapacity to
justify their choices and behaviors to human users limits their usefulness. When de-
termining whether to deploy a new model or how much faith to place in a prediction
or when planning to act in response to a prediction, understanding the motivations
behind predictions is crucial. A trustworthy model or prediction may be created
using these model-specific insights that can be used to refine inaccurate predictions.
New machine-learning algorithms will be able to justify their actions, identify their
advantages and disadvantages, and provide a sense of how they will act in the future.
The approach to accomplishing that objective is to create new or altered machine-
learning approaches that will result in more comprehensible models. Aiming to help
people understand, appropriately trust, and competently navigate the emerging era
of artificial intelligence, the Explainable AI (XAI) initiative seeks to develop a suite
of machine learning techniques that generate more comprehensible models while
maintaining high-performance learning and precision of predictions.[20]Trust is cru-
cial for productive engagement with machine learning systems, and the publication
argues that this trust can be established through the clarification of individual pre-
dictions. In order to accurately and understandably describe the predictions of any
model, they thus introduced LIME, a modular and expandable method. In addition,
they came up with SP-LIME, a method for identifying relevant predictions that pro-
vides a complete picture to the model’s end users. Their experiments with expert
and non-expert users in the text and image domains revealed that explanations are
beneficial for a wide range of models in tasks involving trust. These tasks include
selecting a model, evaluating its trustworthiness, improving an unreliable model,
and understanding its assumptions.
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2.4 Transformers

Transformers are one of the newest most influential models in the field of computer
science. Transformers are Neural Networks that look for relationships and patterns
in sequential data. It is widely used for Natural Language Processing as it looks for
the meaning of the input phrases in a certain context. To find this meaning, these
models use a series of mathematical operations referred to as ”self-attention”. A
methodology for classifying images called the Vision Transformer, or ViT, applies a
Transformer-like design to selected areas of the image. Two main elements of the
transformer architecture are feed-forward networks and self-attention. Self-attention
changes n elements (or tokens) into n output tokens after receiving n input tokens.
It is a sequence-to-sequence module that compares each input token to each token
in the sequence. Also computed for each of these couples is an attention score.
Then, it sets the current token to equal the weighted average of all input tokens,
with the weights determined by the attention scores [32]. ViT comes in a variety
of forms, including ConvMixers, Compact Vision Transformers (CVT), Compact
Convolutional Transformers (CCT). Convolutional embeddings are used instead of
patch embeddings in CCTs, which improves inductive bias and eliminates the need
for positional embeddings. With smaller ViTs, CCT is more accurate than ViT-
Lite and has more flexible input parameters. ConvMixers, however, are ViTs with
additional convolutions. ConvMixer blocks are regularly repeated in place of the
sequential convolution, pooling, and transformers of CNNs and ViTs. A depthwise
separable convolution, a common component of contemporary CNN architectures,
is slightly adjusted in a single ConvMixer block. By pooling or using strided con-
volutions, a standard CNN gradually reduces the feature size while increasing the
number of channels. On the other hand, ConvMixer’s intermediate features all have
uniform size.

Authors of the paper [53] compared three of the original ViT models against ResNet
on several datasets. The three models were ViTBase which has 12 layers and 86M
parameters, ViTLarge which has 24 layers and 307M parameters and ViTHuge with
32 Layers and 632M parameters. These numbers are only possible due to ViT’s effi-
ciency. VitLarge and ViTHuge surpassed ResNet’s accuracy on all datasets tested,
as ResNet reached 87.52%, VitLarge 87.76% and ViTHuge 88.55% on ImageNet.

Since ViTs require an enormous size of dataset, it is difficult to implement them
due to lack of locality inductive bias. But the paper [70] proposes a novel method
for working with ViTs and small sized datasets by using the modules Shifted Patch
Tokenization (SPT) and Locality Self-Attention (LSA). Just by adding them to dif-
ferent ViTs can result from upto 2.96% to 4.08% accuracy gains. ViTs tested are:
ViT, PiT, T2T and CaiT.

This paper [62] extensively compares CNN performances against ViTs, CCTs and
CVTs. They tested on CIFAR-10, CIFAR-100, MNIST, ImageNet etc. datasets and
used different CNNs like ResNets, MobileNets and Proxyless-G. The results show
that CCTs outperform CNNs and all other ViTs.

Another paper [68] tested ConvMixers and Transformers for object segmentation
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on the Tabletop Object Dataset. The accuracies range around 83% to 85.55% with
varying degrees of GFLOPs required. It is seen that ConvMixers outperform the
tested transformers. They also tested the impact of CMCF modules, patch embed-
ding and different input modes on the ConvMixer’s performance.

The paper [74] uses ConvMixer to recognize hypertension of blood using ballisto-
cardiography spectrograms and compares it with other methods. Though the Con-
vMixer did better than other authors’ methods, using ResNets on the spectrograms
yielded better results. And even though ConvMixer did better than other related
works, they were not done on the same dataset.
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Chapter 3

Research Objectives

We want to construct a Deep Learning Model utilizing a lightweight CNN that is
capable of detecting plant leaf diseases in a diverse range of plants, such as apples,
blueberries, cherries, and corn, in addition to citrus fruits like oranges as well as
peaches. The fact that this model has a significantly smaller number of parameters
than usual was the sole factor that influenced the decision to employ a lightweight
CNN. As a direct consequence of this, a lower amount of resources will be consumed,
and a minimum level of computational power will be necessary. Despite the fact that
we have used a very limited number of parameters, one of our primary concerns is
to guarantee that the accuracy of our results is never jeopardized. This model will
be able to identify diseases of the plants from the image of the leaves. The user
will be required to provide our system with an image as their input. When all of
the necessary preprocessing steps have been completed, the image will then be run
through our proposed CNN model, which will determine whether or not the image
consists of a diseased plant and, if so, what disease the plant is suffering from.
At the end of this research, we tend to

1. Have a solid understanding of AI and how it will help in our Plant Leaf Disease
identification.
2. Have a thorough understanding of the Deep Learning Model.
3. Develop a model that will detect whether a plant is diseased or not.
4. Evaluate our proposed CNN model and compare it with other models.
5. Implement XAI to explain the results our CNN model displays.
6. Create user Friendly website to detect plant leaf disease.
7. Talk about improvements and further work that can be done.

3.1 Workflow

To start, we will investigate the PlantVillage dataset that was published by spMo-
hanty. It has around 60,343 images. In addition to that, it consists of images of all
38 classes shown in unfiltered, grayscale, and segmented forms. On the other hand,
just the unfiltered photos were used. After that, we begin the preparation stage by
applying the data augmentation methodology applied, such as rotating the image
and flipping the image horizontally on random images. The images were resized
from 256x256 to 100x100, and data was split into the train, test, and validation
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Figure 3.1: Work Flow of our Proposed CNN Model

sets. Furthermore, we then construct our CNN model and then train it with the
help of some training images, and lastly, we will validate it using some validation
images. In order to understand the CNN model’s output or prediction, we first save
our model in .h5 format and then upload the predicted image to LIME. This is done
after confirming the accuracy of the outcomes and utilizing test images to check
them. Finally we will create a simple user friendly website, where user can upload
an image and know whether the leaf is diseased or not.

Figure 3.2: Proposed Approach
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Chapter 4

Dataset

4.1 Data Analysis

The PlantVillage Dataset is the most important reference material that we make
use of[12]. This collection comprises 38 unique plant leaf photo categories. A total
of 60,343 pictures are included in this particular dataset that has been compiled.
The majority of the images show leaves that are both affected and unaffected by the
disease. These photographs have been organized into 38 distinct categories for your
viewing pleasure. In addition, three components make up the dataset: training,
validation, and testing, each of which has a different number of images: 48280,
6035, and 6028. This dataset includes at least one thousand pictures for each of
its categories. In Table 4.1, we can see what plants and how many diseased and
healthy images are present in our dataset. It also shows how many different classes
are there for each plant. Figure 4.1, 4.2 and 4.3 contains 10 sample images from
training, validation and testing set.

Figure 4.1: 10 Random Images from Training set

Figure 4.2: 10 Random Images from Validation set
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Figure 4.3: 10 Random Images from Testing set

Table 4.1: Number of Classes, Healthy and Diseased Image for each Plant

Type No. of Classes Healthy Diseased
Apple 4 1645 3000

Blueberry 1 1502 0
Cherry 2 1000 1052
Corn 4 1162 3192
Grape 4 1000 3639
Orange 1 0 5507
Peach 2 1000 2297
Pepper 2 1478 1000
Potato 3 1000 2000

Raspberry 1 1000 0
Soybean 1 5090 0
Squash 1 0 1835

Strawberry 2 1000 1109
Tomato 10 1591 17244
Total 38 18468 41875

Figure 4.4: Image Distribution of
Training, Validation and Testing

Figure 4.5: Distribution of
Training Images

4.2 Data Preprocessing

Data pre-processing is a technique meant to eliminate extraneous variables that
do not contribute to improving CNN model accuracy. This is accomplished by
incorporating a technique known as ”de-noising.” [59]In addition, to improve the
performance of the CNN models, raw data are modified, resulting in greater accuracy

15



Figure 4.6: Distribution of
Validation Images

Figure 4.7: Distribution of
Testing Images

and better results. The first phase in processing our data is referred to as ”Image
Resizing,” and the second step is known as ”Data Augmentation.” Each image is 256
by 256 pixels. First, we will resize the image to 100 by 100, which will accelerate our
training. The second step was data augmentation. A) rotation and B) horizontal
flips have been performed to supplement the data. Then, we turned the photos into
a matrix and normalized them by dividing them by 255, so conserving computer
resources.

4.3 Detailed Dataset

Table 4.2 shows image distribution of each classes in training, testing and validation
set.

4.4 Dataset Classes

4.4.1 Apple

In the Fig 4.8, we can see the image distribution of apple- healthy and its diseased
leaf on Training, Validation and Testing set.

