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Abstract
This thesis provides a detailed view of Out-of-time-order correlators in quantum
mechanics. And how we can use OTOC to calculate chaos in quantum mechanics.
We present precise OTOC calculations for a circle billiard, a particle in a one-
dimensional box, a harmonic oscillator, and a stadium shape billiard. We will also
take a brief look into chaos and quantum chaos.

Keywords: Chaos; Quantum Chaos; OTOC; classical Chaos ; Out-of-time-order
correlators;
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The next list describes several symbols & abbreviation that will be later used within
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Chapter 1

Introduction

1.1 Problem Statement
Chaos theory and quantum mechanics are two of the most significant part of mod-
ern physics. Chaos theory discusses the random and unpredictable behavior of a
dynamic system. The systems are sensitive to the initial state, which can lead to
drastically different results.
Quantum mechanics is a fundamental theory in physics that describes the behavior
of matter and energy at the atomic and subatomic scales. It is based on wave-
particle duality and uncertainty principles, representing the dual nature of matter
and energy and the inherent uncertainty in our ability to measure them.
In quantum mechanics, the wave function represents the particles’ behaviors, rep-
resenting the probability of finding a particle at a particular location in space [2].
The Schrödinger equation governs these wave functions,

ih̄
d
dt
|Ψ(t)〉 = Ĥ|Ψ(t)〉 (1.1)

In this equation, Ψ represents the time-dependent wave function, and Ĥ represents
the Hamiltonian operation.
In quantum mechanics, chaotic systems are characterized by quantum states that
are highly sensitive to perturbations or changes in their initial conditions. This
means that small changes in the initial conditions of a chaotic system can lead to
significant differences in its behavior over time.
One of the critical features of chaotic systems in quantum mechanics is the pres-
ence of quantum chaos or the ”chaos” associated with the quantum states of these
systems. This is characterized by high randomness, unpredictability in the system’s
behavior, and a sensitivity to perturbations.

1.2 Research Objectives
One of the ways we can measure quantum chaos is the out-of-time-order correla-
tor(OTOC). In this thesis, we will look into measuring OTOC for quantum me-
chanics. We will also look into the fundamentals of classical chaos and nonlinear
dynamics, how chaos is generally derived, and how it works. Then we will look
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into chaos in quantum mechanics and different kind of chaotic behavior in quan-
tum mechanics. We will further discuss how to measure OTOC on a particle in a
one-dimensional box, a circle billiard and a stadium billiard.
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Chapter 2

Classical Chaos

2.1 History of Chaos Theory
The origins of chaos theory can be traced back to the work of French mathematician
Henri Poincaré in the late 19th century. Poincaré studied the three-body problem
in celestial mechanics, which involves predicting the motion of three celestial objects
(such as planets or asteroids) interacting with each other. He discovered that even
minor differences in the initial positions and velocities of the objects could lead to
vastly different outcomes, making the problem impossible to solve.
In the 1940s and 1950s, mathematician John von Neumann and meteorologist Ed-
ward Lorenz developed mathematical models to study weather patterns and the
behavior of complex systems. Lorenz discovered that small changes in the initial
conditions of his weather model could lead to drastically different weather patterns
over time, a phenomenon that came to be known as the butterfly effect.
In the 1960s and 1970s, several mathematicians and physicists, including James
Yorke, Tien-Yien Li, and James Gleick, made significant contributions to the devel-
opment of chaos theory. They introduced new mathematical tools and techniques
for studying chaotic systems and developed the concept of fractals, which are self-
similar geometric shapes that exhibit complexity at all scales.
In the 1980s and 1990s, chaos theory continued to be developed and applied to
various fields, including physics, biology, economics, and computer science.
What does chaos refer to? In physics, chaos refers to the behavior of a dynamic
system susceptible to initial conditions, meaning that minor differences in initial
conditions can lead to vastly different outcomes over time. This behavior is char-
acteristic of chaotic systems, which exhibit seemingly random and unpredictable
behavior.

