Online Engage-Measurement in Tutoring Session

by

Saadman Omar Siddique

19301180

M. Shafiul Alam
19301194

Mahmud Alam
19301214

Nabil Hasan
19301222
M. M. Hasan Tajwar

19301240

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of
B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
January 2023

(©) 2023. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is our own original work while completing degree at Brac
University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

\

o

M. Shafiul Alam Mahmud Alam
19301194 19301214

/\/gé/y #ﬁfﬂ/b M. ™. Hasan- q;awab

Nabil Hasan M. M. Hasan Tajwar
19301222 19301240

- [-y
Sodmon S gd@l‘?ﬂq

Saadman Omar Siddique
19301180

Approval

The thesis/project titled “Online Engage-Measurement in Tutoring Session”

submitted by
1. Mahmud Alam (19301194)
2. Nabil Hasan (19301222)
3. Shafiul Alam (19301194)
4. Saadman Omar Siddique (19301180)
5. M.M.Hasan Tajwar (19301240)

Of Spring, 2023 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science on January 19, 2023.

Examining Committee:

Supervisor: /
(Member) /{ c) /{Wﬂ -
. Md. Khalilur Rhaman
Assomate Professor
Department of Computer Science and Engineering
Brac University

Program Coordinator:
(Member)

Dr. Md. Golam Rabiul Alam
Associate Professor
Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor
Department of Computer Science and Engineering
Brac University

i

Ethics Statement

In doing research for this thesis, we commit to observe the highest ethical standards
by obtaining informed consent from all participants, maintaining the confidentiality
of sensitive information, and conducting our work with integrity and neutrality.

il

Abstract

The COVID-19 pandemic has brought about a significant change in the way educa-
tion is delivered worldwide. Restrictions have forced schools, colleges, and universi-
ties to hold classes online using video communication services. While this method of
teaching has its advantages, one major challenge is determining student engagement
during virtual sessions. In traditional classrooms, it is easier to observe student’s
interest and engagement through body language and movements. However, this is
not the case in an online setting, where monitoring engagement requires more re-
sources. To address this issue, we have undertaken research to develop a system
called ”Online Engage-Measurement” that automates the process of monitoring en-
gagement by measuring attention and detecting screen sharing. This system will be
faster, more efficient, and accessible to educators everywhere. It uses screen sharing
detection, face recognition, head position, and eye gaze estimation, as well as an
algorithm called ” AttentionEstimator” to determine engagement levels. The system
detects the attentiveness of both students and teachers and generates a report for
analysis. Besides, our research is unique as this field has not yet been implemented,
and our system is the result of our research contributions, which will help us to
be a part of the Fourth Industrial Revolution. This initiative has the potential to
improve the future of education and solve many problems, such as the development
of proctor-less examination system. Utilizing such attention measuring system in
online education can provide valuable insights for educators to adapt and refine
their teaching methods to align with the needs of their students. It allows for the
assessment of the effectiveness of instruction and detection of areas for improvement
in student performance, thus providing valuable information to enhance the educa-
tional experience for students. Thus, the system we have built has the potential to
improve student learning experiences and boost tutoring session efficiency.

Keywords: Online Engage-Measurement, Screen Sharing detection, Face Recog-
nition, Head pos, Eye Gaze Estimation, AttentionEstimator, System, Proctor-less,
Attentiveness, Unique

v

Dedication

We dedicate this research to our parents and to the future of online education.

Acknowledgement

Firstly, all praise is due to the Great Allah, for whom our thesis has been completed
without any major interruption.

Secondly, to our Advisor Dr. Md. Khalilur Rhaman, who had given us the incentive
to start our thesis on this topic, for his kind support and advice in our work. He
helped us whenever we needed help.

And finally to our parents, without their throughout support it would not be possi-
ble. With their kind support and prayers, we are now on the verge of our graduation.

vi

Table of Contents

Declaration
Approval

Ethics Statement
Abstract
Dedication
Acknowledgment
Table of Contents
List of Figures
List of Tables

1 Introduction
1.1 Motivation
1.2 Aims and Objectives
1.3 Research Methodology
1.4 Thesis Orientation

2 Literature Review
2.1 Related Works

3 Methodology

3.1 Workflow
3.2 Dataset
3.3 Model

3.3.1 Screen Share Detection
3.3.2 Face Recognition and Clustering
3.3.3 Head Pose Estimation
3.3.4 Eye Gaze Estimation

4 Implementation
4.1 Screen Share Detection
4.2 Face Recognition Lo
4.3 Head Position and Eye Gaze estimation

vil

ii

iii

iv

vi

vii

ix

4.3.1 Head Position Estimation
4.3.2 Eye Estimation 00
4.4 Attention Estimation and Report Generation
4.4.1 Attention Estimation
4.4.2 Report Generation L

5 Results

5.1 Accuracy calculation
5.1.1 Screen sharing detection
5.1.2 Face detectiono
5.1.3 Face recognition and clustering
5.1.4 Head-position estimation
5.1.5 Eye-gaze estimation oL
5.1.6 Overall Average Accuracy

5.2 Screen share detection report L.

5.3 Attentiveness report generation L.

6 Conclusion

Bibliography

viil

26
26
26
27
27
28
28
28
31
35

39

42

List of Figures

3.1
3.2
3.3
3.4

3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
2.3
5.4
9.9
2.6
5.7
5.8
2.9
5.10
5.11
5.12
5.13

Workflow of OEMTS 7
Images of faces extracted from video 9
Contour Detection on Screen 11
RepVGG architecture. It consists of 5 stages and down-sampling is

conducted by stride-2 convolution when each stage begins. 13
MediaPipe Landmarks of face and eye 16
Eye region annotated with eyelid (red) and iris (blue) contours 16
Cropped eye regions form the input to the model, which predicts

landmarks via separate components 17
Screen Extraction from Video Frames 19
Face Extraction From Video Frames. 20
Head Pose Detection from Video Frames 21
Head Pose estimation using MediaPipe and OpenCV 23
Head Pose estimation using 6DRepNet 23
Attention Estimation (Pseudocode) 25
Attention Measurement Accuracy 29
Screen Share percentage of Video 1 31
Screen Share timelapse of Video 1 31
Screen Share percentage of Video 2 32
Screen Share timelapse of Video 2 32
Screen Share percentage and Pie chart of Video 3 33
Screen Share percentage and bar chart of Video3 33
Screen Share percentage and Pie chart of Video4 34
Screen Share percentage and bar chart of Video4 34
Attention percentage of Video 1 with and without constraints 35
Attention percentage of Video 2 with and without constraints 36
Attention percentage of Video 3 with and without constraints 37
Screen Share percentage of Video 1 and Attention percentage 38

1X

List of Tables

3.1

3.2

5.1

5.2
2.3

5.4
9.9
2.6
5.7

Architectural specification of RepVGG. 2 x 64a means stage2 con-
tains 2 layers each having 64a channels. 12
Table comparing the 6DRepNet model with other models. The mod-
els were trained on the 300W-LP dataset and tested on the AFLW2000,BIWI
and BIWI 70/30 dataset 15

Accuracy calculation of the Screen Share detection module using Con-

tour functiono 26
Accuracy calculation of the Face Detection module using Face_Recognition 27
Accuracy calculation of face clustering/organizing based on person’s

face identity using K-means model 27
Accuracy calculation of the Head-position estimation using 6dRepNet 28
Accuracy calculation of the eye-gaze estimation using mediapipe . . . 28
Average accuracy of different modules. 29
Overall accuracy of the system 30

Chapter 1

Introduction

1.1 Motivation

Nowadays, live internet teaching is a popular way of education. The accessibility
and availability of joining a class online from home or any other location with easy-
to-access internet and internet technologies, in addition to the current covid-19
pandemic, have all pushed the popularity of online classes sky-high. With that
regard, many concerns have also risen that were either absent or not so prevalent in
the counterpart of online classes, such as the absence of attention and participation of
the participants of the class like the in-person classes. This becomes an issue when
the participant is either a student’s parents or the authorities of the educational
institution who are concerned regarding the quality and effectiveness of the class. In
this case, an automated technique for monitoring class participants’ involvement or
attention becomes essential. With this purpose in mind, we propose an engagement-
measurement system that will automate the majority of this procedure and monitor
both the student and teacher’s attention levels throughout a 1-1 online tutoring
session.

1.2 Aims and Objectives

We aim to build such a system that will attempt to measure the engagement level
of both the student and tutor in a lonl online session. We will detect the screen
sharing of the participants, including the facial features which include mainly the
head pose and the eye gaze, and in the end, generate a report that will allow us to
determine the engagement and attentiveness of the parties involved.