Apple Scab

On newly sprouting and immature leaves in the early spring, apple scab infections
begin. Ten days later, early lesions show up as regions of paler green than the sur-
rounding leaf tissue. The development of asexual spores causes lesions to enlarge,
change color to an olive shade, and become velvety. On young leaves, scab sores can
grow to be more than one centimeter in diameter. However, ontogenetic resilience
in older leaves typically results in fewer lesions or no symptoms at all. Eventually,
damaged tissues may develop distortions and puckers, and leaf lesions may develop
cracks and tears. Leaves that are seriously ill fall from the trees. Trees may become
weaker after two to three successive defoliation occurrences, making them more vul-
nerable to other pressures like freezing damage, insect harm, and other diseases.[76].
Sample of Apple Scab is shown at Fig 4.9.
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Table 4.2: Dataset class details

NAME Training Testing Validation Total
Apple Scab 821 82 97 1000

Apple Black Rot 811 83 106 1000
Apple Cedar Apple Rust 815 99 86 1000

Apple Healthy 1306 166 173 1645
Blueberry Healthy 1172 172 158 1502
Cherry Healthy 789 104 107 1000

Cherry Powdery Mildew 858 102 92 1052
Corn Cercospora Leaf Spot

Gray Leaf Spot
777 114 109 1000

Corn Common Rust 950 120 122 1192
Corn Healthy 946 112 104 1162

Corn Northern Leaf Blight 825 82 93 1000
Grape Black Rot 979 95 106 1180

Grape Esca (Black Measles) 1105 137 141 1383
Grape Healthy 789 108 103 1000

Grape Leaf Blight
(Isariopsis Leaf Spot)

878 94 104 1076

Orange Haunglongbing
(Citrus Greening)

4385 586 536 5507

Peach Bacterial Spot 1836 232 229 2297
Peach Healthy 814 92 94 1000

Pepper Bell Bacterial Spot 784 104 112 1000
Pepper Bell Healthy 1200 145 133 1478
Potato Early Blight 796 102 102 1000
Potato Healthy 783 112 105 1000

Potato Late Blight 799 97 104 1000
Raspberry Healthy 796 94 110 1000
Soybean Healthy 4056 501 533 5090

Squash Powdery Mildew 1481 179 175 1835
Strawberry Healthy 814 94 92 1000

Strawberry Leaf Scorch 887 98 124 1109
Tomato Bacterial Spot 1686 241 200 2127
Tomato Early Blight 796 112 92 1000
Tomato Healthy 1261 176 154 1591

Tomato Late Blight 1533 178 198 1909
Tomato Leaf Mold 792 97 111 1000

Tomato Septoria Leaf Spot 1399 186 186 1771
Tomato Spider Mites 1336 172 168 1676
Tomato Target Spot 1126 136 142 1404
Tomato Mosaic Virus 806 93 101 1000

Tomato Yellow Leaf Curl Virus 4293 538 526 5357
Total 48280 6035 6028 60343
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Figure 4.8: Distribution of apple leaves

Figure 4.9: Apple Scab Samples

Apple Black Rot

One stage of the common and harmful apple disease is known as black rot. Black rot
and frogeye leaf spot are the terms used to describe the fruit rot stage. Losses from
fruit spoilage prior to harvest and during storage, tree weakening from defoliation,
and blighting and dieback of twigs and limbs brought on by girdling cankers are all
possible effects of the disease. Small, low-quality fruit can be produced as a result
of infected leaves falling off too early, which lowers crop yield the next year. Fruit
rot appears to affect all apple cultivars in the same way. On affected leaves, little
purple specks start to develop. These specks grow into spots that are about 1/8 and
1/4 inches in diameter. The spherical to irregularly lobed spots take on a frogeye
appearance due to their visibility with a light brown to the grayish core, one or
more circumferential rings made of dark brown, and a purple edge [80]. In Fig 4.10,
diseased leaf infected with Block Rot is shown.
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Figure 4.10: Apple Black Rot Samples

Apple Cedar Apple Rust

Gymnosporangium juniperi-virginianae is a fungus pathogen that causes the com-
mon plant disease cedar-apple rust. In the United States, cedar-apple rust is a
frequent disease that affects apple farmers. On redcedar and juniper, cedar-apple
rust is normally a non-lethal disease, but the symptoms can be severe and destruc-
tive on apples. Many efficient management techniques are in place now to reduce
production losses from this disease, which has been researched since the early 1900s.
On apple and crabapple plants, small yellow dots that later turn orange and form
red rings around the edge are the first signs of a fungal infection. On these lesions
on the upper surface of the leaf, small, sporulating pustules that are orange or dark
in color appear. Aecia, or fungal fruiting bodies, start to develop as hairy, tube-like
growths on the underside of the leaf a short time later.[81] Example of such condition
is shown in Fig 4.11.

Figure 4.11: Apple Cedar Apple Rust Samples

Apple Healthy

A healthy apple leaf should be a dark green color and have a glossy appearance. The
leaf should be free of spots, holes, or discoloration, and should be firmly attached
to the tree. Additionally, the leaf should be a consistent shape and size and have
smooth edges. If the leaf is wilted, yellowing, or appears to be diseased in any
way, it may indicate that the tree is not healthy and may require attention from a
professional. Fig 4.12 shows how healthy apple leaf might look like.
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Figure 4.12: Apple Healthy Samples

4.4.2 Blueberry

In the Figure 4.13 we can see the image distribution of blueberry healthy and dis-
eased leaf on Training, Validation and Testing set.

Figure 4.13: Distribution of blueberry leaves

Blueberry Healthy

Dark green in hue and glossy are characteristics of a healthy blueberry leaf. The
leaf’s edges should be smooth and not brittle, and it should be devoid of any blem-
ishes or discoloration. The leaf should be strong and difficult to tear or damage. The
blueberry leaves will remain healthy if they receive the proper care, which includes
enough water, sunlight, and nutrients. Additionally, regular insect and disease in-
spections can aid in avoiding any problems that might damage the leaves. In general,
a strong blueberry leaf indicates that the plant is flourishing and receiving proper
care as shown in Fig 4.14.

4.4.3 Cherry

In the Figure 4.15 we can see the image distribution of cherry healthy and diseased
leaf on Training, Validation and Testing set.
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Figure 4.14: Blueberry healthy Samples

Figure 4.15: Distribution of cherry leaves

Cherry Healthy

A healthy cherry leaf should be a vibrant green color, with a smooth and glossy tex-
ture. The leaf should be firm to the touch and have an evenly shaped, symmetrical
appearance. The edges of the leaf should be smooth, without any frayed or jagged
edges. The leaf stem, or petiole, should be a green or reddish-green color and be
firmly attached to the leaf, with no signs of wilting or discoloration. In general, a
healthy cherry leaf should be free from any visible signs of disease or damage, such
as spots, discolorations, or holes. Additionally, a healthy cherry tree should have
a good amount of leaves for photosynthesis and a consistent leaf growth. It’s also
worth noting that during the spring cherry leaves can appear smaller and are hairier
than leaves that grow during summer.

Cherry Powdery Mildew

Podosphaera clandestina is an obligatory biotrophic fungus that causes powdery
mildew on cherries. Commonly, mid and late-season sweet cherry varieties are im-
pacted, rendering them unmarketable due to a surface layer of white fungal growth.
On young, vulnerable leaves, the first symptoms are typically light, approximately
circular, powdery-looking patches that appear 7 to 10 days after the start of the
first irrigation. Older leaves are inherently more resistant to infection than younger
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Figure 4.16: Cherry Healthy Samples

leaves and naturally resist powdery mildew with age.[82]

Figure 4.17: Cherry Powdery Mildew Samples

4.4.4 Corn

In the Figure 4.18 we can see the image distribution of corn healthy and diseased
leaf on Training, Validation and Testing set.

Corn Cercospora leaf Spot Gray Leaf Spot

Practically every growing season, the fungus Cercospora zeae-maydis, which causes
gray leaf spots, manifests itself. Economic losses could happen if the development
of a disease is encouraged. About two to three weeks prior to tasselling, lower leaves
first show signs of the condition. The leaf lesions are rectangular, long, narrow, and
light tan in color. The lesions may eventually turn gray. The leaf veins typically
serve as their boundaries, although they can clump together and kill whole leaves.
The disease is frequently more severe in corn planted after corn because the fungus
persists in corn residue. Wind and splashing water can spread spores. Warm,
humid conditions are more conducive to disease growth and infection of corn leaves.
Environmental factors and hybrid susceptibility affect disease severity.[84] Fig 4.19
shows corn leaves with such conditions.
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Figure 4.18: Distribution of corn leave

Figure 4.19: Corn Cercospora leaf spot Gray Leaf Spot Samples

Corn Common Rust

Mid to late summer is a common time for common rust to appear in the northern
United States. Rarely does it get to the point where commercial hybrids lose yield.
The worst times are when there are extended periods of chilly, rainy weather. When
rust illnesses manifest as brown pustules, they are typically simple to spot. On both
leaf surfaces, common rust causes elongated, rust-colored to dark-brown pustules.
Rust spores with a cinnamon-brown hue are seen in the pustules. Pustules become
darker with time. Sheaths and leaves can both contract an infection. Chlorosis and
even the death of leaves can happen under extreme circumstances.[83] In fig 4.20,
corn leaves suffering from common rust is shown.

Corn Healthy

A healthy corn leaf should have several key features. Firstly, it should be a vibrant
green color, with a smooth and glossy surface. The leaf should be firmly attached to
the stem and be of an appropriate size and shape for the corn plant. The leaf should
be free from any signs of disease or pest damage, such as yellowing, wilting, spotting,
or holes. Secondly, the leaf should have well-defined veins that are the same color
as the leaf blade. Thirdly, the leaf should not have any mechanical damage or other
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Figure 4.20: Corn Common Rust Samples

signs of injury, such as tears or frayed edges. Lastly, the leaf should be free from
any signs of fungal or bacterial infections, such as powdery mildew or leaf spot. The
leaves of the corn plant are important for photosynthesis, which helps the plant to
convert light energy into chemical energy, this process is essential for the growth and
development of the corn plant. A healthy leaf will help ensure the proper growth
and development of the corn, leading to a bountiful harvest. Fig 4.21 illustrates how
they might look like.

Figure 4.21: Corn Healthy Samples

Corn Northern Leaf Blight

Canoe-shaped lesions between an inch and six inches long are typical signs of north-
ern maize leaf blight. The margins of the lesions are initially gray-green. They
gradually turn tan and may have black fungal sporulation spots on them. When
different corn hybrids react with different resistance genes, the length or extent of le-
sions can vary. Upper leaves then become affected by lesions that start on the lower
leaves. When symptoms are severe, they can spread quickly and cause blighted
leaves. The disease is more common when there are lengthy periods of mild tem-
peratures and dampness. The disease often manifests at or after silking, but when
infection develops sooner, the condition is typically more severe.[91] Fig 4.22 shows
what they might look like.
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Figure 4.22: Corn Northern Leaf Blight Samples

4.4.5 Grape

In the Fig 4.23 we can see the image distribution of healthy and each diseased leaf
on Training, Validation and Testing set.

