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Abstract

Diagnosis and Identification of cells and disease infected cells are and important
part of in medical science that bears huge significance even today. There are health
implications can often be identified my observing the morphological changes of cells
as well as the quantity of cells. The traditional methods of counting blood and
chemically identifying diseases can be expensive and/or time consuming to the extent
that only certain medical centres can perform the task at hand, or take days to
receive a report of. However, we believe Deep Learning with Convolutional Neural
Networks (CNNs) can take over most of this tedious process. In this work, we
aim towards creating a custom CNN model that can quickly classify different kinds
of peripheral blood cells such as the 7 different white blood cell types (basophils,
erythroblasts, ig, eosinophils, lymphocytes, monocytes, neutrophils) and platelets.
Such a model can be used in blood cell counts which can be used to identify cases
like leukemia. Moreover, such a method can be extended into other fields such as
red blood cell detection or even infected cell detection, which includes identifying
diseases from Sickle Cell Anemia to cells affected by Covid19. Our custom CNN
model has performed exceptionally well, achieving accuracies as high as 99.1% and
98.9% in training and validation respectively, which is significantly higher than using
pre-trained models such as DenseNet or NasNet. In more ways than one, we show
how our model is better suited for the task at hand.

Keywords: Convolutional Neural Network, Classification of Blood Cells, Deep
learning.
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Chapter 1

Introduction

1.1 Background Information

AI and Deep Learning have made great advancements in many areas of science
and research. One such area is the healthcare industry, in which it allows for the
continuous growth and development of medicines as well as the understanding of
the human body. Images may be utilized to train a Machine Learning Algorithm
using Deep Learning for object categorization. This is achieved through the use of
convolutional neural networks. One such object is Blood Cells.
Blood cells are mainly of 3 kinds. Red Blood Cells (RBC), which are red, round
and concave disc shaped cells with no nucleus. It carries oxygen around the body.
White Blood Cells (WBC) often vary in shape and structure, and each has a very
distinct nucleus. Their function is to guard the body against pathogens and remove
harmful substances from the body. Involved in the same area, Platelets are also a
part of the Peripheral Blood Cells. They help in creating blood clots which are used
to seal wounds to prevent bleeding.
The tasks that blood cells carry out are extremely vital. So, any infections or diseases
involving them can be extremely deadly and it is important that any such maladies
are diagnosed and treated as fast as possible. However, this is not an easy task.
In most cases, diagnosis often is performed when it’s too late, and in other cases,
diseases are not detected until much later. For example, people only take blood cell
count after it has dropped low enough for symptoms to appear, and even then, the
process of manually counting blood cells is long and tedious. Blood cell counts and
the detection of diseases like Sickle Cell Anemia and Malaria, which are known to
cause physical changes to the appearance of the cell, can be sped up significantly
with the help of Deep Learning’s ability to classify blood cells based on their shape
and size.

1.2 Problem Statement

In regard to peripheral blood cells, there are a lot of tests that need to be done
in order to identify the existence of certain cells or chemicals that can dictate a
person’s health condition. However, some of these tests may require additional
resources (such as reagents) or require a lot of time to finish. Moreover, testing
requirements vary depending on the scope of the tests. Some tests can require 3
minutes, while others, like blood count tests, can take 24 hours to 3 days. Moreover,
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each test may even take 1 to 2 weeks depending on the waiting times or backlog of
patients. The most recent example was the Covid tests where, while the test itself
is not intensive, the amount of people taking the test resulted in delays in receiving
the results in terms of weeks.
Some tests are difficult to do in general, as they often require a lot of manual labor.
For example, Thrombocytopenia is the disease which results in very low platelet
counts. This hampers the body’s ability to seal wounds through blood clots and
therefore cannot prevent bleeding. Platelets are often referred to as “cell fragments”
and are extremely small in size. Thus, counting them manually is extremely difficult.
Moreover, we generally move to other methods such as searching for (or the lack
of) clotting factors to find signs of Thrombocytopenia which requires additional
resources.
In regard to other peripheral blood cell counts, Leukocytosis is the term used to
describe high white blood cell counts. However, this in and of itself is usually not
a problem, as it can mean that the body is simply responding to an infection or an
inflammatory response. However, it can be an indicator of the onset of leukemia,
which is a type of blood cell cancer where white blood cells multiply uncontrollably.
To properly count them, we would need to use Deep Learning Convolutional Neu-
ral Networks to classify different peripheral blood cells simultaneously. CNNs al-
gorithms can be trained with microscope images and we would need to classify
platelets, white blood cells, and red blood cells simultaneously as blood cell counts
are more meaningful when they are taken as a ratio of the available cell samples.

1.3 Research Objectives

The objective of this thesis is to design a classification system to simultaneously
classify peripheral blood cells from blood samples presented as microscope images
such that diseases including but not limited to: Thrombocytopenia, Leukocytosis,
Sickle Cell Anemia, and others that can be physically observed can be detected.
Deep Learning with Convolutional Neural Networks will be used to classify and
detect peripheral blood cells to determine the ratio of platelets, WBC, and RBC
as well as determine abnormalities in the physical appearance of these cells after
necessary image processing. Our objectives are -

• Understanding preprocessing techniques such as image processing, denoising
and reshaping,

• Creating a Deep Learning model to detect and classify peripheral blood cells
through CNN.

• Able to check for abnormal or normal blood cells after classification.

• Designing the Deep Learning model to aid doctors during diagnosis of patients
that is also accurate
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Chapter 2

Literature Review

2.1 Related Works

In this paper by Riya Roy and Ms. Swapna Sasi et al. [1] the authors had pro-
posed several frameworks to aid with the classification the different types of white
blood cell by utilizing multi-class support vector machine classification (abbreviated
as SVM classifications) and convolutional neural networks (CNNs). Some of these
white blood cells include, but not limited to: Neutrophils, Lymphocytes, Mono-
cytes, Eosinophil and Basophils. These cells can be identified through their phys-
ical/morphological appearance and the utilization of deep learning. Such methods
could be used for diagnosis of diseases related to morphological changes of blood
cells.