1.3 Research Methodology

First, we have organized our working method into modules so that we may work
on each component individually. For our first module, screen sharing, we utilized
the OpenCV library to map the screen’s contour at any given time in order to
determine if the screen is being shared and to identify the individual sharing the
screen. The second module of our system is facial feature recognition, which is
utilized to recognize faces in the video input. For face detection, we utilized the
"face_recognition’ library to find the faces in the video that was inputted. Then we

used the 'K-means’ algorithm to cluster the detected faces into several folders. For
the third module, in the head position estimation part, the 6DRepNet model was
utilized to estimate the position of the detected faces. Using the ‘MediaPipe’ library,
we monitored the participants’ eye movements to estimate their gaze direction in the
eye gaze estimation part. These modules were utilized for evaluating students’ or
tutors’ attentiveness in the final module which is the attention measurement module.
We also utilized Python libraries for graph production such as matplotlib, seaborn,
NumPy, and pandas to visualize our data for the result.

1.4 Thesis Orientation

At the start of chapter 2, we covered related work in the face recognition and at-
tention estimation domains. In the third chapter, we then present an overview of
our system. Individually, we analyze and discuss each module of our system. We
discussed the data we utilized. Finally, we discuss how each of these components
contributes to the intended outcome. In chapter 4, the implementation phase is
discussed. In chapter 5, we discuss our findings and the precision of our model.

Chapter 2

Literature Review

Attention detection is a well-researched topic. It is essential now because almost
everything is online-based. From educational purposes to international conferences,
everything is being conducted online. As it is becoming a trend to conduct online
sessions, especially for educational purposes, administrators are now seeking appli-
cations that will help them determine their total attentiveness. As said in [18],
teachers often rely on detecting and responding to overt student behaviors as proof
of their attention in face-to-face settings. However, in an online session, teachers
may only be able to see a student’s head and shoulders, limiting the amount of
information provided. Even if the information is recorded by the instructor, the
instructor’s teaching proficiency is not documented in any way. We can determine
attentiveness manually. However, that is a lot of work. Therefore, automation of
attention detection is a must.

2.1 Related Works

The researchers [3] combined the YOLO (You Only Look Once) algorithm with the
VGG16 CNN to make a face detection system. The system was able to detect the
faces faster than previously tested systems. The method was divided into three
stages; creating the truth database, feature extraction, and face detection. In the
feature extraction part, a pre-trained VGG16 model with 32 layers was used. Some
of the layers used were the convolutional layer, rectified linear unit layer (ReLU),
pooling layer, fully connected layer, dropout layer, and classification layer. At the
end of the face detection stage, the output obtained from the pre-trained VGG16
was combined with the YOLOv2 algorithm. As the name suggests, the ”you only
look once” YOLO algorithm needs to process each image just once to detect all the
features, so it is very fast. During the experiment, the system was able to detect the
test image set with 95% precision. Other works utilizing the VGG16 model include
using a pre-trained VGG16 model in conjunction with a Deep Convolutional Neural
Network to classify images using transfer learning, as shown in . Transfer learning
is applying previously learned knowledge to solve more modern problems faster and
with better solutions. Here, the CNN model was developed in Python using libraries
like TensorFlow and Keras. Firstly, the images are passed through layers of the
CNN model, and the output is used to classify images. The output images obtained
are fine-tuned, and the VGG16 model is implemented to classify the images, check
the accuracy, and validate the data. The layers used in this VGG16 model were

similar to the layers of the VGG16 model mentioned in the previous paragraph.
The dataset used here comprised over 25000 images of various dogs and cats, and
the system implemented was to distinguish the two animals’ images accordingly.
After fine-tuning the images and using the VGG16 model, they were able to obtain
an accuracy of 95.4%.

Lindelof, A & Eriksson, J (2015) said in [9], that a better approach to student at-
tention detection is the MB-LBP (multi-block local binary pattern), which required
less training time than the V-J algorithm and also yielded more accuracy. They
defined attention in similar ways as [8]. Although they concluded that both the V-J
and MB-LBP methods yielded almost as accurate 10 results, they admitted that
this could be further improved with better training environments

The research paper [22] presented a ”"Help-Me-Watch” (HMW) system that used
AT algorithms to provide personalized video summaries of online classes delivered
via Zoom. It assists in resolving the drawbacks of online learning and assists stu-
dents with class reviews by recommending these classes to students based on all
attendees’ attention levels recorded during live sessions. The HMW software, which
is downloaded onto the student’s laptop and is based on a real-time eye blink de-
tection algorithm that computes the eye aspect ratio (EAR) between the height
and width of the eye, estimates the student’s attention level. The basic video sum-
mary technique employs 1-minute aggregations of attention levels, and it eliminates
the attention levels of students who came late, departed early, or were not look-
ing at their screens; the missing portion is then included in their video summary.
The mean attention level and volatility, which is the degree of variation over time,
which is often quantified by the standard deviation of logarithmic changes in at-
tention levels of participating students, are then merged and outputted into tables
and graphs. Figure 3 of the proposed paper demonstrates that a class lasted 48
minutes, that 12 students utilized the HMW system, and that the stacked bar chart
provides anonymized aggregated attention levels from those 12 students, outputting
an average attention level of 78%.

In [15], they first categorized engagement detection into three different methods,
automatic, semi-automatic, and manual. As we focus on the automatic side it is
further broken down into Computer Vision-based detection, sensor data analysis,
and log file analysis. For computer vision-based detection systems, the video feed is
first captured using cameras. The system detects Regions of Interest from the video
feed and uses modules to extract, classify, track and finally give a decision regarding
the percentage of engagement. Computer vision-based detection mainly focuses
on the detection of facial expressions, gestures and posture, and eye movement.
For facial expression detection, two methods are used, part-based and appearance-
based. For appearance-based regions from the whole face are used to generate
patterns which are then detected and classified by feature extraction techniques
such as Local Binary Patterns (LBP) and Deep Multi-instance learning (DMIL). For
gesture and posture detection, the gestures were captured using cameras and graph-
based visual saliency (GBVS) was used to detect potential deictic gesture regions,
and Support Vector machines (SVM) based classifiers were used to determine the
accurate gestures from the detected regions.

Eye tracking is very important in terms of measuring attentiveness. Over the years,
people have used many different eye-tracking systems. [12] One of them is the Tobii
EyeX eye-tracking controller. The pupil center and corneal reflection technique are
used in the design of these eye trackers. We can calculate the position of the pupil
based on the position of an infrared light glint on the cornea. To improve the
accuracy of gaze point estimation, the Tobii EyeX Engine offers a native calibration
method (TNC) that must be completed before using the engine with a new user. The
technique is necessary to determine the setup’s geometry (e.g., screen size, distance,
etc.) and to gather data on the subject’s corneas’ light refraction and reflection
characteristics. For the experiment, in order to reliably measure the accuracy and
precision, observers were positioned at ~ 700mm from a computer monitor with
the head stabilized by a chin and forehead rest. The individuals went through
the calibration and testing methods specified in the ”Calibration Technique” for
monocular and binocular vision. The tests were carried out on a PC equipped with
an Intel 12 Core i7-4700 CPU @ 2.40 GHz and 12 GB of RAM, connected to a 17-inch
LCD with 1920 x 1080 resolution at 60 Hz, and running Windows 7 Professional.

Research Paper [6] presents us with different types of head pose estimation meth-
ods. Some examples are Appearance Template Methods, Detector Array Methods,
Nonlinear Regression Methods, Manifold Embedding Methods, Flexible Methods,
Geometric Methods, Tracking Methods, and Hybrid Methods. It is a very excit-
ing field with a room full of improvement, people desire off-the-self, universal head
pose estimation applications for their work. Estimating head posture is an obvious
next step in bridging the information gap between humans and computers. This
basic human skill gives a lot of information about people’s intentions, motivations,
and attention in the world. Systems that can better interact with humans can be
constructed by simulating this skill. Most head position estimation methods work
from the viewpoint of a rigid model, which has its own set of restrictions. The
complexity of developing head posture estimation algorithms arises from the va-
riety of individual appearances, as well as variances in illumination, background,
and camera geometry. Murphy-Chutorian & Trivedi (2008) proposed design criteria
as a guide for future development. The following design criteria include Accurate,
Monocular, Autonomous, Multiperson, Identity & Lighting Invariant, Full Range
of Head Motion, Resolution Independent, and Real-Time. It seems that no single
system has met all these criteria.

The study [4] is focused on a scheme that uses contour based features to detect
objects categorically. For object detection for images on screen contour mapping has
many advantages of traditional texture mapping as it can match image structures
with large spatial extents while remaining largely invariant to lighting conditions and
object color.The paper in [1] talks about how a modified K-means algorithm can be
used to cluster data. The modified algorithm implements measurement of distance
on the idea of point symmetry which can be applied into human face detection and
data clustering. The study in [11] talks about how a dedicated eye tracker can
be used to collect eye gaze data to analyze loss of attention while doing jobs that
required the use of computers. The behavior of eye patterns were observed and
was found that patterns varied distinctly when attention was not being paid.The
research in [24] proposes a webcam-based eye gaze detection method which allows
free head movement of the user. Latest Deep learning techniques such as MediaPipe

were used so that the method functions in real time with live video feed while
maintaining acceptable frame rates which is quite necessary in real time processing.
The paper in [5] talks about how paying attention plays a part in the learning
capability of students. It talks about how the wandering of mind of students during
classes affects their focus and their overall learning. The paper in [13] talks about a
multi loss convolutional neural network which was trained on the 300W-LP dataset.
The neural network predicts intrinsic Euler Angles yaw,pitch and roll directly from
intensity of images through regression and joint based pose classification which can
predict the headpose of the person more robustly and elegantly.