Figure 4.23: Distribution of grape leaves

Grape Black Rot

One of the most harmful grape diseases currently recognized is black rot. The
fungus Guignardia bidwellii is responsible for the illness. The fungus can affect grape
cluster stems, leaves, shoots, berries, tendrils, and rachises. Warm, humid weather
is favorable for the development of disease. Black rot symptoms initially manifest
as little yellow patches on leaves. Larger patches feature tan to dark brown cores
and a border that is dark brownish-red. As shown in Fig 4.24, tiny black dots start
to emerge in the lesion as the infection spreads; these dots are typically arranged in
rings close to the lesion’s edge. These specks are fungus formations, which are filled
with spores that can infect new tissue and number in the thousands.[87]

Grape Esca (Black Measles)

Many various diseases affect grape producers, including ”trunk illnesses,” which
typically result in the unexpected death of grapevines. There are a number of
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Figure 4.24: Grape Black Rot Samples

known grapevine trunk diseases, but recently, esca appears to be the most destruc-
tive. Phaeoacremonium aleophilum, Phaeomoniella chlamydospora, and Fomitiporia
mediterranea are only a few of the fungi that produce esca.On mature grapevines in
vineyards that are 5 to 7 or even 20 years old, esca symptoms become visible. Dark
red or yellow bands on leaves, which gradually dry out and turn necrotic, are the
first signs of esca.[85] Fig 4.25 shows few grape leaves with such condition.

Figure 4.25: Grape Esca (Black Measles) Samples

Grape Healthy

As shown in Fig 4.26, a healthy grape leaf should be glossy and shiny with a bright
green color. The leaf should be firmly fastened to the stem and fit the grape variety
in terms of size and shape. In addition, the leaf should not exhibit any disease or
pest damage symptoms, such as yellowing, wilting, spotting, or holes. A healthy
grape leaf should also have clearly visible veins that match the color of the leaf
blade.

Grape Leaf Blight (Isariopsis Leaf Spot)

Grapevine bacterial blight is a dangerous, persistent, and systemic disease that dam-
ages commercially significant cultivars. The bacterium Xylophilus ampelinus, which
persists in the vascular tissues of infected plants, is the cause of it. A considerable
decline in the health of the grapevine and significant harvest losses can result from
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Figure 4.26: Grape Healthy Samples

severe infection of vulnerable varieties. Linear reddish-brown lines that start on
the shoot and spread upward, darken, crack, and eventually turn into cankers are
the main symptoms. Following this, the shoots begin to wilt, droop, and dry out.
Young shoots may also start to acquire light yellowish-green patches on their lowest
internodes. On very young shoots, discoloration is less frequent, but the entire shoot
withers. Tissue browning is visible in the stem cross-section.[75] Few samples of the
discussed condition is shown in Fig 4.27.

Figure 4.27: Grape Leaf Blight (Isariopsis Leaf Spot) Samples

4.4.6 Orange

Fig 4.28 illustrates the image distribution of healthy and each diseased leaf on Train-
ing, Validation and Testing set.

Orange Huanglongbing (Citrus greening)

The worst orange disease, Huanglongbing, known famously as citrus greening, is
currently destroying the global citrus industry. The health of the trees along with
the fruit growth, ripening, as well as quality of the juice of citrus fruits are all im-
pacted by the suspected causative bacterial pathogen Candidatus Liberibacter spp.
It has been suggested that a significant buildup of starch in the upper portions of
symptomatic trees is additionally brought on by reduced degradation and compro-
mised transport, this results in a poorly distributed distribution of photoassimilates
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Figure 4.28: Distribution of orange leaves

among mature citrus leaves, roots, and young leaves. Accumulation of starch in
leaves has also been correlated with reduced deterioration and poor transport. The
sugar content of fruit would be impacted by this imbalance in sugar transport and
accumulation. Because the starch does not break down even during the night cycles,
it persists permanently in the aerial plant parts, starving the roots and causing severe
health deterioration and eventual death of trees.[46] Some examples of annotated
samples are exhibited in Fig. 4.29.

Figure 4.29: Orange Huanglongbing (Citrus Greening) Samples

4.4.7 Peach

In the Fig. 4.30, we can see the image distribution of healthy and each diseased leaf
on Training, Validation and Testing set.

Peach Bacterial Spot

On older peach trees and nectarines, bacterial leaf spot of peach is a prevalent
disease. The bacteria Xanthomonas campestris pv. pruni is the root cause of this
peach tree leaf spot disease. Bacterial spots on peach trees induce fruit loss and
general tree malaise due to recurring defoliation. The jagged purple to purple brown
patches on foliage that are a hallmark of peach tree leaf spot are followed by the
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Figure 4.30: Distribution of peach leaves

core of the lesion dropping out, which results in a “shot hole” type look into the
appearance of the leaves. The leaves quickly turn yellow and fall [77]. Fig. 4.31
shows what it might look like.

Figure 4.31: Peach Bacterial Spot Samples

Peach Healthy

A healthy peach leaf should have several key features. Firstly, it should be a vibrant
green color, with a smooth and glossy surface. The leaf should be firmly attached to
the stem and be of an appropriate size and shape for the peach tree. The leaf should
be free from any signs of disease or pest damage, such as yellowing, wilting, spotting,
or holes. Secondly, the leaf should have well-defined veins that are the same color
as the leaf blade. Thirdly, the leaf should not have any mechanical damage or other
signs of injury, such as tears or frayed edges. Lastly, the leaf should be free from any
signs of fungal or bacterial infections, such as powdery mildew or leaf spot. Having
all these features indicate the tree is in good health and able to photosynthesize
well, which helps to support the growth and development of the peach tree. Fig.
4.32 illustrates few healthy peach leaf samples.
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Figure 4.32: Peach Healthy Samples

4.4.8 Pepper

In the Fig. 4.33, we can see the image distribution of healthy and each diseased leaf
on Training, Validation and Testing set.

Figure 4.33: Distribution of pepper leaves

Pepper Bell Bacterial Spot

The most prevalent and harmful disease affecting peppers is bacterial leaf spot,
which is brought on by Xanthomonas campestris pv. vesicatoria. Leaf spot, fruit
spot, and stem canker are just a few of the signs that can show up on the plant’s
surface. Early symptoms, on the other hand, manifest as water-soaked lesions on
leaves that can swiftly turn from green to dark brown and grow into patches that are
up to 1/4 inch diameter with mildly higher borders. These patches may eventually
become dry in less humid conditions, allowing the affected tissues to fall off and
giving the affected leaves a tattered appearance.[86] Few samples of the discussed
condition is shown in Fig. 4.34.

Pepper Bell Healthy

A healthy bell pepper leaf should have several key features. Firstly, it should be a
vibrant green color, with a smooth and glossy surface. The leaf should be firmly
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Figure 4.34: Pepper Bell Bacterial Spot Samples

attached to the stem and be of an appropriate size and shape for the bell pepper
plant. The leaf should be free from any signs of disease or pest damage, such as
yellowing, wilting, spotting, or holes. Secondly, the leaf should have well-defined
veins that are the same color as the leaf blade. Thirdly, the leaf should not have any
mechanical damage or other signs of injury, such as tears or frayed edges. Lastly, the
leaf should be free from any signs of fungal or bacterial infections, such as powdery
mildew or leaf spot. Bell pepper leafs are essential for photosynthesis process, this
process is what the plant uses to produce chemical energy from light energy to
support its growth and development; a healthy leaf will help ensure the proper
growth of the plant and an abundant harvest of bell peppers. Fig. 4.35 shows what
healthy bell pepper leaves should look like.

Figure 4.35: Pepper Bell Healthy Samples

4.4.9 Potato

In the Fig. 4.36. we can see the image distribution of healthy and each diseased leaf
on Training, Validation and Testing set.

Potato Early Blight

According to J E van de Waals et al [1] early blight of potato is prevalent in the
majority of potato-growing countries. Alternaria solani is responsible for causing
the sickness. Typically, the condition may be identified when tiny, uneven, dark
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Figure 4.36: Distribution of potato leaves

brown patches appear. However, these spots might expand and cause the entire leaf
to yellow. Due to the fact that temperature fluctuations, moisture, and radiation are
the primary causes of this illness, it is uncommon in greenhouse-inoculated plants.
Few samples of the discussed condition is shown in Fig. 4.37.

Figure 4.37: Potato Early Blight Samples

Potato Healthy

Potato leaves with a smooth texture and a bright green color are in good health.
They should not show any signs of yellowing, wilting, or holes, and they should
be firmly attached to the stem. Additionally, the leaves have to be devoid of any
blemishes or discolorations that can represent the presence of a disease or pests.
A healthy potato plant will have uniformly sized and shaped leaves that show no
symptoms of curling or clawing. Additionally, the leaves will be slightly bent, which
indicates that the plant is receiving the proper quantity of water and sunlight. It is
also crucial to remember that a mature potato plant’s leaves will begin to yellow and
fall off naturally as the plant ages. Fig.4.38 shows some sample of healthy potato
leaves.
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Figure 4.38: Potato Healthy Samples

Potato Late Blight

The main agent that is the cause for potato late blight is known as Phytophthora
infestans. This disease is one of the biggest threats in potato production. To identify
the disease, we should inspect the lower leaves’ tips or edges, it will appear as water-
soaked spots. This is the place where we find the spots because tips and edges of
lower leaves usually tend to collect dews. So, from this we can conclude that on wet
condition or weather this disease progresses rapidly and. However when the weather
is warm or dry it does not stop but the progress slows marginally.[5] Few samples
of the discussed condition is shown in Fig. 4.39.

Figure 4.39: Potato Late Blight Samples

4.4.10 Raspberry

In the Fig. 4.40, we can see the image distribution of healthy and each diseased leaf
on Training, Validation and Testing set.

Raspberry Healthy

A healthy raspberry leaf should have several key features. Firstly, it should be a
vibrant green color, with a smooth and glossy surface. The leaf should be firmly
attached to the stem and be of an appropriate size and shape for the raspberry plant.
The leaf should be free from any signs of disease or pest damage, such as yellowing,
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Figure 4.40: Distribution of raspberry leaves

wilting, spotting, or holes. Secondly, the leaf should have well-defined veins that are
the same color as the leaf blade. Thirdly, the leaf should not have any mechanical
damage or other signs of injury, such as tears or frayed edges. Lastly, the leaf should
be free from any signs of fungal or bacterial infections, such as powdery mildew or
leaf spot. Raspberry leaves are important for photosynthesis, which happens when
light energy in plants is converted to chemical energy, which is crucial for the growth
and development of the raspberry bush. A healthy leaf will help ensure the proper
growth of the bush, leading to a bountiful harvest of raspberries. Few sample of
healthy raspberry is shown in Fig. 4.41.

Figure 4.41: Raspberry Healthy Samples

4.4.11 Soybean

In the Fig. 4.42, we can see the image distribution of healthy and each diseased leaf
on Training, Validation and Testing set.