2.2 Nonlinear Dynamics
Nothing in this universe is indeed linear. Everything that exists in nature is nonlin-
ear. From the earth’s surface to ocean movement to animal movement, nothing is
genuinely linear, but we still try to understand nature using linear approximation.
Let us look into a simple harmonic oscillator, a spring with a mass of m attached

3



where the force increases linearly in the displacement x(t),

m
d2x

dt2
= −kx (2.1)

Here k represents the spring constant which is greater than 0. This model will give
accurate results under most conditions. But if we look at equation (2.1) it lets us
stretch the spring to whatever length we want to and not break it or change its
spring nature or the constant. This is invalid, so nonlinearity is added to make the
model more realistic. So, equation (2.1) becomes,

d2x

dt2
= −ω2

ox+ x2 (2.2)

The ω2
o represents k/m in the equation. No extra parameters are added before the

nonlinear terms, as those could be removed by increasing x at a constant rate.
The difference between (2.1,2) is that more equilibrium points are not just x = 0.
Now, if we consider the right-hand side of equation (2.2) zero, we will find the two
points of equilibrium,

x̄ = 0, x̄ = ω2
o (2.3)

We can check the dynamics near these points to understand the necessity and sig-
nificance of this set of points.
If we multiply (2.2) with dx/dt and integrate it once we get,

1

2
y2 +

1

2
ω2
ox

2 − 1

3
x3 = const = E (2.4)

We replaced dx/dt with y. This equation is the integral of motion, and E represents
the system’s total energy. We can also write equation (2.2) as their first-order
ordinary differential equations (ODEs),

dx
dt

= y

dy
dt

= −ω2
ox+ x2

(2.5)

using equation (2.4), we can plot for different values of E on the (x,y) phase plane.
We will get fig. 1 after we plot the graph.

Figure 2.1: The phase potential of (2.5), cf(2.4) [1]
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From fig.2.1, we can see the curse S where E = Eo = ω2
o/6. This is known as

the separatrix. This is the bound beyond which the oscillatory motion escapes to
infinity. Inside this S curve, the spring behaves like a harmonic oscillator. We can
now linearize the (2.5) about the fixed point U,

x(t) = x̄+ ξ(t), y(t) = ȳ + η(t) (2.6)

with (x̄, ȳ) = (ω2
o , 0) we get,[

ξ̇
η̇

]
=

[
0 1
ω2
0 0

] [
ξ
η

]
= L

[
ξ
η

]
(2.7)

Here ( ˙ ) represents d()/dt. Now, if we find the eigenvalues and eigenvectors of
L:

λ1 = −ωo, λ2 = ωo, e1 =

[
1

−ω0

]
, e1 =

[
1
ω0

]
(2.8)

For {e1, e2}, the general solution near U is,

1

2
(ξ(0)− ω−1

0 η(0))e−ω0te1 +
1

2
(ξ(0) + ω−1

0 η(0))eω0te2 (2.9)

Equation (2.9) elaborates on the measurable idea near U in fig.2.1. Here, U is known
as the saddle-node, which is always unstable. If we do linearization near the origin,
we will find stable solutions. O is known as the center point.
Now, if we add dampening, which is relative to the velocity, to make equation (1.2)
more real life we get,

ẍ = −ω3
ox− bẋ+ x2, b > 0 (2.10)

As we can see, equation (2.10) is non-integrable. It has now become a nonconser-
vative system, which is called dissipative where area ∆A = ∆x∆y, everywhere in
(x,y) phase space, the time evolution of the dissipate is,

d
dt
(∆A) = (∆x∆y)

[
1
∆x

d∆x
dt + 1

∆y
d∆y
dt

]
= (∆A)

[
∆ẋ
∆x

+ ∆ẏ
∆y

]
−−−→
∆x→0
∆y→0

(∆A)
[
∂ẋ
∂x

+ ∂ẏ
∂y

]
= −b(∆A)

(2.11)

here (∆A) ∝ (−bt) The last part of (2.11) can be done after writing (2.10) as a
system of,

ẋ = y = f1(x, y)

ẏ = −ω2
ox− by + x2 = f2(x, y)

(2.12)

In a broader sense, we can say that the quantity determines the system of the form
(2.12) for the rate of change in elementary areas.

∇.f = Tr[Df(x, y)] =
∂f1
∂x

+
∂f2
∂y

(2.13)

Here, the trace is represented by Tr, and Df is the Jacobin matrix of f ≡ (f1, f2),

5



Figure 2.2: The phase potential of (2.12), The shaded area shows the basin of
attraction of the origin for b > 0. [1]

Df(x, y) =

[
∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

]
(x, y) (2.14)

The behavior of orbits in the (x, y) phase plane for b < 2ωo is revealed by a linear
analysis at the fixed points of (2.12); see figure 2. The direction field dy/dx =
(−ω2x−by+x2)/y at various points (x, y), and geometric considerations demonstrate
that The separatrix S in Figure 1 has been divided into two curves, designated as
the stable and unstable manifolds of the saddle fixed point at U, respectively, by the
letters W s and W u. The steady focal point at the origin of O’s basin of attraction
is indicated by the shaded area in Figure 2. This basin gradually expands with
increasing b (stronger damping) and contracts with decreasing b (positive b). For b
= 0, it entirely vanishes since the origin, while steady, is not an attractor anymore
because the origin is an unstable fixed point when b < 0, and the basin surrounding
O does not exist.
Equations (2.1) and (2.7) are examples of linear equations. And (2.2),(2.5), and
(2.12) are nonlinear equations.