In paper [17], they investigate methods for estimating students’ engagement lev-
els based on a set of facial and head movement behaviors that describe dynamic
movement of the eye, head, and mouth. The findings show plausible nonlinear cor-
relations with EEG-based attention measurement, laying the groundwork for future
research into methods to fuse information from those two modalities.In study [20],
the researchers tracked attention using biometrics and machine learning. In partic-
ular, they concentrate on discussions and analyses of techniques that make use of
eye gaze, facial expressions, body movements, behavioral biometrics like brainwave
analysis, and multimodal biometrics. They conclude by talking about some exciting
new directions for future research, with a focus on multimodal biometric methods.
The study [16] describes how eye-tracking data can be used to forecast a student’s
attention as a gauge of their emotional state throughout a lesson. Using the Ex-
treme Gradient Boosting machine learning technique, accuracy of 77% was achieved
in this study. The results show that eyegaze can in fact be a foundation for creating
a predictive model.

Chapter 3

Methodology

3.1 Workflow

?

Input Data

o

Video

Processing
®

Visual Screen Engage
eeEe A Sharing Measurement
P Report Module
~ Face Face_
(/ Recognition Recognition
Attention Face
! ——| K-Means
Measurement Clustering

Head Eye
6DRepNet Pose Gaze MediaPipe
Estimation Estimation
N

Figure 3.1: Workflow of OEMTS

In our workflow diagram, we begin with Input Data, which is then processed through
the Video Processing module. This module is divided into two sections: the Screen
Sharing Report and the Engagement Measurement Module.

The Engagement Measurement Module utilizes the "face_recognition’ library to per-
form Face Recognition on the input data. The output of this step is then fed into
the Face Clustering module, which employs the K-Means library for grouping sim-
ilar faces together. The Face Clustering step splits into two sub-parts: Head Pose
Estimation and Eye Gaze Estimation. The Head Pose Estimation sub-module uses
the 6DRepNet model, and the Eye Gaze Estimation sub-module uses the MediaPipe
library. These two sub-parts are then integrated into the Attention Measurement
module, which measures the attentiveness of the individual.

The Screen Sharing Report and Attention Measurement are then used to generate a
Visual Representation of the input data, which provides insights into the engagement
and attention levels of the participants in the video.

This workflow is designed for providing engagement and attention measurement
during the video conference or screen-sharing scenario, which enables us to have a
more efficient and productive remote working or studying environment.

3.2 Dataset

The dataset used in this study consisted of video recordings of 1-on-1 sessions, mainly
zoom sessions. These recordings were captured using in-built screen recorders of the
respective software and recording software such as ‘OBS Studio’ on laptops and
computers using webcams under different lighting conditions. The total number of
video files in the dataset was four, with an average duration of 45 seconds per video.
For testing purposes, these videos were trimmed to achieve a smaller video duration.
The accuracy of the results of these modules was evaluated manually. While testing
the system, a single video from the dataset was inputted into it at a time.

Therefore, four video files were used to evaluate the performance of our system. The
following features were observed for each video:

Video 1: A video session featuring two individuals with their webcams turned on
and screen sharing active throughout the duration of the video.

Video 2: A tutoring session featuring one individual with their webcam turned on
and screen sharing active throughout the duration of the video.

Video 3: A tutoring session featuring two individuals with their webcams turned
on, but no screen sharing present.

Video 4: A tutoring session featuring two individuals, but neither had their webcams
turned on, with screen sharing active at certain points during the video.

The first step in processing the dataset was to detect and extract the faces from each
frame of the video. This was accomplished using the Python ‘face_detection’ library.
The extracted face images were then resized to a specific resolution of 100x100 pixels.

Next, the extracted face images were grouped and sorted into different folders de-
pending on the recognized individual in each image. This was accomplished by
utilizing the ‘KMeans’ algorithm.

The clustered face images were then used as input for various modules, including
head pose estimation and eye gaze position. Head pose estimation was performed

using the 6DRepNet model, while eye gaze position was determined using the ‘Medi-
aPipe’ library. The accuracy of the results of these modules was evaluated manually.

Altogether, the collection of videos utilized by our system was compiled from a
variety of sources, including class recordings from our university, YouTube, and
our own recordings. Overall, the dataset played a crucial role in the success of
the proposed system and its ability to accurately estimate head pose and eye gaze
position, screen sharing duration and the attentiveness of the student and the tutor.

L B
B
-
Name ;/ il ¥
" - L
M, -~ -~
H - L
m - -
N -~ u -~
o - = -
] u -
m - u -
o - L
o - o -
- - o -
.,
-A
..
-.
[]
-.
..
o .

Figure 3.2: Images of faces extracted from video

3.3 Model

For our system, we employed a variety of libraries and models to develop our facial
recognition system. We used the ’face_recognition’ library to detect and extract
facial features from images and videos. The ’scikit-learn’ library was used to imple-
ment the KMeans algorithm for clustering the detected faces. We also used 'NumPy’

and 'OpenCV libraries for image processing and manipulation. The 'Mediapipe’ li-
brary was used for eye position estimation. For head pose estimation, we used the
'6DRepNet” model, which is a deep learning model. The model is trained on a large
dataset of faces and is able to extract a high-dimensional representation of a face,
allowing for accurate recognition and tracking of individuals. We created our own
algorithm for estimating the attentiveness of an individual in a session. Overall, our
system presents a practical and efficient approach for estimating the engagement of
an individual in a video input. We used a combination of computer vision tech-
niques and machine learning models to develop our system to assist online tutoring
sessions.

3.3.1 Screen Share Detection

One of the features of our system is to detect if the screen is being shared or not.
By measuring the amount of time the screen is being shared, we can have an idea
of how long the participants were active in the meeting. In order to detect if the
screen is being shared, we used Contour Detection using the OpenCV library.

Contour Detection

Contours are boundary pixels of objects that have the same intensity and color.
By using OpenCV we can find contours from images. Firstly, we read the video
frame by frame. We then resize the frame so that we can work with the frames
more conveniently. After that, we grayscale the images obtained from the frame so
that it becomes easier to process. Then, we use the ‘cv2.findContours()’ function
to find the contours of the images that we obtained from the frames. The function
takes an image and returns a list of contours which are each represented by a list of
points. Contours are organized by hierarchy, arranging the outermost contour at the
beginning of the list and the innermost contours nested inside of it. After detecting
the contours, we find the contour count of the frame by using the ‘len(contours)’
function. Lastly, we set a threshold of 100 contour counts to determine if a screen is
being shared. If the contour count is above the threshold, then we can evaluate that
there are various objects present on the screen and thus that means the screen is
being shared. On the other hand, if the contour count is below the threshold, then
we can estimate that there are fewer objects present on the screen and the screen is
mostly black, and no screen is being shared.

3.3.2 Face Recognition and Clustering

The ’face_recognition’ python library is an effective instrument for detecting and
identifying faces in video and images. This library utilizes sophisticated algorithms
to recognize and extract facial features [10], such as eyes, nose, mouth, and face
contours, from images. It also uses deep learning algorithms to identify faces and
match them against a database of known faces. The library employs dlib’s state-
of-the-art deep learning-based facial recognition. It is capable of comparing a face
in an image to a set of known faces and returning the name of the individual with
the highest degree of resemblance. Additionally, it allows for the identification and
recognition of several faces inside a single image or video frame, which is ideal for
our system. Thus, our approach leveraged the power of the 'face_recognition’ python

10

Oosamunter Toow % [Loson Ropot liasts X L Mctace) Cosgas X O fomammedes Zoom X [ueson Sepst Al X | CoogeCoat bk C o) Cosgel % O fomatwdesJom % [usten oot ARG X | - wekowe R Coiboater: X | @ NewTad

+ ce 08 sooglecon o v @
€ Welcome To Colaboratory
Fle M Viw lsat Rt Took Vi
Cote +Ten 8 Coorolrme
Table of contents I X N

Welcome to Colab!

W youre skeady famiiar with Colab, check oul this video 1o learn aboul inceractive tables, the execy
g MR palette

> thecoms To Colibostory

& Vnneasine

What is Colab? & Uit

Colab, or ‘Cosboralory’, elows you lo wite and execute Python in your browse, with

& Vet

* Zeto configuration required
+ Acoess 1 GPUS free of charge
+ Easy sharing

o Whether youe & student, 3 deta scientistor n Al researcher, Cola can make your work easier W
[Just get started below!