Soybean Healthy

A vibrant green soybean leaf with a glossy, smooth texture is indicative of health.
The leaf should have a symmetrical shape, be firmly attached to the stem, and
show no evident symptoms of injury or disease. Typically, soybean leaves are large
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Figure 4.42: Distribution of soybean leaves

and trifoliate, which means they contain three leaflets. The leaves of a healthy
soybean plant should be uniform in size and shape, spaced equally along the stem.
For soybean leaves to stay healthy, they need a balanced diet, enough water, and
sunlight. To avoid harming the leaves and the overall health of the plant, pests
and illnesses should be watched for and treated as needed. Some sample of healthy
soybean leaves is shown in Fig. 4.43.

Figure 4.43: Soybean Healthy Samples

4.4.12 Squash

In the Fig. 4.44, we can see the image distribution of healthy and each diseased leaf
on Training, Validation and Testing set.

Squah Powdery Mildew

One of the most prevalent illnesses affecting squash is squash powdery mildew. It
often results from a number of distinct fungal species. This fungus exclusively grows
on the exterior of the leaves, not in the internal tissue, which is an intriguing detail
about it. We may thus conclude that it can only grow on the leaf’s surface. Because
it is one of the most prevalent diseases affecting plant leaves, it is quite simple to
recognize. The leaf appears to be covered with talcum powder. Generally, the hue
ranges from white to gray. Because the powder dust may move from one leaf to
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Figure 4.44: Distribution of squash leaves

another during strong winds, we can claim that this illness is particularly infectious.
If left untreated, the powdery mildew will eventually change into small, tiny, round
rings that become brown before dying and turning black. When it’s warm and
dry outside, this illness is particularly prevalent. This illness can occasionally be
mistaken for organic leaf markings.[65] Few samples of the discussed condition is
shown in Fig. 4.45.

Figure 4.45: Squash Powdery Mildew Samples

4.4.13 Strawberry

Fig. 4.46 illustrates the image distribution of healthy and each diseased leaf on
Training, Validation and Testing set.

Strawberry Healthy

As shown in Fig. 4.47, healthy strawberry leaves are typically a dark green color
and have a glossy appearance. They should be firmly attached to the plant and have
no signs of yellowing, wilting, or holes. The leaves should also be free of any spots
or discoloration, which can indicate the presence of disease or pests. A well-grown
strawberry plant will have leaves that are uniform in size and shape, with no signs
of curling or clawing. Strawberry leaves can also have some slight curving, which
is a sign that the plant is getting enough sunlight and the right amount of water.
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Figure 4.46: Distribution of strawberry leaves

However, in some varieties of strawberry leaves can be slightly hairy and might not
be as glossy. It is also important to note that strawberry plant have leaves that are
slightly different from the ground leaves, they are called Rosette leaves. They are
usually smaller and more circular than the mature leaves, but they should also be
free of any signs of disease or damage.

Figure 4.47: Strawberry Healthy Samples

Strawberry Leaf Scorch

It is another fungal infection which affects the foliage of strawberry plantings. The
agent that is responsible for this disease is known as Diplocarpon earliana. The
first sign of this disease is basically emergence of tiny, purple lesions on the foliage’s
underside [93]. Few samples of the discussed condition is shown in Fig. 4.48.

4.4.14 Tomato

In the Fig. 4.49, we can see the image distribution of healthy and each diseased leaf
on Training, Validation and Testing set.
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Figure 4.48: Strawberry Leaf Scorch Samples

Figure 4.49: Distribution of tomato leaves

Tomato Bacterial Spot

This is one of the most prevalent tomato leaf diseases. This illness first seems quite
similar to other tomato diseases. The illness can be identified by brown, round
patches encircled by a yellow halo. In addition, there are gaps in the heart of the
leaves, and the spots lack concentric rings. Occasionally, similar evidence can also
be observed on the steam.[78] Few samples of the discussed condition is shown in
Fig. 4.50.

Figure 4.50: Tomato Bacterial Spot Samples
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Tomato Early Blight

It is another frequent symptom similar to tomato bacterial spot. Alternaria solani
is the principal causal agent of this illness. It is very infectious since it affects all
sections of tomato plants, including leaf, stem, and fruit. This does not result in
death, although productivity will be diminished. Typically, older plants are damaged
by this disease. This disease may be caused by the soil or the seeds. However, it
is a relatively frequent wintertime sickness. This condition might be mistaken for
Septoria leaf spot. This disease causes leaf patches that eventually turn yellow
and die. On elder plants, black patches with concentric rings may form, and the
surrounding foliage may also turn yellow [88]. Few samples of the discussed condition
is shown in Fig. 4.51.

Figure 4.51: Tomato Early Blight Samples

Tomato Healthy

As shown in Fig. 4.52, healthy tomato leaves must have a vibrant green color and
have a smooth texture. They should be firmly attached to the stem and have no
signs of yellowing, wilting, or holes. The leaves should also be free of any spots or
discoloration, which can indicate the presence of disease or pests. Tomato leaves are
also a good source of nutrients for the plant and play a vital role in photosynthesis,
how the plant transforms solar energy into chemical energy. A well grown tomato
plant should also have uniform leaves size, no curling or clawing, and some slight
curving on the leaves. This is a good indication that the plant is getting enough
sunlight and the right amount of water.

Figure 4.52: Tomato Healthy Samples
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Tomato Late Blight

On areas saturated with water, this fungus initially appears small but quickly en-
larges into purple-brown, oily-looking blotches. On the underside of the leaves, white
mycelium and spore-forming structures may surround the spots. This can result in
death, and it can spread to young leaves [89]. Few samples of the discussed condition
is shown in Fig. 4.53.

Figure 4.53: Tomato Late Blight Samples

Tomato Leaf Mold

This illness is mostly caused by the pathogen Passalora fulva. This occurs frequently
in humid environments, notably in plastic greenhouses. Some signs include pale
green to yellowish spots on the leaf’s top surface, which gradually turn brilliant
yellow. This dispersed patches then converge. This can result in the plant’s demise
[95]. Few samples of the discussed condition is shown in Fig. 4.54.

Figure 4.54: Tomato Leaf Mold Samples

Tomato Septoria Leaf Spot

This is another sickness caused by the fungus Septoria lycopersici. It is regarded
as one of the most damaging tomato diseases. The illness becomes more severe in
moist, humid environments. Lower leaves should be studied to diagnose the illness.
Upon investigation, we may observe round spots with dark brown edges, tan to gray
centers, and little black fruiting structures. This dots will nearly cover the entire
leaf [92]. Few samples of the discussed condition is shown in Fig. 4.55.
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Figure 4.55: Tomato Septoria Leaf Spot Samples

Tomato Spider Mites

This is also sometimes known as Two-spotted spider mite. In the summer, this
condition is prevalent. This is mostly due to heat, drought, water stress, and an
abundance of weeds. To identify this sickness, we must search for a pair of black
dots that are visible through the orange body often present under the skin; this
is one of the reasons why freshly formed individuals may lack the spots [6]. Few
samples of the discussed condition is shown in Fig. 4.56.

Figure 4.56: Tomato Spider Mites Samples

Tomato Target Spot

Compared to other tomato diseases, identifying the illness at an early stage is a bit
more challenging. This disease begins on the elder leaves, then begins to spread
upwards. The initial sign of this condition may be irregularly shaped patches with
yellow margins that may grow to a diameter of 10 mm. This illness will eventually
cause the leaf to turn yellow and die. These dots are also visible on the leaves’
dewdrops. Additionally, this may cause tiny, light brown patches on the tomato
itself. This is especially frequent in wind- and rain-affected regions. Very rapidly,
plants will lose their leaves as the disease spreads [90]. Few samples of the discussed
condition is shown in Fig. 4.57.

Tomato Mosaic Virus

This disease can be found globally and on other plant species as well. This illness
is immediately distinguishable due to its rod-shaped nature. This comprises four

41



Figure 4.57: Tomato Target Spot Samples

distinct proteins that play a significant role in the replication and spread of the
illness [100]. At a very early stage, they may seem yellow and generally stunted.
The leaves may occasionally twist, deform, or diminish in size. This disease may
accelerate fruit ripening, resulting in a decrease in tomato yield. This illness is
prevalent in high-temperature regions [96]. Few samples of the discussed condition
is shown in Fig. 4.58.

Figure 4.58: Tomato Mosaic Virus Samples

Tomato Yellow Leaf Curl Virus

This condition is commonly referred to as TYLC, and it is extremely rare. It is also
one of the most destructive tomato pathogens. This illness occasionally affects the
plant’s growth. The leaves of infected plants develop little upward curls, as well as
prominent crumpling, interveinal yellowing, and marginal yellowing. Typically, the
leaves have a bushy appearance, similar to ’bonsai’ or ’broccoli’ [97]. Few samples
of the discussed condition is shown in Fig. 4.59.
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Figure 4.59: Tomato Yellow Leaf Curl Virus Samples
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Chapter 5

Methodology

Figure 5.1: Illustration of our Proposed CNN Architecture

Figure 5.2: Picture of different leaves in Different states

In this part of the article, we will provide our idea for the design of a CNN that
is capable of predicting plant leaf disease from a given image. To begin with, we
create a variation of the conventional CNN architecture by modifying a number of
important parameters and functions.
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5.1 Convolutional Neural Network(CNN)

Convolution Neural Networks (CNN) are artificial neural networks created solely for
the purpose of doing vector input analysis. CNNs are utilized in image processing
as well as image recognition.

Neural networks are a special kind of computer architecture that emulates the way
the brain’s neurons communicate with one another. As image processing requires a
more specialized neural network than the conventional ones, the input images have
to be of a low resolution in order for them to function well. A CNN’s ”neurons”
are more comparable to those found in the frontal lobe of the brain, which is the
region of the brain in different animals as well as human beings that is accountable
for visual input processing. Given that the neural layers are organized to cover the
whole visual field, the problem of incomplete image processing, which is experienced
by normal neural networks, has been eliminated.

A CNN makes use of a method that is analogous to a multilayer perceptron and is
geared toward obtaining a better processing rate. It is composed of several pool-
ing, convolutional, fully connected (FC/Dense), dropout, and normalizing layers, in
addition to an input, output, and a hidden layer.

5.2 Proposed Methodology

We are aiming to reduce the size of our model as much as possible while preserving
its accuracy by employing the minimum number of parameters possible. In addi-
tion, maintaining reasonable values for the parameters is another way to help slow
down the computation. First, by utilizing the dataset, our CNN model creates an
image of a leaf that has a resolution of 256 × 256 pixels and three separate chan-
nels. Right now, let’s decrease the resolution so that it’s only 100 × 100 pixels.
In our model, there are a total of six Conv2D layers utilized and the kernel size of
each was maintained at 3 by 3. Now, in order to stop the model from becoming
overfit, we are going to apply a dropout layer that has a dropout rate of 35%. After
applying the Flatten layer, the Dropout layer was the next one we used. On the
other hand, we use a pooling layer of size 2 x 2 to reduce the computational power
of our model. This layer is known as MaxPooling 2D layers. This layer contributes
to a reduction in the amount of computing that is required for the subsequent levels.