In another paper by R F Rahmat, F S Wulandari, et al. [2] they also used support
vector machines but also provided general details of their architecture. It involves
using the shape and structure of cells, in this case: Red Blood Cells, through feature
extraction after preprocessing the image, which involves Greyscaling, Thresholding,
Erosion, and Dilation. The features in question were that what they were looking for
was “roundness.” While their level of accuracy varies by a relatively large margin,
they do average about a 93% level of accuracy.

This authors [3] suggested a CNN-based technique for WBC classification and per-
formed a comparatative analysis of W-Net Algorithm against other alogrithms such
as AlexNet, VGG16/19, SVM, variations of ResNet, and RNNs. Moreover, W-Net
is tested on a large-scale real-world dataset with 6,562 real photos of the five WBC
types. They demonstrated that W-Net outperforms all other algorithms in terms
of accuracy. Furthermore, W-Net is made up of three convolutional layers and two
fully connected layers that collect and, through the utilization of a softmax classi-
fier, learn features from WBC pictures in order to accurately classify them into five
classes. The W-Net architecture has an overall average accuracy of 97%. Meanwhile,
other architectures that were compared with W-net results at average accuracy of
AlexNet(84%), VGGNet(44%), RNN(83%), and ResNet(51%). Also, they used the
hinge loss function to train a W-Net model with an SVM classifier (W-Net-SVM).
The training time of W-Net-SVM was 33.79. Afterwards, they used two types of
data: public datasets and trained datasets. They showed that training a model on
a large-scale dataset gives better performance. Thus, they proved that the W-net

3



algorithm performs better than other CNN-based models.

Girdhar et al. [4] discussed large amounts of labeled data are necessary for CNN.
Various datasets, including blood samples, were researched, including those that
were known to be available locally (20%), publically (48%) and unknown (20%).
After that, they suggested four convolution layers, normalization, leaky Relu, and a
pooling layer.To avoid overfitting, dropout layers are used. After that, a softmax and
fully-connected layer are implemented. WBC kinds are categorized by the catego-
rization layer, which draws on the features learned in earlier layers to do so. Binary
categories were given a confusion matrix. This dataset contains 12,444 blood-cell
pictures. Each category has an equal number of photos: eosinophils, lymphocytes,
monocytes, and neutrophils (approximately 3000). This dataset’s 98.55% accuracy
beats all previous records. The suggested CNN model was trained and assessed on
single-celled pictures, which are unlikely in a blood sample. Future implementations
include multi-celled, overlapping, and obscured WBC imaging.

This paper [5] presented blood cell automated recognition using convolutional neu-
ral networks (CNN). Two designs used Vgg-16 and Inceptionv3 convolutional neu-
ral networks. The networks initially extracted features to train an SVM classifier
(SVM). Fine tuning improved the second time. Vgg-16 and Inceptionv3 architec-
tures had 86% and 90% accuracy, respectively. In fine-tuning, Vgg-16 and Incep-
tionv3 architectures were 96% and 95% accurate. The Oxford University-trained
Vgg-16 CNN recognizes objects. Google created Inceptionv3 to reduce CNN’s com-
puting cost. Unbalanced and balanced datasets are used to train the data. They
proved a balanced, high-quality image improves results. CNN has layers. CNN’s
convolutional layer converts input to output using a convolutional algorithm. ReLu
increases the network’s learning speed and classification accuracy when applied to
a convolutional layer’s output. Pooling reduces map size. Fully connected and out-
put layers produce functions for probability distributions. A confusion matrix with
actual rows and expected columns was also introduced. Fine tuning yielded 96.2%
accuracy overall.

The authors [6] proposed a hybrid and effective CNN strategy for PBC image iden-
tification and classification. SSPSO-CNN, OLPSO-CNN, BQ-CNN, and DNN-JOA
were introduced to improve peripheral blood cell image identification and classifi-
cation accuracy. These methods are compared to others based on each peripheral
blood cell image’s true positive rate. The overall accuracy was 98 percent after using
confusion matrix..Fine-tuning on 10,674 medical images yield the greatest results.
The approach enhanced precision, F1-score, and overall classification accuracy to 99
percent.

The authors [7] discussed about white blood cells: their classification, types, and
functions in our blood, laboratory testing, and the article’s topic. First, the authors
discussed the D.L model in conjunction with DenseNet121 to classify white blood
cells. The proposed model achieved very high levels of accuracy (98.84%), precision
(99.53%), sensitivity (98.5%), and specificity (99.51%). The main problem with the
proposed study is that both training and testing are done on the same dataset,
which only has WBC samples. Additionally, the authors talked about their trained
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dataset, proposed model, and findings from the study. Also, they specified how the
proposed model was built and the modification of the training dataset. Later on,
the way of preprocessing the dataset, basically its image source, image size, training
part, data normalization, and data augmentation, was explained by the authors.
Furthermore, in the feature extracting part, the authors basically clarified the fea-
tures of the model, resizing the image, Adam optimizer, and convolutional block by
using DenseNet121. Finally, the authors summed up the outcomes of the model.

This paper [8] demonstrated a microscopy-based dataset of peripheral blood cells
for use in training automated recognition models. Here, they applied deep convolu-
tional neural network (CNN) architectures that had been trained on the ImageNet
dataset to the problem of classifying peripheral blood cells. Wide ResNet-50-2 has a
higher rate of accuracy, at 99.32%, than VGG-19, which only manages 99.27%. By
setting empirical benchmarks for blood cell classification with deep learning, their
study provides a starting point for future work with specialized architectures and
techniques.