Aattien bectad

OmE m0O86S

Go g]e colab X Q
VAl Dimages © Maps [Videos @ News 1t More Tooks
hitps:firesearch.google.com » colaboratory |

Welcome To Colaboratory - Google Research o

Colah notebooks al

you to combine executable code and rich text in a single document

along wilh images. L. LaTeX and more. When you creale your own Colab
Google Colab - Authorize with GitHub - Colab Pro - Colab Widgets

hitps:#colab.research.google.com
Google Colab

Sign ir

hitpsifcolabresearch.google.com > notehooks

Filter notebooks - Google Colaboratory (Colab)

,,,, 140 filtar tha lict nf neohnnke chauwn haimu Title Mwoniow f Cnishasatoe

b mo®8®® |

Figure 3.3: Contour Detection on Screen

library to detect and extract faces from the frames of the video that was inputted
into the system. When an image or a video frame is processed, the deep learning
model scans the image and detects the presence of faces. Once a face is detected,
the model then extracts a set of facial features, including the coordinates of the eyes,
nose, mouth, and face contours. These features are then used to create a unique
facial descriptor for each face, which serves as a numerical representation of the face.
We resized the detected faces in a specific resolution, saving them using a loop, and
named them in a specific format.

The detected faces were then processed and analyzed through the use of the 'KMeans’
library for clustering [2]. KMeans is a well-known algorithm that uses ’Scikit learn
library’ for clustering and categorizing data based on their similarities. It is an
unsupervised machine-learning technique that divides a batch of data points into a
predetermined number of clusters. The clustering process enabled us to group the
detected faces according to their similarities, which allowed us to categorize them
into subfolders for further analysis. The clustering process begins by initializing the
cluster centroids randomly. The algorithm then assigns each detected face to the
cluster with the closest centroid. The cluster centroids are then recomputed as the

11

mean of the faces in the cluster. The algorithm continues to iterate until the cluster
assignments no longer change, resulting in a final set of clusters. We can see the
figure 3.2 in which ‘person(’ and ‘personl’ folders were created, and in these two
folders, we stored the faces of two different persons that were detected through this
algorithm. This approach allowed us to efficiently process large amounts of images
that were extracted from the video data.

3.3.3 Head Pose Estimation

The determination of head position is a crucial component of our system. By de-
termining the head position of the participants, we will be able to determine the
direction of their gaze. If the person does not look at the screen for an extended
period of time, we can assume that they are not paying sufficient attention to the
lecture. For this module, we utilized the 6DRepNet model for unconstrained Head
Pose estimation. Here, the 6DRepNet model is developed using Pytorch. The back-
bone of this model, 6DRepNet is RepVGGI[21].

RepVGG

RepVGG is a convolutional neural network architecture having a VGG-like infer-
ence time body and is composed of a stack of 3*3 convolution and ReLU. The
training time of this model has a topology which is multi-branched. A structural
re-parameterization is used to realize the decoupling of the inference-time and the
training-time and thus the model is named RepVGG. RepVGG is a simple ConvNet,
while simple ConvNets have lower accuracy than the more complicated ones, they
also have some significant advantages. Simple ConvNets such as RepVGG are faster
as it does not introduce extra overheads such as synchronization and kernel launch-
ing and uses only one fragmented operator. They are also memory economical as it
allows the occupied memory used by the inputs to be immediately released as soon
as the operation is finished. Lastly simple ConvNets are flexible as it allows free
configuration of every convolutional layer according to the requirements and allows
pruning to achieve better efficiency-performance trade-off.

RepVGG has a plain topology like VGG without containing any branches as each
layer only uses the preceding layer’s output as input and passes its own output to the
next layer. The body of RepVGG uses only ReLU and 3*3 convolution.In the concrete
architecture of RepVGG,no compound scaling, manual refinement,automatic search,
or other heavy designs are used to instantiate the concrete architecture.

Stage | Output size RepVGG-A RepVGG-B
1 112 x 112 | 1 x min(64, 64a) | 1 x min(64, 64a)
2 56 x 56 2 x 64a 4 x 64a
3 28 x 28 4 x 128a 6 x 128a
4 14 x 14 14 x 256a 16 x 256a
5) 7Tx7 1x512b 1x512b

Table 3.1: Architectural specification of RepVGG. 2 x 64a
means stage2 contains 2 layers each having 64a channels.

12

stride=2{ 3x3 stride=2 | 3x3 | stride=2 [3x3 |
®)

—/—
3x3 | | 1x1 [3x3]
®

——
3x3 | [1x1 [3x3]
O,

——
3x3 | [1x1 [3x3]
0,

‘T’

(A) ResNet (B) RepVGQG training (C) RepVGG inference

l: conv —— ReLU D Identity

Figure 3.4: RepVGG architecture. It consists of 5 stages and down-sampling is
conducted by stride-2 convolution when each stage begins.

RepVGG improves its efficiency by the use of structural re-parameterization. Struc-
tural re-parameterization means conversion of the architecture from one form to an-
other form through transformation of the parameters. The training time of RepVGG
is constructed using 1*1 branches and identities, structural-parameterization allows
the branches to be removed. Transformation is done after training by the use of
simple algebra. An identity branch can be perceived as a degraded 1*1 convolution
and furthermore the identity branch that comes after can be also regarded as a
degraded 3*3 convolution. Using this a single 3*3 kernel can be constructed which
contains the trained parameters of the 3*3 original kernel, 1*1 and identity branches
and batch normalization layers. Hence the model which is transformed contains a
stack of 3*3 convolution layers which may be used for deployment and testing.

6DRepNet

6DRepNet is a cutting-edge deep learning model for 6D pose estimation of objects in
an RGB-D image. It is designed to handle the challenges of estimating the 6D pose
of objects in cluttered environments, where traditional methods may fail. One of the
key innovations of 6DRepNet is its use of a rotation matrix representation to predict
the precise head orientations of an object without the need for landmarks. This
allows for full pose regression with a nine-parameter matrix without encountering
any ambiguity issues.

The paper[23] presents a new method for head pose estimation that is based on
a deep learning model called 6DRepNet. The model is trained using a new 6D
rotation representation, which encodes the 3D rotation of the head as a vector of

13

six parameters. The new representation is more robust to large variations in head
pose and allows the model to estimate the 6D head pose (3D rotation and 3D
translation) of a person from a single 2D image. The 6DRepNet model is trained
on a large dataset of images of people with varying head poses and is then tested on
several benchmark datasets. The results show that the 6DRepNet model is able to
achieve state-of-the-art performance in estimating the 6D head pose of a person from
a single 2D image. The authors also present an analysis of the different components
of the model and show that the new 6D rotation representation is a key factor in
the model’s improved performance.

6D in 6DRepNet refers to the six degrees of freedom that are used to describe
the pose of an object in 3D space. These six degrees of freedom include three for
translation (x, y, z) and three for rotation (roll, pitch, yaw). In other words, 6D pose
estimation is the process of determining the position and orientation of an object in
3D space, which is represented by its 3D translation and 3D rotation.

The use of a rotation matrix representation also simplifies the network architecture,
making it more robust and efficient. This is because it eliminates the need for
performance stabilizing techniques, such as the discretization of rotation variables
into a classification problem. This also allows for easy conversion of network issues
to other rotation-related tasks.

To further improve the accuracy of the model, 6DRepNet employs a novel repulsion
loss function that is based on the geodesic distance on the SO(3) manifold. This loss
function penalizes the network in relation to the geometry of the SO(3) manifold,
which results in more accurate pose estimations. Additionally, the model enforces
the orthogonality constraint RR? = I on the rotation matrix representation, which
helps to ensure that the predicted rotation matrix is valid.

Another important aspect of 6DRepNet is its use of a compressed 6D representa-
tion, which is obtained by dropping the final column vector of the rotation matrix.
This approach has been shown to result in smaller errors for direct regression, and
also simplifies the network architecture. The compressed 6D representation is then
transformed into a rotation matrix using the Gram-Schmidt mapping. This enables
the model to effectively handle the challenges of large object datasets.

Furthermore, 6DRepNet also employs a data augmentation strategy to generate
synthetic training data, further enhancing its performance. This enables the model
to generalize well and improve its robustness in real-world scenarios.

Overall, 6DRepNet is a powerful and efficient model that uses state-of-the-art tech-
niques to achieve high accuracy and robustness in cluttered environments. It is
named 6DRepNet as it is influenced by the 6D representation method, and it’s a
powerful tool for robotic grasping and manipulation tasks in cluttered environments.
Below is a model that compares 6DRepNet with other models [23].