We used RELU activations in all the layers except the last output layer because it is
better compared to Tanh or Sigmoid functions. The activation function RELU helps
us to speed up the stochastic gradient descent (SGD), which is missing in other ac-
tivation functions. Then, we use a Flatten Layer to create a one-dimensional array,
followed by our Dropout Layer as described above. The CNN model’s fully con-
nected layer is then used, starting with 512, 256, 128 and 64 nodes. Previously, as
we said we use the RELU function on every layer except the last output layer. Here
we use SoftMax activation for the last output layer. At the end because Softmax is
used, in this last layer, we want to classify our nodes according to various classes, in
this instance 38 different classes. A generalized binary variation of logistic regression
is the softmax classifier. The enhanced hyper-parameters were used in the model’s
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Figure 5.3: Feature Map
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construction.

We utilized the Adam optimizer in order to achieve our goal of maximizing produc-
tion efficiency while maintaining an initial learning rate of 0.002. In addition to this,
we made use of the ReduceLROnPlateau technique, which modifies our learning rate
whenever there is a local loss minima present. Every time a more efficient loss was
found, we made sure to save our model as well. We continued to keep the batch size
at 32, and we ran our model for a total of 90 epochs.

Feature Map is shown at figure 5.3.

In addition to using LIME as our Explainable AI model, we additionally utilized
LIME. Just after the prediction made by our CNN model has been finished, the
image will be forwarded to LIME, where it will explain why our proposed model
assigned this image to a given class.

Due to the fact that LIME is model-independent, it can be combined with any ma-
chine learning or deep learning model. LIME helps us to understand how the model
works and makes predictions on the basis of what features from the image have been
extracted. It actually changes the input image slightly and observes how that affects
the previous prediction. It is possible for it to faithfully explain the predictions of
any classifier or regressor when it has been localized with an interpretable model.
In its most basic form, LIME investigates the connection that exists between input
and output, as portrayed by the model, by postulating the existence of a machine
learning black box model between the two. We used 10000 samples which means the
image will be altered 10000 times, and each prediction will be observed. We have
discussed how LIME helps us to understand the reason for categorizing the leaf to
a certain class.

Figure 5.4: Image 1 Figure 5.5: Image 2 Figure 5.6: Image 3

Here Figure 5.4 is the picture that our model believes best conveys the appearance
of Apple Black Rot. Now, we send this image together with the model to LIME,
and it analyzes both of them. Then, it informs us what part of the image caused our
CNN to arrive at the conclusion that this particular image portrays Apple Black Rot.

When Figure 5.4 and Figure 5.5 are examined side by side, it is obvious to observe
that the vast majority of the pixelated gray zone has been filtered out of the image.
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Figure 5.7: Image 4 Figure 5.8: Image 5 Figure 5.9: Image 6

This is mostly as a result of the fact that our CNN model has arrived at the con-
clusion that the excluded area is not a part of the prediction that we are utilizing
to detect diseases, and this has been confirmed by LIME.

Figure 5.6 is a subset of Figure 5.4 and Figure 5.5 that highlights the regions covered
by the CNN prediction model while disregarding all other external factors when de-
cisions are made based on the original image.

Figure 5.7 is the result of running LIME, which illustrates different aspects of the
CNN model’s prediction by making use of a variety of color codes. In this instance,
areas that are colored red indicate that they were not helpful when it came to for-
mulating predictions. On the other hand, the green parts suggest that these areas
have been used for the purpose of prediction and decision-making.

Figure 5.8 is a composite of Images 1 and 4, highlighting the segment of the image
from which the vast majority of the information is obtained. Figure 5.8 is shown
above. The areas that are colored light green denote those from which the most
quantity of data was acquired for the prediction, whilst the remaining section red
color denotes those from which very little or no data was collected.

Figure 5.9 shows a heatmap highlighting the leaf regions in a chart-like format. Here,
from the majority of the information part in Figure 5.8, we classify the data as either
valid or invalid. The blue part shows legitimate data that was considered for the
given prediction, whereas the red section indicates data ignored by our proposed
CNN model.

5.3 Vision Transformer

Vision Transformers or ViT, according to the authors of [53], requires a significant
quantity of data. Therefore, they recommended that the model be trained on a big
dataset and then fine-tuned on a medium-sized dataset. If this is adhered to, then
the model can outperform the most advanced Convolutional Neural Network models.

However, our dataset is far smaller than the one required for Vision Transformers.
In lieu of this, we will train our ViT model on a minimal data set. According to the
authors of [64], two strategies, Shifted Patch Tokenization and Locality Self Atten-
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Table 5.1: Layers with Output Shape and Parameters for proposed model

Layers Output Shape Parameters
2D Convolutional Layer (None, 100, 100, 64) 1792
Batch Normalization (None, 100, 100, 64) 256
2D Max Pooling (None, 50, 50, 64) 0
2D Convolutional Layer (None, 50, 50, 96) 55392
Batch Normalization (None, 50, 50, 96) 384
2D Max Pooling (None, 25, 25, 96) 0
2D Convolutional Layer (None, 25, 25, 128) 110720
Batch Normalization (None, 25, 25, 128) 512
2D Max Pooling (None, 12, 12, 128) 0
2D Convolutional Layer (None, 12, 12, 256) 295168
Batch Normalization (None, 12, 12, 256) 1024
2D Max Pooling (None, 6, 6, 256) 0
2D Convolutional Layer (None, 6, 6, 384) 885120
Batch Normalization (None, 6, 6, 384) 1536
2D Convolutional Layer (None, 6, 6, 512) 1769984
Batch Normalization (None, 6, 6, 512) 2048
2D Max Pooling (None, 3, 3, 512) 0
Flatten (None, 4608) 0
Dropout (None, 4608) 0
Dense (None, 512) 2359808
Batch Normalization (None, 512) 2048
Dense (None, 256) 131328
Batch Normalization (None, 256) 1024
Dense (None, 128) 32896
Batch Normalization (None, 128) 512
Dense (None, 64) 8256
Batch Normalization (None, 64) 256
Dense (None, 38) 2470

Total parameters: 5,662,534
Trainable parameters: 5,657,734
Non-trainable parameters: 4,800
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tion, can be used to accomplish this.

Figure 5.10: Shifted Patch Tokenization

In Moved Patch Tokenization, a picture is first captured and then shifted diagonally,
as seen in Fig. 5.12. Then, we concatenate the original picture with images with
diagonal shifts. Then, we extract the concatenated image patches. The patches are
then flattened into three-dimensional space. The image is then subjected to Layer
Normalization before being projected. Figure 5.10 provides a graphic illustration of
this Patch Tokenization method.

Figure 5.11: Locality Self Attention

Locality Self Attention is another strategy that accepts a query, key, and value from
the same input. The last step is to use dot product to examine the similarity be-
tween our query and the key. This dot product will produce big self-token relations
rather than inter-token interactions. Before using the softmax function, we scale our
dot product of query and key by the square root of the key’s dimension to minimize
the possibility of an excessively tiny gradient. After scaling the dot product, the
softmax function is used. In addition, this softmax may provide a greater likelihood
of self-token links than inter-token interactions. To mitigate this issue, the authors
of [98] propose a masking approach in which the diagonal of our dot product is
concealed. The value is modified using the attention weights as the final step. This
operating concept is illustrated in Figure 5.11.

The Formula for the whole Locality self technique is,
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Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (5.1)

Figure 5.12: Patch Tokenization

Figure 5.13: ViT Accuracy Curve Figure 5.14: ViT Loss Curve

5.4 Compact Convolutional Transformers

CCT, also called Compact Convolutional Transformer, is a strategy for training
transformers with little data suggested in a study [63].

This approach is identical to Tokenization in ViT. Here, stochastic depth is employed
for regularization; it is similar to a Dropout layer, but instead of turning off a single
node, the entire block of nodes in a layer is disabled. Utilized mostly before the
residual blocks of a Transformer Encoder. First the input passes Convolutional To-
kenization before it reaches the transformer. There are convolutional layer, pooling
layer and reshape. After passing through the convolutional tokenization it enters the
Transformer with Sequence Pooling. We have applied the same data augmentation
strategies as previous models. We have integrated attention pooling, also known as

51



sequence pooling, in our CCT model. In ViT, just the feature maps matching to
the tokens are used for categorization. In CCT, however, the Transformer Encoder
output is weighted before transmission to the classification layer. Fig 5.15 shows
the working principle of Compact Convolutional Transformers.

Figure 5.15: CCT Architecture

Figure 5.16: CCT Accrucacy Curve Figure 5.17: CCT Loss Curve

5.5 ConvMixer

Similarly to previous models, we have employed the same data augmentation ap-
proaches here. This is quite similar to MLP-mixer, but utilizes conventional convo-
lution layers instead of completely coupled layers. In addition, BatchNormalization
is used instead of LayerNormalization. If spatial placement of pictures is desired,
Depthwise Convolution layers are utilized. In contrast, pointwise convolution is uti-
lized for channel-wise information mixing across patches. Figure 5.18 displays the
architecture of ConvMixer.

Figure 5.18: Architecture of ConvMixer
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Figure 5.19: ConvMixer Accuracy Figure 5.20: ConvMixer Loss
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Chapter 6

Pre-trained CNN Models

6.1 InceptionResNet V2

InceptionResNet V2 is a CNN architecture like the other pre-trained models dis-
cussed above. It is just an advanced form of the Inception family that we have
seen before [22]. However, there is an exception compared to the traditional Incep-
tion family which is, it contains residual connections instead of filter connections
as traditional inception family. It contains cheaper Inception blocks. We know
that reduction is induced by the inception blocks now to compensate the inception
blocks are followed by a filter-expansion layer which is just a 1 x 1 convolution layer
without any activation function. This helps to increase the dimensionality of the
filter. Another small difference between traditional Inception and InceptionResNet
is that the use of BatchNormalization can be seen on traditional layers but not on
summation layers. Here the residual connections are mainly used as a shortcut in
the model and which gives an opportunity to show better results compared to tradi-
tional Inception models. Figure 6.1 illustrates the architecture of InceptionResNet
V2.