Gavas et al. [9] presented the deep CNNs for peripheral blood cell classification.
First of all, the cell’s functionality in blood, elements of blood, types of cells, their
functionalities, and the process of classifying the blood cells through CNNs model
were explained in detail by the authors. Secondly, the authors mentioned various
types of peripheral blood cell segmentation and classification for diagnosing diseases
related to blood cells. The methodologies for classifying blood cells, such as CNN
Architects and Transfer Learning (TL), using the ImageNet dataset, were mentioned
by the writers. Furthermore, the authors described the experimental process and
possible outcomes of the model. Moreover, later on, the authors discussed how the
model can help to detect several blood-related diseases by classifying the blood cells
based on the findings. Finally, the authors clarified the accuracy of their findings.

This paper [10] showed an efficient multi-level convolutional neural network ap-
proach for white blood cell classification. First of all, blood cells, their types, differ-
ent methodologies of classifying blood cells, and naming processes were mentioned
by the authors. Additionally, following the previous segment in the state of the
art portion, the author mentioned the different models like CNN, DCNN, MFCNN,
capsule networks, LSTM, and so on to classify the blood cells. Moreover, the au-
thors acknowledged the materials used in this proposed model and the formulas to
get the findings, accuracy, recall, precision, and Fscore. Furthermore, the results
and accuracy of the findings based on the previous segment were discussed by the
authors. Finally, the authors concluded by mentioning the purpose of the model
and how it could contribute further help.

Maria et al. [11] proposed a paper that uses a deep learning approach for segmenta-
tion of red blood cell images and malaria detection. Malaria is an endemic, deadly
disease. There are more than 120 types of malarial species that affect animals, and
more than six species affect humans. Deep learning using Convolution Neural net-
work (CNN) and segmentation neural network (SNN) has immense potential in the
field of digital pathology, by using this different anomalies on RBC can be identified.
A CDSS (Clinical Decision Support System) is designed using a neural network to

5



detect malaria infection. Digital images of peripheral blood smears will be used as
input, and the presence of infection in the RBCs will be labeled as an output. The
data sets used were 80% to train and 20% for validation. The global accuracy of the
test set for the data was 90.29% to 93.72%. The highest accuracy needed the most
time. This model doesn’t require any preprocessing or manual data extraction. It
was proposed in a three-stage pipeline segmentation of a RBC cell.

Laura et al. [12] suggested a paper combining peripheral blood cell pictures and a
deep learning model (ALNet) to diagnose acute leukemia lineage. Acute leukemia is
heterogeneous. It replaces cells and decreases 3 haematopoietin lines in peripheral
blood cells. In these model, AI decision making helps to a great extent in detecting
haematology malignancy. 16,450 single RBC cells were analyzed 85% images were
used to train and rest 15% was used to test. These digital blood cells were collected
by CellaVision DM96 (363 X 360 pixels). To identify the acute leukemia lineage,
VGG16, RESNET 101, and SENNET154, these architectures were used. ALNET
gave correct diagonistic predictions with a value of 100%, the precision value of
93.7%, and the specificity accuracy of the leukemia linage is 92.3%. Alnet is a pre-
dictive model made up of a few convolutions neural networks (CNN).

The authors [13] proposed a paper where they were able to automatically classify
cells in a peripheral blood image, which is based on morphological image processing.
Pathologists employ RBC and WBC information to diagnose and identify illnesses,
bacteria, and viruses in blood cells. Computer aided inspection of RBC is done
by using a segmentation algorithm to extract the cell classification. Methods like
preprocessing, segmentation, principal component analysis (PCA), and feature ex-
traction are used to construct more efficient classifiers to identify components in
a blood cell. The images are collected using a CCD color camera attached to a
microscope that is zoomed to 400 times of 640 x 480 pixels. In this system, UNL
(Universidade Nova de Lisboa) Fourier transformation is used to manage open curves
and lines in the image. Using this model provides faster recognition in detecting
components insides RBC and WBC.

This paper [14] classifies WBC using machine learning. White blood cell classifi-
cation uses TWO-DCNN. Two-model transfer learning and deformable convolution
are used. VGG16, VGG19, RESNET-50, SVM, MLP, DT, and random forest ar-
chitectures were employed (RF). Two-DCNN performs best. With exact feature
extraction and improved network weights, precision is 91.6% to 95.7%. For low-
resolution, noisy data sets, the TWO-DCNN performs best.

The authors [15] used Hybrid DSSCS and convolutional neural network to recog-
nize peripheral blood cells. DSCSCNNs are used in this model. This solves CNN’s
hyperparameter issue. The training set uses the VGG-16 model architecture. This
approach provides 100% accuracy, sensitivity, and specificity. Because of this, it has
the highest peripheral blood cell detection accuracy and 99% blood cell categoriza-
tion accuracy.

The authors [16] said that WBC can detect infections, allergic reactions, inflam-
mation, and blood cancers including leukemia and lymphoma (WBCs). Semantic
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segmentation, database update, and classification via transfer learning comprise the
bulk of the suggested approach. Deep learning-based categorization of five WBC
subtypes from whole blood smear pictures is a unique feature of our study, which we
want to use in the near future.According to the authors, transfer learning strategies
yield improved accuracy with less datasets. The authors also covered WBC local-
ization, semantic segmentation, and database update, as well as classification and
transfer learning using AlexNet. In addition, the author went into further depth on
the data base, the photos’ origins, and other related topics. The technique uses deep
learning-based semantic segmentation for WBC localisation and transfer learning-
based categorization. Segmentation accuracy is 98.22%, mean IoU is 84.22% (@IoU
= 0.7), and classification accuracy is 98.87%. Finally, the author presented the find-
ings of his investigation.