3.3.4 Eye Gaze Estimation

Eye gaze tracking is one of the main components of our system. By tracking the eye
gaze, we will get to know if the person is looking in the direction of the screen or
not. If the participant is not looking in the direction of the screen for a relatively

14

AFLW2000 dataset BIWI dataset BIWI 70/30 dataset

Models RFAUNLéJ E Yaw | Pitch | Roll | MAE Yaw | Pitch | Roll | MAE Yaw | Pitch | Roll | MAE
HopeNet(=2) N 6.47 | 6.56 | 5.44 | 6.16 5.17 | 6.98 | 3.39 | 5.18 - - - -
HopeNet(=1) N 6.92 | 6.64 | 5.67 | 6.41 4.81 | 6.61 | 3.27 | 4.9 3.29 | 3.39 3 3.23

FSA-Net N 4.5 | 6.08 | 4.64 | 5.07 4.27 | 4.96 | 2.76 4 2.89 | 4.29 | 3.6 3.6
HPE N 4.8 6.18 | 4.87 | 5.28 3.12 | 5.18 | 4.57 | 4.29 - - - -
QuatNet N 3.97 | 5.62 | 392 | 4.5 2.94 | 5.49 | 4.01 | 4.15
WHENet-V N 4.44 | 5.75 | 4.31 | 4.83 3.6 4.1 2.73 | 3.48
WHENet Y/N 511 6.24 | 4.92 | 5.42 3.99 | 4.39 | 3.06 | 3.81 - - - -
TriNet Y 4.04 | 5.77 4.2 4.67 4.11 | 4.76 | 3.05 | 3.97 2.93 | 3.04 | 2.44 2.8
FDN N 3.78 | 5.61 | 3.88 | 4.42 4.52 | 4.42 | 256 | 3.93 3 3.98 | 2.88 | 3.29
6DRepNet Y 3.63 | 491 | 3.37 | 3.97 3.24 | 3.97 | 2.68 | 347 2.69 | 292 | 2.36 | 2.66

Table 3.2: Table comparing the 6DRepNet model with other
models. The models were trained on the 300W-LP dataset
and tested on the AFLW2000,BIWI and BIWI 70/30 dataset

long time then it is quite obvious that the person is not paying attention to what is
being shown on the screen. So eye gaze tracking will be able to give us important
information through which we will be able to determine the engagement level of the
participants. For our research, we have used the ‘MediaPipe’ framework for eye gaze
tracking.

Developed by Google, MediaPipe is an open-source framework that is cross-platform
and designed for multimodal (i.e. pictures, video, and audio) applied machine learn-
ing pipelines. It comprises a collection of pre-built, reusable components for com-
mon machine-learning tasks such as object detection, facial landmark detection, and
hand tracking. Furthermore, it enables developers to build, deploy, and run machine
learning models on various media types such as live video streams, images, and au-
dio. In addition, MediaPipe offers a user-friendly interface that makes it easy to
create and deploy unique machine-learning models.

For eye gaze detection MediaPipe at first, uses computer vision algorithms to locate
the subject’s eyes and face [14]. Typically, a combination of methods such as haar
cascades, deep learning-based object detection, and facial landmark detection is used
for this. MediaPipe offers a solution called FaceMesh that estimates 468 3D face
landmarks in real time. It uses machine learning (ML) to infer the 3D facial surface
and only needs one camera input—a specialized depth sensor is not required. The
method provides the real-time speed necessary for live experiences by combining
GPU acceleration across the pipeline with lightweight model architectures. After a
mesh of approximate face geometry is generated, the eye region is isolated for use
in the iris tracking step.

15

Mediapipe landmarks

n
=<
[
[
E
©
[=
[
-
[
Ll

Eye Landmarks

Figure 3.5: MediaPipe Landmarks of face and eye

Figure 3.6: Eye region annotated with eyelid (red) and iris (blue) contours

For iris tracking the pipeline is constructed as a MediaPipe graph that makes use of
a dedicated iris-and-depth renderer subgraph, an iris landmark subgraph from the
iris landmark module, and a face landmark subgraph from the face landmark module
[19]. An internal face detection subgraph from the face detection module is used
by the face landmark subgraph. Through this process a set of 478 3D landmarks is

16

generated, 468 of these are from the MediaPipe face mesh. The landmarks around
the eyes are further polished and 10 additional iris landmarks are added at the end
with 5 for each eye. Without additional hardware, MediaPipe Iris can accurately
calculate the metric distance of a subject from the camera with less than a 10%
error.

“Real” world dataset Eye landmarks (3d)

Model

Iris landmarks (2d)

Figure 3.7: Cropped eye regions form the input to the model, which predicts land-
marks via separate components

17

Chapter 4

Implementation

The challenge we were given was to find a way to measure how engaged a teacher
and student were in a Google Meet and Zoom session. The term ’engagement’ refers
to both the students and the instructor’s degree of involvement in the learning pro-
cess. It is a very abstract task. In this study we tried to determine how intently
both the student and the instructor were engaged. For this case, we used the Medi-
aPipe framework’s eye gaze, the 6DRepNet pre-trained model, and Screen sharing
detection.

Screen sharing detection can give an indication of how much the teacher is sharing
the screen during the online tutoring session, and how much the student is interacting
with the shared content. It can be done by analyzing the screen recording of the
tutoring session by using contours.

The MediaPipe framework uses computer vision techniques to track the student’s
eye gaze from video streams. It can detect the location of the eyes and the pupils
and can estimate the gaze direction. This information can be used to determine if
the student is looking at the teacher, the screen, or somewhere else.

The 6DRepNet pre-trained model, on the other hand, uses machine learning algo-
rithms to estimate the head position from a video frame. The model is trained on
a large dataset of head images and can estimate the yaw, pitch, and roll angles of
the head. These angles give an indication of the head rotation and can be used to
determine if the student is actually looking at the screen or not.

Due to the requirements of our goal, we had to fulfill multiple purposes in our
system. We have separated those purposes into 5 different modules to properly
divide the workforce and to organize the system. These modules are: 1) Screen
share detection, 2) Face recognition, 3) Head Pose and eye-gaze estimation, and 4)
Attention estimation and report generation.

4.1 Screen Share Detection

For Screen sharing, we used the ‘Contour’ calculation. Contours are the boundaries
of an object in an image and can be used to detect the edges of a shared screen.
We have set a threshold to calculate the total contours from our input video to
determine whether the screen is being shared or not.

18

© + Drive mounting section
e sk o e i s

L3 ot

» Module 1: Screen Sharing Detection

+ Module 2: Extracting images from video and using Facial Recognition to Ipﬂe;nﬂy faces.

: e w0 a

» Module 1: Screen Sharing Detection

R
~ Module 2: Extracting images from video and sing Facial Recognition to faces.

Figure 4.1: Screen Extraction from Video Frames

4.2 Face Recognition

We used the face recognition python library as an effective tool for detecting and
identifying faces in video and images which uses sophisticated algorithms to rec-
ognize and extract facial features from images. Our approach also employed deep
learning algorithms to identify faces and match them against a database of known
faces. We leveraged the power of this library to detect and extract faces from the
frames of the video input. Our detected faces were processed and analyzed through
the use of the KMeans library for clustering. This allowed us to group the detected
faces according to their similarities and categorize them into subfolders for further
analysis.

4.3 Head Position and Eye Gaze estimation

The implementation of Head Position and Eye Gaze estimation is discussed.

4.3.1 Head Position Estimation

On our very first we attempted to use the VGG-16 architecture, a convolutional
neural network (CNN) that was trained for image classification tasks, to estimate the
head position in our online tutoring sessions. The VGG-16 architecture uses a series
of convolutional layers, max-pooling layers, and fully connected layers to extract
features from an image and classify it into one of several predefined categories.

19

urrent Time: 27.0

ace locations [(32, 1541, 84, 1489), (
, 1541, 84, 1489)
, 1607, 218, 1545)

+ Code BTt
‘acial Recognition to ‘I&éﬁ(ih} faces.

Detected Face:

Current Time: 25.0
face locations [(32, 1564, 84, 1512), (
(32, 1564, 84, 1512)
(156, 1600, 218, 1538)
M Detected Face:

“acial Recognition to identify faces.

Detected Face:

Figure 4.2: Face Extraction From Video Frames

However, our attempts to use VGG-16 for head position estimation were not suc-
cessful as the accuracy was not sufficient. One of the reasons for this is that VGG-16
was not designed or trained specifically for the task of head position estimation, but
rather for object classification using the ImageNet dataset which contains over 14
million images and 1,000 object categories. Therefore, it may not have been able to
extract the necessary features for head position estimation or handle the variations
in head position. Additionally, the ImageNet dataset does not have enough head
position data for VGG-16 to learn from.

Despite this, we continued to explore other methods and eventually found a more
suitable approach, the facial landmark detection component of MediaPipe, which
showed better results in terms of accuracy and robustness. This method, which will
be discussed in detail in the following sections, proved to be more effective for our
task of head position estimation in online tutoring sessions.

During the course of this research, one of our primary objectives was to devise a
strategy for reliably assessing the head position of participants in online tutoring
sessions. In order to accomplish this, we made use of the facial landmark detection

20

yaw = [-2.1794844], .6188335], roll = [-8.7179719]
F

i
yaw = [-1.0695038], 6.2258196], [-0.9092729]
F

i
yaw = [-1.5183563], 6.117745], [-1.3577211]
F

d
yaw = [-1.7744088], 6.602793], [-©.85438144]

Figure 4.3: Head Pose Detection from Video Frames

component of MediaPipe, which is a popular tool in the field of computer vision.
This allowed us to recognize and extract pertinent facial landmarks from photos or
video frames. This component identifies particular points on the face, such as the
lips, eyes, and nose, by employing computer vision algorithms to do so.