Figure 6.1: Architecture of InceptionResNet V2

6.2 ResNet 50

This model is referred to in its full form as Residual Networks. This paradigm can
be implemented in a wide variety of various ways. ResnNet 50 establishes that it can
function with as many as 50 layers of neural networks. [17]This ResNet 50 model is
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Figure 6.2: Inception V2 Accuracy Figure 6.3: Inception V2 loss

Table 6.1: InceptionResNet V2 layers with output shape and parameters

Layer (type) Output Shape Parameters
input 1 (InputLayer) (None, 150, 150, 3) 0

block1 conv1 (Conv2D) (None, 150, 150, 64) 1792
block1 conv2 (Conv2D) (None, 150, 150, 64) 36928

block1 pool (MaxPooling2D) (None, 75, 75, 64) 0
block2 conv1 (Conv2D) (None, 75, 75, 128) 73856
block2 conv2 (Conv2D) (None, 75, 75, 128) 147584

block2 pool (MaxPooling2D) (None, 37, 37, 128) 0
block3 conv1 (Conv2D) (None, 37, 37, 256) 295168
block3 conv2 (Conv2D) (None, 37, 37, 256) 590080
block3 conv3 (Conv2D) (None, 37, 37, 256) 590080

block3 pool (MaxPooling2D) (None, 18, 18, 256) 0
block4 conv1 (Conv2D) (None, 18, 18, 512) 1180160
block4 conv2 (Conv2D) (None, 18, 18, 512) 2359808
block4 conv3 (Conv2D) (None, 18, 18, 512) 2359808

block4 pool (MaxPooling2D) (None, 9, 9, 512) 0
block5 conv1 (Conv2D) (None, 9, 9, 512) 2359808
block5 conv2 (Conv2D) (None, 9, 9, 512) 2359808
block5 conv3 (Conv2D) (None, 9, 9, 512) 2359808

block5 pool (MaxPooling2D) (None, 4, 4, 512) 0
Total params : 14,714,688

Trainable params : 0
Non-trainable params : 14,714,688

capable of providing a solution for the vanishing gradient problem.

Our initial convolutional layer is made up of 64 unique kernels, each measuring 7 x
7and having a stride of 2. Then, with a stride value of 2, we observe a MaxPooling
layer that is 3 x 3. After that, we have three 1 x 1 and three 3 x 3 instances of the
64 kernel, as well as three 1 x 1 instances of the 256 kernel. We are bringing the
total number of layers to 9 at this stage. Following that, we will get the opportunity
to view 1 x 1 and 3 x 3 with 128 kernels and 1 x 1 with 512 kernels for a total of 4
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times, bringing the total number of layers to 12. Following that, we will see 1 x 1
and 3 x 3 with a 256 kernel, as well as 1 x 1 with a 1024 kernel, which will result in
18 layers. Finally, in the very last convolutional layer, we get to witness 1 x 1 and 3
x 3 with 512 kernels, as well as 1 x 1 with 2048 kernels, bringing the total number
of layers to 9. With this final layout, we are able to see a total of 50 layers, which
is how the network was given the name ResNet 50. The final layer is the Average
pool, which is followed by the fully connected layer. The softmax function is used to
calculate the number of neurons in this layer based on the number of classes in our
dataset. Figure 6.4 illustrates the architecture of ResNet 50 and Table 6.1 shows
details of layers in ResNet 50.

Figure 6.4: Architecture of ResNet 50

Figure 6.5: ResNet 50 Accuracy Figure 6.6: ResNet 50 loss

6.3 Inception V3

[23]A major point of emphasis in Inception version 3 is to reduce the number of
computing resources needed to run the program by implementing various changes to
the earlier Inception architectures. In this part of the process, we did not make many
changes to the layers, but to accommodate for the number of classes in our dataset,
we did establish an output layer with 38 nodes. Factorized convolutions are useful for
keeping things in check on the efficiency of a network and lowering the computing
efficiency required to do so because it lowers the total parameter count involved.
Convolutions that are larger are being phased out in favor of convolutions that are
smaller, which will result in faster training. If we have a fully linked layer and a 3
x 3 convolution layer before that, then the weights of the 3 x 3 layer can be shared
among themselves, which results in a reduction in the amount of processing power
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Table 6.2: Layer Description of ResNet 50

Layers ResNet 50 Number of Layers
2D Convolutional Layer 7 x 7, 64, stride 2 1

2D Convolutional Layer

3 x 3 max pool, stride 2
[1 x 1, 64] x 3
[3 x 3, 64] x 3
[1 x 1, 256] x 3

9

2D Convolutional Layer
[1 x 1, 128] x 4
[3 x 3, 128] x 4
[1 x 1, 512] x 4

12

2D Convolutional Layer
[1 x 1, 256] x 6
[3 x 3, 256] x 6
[1 x 1, 1024] x 6

18

2D Convolutional Layer
[1 x 1, 512] x 3
[3 x 3, 512] x 3
[1 x 1, 2048] x 3

9

Average Pool, 38 1

required. Instead of using a 3x3 convolutional layer, the asymmetric convolutions
method uses a 1x3 convolutional layer, succeeded by a 3x1 convolutional layer. This
is done in an effort to reduce the total parameter count required for the algorithm.
In addition, during the training process, minor CNN layers are created in between
the layers, and the loss from these layers is added to the loss from the main network.
In conclusion, the help of the pooling layers is taken in order to reduce grid size.
Figure 6.7 shows the architecture of Inception V3.

Figure 6.7: Architecture of Inception V3

6.4 VGG 16

[9]Simonyan et al. (2014) suggested the VGG16 CNN model. VGG16 obtained a
testing accuracy of 92.7% on ImageNet, a dataset that is comprised of around 14
million images which are then further categorized into a thousand classes. Thirteen
convolutional layers are comprised in this model; the model starts with an input
layer followed by three convolutional layers and 2D max-pooling that were trained
over several weeks on NVIDIA Titan Black GPUs. There are 16 layers and their
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Figure 6.8: Inception V3 Accuracy Figure 6.9: Inception V3 loss

Table 6.3: Layer Description of Inception V3

Type Kernel Size/stride Input size
Convolution 3 x 3/2 299 x 299 x 3
Convolution 3 x 3/1 149 x 149 x 32
Convolution 3 x 3/1 147 x 147 x 32
Pooling 3 x 3/2 147 x 147 x 64

Convolution 3 x 3/1 73 x 73 x 64
Convolution 3 x 3/2 71 x 71 x 80
Convolution 3 x 3/1 35 x 35 x 192

Inception Module Three Modules 35 x 35 x 288
Inception Module Five Modules 17 x 17 x 768
Inception Module Two Modules 8 x 8 x 1,280

Pooling 8x8 8 x 8 x 2,048
Linear Logits 1 x 1 x 2,048
Softmax Output 1 x 1 x 1,000

parameters were adjustable, Thirteen convolutional layers and 3 completely linked
layers as a result of the AlexNet ReLU tradition. [9]The model was given the
designation VGG16. [8]It contains approximately 500 megabytes of storage space
and 138 million parameters. Fig 6.2 demonstrates the VGG16 model summary. It
is the traditional model that contains 2D convolutional layers and 2D max-pooling
layers. It starts with 64 filters, and the number is multiplied by 2 in every subsequent
block until it reaches 512. In this case, it does not have any hidden layer but just
one output layer with 38 nodes capable of determining the number of classes present
in the dataset. Illustration in Figure 6.10 explains architecture of VGG16.

Figure 6.10: Architecture of VGG16
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Figure 6.11: VGG 16 Accuracy Figure 6.12: VGG 16 loss

Table 6.4: Layers with output shape and parameters of VGG 16

Layers Output Shape Parameters
Input Layer (None, 100, 100, 3) 0
2D Convolutional Layer (None, 100, 100, 64) 1792
2D Convolutional Layer (None, 100, 100, 64) 36928
2D Max Pooling (None, 50, 50, 64) 0
2D Convolutional Layer (None, 50, 50, 128) 73856
2D Convolutional Layer (None, 50, 50, 128) 147584
2D Max Pooling (None, 25, 25, 128) 0
2D Convolutional Layer (None, 25, 25, 256) 295168
2D Convolutional Layer (None, 25, 25, 256) 590080
2D Convolutional Layer (None, 25, 25, 256) 590080
2D Max Pooling (None, 12, 12, 256) 0
2D Convolutional Layer (None, 12, 12, 512) 1180160
2D Convolutional Layer (None, 12, 12, 512) 2359808
2D Convolutional Layer (None, 12, 12, 512) 2359808
2D Max Pooling (None, 6, 6, 512) 0
2D Convolutional Layer (None, 6, 6, 512) 2359808
2D Convolutional Layer (None, 6, 6, 512) 2359808
2D Convolutional Layer (None, 6, 6, 512) 2359808
2D Max Pooling (None, 3, 3, 512) 0
Flatten (None, 4608) 0
Dense (None, 38) 175142

Total parameters: 14,889,830
Trainable parameters: 175,142

Non-trainable parameters: 14,714,688

6.5 VGG19

VGG-19 is a deeper version of VGG-16. As the name suggests, it has a total of 19
layers among which 16 are convolution layers, 3 are Fully connected layers. Aside
from that it has 5 MaxPool layers and a SoftMax layer. The only difference between
it and VGG-16 is that it has 3 more convolution layers and 13 more ReLU layers.
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The three extra convolution layers are added to input shapes 25, 12 and 6. Figure
6.13 illustrates the architecture of VGG19.

Figure 6.13: Architecture of VGG19

Table 6.5: Layer and Parameter of VGG 19

Layers Output Shape Parameters
Input Layer (None, 100, 100, 3) 0

2D Convolutional Layer (None, 100, 100, 64) 1792
2D Convolutional Layer (None, 100, 100, 64) 36928

2D Max Pooling (None, 50, 50, 64) 0
2D Convolutional Layer (None, 50, 50, 128) 73856
2D Convolutional Layer (None, 50, 50, 128) 147584

2D Max Pooling (None, 25, 25, 128) 0
2D Convolutional Layer (None, 25, 25, 256) 295168
2D Convolutional Layer (None, 25, 25, 256) 590080
2D Convolutional Layer (None, 25, 25, 256) 590080
2D Convolutional Layer (None, 25, 25, 256) 590080

2D Max Pooling (None, 12, 12, 256) 0
2D Convolutional Layer (None, 12, 12, 512) 1180160
2D Convolutional Layer (None, 12, 12, 512) 2359808
2D Convolutional Layer (None, 12, 12, 512) 2359808
2D Convolutional Layer (None, 12, 12, 512) 2359808

2D Max Pooling (None, 6, 6, 512) 0
2D Convolutional Layer (None, 6, 6, 512) 2359808
2D Convolutional Layer (None, 6, 6, 512) 2359808
2D Convolutional Layer (None, 6, 6, 512) 2359808
2D Convolutional Layer (None, 6, 6, 512) 2359808

2D Max Pooling (None, 3, 3, 512) 0
Flatten (None, 4608) 0
Dense (None, 38) 175142

Total Parameters: 20,199,526
Trainable Parameters: 175,142

Non-trainable Paramters: 20,024,384
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6.6 DenseNet 201

It was seen that if the transitions of layers close to input layer and output layer are
shortened, it can result in increased depth, accuracy, and efficiency. In standard
CNNs, images are processed by a sequence of convolution layers to get feature infor-
mation. Mapping identity in ResNets promotes gradient propagation since ResNet
modules are used in place of convolutions. Whereas every layer in DenseNet is con-
nected to every other layer next to it, resulting in feeding forward additional inputs
from all previous modules. Then those modules pass their own inputs to all the next
layers. As information is getting stacked up in each layer from the previous layers,
the information is getting concatenated [49]. These layers are renamed as Dense
Blocks. Illustration in Figure 5.14 showcases the architecture of DenseNet 201.