2.3 Chaos
From nonlinear dynamics can formulate that chaos is fundamentally self-similar
under scaling, and it is susceptible to changes in the initial conditions.
The self-similar nature offers the reassuring insight that, even though an item may
appear complex at first glance, its complexity may result from the superposition of
patterns that become self-similar at the limit of infinite magnification.
To calculate chaos, we measure the rate of exponential separation of trajectories, as
determined by Lyapunov exponents of the orbits in various phase space directions;
for simplicity’s sake, let’s focus on one-dimensional maps.

xn+1 = f(xn), xn ∈ R (2.15)

For the initial condition, we can write the equation as,

xn = fn(xo) (2.16)

6



Let’s say we want to follow a nearby orbit, beginning at x′o = xo+ξ where ξ is small,

x′n = fn(xo + ξ) (2.17)

Now we observe the evolution of the separation between these orbits over time,

|fn(xo + ξ)− fn(x0)| ∝ ξeλ(xo)n, n >> 1 (2.18)

The speed at which these two orbits diverge is λ(xoS), which is the Lyapunov
exponent. When n→ ∞ and ξ → 0 we can get,

λ(xo) = lim
n→∞

1

n
log |df

n(xo)

dxo
|

= lim
n→∞

1

n

n∑
i=0

log |f ′(xi)|
(2.19)

When λ(xo) > 0 and there are vast initial conditions, the orbits we will get will show
some chaotic nature. On the other hand, when λ(xo) < 0, the orbits are anticipated
to converge to a regular attractor.
There are m Lyapunov exponents in m-dimensional dynamical systems. The greatest
one λmax = max(λi : 1Im), which specifies the rate at which the norm of the
distance between close trajectories increases in time, is what we are often interested
in. In a region D ∈ R, if λmax > 0 and is independent of x(0), chaotic behavior
with statistical characteristics common to the majority of orbits in that region are
observed [1].
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Chapter 3

Quantum Chaos

3.1 History of Quantum Mechanics
Quantum mechanics offers a mathematical foundation for comprehending the be-
havior of particles at the atomic and subatomic scales. It was created in the early
20th century and has significantly influenced how we perceive the nature of matter
and energy.
Generally, there are two significant periods for quantum mechanics the early devel-
opment of the theory in the 1920s and its further growth and implementation in the
decades.
The discovery of the atomic nucleus and the advancement of the nuclear theory is
closely related to the early development of quantum mechanics. Early in the 1900s,
researchers like Ernest Rutherford and Niels Bohr made significant contributions to
our understanding of the atomic structure and put forth theories that explained how
atomic spectra behaved.
With the work of physicists like Max Planck, Albert Einstein, Werner Heisenberg,
and Erwin Schrödinger, quantum mechanics emerged as a complete theory in the
1920s. These researchers made several ground-breaking findings that helped quan-
tum mechanics become a foundational theory of matter and energy.
The key feature of quantum mechanics is that particles can behave like a particle
and a wave depending on how they are observed.

3.2 Quantum chaos
Defining quantum chaos is not easy to solve. Since the early days of quantum
mechanics, the development of quantum chaos has been present, and it is still under
development.
From classical chaos, we know the system has to be highly dependent and sensitive
to the initial condition to be considered chaotic. To understand the trajectory of
a particle, we would have to know the x(t) and p(t), which are the position and
momentum of the particle. But from the Heisenberg uncertainty principle, we know
that it is impossible to measure the velocity and position of a particle at the same
time. If we accurately measure the position’s value, we don’t know anything about
the momentum and vice versa, which means that classical chaos is incompatible
with Quantum mechanics. That is why quantum chaos is a complex problem to
determine.

8



In the upcoming chapter, we will find chaos by using operators instead of states and
calculating the OTOCs.
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Chapter 4

OTOC

The primary computational methods for determining whether a quantum system
is chaotic are presented in this chapter, as well as the concept of quantum chaos.
At the end of this chapter, we provide a brief summary of the findings that will be
presented in the subsequent chapters.

4.1 Classical Motivation
Since the improvement of quantum mechanics, the investigation of quantized por-
trayals of traditional frameworks has been a focal issue in physics. One way to tran-
sition from classical physics to quantum mechanics is through the Poisson bracket.
Regarding a classical system with a generalized position x(t) and corresponding mo-
mentum p(t), the Poisson bracket {.., ..}x(t),p(t)

{A,B}x(t),p(t) =
∂A

∂x(t)

∂B

∂(p(t)
− ∂A

∂p(t)

∂B

∂x(t)
(4.1)

where A and B are any x and p-related functions. The commutator [.., ..] of op-
erators must be related to the Poisson bracket in order to enter the quantum domain.