After that, we used methods such as triangulation to estimate the head position
by using the coordinates of the detected facial landmarks as known points. This
allowed us to get a more accurate reading. The estimation of the location of the
head was accomplished by using the distances that separated these places.

However, the accuracy of the head position estimation is dependent on a number
of parameters including the quality of the image or video, the lighting conditions,
and the performance of the facial landmark detection component. These issues are
discussed more in the next paragraph. In spite of these difficulties, the method
that was suggested displayed a relatively good accuracy in determining where the
head was located. Despite this, the accuracy was not up to par because of the
constraints imposed by the method as well as the difficulties encountered throughout
the implementation.

It is important to point out that this method was the very first one that we attempted
to utilize; later on, however, we switched to the 6DRepNet, which is more recent
and has a higher degree of accuracy and fewer restrictions.

We employed a deep learning model called ’6DRepNet’ [23] in order to estimate
the head position of a subject. The model was pre-trained and we fine-tuned it
to improve its performance. The fine-tuning process involved training the model

21

on specific datasets, namely the 300W-LP, AFLW2000, and BIWI datasets. These
datasets contain a diverse range of head poses and facial features, which allows the
model to accurately estimate the head position of a subject in a variety of conditions.

By using the '6DRepNet’ with a fine-tuned model, we achieved a high level of pre-
cision and accuracy in our head position estimation. The model returns 3 values:
yaw, pitch, and roll. By setting specific thresholds, we can predict the position of
the head. For example, if the pitch value is greater than -10 and less than 10 and
the yaw value is greater than -20 and less than 20, then the position of the head
is considered to be forward. Similarly, if the yaw value is less than -20, then the
position is considered to be left, and if the yaw value is greater than 20, then the
position is considered to be right.

It is worth noting that these thresholds were determined based on our interaction
and the nature of the task, and could be different for other use cases. It is important
to validate the thresholds using a dataset and professional advice. This allowed us
to get more accurate results on the head position whether it is in the right or left
or forward or up or down position. We obtained our Head data from this Module.

4.3.2 Eye Estimation

Eye gaze estimation is a challenging task that involves determining the direction
of a person’s gaze based on their eye movements. For eye estimation, we looked
through a combination of various models and research papers. However, it is im-
portant to note that despite these efforts, eye gaze tracking remains a complex task
and current methods may not provide highly accurate results. There are various
approaches to solving this problem, including using computer vision and machine
learning techniques such as feature-based methods, model-based methods, and deep
learning techniques.

Feature-based methods involve taking features from the eye area of an image and
using them to estimate the direction of gaze. Methods like Haar cascades, optical
flow, and deep learning can be used to do this.

Model-based methods are another approach that could be in use to figure out where
someone is looking. To do this, we create a 3D model of the eye and head and use
it to estimate the gaze direction. This can be done using techniques such as eye
tracking or head pose estimation.

Deep learning techniques like convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) have also been used to solve the gaze estimation prob-
lem. The model is trained on a set of images of eyes with their corresponding gaze
directions.

We used Mediapipe for eye gaze estimation as it was easy to implement due to our
limited time on our research. We were able to determine a person’s gaze to some
degree. We obtained the Eye data from this Module.

22

Figure 4.4: Head Pose estimation using MediaPipe and OpenCV

The figure above depicts the approach we used in our previous attempts, where it
can be seen that the Head Position Estimatation implementation using MediaPipe
and OpenCV was not very accurate.

F

Figure 4.5: Head Pose estimation using 6DRepNet

The above figure refers to the method we used in our latest attempt, where we used
a newer pre-trained model to determine the head position. We can see that the
result is quite good.

23

4.4 Attention Estimation and Report Generation

Attention estimation is a process of determining the level of attention or focus of an
individual in a given task or situation. We attempted to estimate the attention from
the online tutoring session and to present the data visually.We used Head Position
estimation, Eye Gaze estimation, and Screen Share detection to properly identify
the Engagement between a tutor and a student.

With the results obtained from these methods, we presented the data in a visually-
appealing format, such as a report, making it easy for supervisors to analyze and
understand the level of attention of the students. This information can be used to
identify instances of procrastination or distraction, allowing for early intervention
and support. Furthermore, it allows for real-time monitoring of student’s focus and
engagement, providing a valuable tool for teachers and educators to optimize their
teaching methods and improve students’ learning outcomes.

Overall, our study highlights the importance of attention estimation in educational
settings and provides a valuable tool for teachers and supervisors to monitor and
enhance student engagement and focus during online tutoring session.

4.4.1 Attention Estimation

In our study, we wanted to find out how much students pay attention during an
online tutoring session. To do this, we used the power of advanced computer vision
techniques to track how the students moved their heads and where they looked. The
"head data” from our Head estimation Module and the "eye data” from our Eye
Gaze Estimation Module were then put through our algorithm, AttentionEstimator.
Our algorithm does a good job of classifying the students’ attention, which gives us
valuable information about how engaged the students are and how they learn. This
helps us improve how well the online tutoring system works. Figure 4.6 shows our
Algorithm that we supervised.

Our algorithm examines blocks of attention data, with each block consisting of 3
consecutive attention values. It checks if all three values within a block are equal
to zero. If this is the case, we assume that the individual is not paying attention
during that specific time period, and we proceed to set all three values within that
block to 1. This process is intended to clean and standardize the attention data,
making it more consistent and easier to interpret. It is important to note that our
algorithm heavily relies on accurate gaze estimation. The position of the eye on
the screen plays a crucial role in determining the algorithm’s performance. In this
study, we focused on utilizing eye gaze data, which takes into account the position
of the eye on the screen, to enhance the accuracy and effectiveness of our algorithm.
For other eye gaze estimation our algorithm might need a slight adjustment.

4.4.2 Report Generation

The report generated from our study utilizes advanced data visualization techniques
to effectively convey the results of the attention estimation and screen sharing de-
tection methods. We used popular python libraries such as Mathplotlib and Pandas,

24

Figure 4.6 AttentionEstimator Algorithm

1. att_datal <+ ||
2: att_data2 < ||
3: att_dict < {'Fc’: 1, 'FI': 0, 'Fr”: 0, 'Fcl’: 0, 'Re’: 0, 'RI': 1, 'Rr”: 0, 'Rel’: 0,
Les 0, LU: 0, °Le’: 1, Lel: 0, °Uc’: 1, "UT: 0, "Ur’: 0, "Ucl: 0, 'De’s 1, DI
0, 'Dr’: 0, ’Del’: 0}
for 7 in range(0, len(datal)) do
key < datalli] + eye_datal[i/
att_datal.append(att_dict[key])
for k < 0, len(att_datal) do
if att_datal[k] #0 & att_datallk + 1] #0 & att_datallk + 2] # 0 then
att_datallk] < att_datallk + 1] < att_datal[k + 2] < 1
10: for jin range(0, len(data2)) do
11: key < data2[j] + eye_data2[j]
12: att_data2.append(att_dict[key])

13: for [< 0, len(att_datal) do
14: if att_data2[l] #0 & att_data2[l +1] #0 & att_data2[l + 2] # 0 then
15: att_data2ll] < att_data2[l + 1] < att_data2[l + 2] < 1

which are known for their powerful data visualization capabilities. The report in-
cludes beautiful visuals such as pie charts, which were used to represent the level
of attentiveness during the online tutoring session. These charts clearly show the
distribution of attention levels, making it easy for supervisors to identify patterns
and trends in the data.

Additionally, we used line graphs to represent the results of the screen sharing
detection. These graphs effectively display the duration of screen sharing during the
session and allow for easy identification of instances of distraction or procrastination.
The line graphs are interactive and can be zoomed in and out to see the specific
time of screen sharing.

Overall, the report generated from our study is designed to be user-friendly and
intuitive, making it easy for supervisors to understand and analyze the data. The
report’s visual representation of the data provides a clear and concise overview of
the students’ attention levels, allowing for effective monitoring and intervention.

25

Chapter 5

Results

The performance of our system was evaluated by processing four video files through-
out the modules of our system and building the dataset. The results were then ana-
lyzed and the accuracy of the system was computed. The findings of this evaluation
are presented below.

As discussed before, we have used four 45-second videos with the following features:
Video 1- 2 persons with webcams and screen share on, Video 2- 1 person with
webcam and screen share on, Video 3- 2 persons with webcams on, no screen share,
Video 4- 2 persons without webcams on, screen share on at times.

Accuracy formula:
(Tested data/ground truth) * 100%

Here, ground truth is the number of frames or data that has been manually checked
for comparison against Al or algorithm data.

5.1 Accuracy calculation

5.1.1 Screen sharing detection

The videos are tested with our built algorithm using contour to detect the screen
sharing of the recorded video.