Figure 6.14: Architecture of DenseNet 201

The CNN becomes compact as the quantity of channels is reduced due to this con-
catenation. This operation loses its viability if feature-maps vary in size, which is
an essential part of CNNs as it is required to down-sample layers. To work around
this, the network is separated into multiple connected dense blocks. DenseNet uses a
sequence of batch normalization, ReLU activations and 3 dimensional convolutions
(Conv) as a composite function. The layers between the dense blocks (transition
layers) used in DenseNets consist of a batch normalization layer and a 1-dimensional
convolution layer and a 2-dimensional MaxPool layer. DenseNets have several ad-
vantages as they have a very low number of parameters. They also address the
vanishing-gradient problem, increasing efficiency by reusing features [28].

Figure 6.15: DenseNet 201 Accuracy Figure 6.16: DenseNet 201 Loss

6.7 XCEPTION

Xception is a CNN developed by the creator of Keras, François Chollet of Google
in 2016. It achieved 94.5% accuracy on imagenet. It is an improved version of
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Table 6.6: Layer Description of DenseNet 201

Layers Output Size DenseNet-201
Convolution 112 × 112 7 × 7 conv, stride 2

Pooling 56 × 56 3 × 3 max pool, stride 2

Dense
Block (1)

56 × 56 [1 × 1 conv, 3 × 3 conv] × 6

56 × 56 1 × 1 conv
Transition
Layer (1)

28 × 28 2 × 2 average pool, stride 2

Dense
Block (2)

28 × 28 [1 × 1 conv, 3 × 3 conv] × 12

28 × 28 1 × 1 conv
Transition
Layer (2)

14 × 14 2 × 2 average pool, stride 2

Dense
Block (3)

14 × 14 [1 × 1 conv, 3 × 3 conv] × 48

14 × 14 1 × 1 conv
Transition
Layer (3)

7 × 7 2 × 2 average pool, stride 2

Dense
Block (4)

7 × 7 [1 × 1 conv, 3 × 3 conv] × 32

7 × 7 global average pool
Classification

Layer
1 × 1 1000D fully-connected, softmax

Inception modules in InceptionV3 CNNs as it mimics depthwise separable convo-
lution operation instead of the regular one. Their hypothesis is that the mapping
of cross-channel and spatial correlations in CNN feature maps can be separated.
Inception modules are resource intensive because of regular convolutions, which oc-
curs spatially and depthwise. For every additional filter, it performs convolutions
over the input depth just to calculate one output map, which becomes a huge liabil-
ity in the CNN. Authors behind the inception module hypothesized that the depth
can be reduced by doing 1-dimensional convolutions across the depth, which looks
across multiple channel’s spatio-information, while compressing the dimensions. On
the other hand, Xception does the opposite, as it applies the filters first then com-
presses the input space using 1-dimensional convolutions. Because of this being a
better and extreme variant of the theory underlying Inception, the architecture was
named Xception. It is 71 layers deep and has thirty six convolutional layers which
are structured into fourteen Xception modules. All the modules have skip-over con-
nections around them, excluding the first and last ones. Since the CNN is very deep
with 71 layers, it is structured in three parts: 1. entry, middle and exit. The data
flows through these sequentially but repeats itself 8 times in the middle. In short,
the Xception CNN is a sequence of depthwise separable convolutions with linear
connection skips. It has the same parameter count as Inception V3, but performs
better since it uses those parameters efficiently[25].
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Figure 6.17: XCEPTION Accuracy Figure 6.18: XCEPTION Loss

Table 6.7: Layer and Parameter Description of Xception

Layers Input Parameters
seperable conv2d 29 (SeperableC) (None, 19, 19, 728) 536536
batch normalization 34 (BatchNo) (None, 19, 19, 728) 2912

re lu 38 (ReLU) (None, 19, 19, 728) 0
add 10 (Add) (None, 19, 19, 728) 0

re lu 39 (ReLU) (None, 19, 19, 728) 0
seperable conv2d 30 (SeperableC) (None, 19, 19, 728) 536536
batch normalization 35 (BatchNo) (None, 19, 19, 728) 2912

lu 40 (ReLU) (None, 19, 19, 728) 0
seperable conv2d 31 (SeperableC) (None, 19, 19, 1024) 752024

conv2d 5 (Conv2D) (None, 10, 10, 1024) 745472
batch normalization 36 (BatchNo) (None, 19, 19, 1024) 4096
batch normalization 37 (BatchNo) (None, 10, 10, 1024) 4096
max pooling2d 3 (MaxPooling2D) (None, 10, 10, 1024) 0

add 11 (Add) (None, 10, 10, 1024) 0
seperable conv2d 32 (SeperableC) (None, 10, 10, 1536) 1582080
batch normalization 38 (BatchNo) (None, 10, 10, 1536) 6144

re lu 41 (ReLU) (None, 10, 10, 1536) 0
seperable conv2d 33 (SeperableC) (None, 10, 10, 2048) 3159552
batch normalization 39 (BatchNo) (None, 10, 10, 2048) 8192
global average pooling2d (Global) (None, 2048) 0

dense (Dense) (None, 1000) 2049000
Total Params : 22,910,480

Trainable params : 22,855,952
Non-trainable params : 54,528
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Chapter 7

Experimental Results

7.1 Results

In order to make a fair comparison between our suggested model and other models,
we trained and tested each model in the same environment. All models are trained
and tested using 24 GB RAM and an Intel Core i5 7500 processor. (2400 MHz),
and an RTX 3060 graphics card. All models utilized the same data augmentation
strategy. All of our models are trained for 90 epochs. We also kept the image
size, learning rate and others the same throughout the experiment. We can see the
Training hyper parameter on Table 7.1.

Table 7.1: Hyperparameters used for Training models

Training Details
Optimizer Adam

Learning Rate 0.002
Batch Size 32
Epochs 90

Image Size 100 X 100
Callbacks ReduceLROnPlateau, ModelCheckPoint

We compared our results to those of seven other pretrained models: Inception V3,
ResNet 50, Xception, Densenet 201, VGG 16, VGG19, and InceptionResNet V2.
The parameter that belongs to VGG 16 and has the value of around 14.8 Million is
the one with the lowest value among all of the tested pretrained models. The model
that we have provided has high assessment metric values as well as a parameter
that is well-balanced. This sets it apart from other models that are already in use.
Accuracy, precision, recall, F1, and loss are some of the measures that are included
in this study’s measurements.

In addition, we have trained and tested our dataset on many different Transformer
architectures, all of which are explained in the methodology. Vision Transformer
(ViT), Compact Convolutional Transformer (CCT), and ConvMixer are the three
different types of transformer architectures that we have implemented.
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The proportion of correct predictions a model makes compared to all possible fore-
casts can be conceived of as the model’s accuracy.

In order to determine whether a percentage of identifications are accurate, the level
of precision is used. To determine accuracy, take the sum of all predicted positive
outcomes (TP) and divide it by the sum of all predicted and actual positive out-
comes (TP + FP). In order to calculate it, we use the formula:

Precision =
TP

TP + FP
(7.1)

The recall rate is calculated to determine the accuracy of detection. Important in
determining accuracy is the ratio of true positives (TP) to total data (TP + FN).
The formula for determining recall is as follows:

Recall =
TP

TP + FN
(7.2)

To that end, the F1 Score is widely used to evaluate the performance of machine
learning programs. Accuracy and recall are averaged out to get this number. The
F1 Score is calculated using the following formula:

F1 =
2 ∗Recall ∗ Precision

Recall + Precision
(7.3)

When compared to previous approaches and earlier studies, the testing accuracy of
our model along with the other metrics, exhibit quite a bit of promise after making
use of the Plant Village dataset. The other models were either more expensive in
terms of the number of parameters they required or more complicated in terms of
the amount of processing power they required. Our approach required fewer param-
eters. The comparison between training and testing accuracy can be found in tables
7.2 and 7.3.

Table 7.2: Training Accuracy and other Metrics

Model Name Accuracy Epochs Recall Precision Loss F1 Score
Inception V3 81.78% 90 0.7615 0.8856 0.5817 0.8189
ResNet50 55.31% 90 0.4539 0.7074 1.6845 0.5530
Xception 94.99% 90 0.9346 0.9645 0.1551 0.9493

DenseNet201 98.86% 90 0.9877 0.9894 0.0346 0.9885
VGG16 94.14% 90 0.9216 0.9614 0.1954 0.9411
VGG19 92.58% 90 0.8997 0.9521 0.2431 0.9252

InceptionResNet V2 88.88% 90 0.8541 0.926 0.3482 0.8886
Proposed Model 99.87% 90 0.9985 0.9988 0.0047 0.9986

In order to make a fair comparison with our own model, we ensured that the num-
ber of epochs, picture size, and learning rate were all held consistent across all
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Table 7.3: Testing Accuracy and other Metrics

Model Name Accuracy Epochs Recall Precision Loss F1 Score
Inception V3 81.99% 90 0.7672 0.8792 0.6081 0.8194
ResNet50 60.73% 90 0.5026 0.7397 1.4074 0.5985
Xception 92.69% 90 0.9132 0.9453 0.2418 0.9290

DenseNet201 96.35% 90 0.9627 0.966 0.1526 0.9643
VGG16 93.27% 90 0.913 0.951 0.2155 0.9316
VGG19 91.80% 90 0.8959 0.9434 0.2693 0.9190

InceptionResNet V2 86.76% 90 0.8363 0.9028 0.4119 0.8683
Proposed Model 99.54% 90 0.9954 0.9957 0.0137 0.9955

pre-trained models.

Fig 7.1. shows a visual representation of accuracy comparison with other Pre-
Trained models.

Figure 7.1: Training, Validation and Testing Accuracy Comparison

If we compare the parameter of our model with other models parameters we will see
that our model requires the lowest number of parameters which is only 5,662,534.
With this we can say that the computational power required for our model is very
less compared to other Pre-Trained models. The comparison of parameters is illus-
trated in Fig 7.2.