This paper [17] provided a background on blood and RBCs. Second, they went
through the CNN aspect of the proposal and how it would function. It is possible to
resolve and analyze the fine features in an input picture using convolutional neural
networks (CNNs). RBCs in flow may be distinguished by their form properties,
and outliers can be identified using a CNN. In addition, the author discussed ethical
statements, the architecture and training of CNN , and datasets in the materials and
methods section (total classified cells, images, etc). When presenting their findings,
the authors included a table with the output values of all the cells, an image mon-
tage of all the incorrectly categorized croissants, a confusion matrix with true values
and relative percentages, and a commentary on the results. When it comes down
to it, pre-trained and freely accessible artificial neural networks don’t fit the job at
hand, the author found. To train the CNN, only RBC forms are used in the flow, so
any cell class limitations are completely artificial. Its function will be better under-
stood via more experiments involving varied channel geometries and flow conditions.

The authors [18] have discussed the white blood cell or leukocytes. They also sug-
gested a CNN-based model with 94 percent accuracy for polynuclear and mononu-
clear and 78 percent accuracy for eosinophil, lymphocyte, neutrophil, and mono-
cyte. Second, they described baseline models to compare with our suggested model.
Naive Bayes and SVM methods follow. They have further included the concept
of convolutional neural networks. In this part, approaches are presented, followed
by architecture and algorithms. In the following part, they displayed the dataset.
This dataset comprises around 13k enhanced images of 170 blood cells labeled with
their kind. There are around 3000 images for each blood cell type, divided into 5
groups based on the kind of cell, i.e. eosinophil, basophil, lymphocyte, neutrophil,
and monocyte. In addition, they addressed the materials utilized for setup and out-
come analysis. Finally, the writers concluded their discussion on the potential of
this project and future efforts. This model is useful for 220 blood diagnoses in the
medical industry, which may save a significant amount of time.
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Chapter 3

Work Plan

3.1 Workflow and Methodology

In this specific portion, the methodologies used in this research is illustrated. Ini-
tially data collection is done then the dataset is sorted out by putting in different
pre-processing methods to it. The total advancement of this research incorporates
a conventional CNN model which constitutes of an architecture that has 7 convolu-
tional layers in the custom model and also has a transfer learning technique for 7
other pre-trained convolutional neural network models (VGG-19, MobileNetV3, Ef-
ficientNetV2B1, Dense Net121, Res Net50, NasNet, Inception Network) and then,
after comparing their achievement characterize by validity, correctness, F1score,
Confusion Matrix, and AUC curve the optimal structure for the blood cell identi-
fication and classification on blood cell pictures and blood cell components will be
determined. The process is described progressively in the phases listed below:

• Collection of Data

• Pre-Processing of Data

• Conventional CNN model

• Pre-Trained Convolutional Neural Network models for Transfer Learning

• Asses the CNN model’s accomplishment
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Figure 3.1: Workflow
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3.2 Dataset

Here, we will go over the strategies that we will employ to accomplish our goal. We’ll
start by utilizing the tagged photo-containing kaggle PBC dataset. Deep learning
frameworks favor using a lot of high-quality photos for model testing and training.
Data reasoning can be used to create a solid PBC image.This will increase the ac-
curacy and rate of the classification and picture differentiation process. By using
an approach called data augmentation, we can considerably increase the amount of
variety of images that we can use in training models without the need for actually
acquire new data. By adjusting orientation, brightness, scale, position, and other
factors using the available dataset, it is possible to create images artificially. With-
out significantly altering the model itself, it is simple to improve accuracy. In our
experiment, we want to employ approximately 4,096 photos per class. Our training
dataset has undergone certain changes. Setting the image sizes, batch size, rescal-
ing, rotation, horizontal and vertical flipping are all included in this process. All of
these have the following values set:

• Target size: 224 X 224

• Batch size: 16

• Rescaling size: 1 / 255

• Vertical Flip: True

• Horizontal Flip: True

• Shear range: 0.1

• Rotation range: 45

3.3 Data Source

Acevedo’s et al.[8] PBC photos are included in this dataset. The dataset is split
into eight folders, one for each of the image categories (basophil, erythroblast, ig,
platelet, eosinophil, lymphocyte, monocyte and neutrophil). There is a total of 32,
768 JPG pictures belonging to 8 classes. Here are pictures of 8 different classes:
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Figure 3.2: Cell images

3.4 Data Classification

A training dataset is used to update the model weights for a successful input-to-
output mapping. Neural networks are trained using data and solutions from the
actual world, which enables them to transform data into a consistent input-output
relationship. A source of input for a system could be output labels or algorithms.
An optimization strategy is utilized to manage the training phase of the neural
network model, searching through a space of possible weight values for a set of
weights that exhibit good performance on the training dataset. The algorithm that
we used will learn from the training set in order to benefit from the performance of
real- world samples. The algorithm’s trust in the present will increase as a result of
the successful findings for an unidentified test collection. An objective evaluation of
model fit is used to adjust the model’s parameters on our training dataset. When
the validation dataset’s effectiveness is chosen and the chosen model is mentioned
in the design model, an unfair measurement happens. As demonstrated in the Data
Sample image, we used 80% of our data to train the model and 20% of our data to
validate it for each class. For the project, we ultimately decided on an asymmetrical
ratio of 8:2.

Train Validation Total
3277 819 4096

Table 3.1: Table for Individual Class

3.5 Data Pre-processing

Before implementing CNN algorithm, we need to apply appropriate image processing
techniques to our dataset if needed. As images from datasets may vary in quality, we
would need our RBC, WBC and platelets to stand out in particular before applying
to the CNN and generating an output.
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3.5.1 Image Resizing

Multiple models will be used in our study. As a result, during the network training
process, each blood cell image must be scaled to a size of 224 x 224 pixels (However,
some images had to be changed to other resolutions due to model compatibility).
TensorFlow and the Keras libraries were used to achieve this.