[Â, B̂] = ih̄{A,B}x,p (4.2)

[Â, B̂] = ÂB̂ − B̂Â (4.3)

Here, the quantum equivalents of the classical quantities A and B are represented by
the Hermitian operators Â and B̂.The time-dependent Heisenberg operators Â(t),
which are connected to the time-independent Schrödinger operators Â = (Â(0)) and
Hamiltonian Ĥ is time independent.

Â(t) = ÂeiĤte−iĤt (4.4)

10



Understanding quantum chaos is the current objective. Utilizing Equation 4.2 and
4.3 to comprehend the quantum analogue of classical chaos by relating it to a Poisson
bracket is one method for resolving the issue. A chaotic system classically exhibits
extreme sensitivity to the initial conditions. Consider two classical particles in one
dimension whose locations are x1(t) and x2(t), the initial condition is,

δx(t) = x1(0)− x2(0) (4.5)

where δx(t) is very tiny than 1. The system will be chaotic if the initial behavior is,

δx(t) = δx(0)e
λLt (4.6)

that is, the increase in the particle positions’ differences is exponential. The system’s
Lyapunov exponent is represented by the constant λL.

4.2 OTOC in Quantum Mechanics
The OTOC is generally represented as,

CT (t) ≡ −
〈
[x̂(t), p̂(0)]2

〉
(4.7)

Here, x̂ and p̂ are represent position and momentum operator in time-independent
Hamiltonian phase space respectively.
This is demonstrated for quantum mechanical systems that are defined by a discrete
spectrum Hamiltonian. Due to the fact that discrete spectra are simpler to work
with than continuous spectra and quantum mechanical calculations are typically
much simpler than quantum field theory calculations, this is a great place to start
when exploring the many behaviors of OTOC.
The system is in En energy state and the density operator is classically,

ρ =
e
− E

KBT

Z

Where,
Z =

∫
dEe

− E
KBT

This is called as partition function.
Now, we use the eigenstate |En > of Hamiltonian to define CT (t)

CT (t) =

∑
n

〈
En| − [x̂(t), p̂(0)]2e

−H
KBT |En

〉
∑

n

〈
En|e

−H
KBT |En

〉 (4.8)

We can define 1
KBT

= β

11



CT (t) =

∑
n

〈
En| − [x̂(t), p̂(0)]2e−βH |En

〉∑
n 〈En|e−βH |En〉

or,

CT (t) =

∑
n e

−βH 〈En| − [x̂(t), p̂(0)]2|En〉∑
n 〈En|e−βH |En〉

or,

CT (t) =

∑
n e

−βHCn(t)

Tre−βH
(4.9)

We know, Tre−βH = Z which is partition function. So, equation 4.9 implies as,

CT (t) =
1

Z

∑
n

e−βHCn(t) (4.10)

Here,CT (t) is thermal average of all of microcanonical OTOC and Cn(t) is micro-
canonical OTOC,

Cn(t) =
〈
En| − [x̂(t), p̂(0)]2|En

〉
(4.11)

Inserting an entire set of energy eigenstates Ê =
∑

n |Em >< Em| is the following
stage in the process of discovering an usable form for the OTOC. So, from equation
4.11 we get,

Cn(t) =
∑
m

bnm(t)b
∗
nm(t) (4.12)

And,
bnm = −i 〈En|[x̂(t), p̂(0)]|Em〉 (4.13)

b(t) is a Hermitian matrix. So,

bnm = −i 〈En|[x̂(t), p̂(0)|Em〉]

bmn = i 〈En|[x̂(t), p̂(0)|Em〉] = b∗nm

From equation 4.13 we get,

bnm = −i 〈En|[x̂(0), p̂(0)]|Em〉

bnm =
〈
En|eiĤtx̂(0), p̂(0)e−iĤt|Em

〉

bnm =
∑
k

ei(En−Ek)txnkpkm (4.14)

12



Here,
xnk = 〈En|x̂(0)|Ek〉

And,
pkm = 〈Ek|p̂(0)|Em〉

Finally, equation 4.13 and 4.14 give us,

bnm = −i
∑
k

(
ei(En−Ek)txnkpkm − ei(Ek−Em)tpnkxkm

)
(4.15)

It would be preferable to formulate Equation 4.15 only using the matrix elements of x̂
because they are considerably simpler to manipulate numerically.If the Hamiltonian
is,

Ĥ =
1

2
p̂2 + v(x̂) (4.16)