As stated earlier, in addition to comparing our model to Pre-Trained models, we
also compared it to Transformer architectures. In the Methodology section, all of
the transformer designs utilized for comparison have been detailed. All Transformer
models did quite well relative to the size of our data set, as a Transformer typically
demands a bigger data set. In order for the transformers to perform effectively on
our dataset, we applied these strategies in our experiment. Table 7.4 compares our
model to a number of well-known Transformer models.
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Table 7.4: Accuracy Comparison of Proposed model with Transformers

Accuracy Comparison with Transformers
Architecture Name Testing Accuracy (%)

Compact Convolutional Transformers (CCT) 97.22%
ConvMixer 96.09%

Vision Transformer (ViT) 93.99%
Vision Transformer with Shifted Patch
Tokenization and Locality Self Attention

94,53%

Proposed Model 99.54%

Figure 7.2: Parameter Comparison

7.2 Confusion Matrix and Classification Report

7.2.1 Confusion Matrix

The confusion matrix for the model we suggest is displayed below. Predictions are
on the horizontal axis, and the correct response is on the vertical. From the fig
below, we observe that our model was more or less correct in its predictions. Here
are the graphs of model accuracy and model loss of our proposed model.

7.2.2 Classification Report

Our model metrics are quite high, as shown in the classification report. The model
with the lowest score is Corn Cercospora leaf spot, Gray leaf spot, with an accuracy
of 0.95, a recall of 0.98, as well as an f1-score of 0.97 and support of 114.
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Figure 7.3: Confusion Matrix

Figure 7.4: Proposed Model Accuracy Figure 7.5: Proposed Model loss
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Table 7.5: Classification Report

Classification Report Precision Recall F1 Score Support
Apple Apple scab 0.99 1.00 0.99 82
Apple Black rot 1.00 1.00 1.00 83
Apple Cedar apple rust 1.00 1.00 1.00 99
Apple healthy 0.99 0.99 0.99 166
Blueberry healthy 0.99 1.00 1.00 172
Cherry healthy 1.00 1.00 1.00 104
Cherry Powdery mildew 1.00 1.00 1.00 102
Corn Cercospora leaf spot Gray leaf spot 0.95 0.98 0.97 114
Corn Common rust 1.00 1.00 1.00 120
Corn healthy 1.00 1.00 1.00 112
Corn Northern Leaf Blight 0.97 0.93 0.95 82
Grap Black rot 1.00 1.00 1.00 95
Grape Esca (Black Measles) 0.99 1.00 1.00 137
Grape healthy 1.00 1.00 1.00 108
Grape Leaf blight (Isariopsis Leaf Spot) 1.00 1.00 1.00 94
Orange Haunglongbing (Citrus greening) 1.00 1.00 1.00 586
Peach Bacterial spot 1.00 1.00 1.00 232
Peach healthy 1.00 1.00 1.00 92
Pepper, bell Bacterial spot 0.99 1.00 1.00 104
Pepper, bell healthy 1.00 0.99 1.00 145
Potato Early blight 1.00 1.00 1.00 102
Potato healthy 1.00 1.00 1.00 112
Potato Late blight 0.99 1.00 0.99 97
Raspberry healthy 1.00 1.00 1.00 94
Soybean healthy 1.00 1.00 1.00 501
Squash Powdery mildew 1.00 0.99 1.00 179
Strawberry healthy 0.99 1.00 0.99 94
Strawberry Leaf scorch 1.00 1.00 1.00 98
Tomato Bacterial spot 1.00 1.00 1.00 241
Tomato Early blight 0.97 0.97 0.97 112
Tomato healthy 0.98 1.00 0.99 176
Tomato Late blight 0.99 0.99 0.99 178
Tomato Leaf Mold 0.99 1.00 0.99 97
Tomato Septorialeaf spot 0.99 1.00 1.00 186
Tomato Spider mites

Two-spotted spider mite
1.00 0.99 0.99 172

Tomato Target Spot 1.00 0.98 0.99 136
Tomato Tomato mosaic virus 1.00 1.00 1.00 93
Tomato Tomato Yellow

Leaf Curl Virus
1.00 1.00 1.00 538

Accuracy 1.00 6035
Macro average 0.99 0.99 0.99 6035
Weighted average 1.00 1.00 1.00 6035
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Chapter 8

Web Implementation

For the web implementation, we utilized the well-known Python web framework
Flask. It is a Python module that enables us to construct web apps quickly and
with minimal effort. It has routing and a template engine that makes it more user-
friendly. Werkzeug WSGI toolkit and Jinja2 template engine underpin Flask [99].

Every time a URL is entered into our search engine, a request is sent to the backend
using routes in Flask or any other web framework. Wekzeug WSGI administers this
procedure.

We always convey data from our backend to our frontend, and a template engine
is necessary to build HTML logic. For this purpose, Flask uses the famous Python
template engine Jinja2. Here, we employ curly brackets and percentage marks to
enclose Python code. However, if we wish to present any data received from the
backend on the frontend, we utilize two curly brackets and write the variable’s name
in between them.

For the website’s frontend, we utilized HTML with jinja2 to create the framework
and custom CSS and Bootstrap for style. We utilized Flask for the backend and
TensorFlow for our trained model.

We attempted to make the design of the website’s frontend as basic as possible so
that anybody may use it without any prior experience. It begins with a title bar
with the phrase ”Plant Leaf Disease Identification.” The next part provides a brief
textual instruction on how to utilize this website, so that everyone may read and
comprehend it. In the following part, there is an image upload option and a predict
button. The user will first submit the photograph before clicking ”Predict Disease.”
After the prediction is complete, a new section with the projected illness type and
a picture will display.

As previously indicated, we utilized Flask for the backend. In addition, we uti-
lized the flask ”render template” and ”request” modules. We used render template
to display our HTML pages and the request module to retrieve information from
forms, such as retrieving the uploaded picture in this example.

We developed a read and transform img function that accepts the image’s url as
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Figure 8.1: Representation of our Website Before Prediction

an input and resizes it to the desired size, which in our instance is 100 by 100.
The picture is then transformed to an array using img to array from the keras.utils
package, and the array is returned.

Next, we load our model using a load model from keras.models and generate a
Python list containing the names of all 38 classes.

As indicated earlier, we wanted to make our website as basic as possible, therefore
we opted for a Single Page Application (SPA). The page has only two routes, which
are identical. The only distinction between the two techniques is that one is a GET
request and the other is a POST request. Whenever a visitor views the website or
makes a GET request, the index.html file is rendered as seen in Figures 8.1 and
8.2. However, when a user uploads a picture and clicks on Predict Disease, a POST
request is sent to our second route. Here, the picture is initially captured using the
request module, and a path is then generated. As this picture is a static file, all
submitted images are kept under a static folder within the image folder. Then, we
turn our picture to an array using the read and transform img method. Then, we
apply our model to forecast the picture, and we obtain the class index using argmax
from numpy. In addition, to determine the percentage, we multiplied max from
numpy by 100 and rounded the result to two decimal places. During rendering, we
then transmit the class name, percentage, and image link to index.html. Fig 8.3.
shows the workflow of our website.
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Figure 8.2: Representation of our website after prediction

Figure 8.3: Workflow of our Web
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Chapter 9

Discussions and Further
Improvements

9.1 Discussion

Our model benefits from the increased stability afforded by the presence of numer-
ous thick layers inside the completely connected layers. By incorporating different
techniques like dropouts and batch normalization, our model can circumvent the
common drawback caused by overfitting.

The evaluation metrics reveal, through the utilization of images with a lower reso-
lution based base, that our proposed model has an excellent balance in terms of the
outputs along with the parameters, as can be shown in Table 7.2 and Figure 7.2. As
a direct consequence of this, users do not require a high-speed internet connection
or an expensive mobile phone in order to upload photographs of low resolution. In
addition, implementing our model to a web-based system will make life of many
farmers very easy. As they no longer need to hire a botanist to identify the disease.
They can take a photo of the diseased leaf and pass it to our model with the website
and with lightning speed they can find out whether the leaf is diseased or not. As
our model is very light weight due to the low number of parameters, farmers don’t
need to have a high end device.

Despite the model’s exceptional ability to detect leaf illness, there are a few flaws
with the research that needs to be resolved. Only data from a single region provided
by PlantVillage have been used to assess the validity of our suggested model. As a
result, additional research must be conducted on a variety of datasets pertaining to
various areas.

9.2 Further Improvement

We aim to compare the proposed model in the future to others that have already
been trained. To expand the breadth of the study and improve the quantity of in-
formation we have access to, we intend to continue collecting new images of plants
from a variety of continents and countries, as well as information regarding leaf de-
velopment patterns, growing circumstances, image quality, and mode. We will be
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able to undertake substantially more detailed research as a result. In the not-too-
distant future, our strategy will be useful for combating additional types of plant
leaf diseases. In the future, we intend to reduce the amount of time and space-based
complexity. In a future study, we plan to propose the development of an artificial
intelligence (AI) system that is cloud-hosted, employs deep learning techniques, and
includes additional data variants. Moreover, in order to diagnose plant illnesses, the
focus of our current and future research will shift from the plant’s leaves to other
plant parts, such as the flowers and the fruits. This is important in order to identify
plant-infecting pathogens.

Our model is quite lightweight, which enables us to quickly upload it to a website or
develop an application that can be used by farmers on their computing devices that
have limited power. Using this strategy, farmers will have an easier time identifying
the malady that has affected the plant.
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Chapter 10

Conclusion

Agriculture, one of the earliest discoveries made by mankind, was essential to the
advancement of civilization to its current degree of prosperity. Therefore, modern
farming practices need to be modified to meet the information and communication
technology era (ICT). We intend to contribute to the modernization of agriculture
by inventing a highly accurate and resource-efficient technique for the automated
diagnosis of plant diseases. This would save time and money for farmers. Us-
ing cutting-edge technology that is both adaptable and cutting-edge, such as deep
learning, it is possible for us to attain our objective. With the assistance of our
suggested CNN model, we anticipate reaching a greater degree of disease detection
accuracy in comparison to the currently pre-trained models.

As a result, within the scope of our research, we utilize leaf photos and the lim-
ited computing capabilities available to us to anticipate the development of plant
diseases. In order to accomplish this, a lightweight version of the Deep CNN archi-
tecture has been built. 38 separate types of healthy and diseased leave images can be
categorized by this architecture with an accuracy comparable to that of competing
systems. The model we have presented has fewer parameters than previous models
based on deep learning along with machine learning. This is done to illustrate that
the model we have provided can perform admirably while retaining its correctness.
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