3.5.2 Image Augmentation

Our image would first need to be augmented. This means that, for our neural
network, we will have to change our source images through flips, zooms or crops to
select out a specific portion of the image, such as a portion containing a White Blood
Cell. Since one image from the dataset contains multiple blood cells, it can allow us
to generate fresh training data artificially using preexisting training data. It is useful
for training our neural network for identifying/classifying peripheral blood cells.
Additionally, image augmentation is used to increase the size of our dataset, scaling,
cropping, and rotation. With image augmentation settings, flipping, translation,
affine transformation zooming, and photo sharing were also possible. This was used
in order to increase the recognition of our trained models by producing additional
images and changing their placements.

3.5.3 Image Scaling and Normalization

Grayscaling is a technique where we can change the color code of our images by
equalizing the RGB pixel values and converting them to a singular value in the
grayscale. This can be achieved by [ GreyScaleValue = ( RedValue + BlueValue +
GreenValue ) / 3 ], which is taking the average of the RGB values. Afterwards, we
can apply Normalization. This is a technique that can change the maximum and
minimum of pixel intensity values. The motivation to do this is that sometimes,
images may not have the same consistency as each other, and that normalization is
a means to achieve said consistency. We apply this after Grayscaling to make sure
that the images of the same type of blood cell do not have different grayscale values,
or else the neural network may misclassify it into a different entity. It is possible
to give system data to either the inputs themselves or the activation functions of
a preceding layer. This procedure is known as batch normalization. The training
is expedited, and some generalized linear is provided, which lowers generalization
mistakes. Internal covariate shift is one of the main issues that batch normalization
solves. The output of the earlier levels can be equalized using batch normalization,
a network architecture that enables each layer to adapt more independently.

3.5.4 Image Thresholding

Thresholding is a process that generates a binary image of black and white. This
is done so that, after a certain threshold, which is a grayscale value, a pixel in the
image will be counted as black, if it is gray enough, or white if it is not gray enough.
We apply image thresholding after converting the images to black and white in an
attempt to improve training speed and observe potential changes to accuracy.
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3.6 CNN and Non-linearity

Afterwards, we can apply our convolutional deep learning algorithm to train our
neural network and then subsequently use it to classify our peripheral blood cells.
We may repeat the convolution and max pool segments several times to lower our
node counts during the flattening layer. In addition, a confusion matrix may be
implemented, where the columns indicate the expected values and the rows reflect
the actual ones.
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Chapter 4

Description of the Model

4.1 Model

First of all, we will gather and prepare the data. We will partition our dataset in a 8:2
ratio after preprocessing. Whereas, we will use 80% for training and the remaining
20% for validating the models we’ve already used. Our study will employ a number
of deep learning models, including VGG19, MobileNetV3, ResNet50, ResNet101,
EfficientNetV2B1, DenseNet121, NASNet, Inception Network and Custom CNN
Model. The performance of our models’ prediction will then be compared. The
top two performing structures will be determined through comparison, and we’ll
combine them for an even more effective outcome.

4.2 CNN Model

CNN has multiple layers. CNN’s convolutional layer converts input to output using
a convolutional algorithm. As the product of the convolutional layer is provided
to the ReLu function, the network is able to train more quickly and make more
accurate classifications. The layer which is responsible for pooling is used to re-
duce the map dimension. Fully connected and output layers produce functions for
probability distributions. Moreover, CNN is a hierarchical neural network which is
widely functioned as a tool for processing images, segmentation, anomaly detection,
classification, etc. It has several convolutional layers. A neural network is used to
classify various items in a picture or the whole picture itself. It is a very popular
deep learning tool used in every field. CNN mainly has three levels: convolution,
pooling, and the fully connected layers. Convolution and pooling layers helps to
identify an image or any feature of the image. Feature Extraction uses the convolu-
tion layer result to determine the class of the image. In a neural network, there are
mainly three components that are an input layer, a processing layer, and an output
layer.
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Figure 4.1: CNN Architecture

4.2.1 Convolutional Layer

A CNN’s primary component is its convolution layer. In this layer there are set
of kernels or filters, parameters which are used to learn by training. Filters are
applied to the input image or other feature maps in the convolutional layers of a
deep CNN. The majority of the network’s configuration parameters may be located
in this section.

Equation = (((m ∗ n ∗ d) + 1) ∗ k) (4.1)

Figure 4.2: Regular Neural Network vs CNN

4.2.2 Pooling Layer

In a convolutional neural network, in most cases, the fully connected layers and the
convolutional layers are connected with a pooling layer. We applied max pooling to
our model also. The pool size was 2 x 2.
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4.2.3 Fully Connected Layer

Later on, we completed the full connection, often known as connecting the layers.
The Fully connected layer constitutes of neurons, weights, and biases. It serves as
the connection between the two layers. Basically, this layer is addressed to facilitate
in the classification process. In this stage, we fused two dense layers of units of 256
and 128 after the flattening layer. These are done before the final output layer (of
which there are 8 units since we are working with 8 classes)

Equation = ((current layer neurons c ∗ previous layer neurons p) + 1 ∗ c) (4.2)

4.2.4 CNN Model Summary

Essentially, the quantity of parameters in a given layer is the total number of ”learn-
able” elements for a filter, or parameters for that layer’s filter, if such a term exists.
After dividing the dataset into train data and validation data, we used a neural net-
work framework called Keras to create a sequential CNN model for the suggested
system. This was done in order to evaluate the model’s precision. As well as the
same amount of max pooling layers, our model had a total of 7 2D convolutional
layers. Then we applied two layers of density after flattening and then the output
layer.
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Figure 4.3: Layers
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4.3 VGG-19

We also used the VGG-19 layer as the output of the data was giving a low accu-
racy rate. One recent groundbreaking development is layered convolutional neural
networks (VGG19) that have already been trained and a great understanding of
what shapes, colors, and structures make up an image. In-Depth Learning System
In order to perfect its categorization abilities, VGG19 has been exposed to millions
of images from various sources. The architecture of VGG19 is almost the same as
that of VGG16, but it has 19 layers, which is three more layers than VGG16. The
model consists of 19 layers and is an enhanced convolution neural network. Convo-
lutions are used to build the model, however the vanishing gradient problem limits
the number of layers that may be used.