SO, [Ĥ, x̂] = 1
2
[p̂2, x̂2] = −ip̂ and matrix elements,

pnm = i (En − Em)xnm (4.17)

After plugging this value on equation 4.15,

bnm(t) =
1

2

∑
k

xnkxkn
(
Ekme

iEnkt − Enke
iEkmt

)
(4.18)

4.3 The Harmonic Oscillator
The Hamiltonian of simple harmonic oscillation is define by [6],

H =
p2

2m
+

1

2
kx2 (4.19)

here, k is the force constant is must be greater than zero. Let us assume, the form of
classical and quantum Hamiltonian are the same then time independent Schrodinger
is written as,

d2ψ

dx2
=

2m

h̄2
(
1

2
kx2 − E)ψ (4.20)

Where,
m = mass of the particle
E = Energy

We know, the classical angular frequency,

ω =

√
k

m
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or,
k = ω2m

Let,

y =

√
mω

h̄
x

or,
x2
mω

h̄
= y2

or,

x2 =
y2h̄

mω

Further let,
ε =

2E

h̄ω
or,

E =
εh̄ω

2
(4.21)

After substituting these value on equation 4.20 we get,

d2ψ

dy2
= (y2 − ε)ψ

or,
d2ψ

dy2
− (y2 − ε)ψ = 0 (4.22)

boundary condition of 4.22 is ψ → 0 as |y| → ∞ and after simplify 4.22 we get,

d2ψ

dy2
− y2ψ = 0 (4.23)

The solutions of equation 4.23 are,

ψ(y) = A(y)e±
y2

2

where A(y) is a function of y that changes very slowly.A(y) is a decaying solution.

ψ(y) = h(y)e−
y2

2

By putting this value on equation 4.22, we obtain,

d2h

dy2
− 2y

dh

dy
+ (ε− 1) = 0 (4.24)
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The power-low solution,

h(y) =
∞∑
n=0

ciy
i (4.25)

From equation 4.24 and 4.25

ci+2 =
2i− ε+ 1

(i+ 1)(i+ 2)
ci (4.26)

y is dominator at large |y| and higher power of y,

h(y) = C
∑
i

y2i

i!

or,
h(y) = Cey2 (4.27)

From equation 4.25 and 4.26,

ε = 2n+ 1

After put this value on equation 4.21 we get [5],

E = (n+
1

2
)h̄ω

En = (n+
1

2
)h̄ω (4.28)

Here, n = 0, 1, 2, 3, ....

WE can rewrite the equation 4.23 as

ψn(−
d2

dy2
+ y2) = ψn(2n+ 1) (4.29)

Equation 4.28 represents eigenvalues of the eigenstate ψn which is normalized.∫ +∞

−∞
ψnψmdx = δnm (4.30)

We can define [5],∫ +∞

−i

ψnxψmdx =

√
h̄

2mω
(
√
mδn,m−1 +

√
m+ 1δn,m+1)

δnm = xnm =

√
h̄

2mω
(
√
mδn,m−1 +

√
m+ 1δn,m+1) (4.31)
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Figure 4.1: Microcanonical OTOC for Harmonic Oscillator [6]

Figure 4.2: Thermal OTOC for Harmonic Oscillator [6]

And,

bnm(t) = δnm cos (ωt)

Here, b is a symmetric matrix and bnm(t) is real,
So, the microcanonical OTOC will be [6],

Cn(t) = cos2 ωt (4.32)

The thermal average will be the same,

CT (t) = cos2 ωt (4.33)
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4.4 Particle in a 1D box
The Hamiltonian for a particle in a one dimensional box is define as,

H = p2 + Vbox(x) (4.34)

Vbox(x) =

{
0 if 0 < x < 1

∞ otherwise

Inside the box the Schrodinger equation is written as,

∂2ψ

∂x2
+

2m

h̄
(E − V )ψ = 0 (4.35)

Inside the box potential is zero. So, V = 0.

∂2ψ

∂x2
+

2m

h̄
Eψ = 0 (4.36)

Let,
k2 =

2mE

h̄
(4.37)

∂2ψ

∂x2
+ k2ψ = 0 (4.38)

The general solution of the differential equation is,

ψ = A cos kx+B cos kx (4.39)

The boundary condition of the system is x = 0, ψ = 0. Then from the equation
4.39 we get,

0 = A cos 0 +B sin 0

0 = A+ 0

And,

A = 0

Putting the value A = 0 on the equation 4.39 we get,

ψ = B sin kx (4.40)
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And the second boundary condition of the system is x = 1, ψ = 0. So, equation
4.40 gives us,