Screen sharing detection
Video 1 | (44/45) * 100% = 97.78%
Video 2 | (45/45) * 100% = 100%
Video 3 | (37/45) * 100% = 82.22%
Video 4 | (44/45) * 100% = 97.78%

Table 5.1: Accuracy calculation of the Screen Share
detection module using Contour function

Possible causes of inaccuracy:
Video 1 - OpenCV missed one frame at the beginning.

26

Video 3 - Despite no screen share being present, our approach of counting the
contours led to some frames being mistakenly detected as screen-sharing due to the
high number of contours on the screen.

Video 4 - OpenCV again missed one frame at the beginning

5.1.2 Face detection

Running the videos through the face detection model, we tried to extract the face
images. The detected faces are put in the formula against the real number of faces
manually which is checked by us to calculate the accuracy.

Face detection
Video 1 (66/88) * 100% = 75%
Video 2 | (44/44) * 100% = 100%
Video 3 | (81/88) * 100% = 92.05%
Video 4 | (32/44) * 100% = 72.73%

Table 5.2: Accuracy calculation of the Face Detection
module using Face_Recognition

Possible causes of inaccuracy:

Video 1 and 3 - Lower video quality, poor lighting conditions, or smaller resolution
may have led to inaccuracies in detecting the faces in videos 1 and 3

Video 4 - Despite no face cams being present, the model mistakenly detected some
irrelevant facial images in the shared screen as faces.

5.1.3 Face recognition and clustering

Using the Face_recognition model and K-means model, the detected and extracted
faces from the previous module is here first recognized or identified and then clus-
tered (organized) in separate folders based on their identification.

Person | Face clustering estimation
Video 1 | Person 1 | (28/29) * 100% = 96.55%
Person 2 | (35/36) * 100% = 97.22%
Video 2 | Person 1 | (35/44) * 100% = 79.55%
Video 3 | Person 1 | (43/43) * 100% = 100%
Person 2 | (37/37) * 100% = 100%

Table 5.3: Accuracy calculation of face clustering/organizing
based on person’s face identity using K-means model

Possible causes of inaccuracy:
Video 1 - One image for each person was misplaced, probably due to similar facial

features.
Video 2 - Probably due to the inaccuracy of the recognition model, some faces were

not detected.

27

5.1.4 Head-position estimation

We employed the 6dRepNet model to estimate the head position of the dataset
comprised of images of individuals extracted from videos in online tutoring sessions.
The Head Position Estimation module was utilized to accurately estimate the head
position for the analysis of the system’s results.

Person | Head-position estimation
Video 1 | Person 1 | (29/29) * 100% = 100%
Person 2 | (36/36) * 100% = 100%
Video 2 | Person 1 | (44/44) * 100% = 100%
Video 3 | Person 1 | (41/43) * 100% = 95.35%
Person 2 | (36/37) * 100% = 97.3%

Table 5.4: Accuracy calculation of the Head-position
estimation using 6dRepNet

5.1.5 Eye-gaze estimation

Using google’s MediaPipe, we estimated the eye-gaze of the persons’ eyes.

Person Eye-gaze estimation
Video 1 | Person 1 | (5/29) * 100% = 17.24%

Person 2 | (24/36) * 100% = 66.67%
Video 2 | Person 1 | (36/44) * 100% = 81.82%
Video 3 | Person 1 | (24/43) * 100% = 55.81%

Person 2 | (29/37) * 100% = 78.38%

Table 5.5: Accuracy calculation of the eye-gaze estimation
using mediapipe

Possible causes of lower accuracy:

It is possible that the accuracy of the system was impacted by the lower resolution
of the recorded webcam footage, which resulted in a smaller dimension of the eye
area. This smaller dimension could have made it more challenging for the system
to accurately detect and analyze eye movements.

5.1.6 Overall Average Accuracy

Based on the accuracy formula, we estimated the average accuracy tested with the
listed videos and expressed it in the following table. However, we did not use video
4 for result analysis in the case of Face recognition and Clustering, Head-position
estimation, and Eye-gaze estimation since no faces were recognized due to missing
camera footage.

28

Module Accuracy
Screen Share detection 94.50%
Face detection 84.95%
Face recognition and Clustering | 94.66%
Head-position estimation 98.53%
Eye-gaze estimation 59.98%
Overall system 86.52%

Table 5.6: Average accuracy of different modules

Attention Estimation Accuracy

100 B Ground
Truth
o 20 B Tested
<) result
&
I
8 60
[1F]
o
L]
W
§ 40
£
&
= 20

VidiPert Vid1Per2 Vid2Per1 Vid3Per1 Vid3Per2

Persons from Video

Figure 5.1: Attention Measurement Accuracy

The above line graph shows the contrast between the manual ground truth and
the tested result provided by our system. VidlPerl and Vid1Per2 represent the
two people in video 1, and similarly for the remaining videos. In the instance of
Video 1, we can see that the system’s accuracy was hampered by the lower quality
of the recorded webcam footage, which resulted in a smaller size of the eye region.
Furthermore, the performance of face recognition in video 1 was poor when compared
to the other videos, resulting in lower overall accuracy in video 1 when compared to
Video 2 and Video 3.

29

Video Accuracy
1_Perl 56.82%
1_Per2 80%
2_Perl 83.7%
3_Perl 90.7%
3_Per2 89.2%
Overall Accuracy | 80.08%

Table 5.7: Overall accuracy of the system

The above table shows the overall accuracy of the system run on 3 example videos.
From this table, we can see that we achieved an overall moderate accuracy of 80.08%.
This means that our algorithm detects the involvement level of both the student and
instructor in a lonl online session with excellent accuracy. However, We recognize
that there is always room for improvement.
eye-gaze estimation model and improving the algorithm for attention assessment
depending on the modules employed, we may obtain higher accuracy. We plan to
further investigate these areas in future work to improve the overall performance of

the system.

30

We believe that by fine-tuning the

5.2 Screen share detection report

The pie charts show the total percentage of time the screen was shared in the target
duration (around 45 seconds). For example, 95.6% screen shared means that during
that 45-second duration, 95.6% of the time the screen was being shared. Pie charts
and bar charts are demonstrated below for the tested videos.

Screen Share Percentage

Mot Shared

Shared

Figure 5.2: Screen Share percentage of Video 1

Screen Sharing report

10 1

= = =
Y (=] oo
i i i

Screen shared {true or false)

=
Pd
i

1] 10 20 30 40
Time {second)

Figure 5.3: Screen Share timelapse of Video 1

31

Screen shared ({true or false)

=
Pd
i

Screen Share Percentage

Mot Shared

Shared

Figure 5.4: Screen Share percentage of Video 2

Screen Sharing report

10 1

=
o
i

=
(=11
i

[=]
.
i

1] 10 20 30 40
Time {second)

Figure 5.5: Screen Share timelapse of Video 2

32

Screen Share Percentage

Mot Shared

Shared

Figure 5.6: Screen Share percentage and Pie chart of Video 3

Screen Sharing report

10 1

= = =
Y (=] oo
i i i

Screen shared ({true or false)

=
Pd
i

1540 1550 1560 1570 1580
Time {second)

Figure 5.7: Screen Share percentage and bar chart of Video 3

33

Screen Share Percentage

Ehared

Mot Shared

Figure 5.8: Screen Share percentage and Pie chart of Video 4

Screen Sharing report

'ﬂU m T T T
o 10 20 30 40

Time {second)

[=1] [=1] =
=Y (=11 o
i i i

Screen shared {true or false)

[=]
Pd
i

Figure 5.9: Screen Share percentage and bar chart of Video 4

Besides, the bar charts reveal the precise time periods during which screen share
was recognized. For example, in video 4, we can see that the bar is green for a short
period of time between 0 and 40 seconds. Those were the moments that Screen
Share was detected, whereas it was not the rest of the time.

The above graphs are only the generated reports from our system, not the accuracy
measures of the module. For accuracy measurements, we can refer to section 5.1.

34

5.3 Attentiveness report generation

For attention estimation, we first represented the raw data of attention, and then
we applied various realistic restrictions specified in the implementation section to
make the report more realistic and avoid anomalies. As a result, after imposing the
attention limitations, the accuracy appears to have marginally increased in most
situations. We have shown our calculated attention to the tested data in the pie
charts of tested videos below.

Video 1
Without constraints With constraints
Attention Percentage Attention Percentage
Attentive
Attentive
Inattentive
Inattentive
Person 1 Person 1
Attention Percentage Attention Percentage
Inattentive
Attentive
Inattentive
Attentive
Person 2 Person 2

Figure 5.10: Attention percentage of Video 1 with and without constraints

35

Video 2

Without constraints

Attention Percentage

Inattentive

Attentive

Person 1

Inattentive

With constraints

Attention Percentage

Person 1

Attentive

Figure 5.11: Attention percentage of Video 2 with and without constraints

36

Video 3

Without constraints

Attention Percentage

Atentive

Inattentive

Person 1

Attention Percentage

Attentive

Inattentive

Person 2

Figure 5.12: Attention percentage of Video 3 with and without constraints

37

With constraints

Attention Percentage

Inattentive

Attentive

Person 1

Attention Percentage

Inattentive

Attentive

Person 2

After processing, we also created a graph output which is given below. Here, the
black area represents the missing region. For instance, in screen share, the absence
of screen sharing is shown by the dark area. Similarly, the black area in the instance
of person 2 indicates that person 2 was not attentive at those times. This is done
for an example video.