Figure 4.4: Network Architecture of VGG19 Model
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4.4 MobileNetV3

MobileNetV3 is the most recent version of the neural network architecture used in
artificial intelligence and machine learning. It employs AutoML to determine which
neural network design is most effective for an agglomerative task. The building’s
earlier iterations were constructed by hand. MobileNetV3 utilizes NetAdapt and
MnasNet. The optimal configuration is found by MobileNetV3, which employs rein-
forcement learning to build a course architecture. Any inactive activation channels
are then disabled by NetAdapt. This aids in optimizing the design. Another novel
concept in MobileNetV3 is the squeeze-and-excite block. Squeeze-and-excite blocks
enhance network representations by highlighting the interdependence of convolu-
tional channels. We want to alter how the network operates. Therefore, in order
to choose which qualities to prioritize first, the network may employ global data.
Additionally, MobileNetV3-Large, created for use with plenty of resources, is 20%
faster and 3.2% more accurate at classifying images with ImageNet. MobileNet V3-
Large is nearly 25% faster than MobileNet V2 at finding COCO while being almost
as accurate. While still 6.6% more accurate than a MobileNetV2 model with the
same latency, MobileNetV3-Small strives to use fewer resources.

Figure 4.5: MobieNetV3
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4.5 ResNet50

Resnet is a convolutional neural network that could be applied as a cutting-edge
model for classifying images. The massive classification dataset known as ImageNet
served as the pre- training data for the ResNet models. 50 layers make up ResNet-50,
which was trained using 1 million images from 1000 different ImageNet categories. A
sophisticated architecture is implied by the roughly 23 million trainable characteris-
tics, which enhance photo identification. The vast ImageNet dataset contains a wide
range of image classifications, thus there is a good chance that images very similar
to yours have already been used for pre-training purposes. Using a model that has
already been trained is more efficient than creating one from scratch and training
it yourself. A 34-layer plain network that was influenced by VGG-19 is included
in the design. In this system, certain connections have been omitted or shortened.
These omitted connections or residual blocks subsequently change the architecture
into the residual network. Each of the five phases of ResNet-50 has a residual block.
There are 1*1 and 3*3 convolution layers in each residual block. Simple residual
blocks exist. In typical neural networks, each layer feeds the following layer. Each
layer feeds into the next tier and then directly onto the following tiers, which are
spaced 2-3 hops apart, in a network with residual blocks.

Figure 4.6: ResNet50
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4.6 EfficientNetV2B1

EfficientNet is a method for designing and scaling convolutional neural networks
that proportionally increases or decreases the depth, breadth, and resolution of the
original data using a compound coefficient. To scale up models effectively and ef-
ficiently, EfficientNet uses a compound coefficient technique. Instead of arbitrarily
expanding the width, depth, or resolution of each dimension, compound scaling ap-
plies a consistent set of scaling factors to each one. Consuming the scaling technique
with AutoML, the creators of Efficient were able to create seven models with varying
dimensions that outperformed the best convolutional neural networks of the time
while using less energy. The baseline network found by the AutoML MNAS frame-
work’s neural architecture search serves as the basis of EfficientNet. The accuracy
of networks is maximized, while those that need a lot of processing resources are
punished. The inference time score decreases when the network makes predictions
slowly.

Figure 4.7: EfficientNet Architecture
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4.7 DenseNet121

In a DenseNet design, each layer is immediately linked to each subsequent layers;
therefore from this reason the name ”Densely Connected Convolutional Network.”
was given. DenseNet-121 consists of 120 convolutions and 4 avgPools. To use prior
layers’ knowledge, all levels, in which dense block is included and also transition
layers are included, across a spectrum of inputs their weights are spreaded. Since
they contain the most redundant attributes, layers which are located in the second
and in the third dense blocks weighs the transition layer output. Despite the fact
that the final layers uses the weights from the total dense block, studies shows that
the model can be farther created by implementing higher-level features. DenseNets
outperform CNNs and ResNets on several benchmark datasets. This is because they
may create models that are more compact and effective by using fewer parameters
and reusing characteristics.

Figure 4.8: DenseNet121
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4.8 NASNet

Neural Search Architecture Network (NASNet) is an example of a model for Machine
Learning that goes by the name NASNet. The creation of network architectures is
automated by the Neural Architecture Search (NAS) program. It is an algorithm
that looks for the best algorithm to use in order to perform a specific task as effec-
tively as possible. Neural Architecture Search (NAS) has received a lot of attention
as a result of the groundbreaking studies carried out by Zoph and Le in 2017 and
Baker et al. in 2017. This attention has resulted in the development of many in-
triguing ideas for NAS approaches that are better, faster, and more cost-effective.
These three elements are present in the conventional NAS configuration:

1. Exploring Outer Space.

2. The Search Methodology.

3. Method for Estimating Future Performance.

Deeper neural networks and a range of architectures were produced by NAS using
RL and evolutionary algorithms. This achievement was achieved with great success.

Figure 4.9: NASNet Architecture
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4.9 Inception Network

A novel deep learning convolutional neural network design was introduced in a study
published in 2014 by Google and other research organizations. It was the biggest
and most effective deep neural network architecture at the time. A GoogleNet vari-
ant of the Inception Network, which served as the innovative architecture, later
achieved the best performance possible in the classification computer vision prob-
lem of the 2014 ImageNet LargeScale Visual Recognition Challenge (ILVRC14).
Inception modules are recurring parts in a deep neural network’s architecture. This
module’s technical specifications are the main topic of this page, as was already
mentioned. Here are some more details on this article’s scope.

• The origination of the name given to the Inception Module.

• Source of data on the key concepts and notions that influenced the Inception
module’s architectural designs.

• Specifications of the Inception module’s constituent parts.

• Illustrations that show the Inception module’s internal architecture and struc-
ture in depth.