0 = B sin k

sin k = 0

sin k = sinnπ

Here, n = 1, 2, 3.....
k = nπ

After putting this value on equation 4.40 we get,

ψn = B sin (nπx) (4.41)

To find the eigenfunction, we need to find the value of B which is normalizing factor
of ψ.
So, ∫ 1

0

ψψ∗dx = 1 (4.42)

From equation 4.41 and 4.42,

B2

∫ 1

0

sin2 (nπx) = 1

B2

∫ 1

0

1− cos (2nπx)

2
= 1

B2

2

∫ 1

0

(1− cos (2nπx) = 1

B2

2

[
[x]10 − [sin (2nπx)]10(2nπ

]
= 1

B2

2
(1− 0) = 1

18



B2 = 2

B =
√
2

From the equation 4.41 we get the eigenfunction, which is

ψn =
√
2 sin (nπx) (4.43)

Now, we need to find the eigenvalues of the system. From equation 4.37

k2 =
2mE

h̄2

E =
h̄2k2

2m

E =
h̄2π2n2

2m

E =
h̄2

2m
π2n2 (4.44)

Here, the equation 4.44 represents the eigenfunction of particle in a 1-D box.
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Chapter 5

OTOC-2

5.1 Circle Billiard
Let us consider a free 2D quantum particle within a disk with radius R = 1√

π
,

the center of which serves as the origin of our coordinate system. Our boundary
condition is that the wave function ψ(x, y) = 0 and x2 + y2 = R2 in Cartesian
coordinates x and y.
The Hamiltonian of a circle billiard is ,

H = p21 + p22 + Vcir(x1, x2) (5.1)

Vcir(x, y) =

{
0 if x2 + y2 < R2

∞ otherwise

To make our problem simple, we consider the system in polar coordinate (r, θ)
instead of cartesian (fig: 5.1).
Here,

x = r cos θ

y = r sin θ

The 1-D time dependent Schrodinger equation is,

−h̄2

2m

∂2ψ

∂x
+ V ψ =

−h̄
i

∂ψ

∂t
(5.2)

Here,
ψ(x, t) = u(x)f(t)
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Figure 5.1: Implicit region of a circle

Figure 5.2: Mesh of a circle billiard

Then, equation 5.2 implies,

−h̄2

2m

d2u

dx2
f + V uf =

−h̄
i

df

dt
u (5.3)

−h̄2

2m

d2u

dx2
1

u
+ V =

−h̄
i

df

dt

1

f

−h̄2

2m

d2u

dx2
1

u
+ V = E
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Because,
E =

−h̄
i

df

dt

1

f

−h̄2

2m

1

u

d2u

dx2
+ V − E = 0

So,
d2u

dx2
+

2m

h̄2
(E − V )u = 0 (5.4)

In three dimensional system we can replace d with Laplacian operator ∇,

∇2u+
2m

h̄2
(E − V )u = 0 (5.5)

If we replace u(x) by ψ(r, θ, the equation 5.5 will be,

∇2ψ +
2m

h̄2
(E − V )ψ = 0 (5.6)

As we know,

∇2 =
1

r

∂

∂r
(r
∂

∂r
) +

1

r2
∂2

∂θ2

So, in two dimensional polar coordinate the Schrodinger equation will be [3],

1

r

∂

∂r
(r
∂ψ

∂r
) +

1

r2
∂2ψ

∂θ2
+

2m

h̄2
(E − V )ψ = 0 (5.7)

As this is a separation of variable we can write,

ψ(r, θ) = R(r)Θ(θ)

The system has also angular symmetry and the angular part Θ(θ) has no effect on
the system. So,

ψ(r, θ) = ψ(r)e(inθ)

Then, equation 5.7 becomes,

1

r

∂

∂r
r
∂ψeinθ

∂r
+

1

r2
∂2

∂θ
ψeinθ +

2mE

h̄2
ψeinθ = 0
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1

r

∂

∂r
r
∂

∂r
ψ − n2

r2
ψ +

2mE

h̄
ψ = 0

1

r
r
∂2

∂r2
ψ +

1

r

∂

∂r
ψ − n2

r2
ψ +

2mE

h̄
ψ = 0

(
1

r
r
∂2

∂r2
+

1

r

∂

∂r
− n2

r2

)
ψ +

2mE

h̄
ψ = 0 (5.8)

Put, k2 = 2mE
h̄

on equation 5.8(
∂2

∂r2
+

1

r

∂

∂r

)
ψ + k2ψ − n2

r2
ψ = 0

[
∂2

r2
+

1

r

∂

∂r
+

(
k2r2 − n2

r2

)]
ψ = 0

r2
∂2

r2
ψ + r

∂

∂r
ψ +

(
k2r2 − n2

)
ψ = 0 (5.9)