Screen Share

Person 1

Person 2

o 5 10 15 20 5 30 5

Figure 5.13: Screen Share percentage of Video 1 and Attention percentage

38

Chapter 6

Conclusion

In conclusion, the system we designed and researched for assessing the attention of
students and tutors in online classes is a practical and effective method for measur-
ing engagement during online tutoring sessions. Using a combination of computer
vision techniques and machine learning models, such as facial recognition, clustering,
image processing, eye position estimation, and head pose estimation, our system is
able to recognize and track individuals, enabling a better understanding of atten-
tiveness during class. The use of advanced techniques like deep learning in the form
of the ’6DRepNet’ model allows us to perform correct head pose estimation of a face,
which helps us make the system more efficient in measuring attentiveness of students.
The use of libraries like 'face recognition’, ’scikit-learn’, '"NumPy’, ’OpenCV’[7] and
"MediaPipe’ allowed us to implement different modules of the system in an efficient
way. We developed an algorithm and named it AttentionEstimator, which made
our system more efficient in measuring attentiveness. Despite the efficient mea-
surement of individual attentiveness provided by the system, there are limitations
that we aim to address in future iterations to further improve its usability. But
overall, our system represents a valuable contribution to the field of online learning
and engagement monitoring. The system’s ability to track and monitor engagement
levels can provide valuable insights to online tutors and educators, allowing them
to adapt and adjust their teaching methods to better suit the needs of their stu-
dents. Furthermore, the system can be used to monitor engagement levels in other
video-based scenarios, making it a useful tool for a wide range of applications. The
system is adaptable and can be integrated into various online tutoring platforms
and applications. It can be extended to other video-based scenarios where engage-
ment monitoring is important, such as in e-learning, teleconferencing, and remote
collaboration.

39

Therefore, the system we designed can ultimately result in enhanced student learning
experiences and higher tutoring session productivity. It helps in detection of the
effectiveness of the teaching standards of the tutor and students during the tutoring
session. High engagement levels can indicate a high quality of teaching. It can help
to determine the appropriate compensation for the tutor. Additionally, our system
enables the detection of the effectiveness of the learning standard of the pupil as
well. It can help in providing valuable insights into the educational performance
of the students, which can be shared with guardians to assist in identifying areas
for improvement and providing support for the student’s academic success. This
can be used to identify any learning deficiencies and take appropriate measures to
improve the student’s performance. In general, this system offers a viable means of
enhancing the online tutoring experience.

40

Bibliography

M.-C. Su and C.-H. Chou, “A modified version of the k-means algorithm with
a distance based on cluster symmetry,” IEEE Transactions on pattern analysis
and machine intelligence, vol. 23, no. 6, pp. 674—680, 2001.

A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering algo-
rithm,” Pattern recognition, vol. 36, no. 2, pp. 451-461, 2003.

N. Gourier, D. Hall, and J. L. Crowley, “Estimating face orientation from
robust detection of salient facial structures,” in FG Net workshop on visual
observation of deictic gestures, Citeseer, vol. 6, 2004, p. 7.

J. Shotton, A. Blake, and R. Cipolla, “Contour-based learning for object detec-
tion,” in Tenth IEEFE International Conference on Computer Vision (ICCV’05)
Volume 1, IEEE, vol. 1, 2005, pp. 503-510.

J. Smallwood, D. J. Fishman, and J. W. Schooler, “Counting the cost of an
absent mind: Mind wandering as an underrecognized influence on educational

performance,” Psychonomic bulletin & review, vol. 14, no. 2, pp. 230-236,
2007.

E. Murphy-Chutorian and M. M. Trivedi, “Head pose estimation in computer
vision: A survey,” IEFEE transactions on pattern analysis and machine intelli-
gence, vol. 31, no. 4, pp. 607-626, 2008.

S. Brahmbhatt, Practical OpenCV. Apress, 2013.

J. Coster and M. Ohlsson, Human attention: The possibility of measuring
human attention using opencv and the wviola-jones face detection algorithm,
2015.

J. Eriksson and L. Anna, Measuring student attention with face detection.::
Viola-jones versus multi-block local binary pattern using opencv, 2015.

O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,” 2015.

R. Bixler and S. D’Mello, “Automatic gaze-based user-independent detection
of mind wandering during computerized reading,” User Modeling and User-
Adapted Interaction, vol. 26, no. 1, pp. 3368, 2016.

A. Gibaldi, M. Vanegas, P. J. Bex, and G. Maiello, “Evaluation of the tobii
eyex eye tracking controller and matlab toolkit for research,” Behavior research
methods, vol. 49, no. 3, pp. 923-946, 2017.

N. Ruiz, E. Chong, and J. M. Rehg, “Fine-grained head pose estimation with-
out keypoints,” in Proceedings of the IEEE conference on computer vision and
pattern recognition workshops, 2018, pp. 2074-2083.

41

[14]

[15]

[16]

[17]

[23]

[24]

A. Ablavatski and I. Grishchenko, Real-time ar self-expression with machine
learning, Mar. 2019. [Online]. Available: https://ai.googleblog.com/2019/03/
real-time-ar-self-expression-with.html.

M. Dewan, M. Murshed, and F'. Lin, “Engagement detection in online learning;:
A review,” Smart Learning Environments, vol. 6, no. 1, pp. 1-20, 2019.

N. Veliyath, P. De, A. A. Allen, C. B. Hodges, and A. Mitra, “Modeling
students’ attention in the classroom using eyetrackers,” in Proceedings of the
2019 ACM Southeast Conference, 2019, pp. 2-9.

S. Peng, L. Chen, C. Gao, and R. J. Tong, “Predicting students’ attention level
with interpretable facial and head dynamic features in an online tutoring sys-
tem (student abstract),” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, 2020, pp. 13 895-13 896.

C. for Psychology in Schools and Education, Managing attention and dis-
tractibility in online learning, 2020. [Online]. Available: https://www.apa.
org/topics/covid-%2019 /managing-attention-distractibility-online-learning.

A. Vakunov and D. Lagun, Mediapipe iris: Real-time iris tracking depth es-
timation, Aug. 2020. [Online]. Available: https://ai.googleblog.com/2020,/08/
mediapipe-iris-real-time-iris-tracking.html.

M. Villa, M. Gofman, S. Mitra, A. Almadan, A. Krishnan, and A. Rattani,
“A survey of biometric and machine learning methods for tracking students’

attention and engagement,” in 2020 19th IEEE international conference on
machine learning and applications (ICMLA), IEEE, 2020, pp. 948-955.

X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, and J. Sun, “Repvgg: Making
vgg-style convnets great again,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021, pp. 1373313 742.

H. Lee, M. Liu, H. Riaz, N. Rajasekaren, M. Scriney, and A. F. Smeaton,
“Attention based video summaries of live online zoom classes,” arXiv preprint
arXiw:2101.06328, 2021.

T. Hempel, A. A. Abdelrahman, and A. Al-Hamadi, “6d rotation representa-
tion for unconstrained head pose estimation,” arXiv preprint arXiv:2202.12555,
2022.

K. Roy and D. Chanda, “A robust webcam-based eye gaze estimation sys-
tem for human-computer interaction,” in 2022 International Conference on
Innovations in Science, Engineering and Technology (ICISET), IEEE, 2022,
pp- 146-151.

42

https://ai.googleblog.com/2019/03/real-time-ar-self-expression-with.html
https://ai.googleblog.com/2019/03/real-time-ar-self-expression-with.html
https://www.apa.org/topics/covid-%2019/managing-attention-distractibility-online-learning
https://www.apa.org/topics/covid-%2019/managing-attention-distractibility-online-learning
https://ai.googleblog.com/2020/08/mediapipe-iris-real-time-iris-tracking.html
https://ai.googleblog.com/2020/08/mediapipe-iris-real-time-iris-tracking.html

	Declaration
	Approval
	Ethics Statement
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Aims and Objectives
	Research Methodology
	Thesis Orientation

	Literature Review
	Related Works

	Methodology
	Workflow
	Dataset
	Model
	Screen Share Detection
	Face Recognition and Clustering
	Head Pose Estimation
	Eye Gaze Estimation

	Implementation
	Screen Share Detection
	Face Recognition
	Head Position and Eye Gaze estimation
	Head Position Estimation
	Eye Estimation

	Attention Estimation and Report Generation
	Attention Estimation
	Report Generation

	Results
	Accuracy calculation
	Screen sharing detection
	Face detection
	Face recognition and clustering
	Head-position estimation
	Eye-gaze estimation
	Overall Average Accuracy

	Screen share detection report
	Attentiveness report generation

	Conclusion
	Bibliography