• Calculations to determine how many multiplier operations are performed by
each component of the Inception module.

Figure 4.10: Inception Network
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4.10 A Custom Model

Our neural network is composed of three primary layers: convolutional, maxpool,
and batch-normalization. The convolutional layer contains the configurations of our
kernels, which our model trains on to comprehend and categorize our input.. These
kernels are also called filters, and these filters extract specific data regarding the
images that can be used to classify said image through a dot product. For example,
a filter can be used to capture the shape of a lymphocite nucleus, which is round
in nature. The filter will carry information for a rounded object. Likewise, other
filters for other cell types will carry different information, ranging from shape, size
to even color. We use 7 convolution layers, with and the filter are of 3x3 in size. We
initially start with 32 filters and increase it do 64 and then to 128.

The next part is the MaxPool2D layer. MaxPooling improves the neural network’s
efficiency and lessens the features it must extract. The number of adjustable settings
has shrunk, indicating this. With a 2x2 pool size, it finds the largest region in the
input that the kernel from the aforementioned convolutional layer is using to create
a feature. For example, a 4 x 4 matrix (such as an image) can be segmented into
4, 2x2 parts. It finds the maximum of each part and discards the other non-max
values. The result is a 2x2 matrix comprised of only the maximums. This reduces
the number of parameters (or details) we have the check and thus improving per-
formance.

We then have a BatchNormalization layer. This is done as a way ”stabalize” the
layers by recentering and rescaling, as unstable filters (non-centered or out-of-focus)
can cause variations in training.

We repeat the above 3 times together before finally flattening to 8 dense layers
(though it is worth mentioning we have two dense layers), all the inputs of the dense
layers are outputs from the previous layer, and are fully connected.
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Figure 4.11: Custom Model Architecture
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Chapter 5

Preliminary Analysis

5.1 Result and Analysis

For our analysis, we had run several different CNN pre-trained models with vary-
ing layer counts for 40 epochs. We have run EffecientNetV2B1, MobileNetV3Large,
Inception, DenseNet121, NasNet, ResNet50, ResNet101, VGG19 and Custom CNN
Model. One conclusion that we drew when running these models is that a specific
value of the number of layers often provide better training and validation accu-
racy. The general sweet spot for the number of layers for this dataset appears to
be around 300 to 600 layers. Anything lower generally results in poor training and
validation accuracy. Anything higher on the other hand, while they do show good
training accuracy, the validation accuracy was subpar, albeit still better compared
to those with lower layer counts. Such models were very likely to be overfitting,
despite having anti-overfitting measures in place. However, this does not always
appear to be the case. Our custom model has performed the best, it has a training
accuracy rate of 99.1% and a validation accuracy of 98%. Which is the highest
among all these models but with a much lower layer count and better learning
speed. Among these models Inception network produced a training accuracy of 99%
and a validation accuracy of 97.3%, which is still almost 3 percent lower than our
custom model. Similarly EffecientNetV2B1 yield a 99.2% and 93.8% training and
validation accuracy and DenseNet12 model gave accuracy results of 80.8%, 72.7%,
which significantly less accuracy than compared our custom model in training and
validation respectively. Other models gave good training accuracy results but the
validation accuracy was not good they had overfitting/underfitting problems. As a
result, we decided to select DenseNet121, EffecientNetV2B1, Inception and NasNet
as our models for discussion and performance analysis to compare with with our
custom model. Models such as MobileNetV3Large, ResNet50, ResNet101, VGG19
produced rather poor results ranging from 10% to 15% accuracy in both training
and validation. There is a possibility that these low accuracy values may be tied to
the device being used than being an issue with the dataset or model itself.

It is also worth mentioning the stability of the models during training. Only the
custom model stabilized before 36 epochs compared to the other models, which was
still unstable even after 40 epochs.
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5.2 Performance Analysis

Figure 5.1: EffecientNetV2B1 accuracy graph

In the above graph, it can be seen that validation accuracy slowly converges at first
then after some time it rapidly converges and gives good validation accuracy

Figure 5.2: NasNet accuracy graph

In the following graph for NasNet, we can see that although training accuracy is
good, validation accuracy doesn’t converge all that much and occasionally diverges
a bit, leading to an overfitting issue.
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Figure 5.3: InceptionNet accuracy graph

Here, in the above graph of Inception model it can be seen that the validation accu-
racy converges in a very manner and also the accuracy is on per with the validation
accuracy that’s why it produces good accuracy and good validation accuracy results
and no overfitting problem is seen.

Figure 5.4: DenseNet121 accuracy graph

DenseNet121, while it did not achieve outstanding accuracy like Inception or Ef-
fecientNet, had still shown that it’s validation accuracy and training accuracy was
rising. Perhaps, with a few more epochs, it might have reached over 90% accuracy.
However, this also shows just how fast models like our custom model, Inception and
EffecientNet are in terms of converging and stability during training.
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Figure 5.5: Custom Model Accuracy Graph

In the above custom model accuracy graph, training accuracy and validation ac-
curacy converges almost immediately. After 40 epochs, the validation and training
accuracy stabilizes and averages to around 98.9 to 99.1 percent.

Figure 5.6: Custom Model Loss Graph

The loss graphs show that the fast initial converges causes the loss values to plummet
and stabilizes entirely after 40 epochs, to near zero values.
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Figure 5.7: Confusion Matrix Based on Custom CNN Model

Class precision recall f1-score support
basophil 0.97 0.99 0.98 819

erythroblast 0.96 0.99 0.97 819
ig 0.90 0.68 0.78 819

platelet 1.00 1.00 1.00 819
eosinophil 0.99 0.99 0.99 819
lymphocyte 0.98 0.99 0.98 819
monocyte 0.82 0.97 0.89 819
neutrophil 0.94 0.93 0.94 819

accuracy 0.94 6552
macro avg 0.95 0.94 0.94 6552

weighted avg 0.95 0.94 0.94 6552

Table 5.1: Classification Report Based on Custom CNN Model

From the above confusion matrix and classification report, we can see how well our
model performed when classifying the 7 different white blood cell types and the
platelet. There are a few things of note here: Our model showed an average of
95% precision and recall and a 94% f1-score. Of these, our model is had achieved a
100% in all 3 aspects when identifying a platelet. This may be due to overfitting or
bias towards the dataset, which would be indicative of a future generalisation issue.
However, in the model’s defense, a platelet is very different from the white blood
cell, being essentially a cell fragment rather than a whole cell, so it is missing all
features that would distinguish it from a white blood cell.