Now,
ψ(r) = anJn(kr) + bnYn(kr

Here,
Jn = FirstkindBesselfunction
Yn = Secondkindbesselfunction
At r = 0 the second kind Bessel function Yn → ∞
So,

ψ(r) = anJn(kr)

Therefore, the general solution becomes,

ψnl = NJnl
√
πβnlre

inθ (5.10)

In this equation, N is normalizing factor and βnl represents zeros of Bessel function.
And l is the lth zero of Jn.
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At r = R the eigenfunction ψ(R, θ) = 0.
So,

Jn(kR) = 0

kR = βnl

k2 =

(
βnl
R

)2

2mE

h̄
=

(
βnl
R

)2

E =
h̄

2mE

(
βnl
1√
π

)2

Enl =
h̄

2mE
πβ2

nl (5.11)

Equation 5.11 represents the eigenvalue of the system. We use Mathematica to find
eigenvalues for different values of n shows in (fig: 5.3)

Figure 5.3: Eigenvalues of the circle billiard
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Figure 5.4: Eigenfunction for n = 1 of circle billiard

Now, we need to find the matrix elements of x

xnm =

∫ R

0

rdr

∫ 2π

0

ψ∗
nxψmdθ

In this system, R = 1√
π

and x = r cos θ

xnm =

∫ 1√
π

0

rdr

∫ 2π

0

ψ∗
nr cos θψmdθ (5.12)

Equation 5.12 represents the matrix elements of x .

Fig: 5.4 shows eigenfunction for n = 1

Fig: 5.5 shows eigenfunction for n = 2

Fig: 5.6 shows eigenfunction for n = 3

Fig: 5.7 shows eigenfunction for n = 6

Fig: 5.8 shows eigenfunction for n = 10

Fig: 5.9 shows eigenfunction for n = 50

Fig: 5.10 shows eigenfunction for n = 100
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Figure 5.5: Eigenfunction for n = 2 of circle billiard

Fig: 5.11 shows eigenfunction for n = 200

Fig: 5.12 shows eigenfunction for n = 400

We can see the three dimensional view for n = 400 in fig: 5.13.

5.2 Stadium Billiard
The stadium billiard has been around for more than 45 years. The original spark for
research came from Bunimovich’s demonstration that the stadium was a B-system.
His argument was attained by taking into account border forms for a broad class of
billiards devoid of any dispersing elements. Dispersing here refers to paths diverg-
ing. Furthermore, the billiard was believed to contain at least one focus because it
had previously been established that polygonal shapes with no focusing components
have zero entropy. Furthermore, it was believed that the boundary’s focusing region
would have a constant curve.
Since the interior of the circle points toward the interior of the billiard, the border
might be made up of both straight and curved parts. A bundle compresses and then
expands after reflection from a circular section, highlighting the stochastic nature of
the system and making it difficult to forecast when any subsequent focussing would
occur. The proof primarily considers successive reflections of bundles of paths in
order to show the B-property. The simplicity with which these entities possessed
the B-property led to the proof of the K-property.
Due of the widespread interest these publications garnered, a straightforward ex-
ample of the type of things covered in them, the stadium, is frequently referred to
as the Bunimovich stadium. The K-property suggests that the object has positive
entropy, which is why the papers are so significant. This entropy is supposedly con-
stant practically everywhere, according to the B-property.
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Figure 5.6: Eigenfunction for n=3 of circle billiard

Hamiltonian of a stadium billiard is

H = p21 + p22 + Vstad(x, y) (5.13)

Where,

Vstad(x) =

{
0 if (x, y) ∈ Ω

∞ otherwise

Here, Ω is the region of the stadium where the radius of tho semicircle is R so the
width of the stadium is 2R and the length of the implicit rectangle is 2a.
A free particle can move inside the region in it reflect when it get at boundary and
shows a trajectory line (fig: 5.14). The sensitivity to beginning conditions is one of
chaotic systems’ most distinctive behaviors that means if we change a little bit in
initial condition the the system will show a huge change in latter time.
We can denote the phase of the particle in stadium billiard by x(t). If we change a
little in the phase space by δ(t) then the final phase space will be,

x(t) + δ(t)

Because of the chaoatic behaviour of the system the tiny change δ(t) grows expo-
nentially in future and we can define the change by lyapunov exponent (fig: 5.15).
which become,

x(t) = eλt

here, λ is lyapunov exponent and indicates the exponential growth of the initial
change.
If the velocity of the particle inside the stadium is v and the surface area of the
stadium shape billiard is A then [4],

λ =
v√
A

(5.14)
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Figure 5.7: Eigenfunction for n = 6 of circle billiard

We need to recall the time independent Schrodinger equation for quantum stadium
billiard.