On the other hand, the model struggled to differentiate between an ig from a mono-
cyte, which is reflected by the confusion matrix (167 images were wrongly classified
as a monocyte) and the low f1-score of 78% for ig. Nevertheless, it still performed
considerably well for all other types.
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5.3 Result Comparison

Our custom model yields a competitive 99.1% training accuracy and a very good
98% validation accuracy, which is the highest among all the models we have used.The
EffecientNetV2B1 achieved a 99.2% accuracy during training and a 93.8% accuracy
during validation. As a result, the model does not suffer from overfitting. However,
NasNet cannot make the same claim. NasNet was able to complete its tasks more
quickly than EffecientNetV2B1 and had a training accuracy of 99.4%, but its vali-
dation accuracy was just 59.4%, suggesting that it had been overfit. On the other
hand, the Inception model gave promising result; the training accuracy was 99.0%,
and the validation accuracy rate was 97.3%. The accuracy of the Inception model
was close to that of our custom model, but our custom models produced better
validation accuracy. DenseNet121’s accuracy of training was just 80.8%, with only
72.7% accuracy during validation, which is lower than both Inception and our cus-
tom CNN model. Moreover, in MobileNetV3 the training accuracy was 99% but the
validation accuracy is very poor which is only 15% so here the overfitting problem is
seen when using this model. ResNet50, ResNet101 and VGG19 was observed to not
train at all with the dataset and produced very low accuracy values. It is also worth
mentioning that although Inception produced similar accuracies to our custom CNN
model, our custom model uses less parameters and therefore it runs much faster and
is more lightweight. Among all of these, it’s clear that our custom model has the
highest accuracy and is the best solution that we have.

Model Training Accuracy Validation Accuracy
Custom Model 99.1 % 98.0%

Inception 99.0% 97.3%
EffecientNetV2B1 99.2% 93.8%

NasNet 99.4% 59.4%
DenseNet121 80.8% 72.7%
MobileNetV3 99.0% 15.0%

ResNet50 and ResNet101 12.2% 12.1%
VGG19 15.3% 12.0%

Table 5.2: Accuracy and Validation percentages of the models used.

Figure 5.8: Graphical Representation of different models
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Chapter 6

Challenges

Initially, we wanted our model to detect 8 different types of blood cell (7 white
blood cell and platelets). But due to some hardware limitations and mainly differ-
ent problems with the pre trained CNN models and their module we were getting
less accuracy numbers. We then reduced our parameters a bit and started the clas-
sification with 3 classifications. As we used CNN and deep learning in our model
, some typical challenges of CNN were seen at first there was a huge underfitting
problem, indicated by a poor validation and training accuracy. Our code required
several revisions until we found the solution to the underfitting problem and then
reverted to classifying 8 classes instead of 3.

We used a lot of pre trained models which were very GPU demanding, or required
a version of tensorflow which we did not have access to. Among these models, In-
ception model, MobileNetV3, DenseNet had more than 200 layers. Since we didn’t
initially have that specific version of tensorflow that can run these models, we had
resorted to using google colab and its Nvidia CPUs which took time and was a
challenge to train the image data of 8 classification under a CUDA environment.
Eventually, we were able to afford a new device with an RTX 3050 as well as a fresh
tensorflow installation to remove the need to use google colab for a CUDA enabled
environment.

We had enough data to train our models, but one issue was that most of the data in
the dataset were imbalanced, as a result we needed to cut some images so balance
all data so that we had just enough to produce a reliable result on the models.
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Chapter 7

Conclusion and Future work

7.1 Conclusion

Disease detection by analyzing blood cells has the potential to revolutionize the
world and save lives. In this research, we attempt to design a solution-providing
algorithm that is both efficient and superior. We have used CNN’s deep learning
algorithms to the create a model to classify peripheral blood cells and intend to
enhance the system further. Right now, our best models that we have run are the
custom CNN model, Inception Network and EffecientNetV2B1. DenseNet121 was
unstable, and was taking too long to reach a higher accuracy. Inception Network
and EffecientNetV2B1 provided the good accuracy in training, but not against our
custom model. Our proposed custom model for this study was able to perform
competitively with other models at 98 percent validation accuracy, which is the
highest of the 3 while also being relatively lightweight, as such we believe it is much
better for this task at hand.

7.2 Future work

When it comes to classification of images of blood cell and to diagnose diseases it is
becoming more popular and accepting in the medical field. Also, it is seen that many
blood diseases (such as cancer cells) are different is quantity and shape compared
to the healthy ones so by using our model and expanding the parameters / dataset
more we can train our model to detect these abnormal cells. As a scope for future
work, we have plans to add a feature that is it will able to detect if a person is
affected by a disease or not as usually the person will often have physically altered
blood cells or have abnormal counts. Such a feature will have value for men, women
and children where our model will just compare those numbers with the numbers
or quality of cells of the disease affected person. As a result, it will be possible to
diagnose the illness and also will be able to identify if any kinds of infection that
is present on the blood cells. To put it simply, it will have the ability to determine
whether or not a certain blood cell is infected, or where there is too many of a
blood cell (ie leukemia). Moreover, we also plan to have better represented results
with Explainable AI (XAI), such that predictions can be explained to staff such as
doctors or patients.
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