−∇ψn + Vstadψn = Enψn (5.15)

fig: 5.16 shows the Mesh region of stadium billiard.

It is very difficult to solve stadium billiard problem without computer system. To
solve this we use Mathematica to find eigenvalues of the system. To do this we take
a
R
= 1 in (fig 5.17) shows the eigenvalues of stadium billiard

To find eigenfunction of stadium billiard we take help of Mathematica.

Fig: 5.18 shows eigenfunction for n = 1

Fig: 5.19 shows eigenfunction for n = 2

Fig: 5.20 shows eigenfunction for n = 3

Fig: 5.21 shows eigenfunction for n = 10

Fig: 5.22 shows eigenfunction for n = 50

Fig: 5.23 shows eigenfunction for n = 100

Fig: 5.24 shows eigenfunction for n = 200

Fig: 5.25 shows eigenfunction for n = 400
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Figure 5.8: Eigenfunction for n = 10 of circle billiard

We can see the three dimensional view for n = 400 in fig: 5.26

5.3 Classical Statistics
In two dimensional phase space, the OTOC is written as [4],

C(t) =
1

Z

∫
1

2π
e−βH{x(t), p(0)}2dxdp (5.16)

In this equation 5.16, Z is partition function,

Z =

∫
1

2π
e−βHdxdp

and {.., ..} represents the poisson bracket.// When a particle stay inside the region
the potential remain zero and can move freely. When it reach at the boundary the
particle bounce back.
At boundary,

p(t) = −p(t)

If we change a tiny δx at starting position x(0) + δx(0) it appears after n number
of bounce and time t as

δx(t) = (−1)nδx(0) (5.17)

In equation 5.17 we can see that, δx(t) depends on (−1)n

So, poisson bracket will be,
{x(t), p(0)} =

δ(t)

δ(0)
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Figure 5.9: Eigenfunction for n = 50 of circle billiard

{x(t), p(0)} = (−1)n

After putting this value on equation 5.16 we get,

C(t) =
1

Z

∫
1

2π
e−βH{(−1)n}2dxdp (5.18)

We can find the OTOC for stadium billiard classically [4]

C = teTt2
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Figure 5.10: Eigenfunction for n = 100 of circle billiard

Figure 5.11: Eigenfunction for n = 200 of circle billiard

31



Figure 5.12: Eigenfunction for n = 400 of circle billiard

Figure 5.13: 3D view for n = 400 in circle billiard
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Figure 5.14: Trajectory of stadium billiard

Figure 5.15: Positive Lyapunov exponent

Figure 5.16: Mesh of stadium billiard
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Figure 5.17: Eigenvalues of stadium billiard

Figure 5.18: Eigenfunction for n=1 of stadium billiard
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Figure 5.19: Eigenfunction for n=2 of stadium billiard

Figure 5.20: Eigenfunction for n=3 of stadium billiard
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Figure 5.21: Eigenfunction for n=10 of stadium billiard

Figure 5.22: Eigenfunction for n=50 of stadium billiard
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Figure 5.23: Eigenfunction for n=100 of stadium billiard

Figure 5.24: Eigenfunction for n=200 of stadium billiard
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Figure 5.25: Eigenfunction for n=400 of stadium billiard

Figure 5.26: 3D view for n= 400 in stadium billiard
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Figure 5.27: OTOC for Stadium billiard

Figure 5.28: OTOC for Stadium billiard
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Chapter 6

Conclusion

In this thesis, we have looked at the idea of quantum chaos and certain systems that
display it. The exponential expansion is not seen in the stadium billiard OTOC.
The spectral form factor was indirectly motivated as a tool to study the discrete
spectra of quantum chaotic systems and compare them to random matrix theory
ensembles. In contrast, the OTOC was directly motivated by the Poisson bracket
argument that showed how quantum chaotic systems would be expected to behave.
For different temperatures and energy levels, we numerically determined the mi-
crocanonical OTOC and the thermal OTOC of the nonlinearly linked harmonic
oscillator.
In addition, we discovered that the quantum mechanics for the particle in a one-
dimensional box and the classical statistics for the OTOC do not coincide. In this
paper, we discussed the Lyapunov exponent’s behaviour and its application and
implementation in a chaotic system. In addition, we discovered the Eigenvalues of
circle and stadium billiards. Besides this, we showed the trajectory of a particle
inside a stadium-shaped billiard.

There is still much to be studied in the context of straightforward quantum me-
chanics, especially for systems with continuous spectra. There don’t seem to be
conclusive findings linking classical and quantum chaos.
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