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Abstract

The principal goal of this study is to create a crime detection system in real-time that
can effectively handle closed-circuit television (CCTV) video feeds and evaluate them
for possible criminal occurrences. The system’s goal is to improve public safety by
offering an advanced approach that makes use of ConvLSTM’s expertise in modeling
temporal dynamics and YOLO v7’s expertise in object recognition. We suggest a
posture and weapon recognition system that can be applied to real-time videos.
The first method proposes the utilization of ConvLSTM for the detection of violent
postures. The Conv part is derived from MobileNet v2, while a bi-directional LSTM
technique is used. MobileNet v2 was chosen for its superior accuracy and efficiency
as a result of its lightweight architecture. The model will be trained to recognize
illegal behavior by being exposed to annotated datasets of surveillance videos that
depict different types of crime. The output of the system distinguishes between
violent and non-violent postures in real-time videos. The system identifies violent
postures as kicking, collar grabbing, choking, hair pulling, punching, slapping, etc.,
while identifying non-violent postures as hugging, handshaking, touching shoulders,
walking, etc. We used the real-time violence and non-violence dataset from Kaggle.
The second method uses YOLO v7 to detect weapons in three categories, e.g., sticks,
guns, and sharp objects. The YOLO v4 was also employed for the aforementioned
objective; however, the YOLO v7 yielded superior outcomes, hence it was chosen for
further implementation. We customized the weapons dataset to enable our model
to accurately detect local Asian weapons like machetes and sticks. The system’s
intended use is to prevent illegal acts using two distinct machine learning models in
a seamless way.

Keywords: Machine Learning, Deep Learning, Bidirectional LSTM, YOLOv7,
YOLOv4, MobilenetV2, Violence Prediction, Realtime
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Chapter 1

Introduction

1.1 Motivation

The absence of preventive measures to apprehend perpetrators during an increase
in crime rates represents a problematic scenario. Cities and major metropolitan
regions typically have surveillance systems in place that collect data on an ongoing
basis. The abundance of surveillance information increases the likelihood of criminal
behavior. These tasks are far too complicated and resource-intensive for artificial
intelligence to handle; hence, they require human monitoring for detection. It is
possible to automate formerly complicated processes by breaking them down into
smaller, more manageable ones and looking for any underlying patterns that would
indicate the presence of criminal intent. Our models attempt to identify two broad
categories of criminal behavior. Our system utilizes real-time video and image analy-
sis to identify instances of criminal activity by using ConvLSTM, a recurrent neural
network that employs convolutional architectures in both the input-to-state and
state-to-state transitions for spatiotemporal prediction. The ConvLSTM algorithm
incorporates the inputs and states of adjacent cells in order to accurately predict the
condition of a given grid cell. This system is capable of detecting violent postures
and weapons, enabling it to accurately identify potential threats. The proposed
system uses the deep learning mode YOLO v7 to identify potentially lethal objects,
such as a gun or knife, held by a person who is threatening another. The YOLOv7
object identification model is a single-stage approach that has attained outstanding
performance on several object detection benchmarks. In addition to being a vast
improvement over prior YOLO models, its speed makes it a viable option for use in
real-time object identification software. We are able to identify crime scenes where
weapons have been used by using data from a wide variety of weapons. This data
allows us to identify crime scenes where weapons have been used. The approach
also places an emphasis on identifying anomalous conduct, which includes behavior
that can be interpreted as aggressive behavior. Rather than relying solely on hu-
man crime identification and resource allocation processes, we suggest a real-time
crime-detecting technology to aid law enforcement and boost public safety.
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1.2 Problem Statement

Closed-circuit television (CCTV) systems are commonly used to monitor areas for
signs of criminal activity. Crime rates have not decreased despite the widespread use
of closed-circuit television cameras to monitor the area. This is because surveillance
cameras necessitate human oversight, which can lead to human error such as the
omission of significant criminal events by people while monitoring numerous CCTV
displays at once. There are a wide variety of algorithms and models available for
criminal identification. However, the study of recognizing violent actions is still in
its early stages. Not all of them are done together for the common goal of catching
real-world criminals with the aid of surveillance cameras.

Using CONV LSTM and MobileNet v2, we have improved the accuracy of our
posture recognition results. The Deep Learning YOLO method has been widely
recognized as the most effective way for detecting objects. Its primary function is to
deter criminal activity by identifying individuals who might be carrying weapons.
Deep learning YOLO ideas have been widely accepted because of the benefits they
provide in terms of saving time, memory, and other resources like the CPU and
processors. Additionally, YOLO framework models can deliver more accurate results
than Transfer Learning models that are explicitly built from scratch. Our primary
research area is posture detection, which can identify potentially dangerous body
language and actions. Some existing approaches include the predict-update method,
where information is retrieved from every body part and the segmentation process
has to be precise. Some give false results or cannot identify the crime properly. We
propose a system that combines weapon identification and posture recognition to
greatly improve accuracy. It will also enhance accurate detection and decrease false
detection to a great extent.
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Chapter 2

Related Work

2.1 Violent Posture Detection

This section thoroughly analyzes some previous research papers in the domain we
are working on and gives vast ideas about the domain. In [2], photographs were
collected from drone surveillance systems and used to identify violent individuals
by using the feature pyramid network (FPN), the ScatterNet hybrid deep learning
network, and the support vector machine (SVM) to estimate the individuals’ violent
behavior. As part of the study, a few datasets for the detection of violent acts in
public gatherings (Aerial Violent Individual (AVI) DSS framework, Common Object
in Context (COCO)) are presented. Stick figures in various colors are used to sym-
bolize each individual after they have been identified in order to make it easier to
determine who is to blame for what. Non-violent and violent actions are identified
using green and red borders in CNN picture categorization.

The study [6] proposes the implementation of e-police systems based on artificial
intelligence. This paper presents a system that consists of two main components: a
learning-based automated surveillance notification system and a machine learning-
based crime prediction system. The video surveillance monitoring systems contain
an abnormal behavior identifier and an unidentified human identifier. A classifi-
cation process for behavior involves a series of steps. This paper focuses on the
extraction of frame-level features. The extraction of the output from the final
pooling layer, which retains important features while reducing dimensionality, is
achieved through the utilization of pre-trained, cutting-edge models like VGG16,
InceptionV3, and ResNet-50. The final behavior is classified through the utilization
of an LSTM network, which employs a set of extracted high-level feature maps. This
thesis presents the development of thick CNN models for suspicious human recogni-
tion through the use of variable numbers of layers. These models utilize techniques
such as feature extraction from resources, blurring, sharpening, edge detection, noise
reduction, and learning specific characteristics of an image. The models were de-
veloped from scratch and demonstrate promising results in the field of suspicious
human recognition. The model utilizes frame level feature extraction for the purpose
of identifying the presence of abnormal expression. The utilization of both regres-
sion and classification techniques is common practice. This paper discusses various
techniques for data classification, namely support vector machines (SVMs), division
trees (DTs), random forests (RFs), and logistic regression (LR). The system utilizes
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collected data to predict criminal behavior and map out high-risk areas.

A neural network solution using the Hybrid Deep Learning (HDL) algorithm, Deep
Convolutional Neural Networks (DCNN), and Recurrent Neural Networks (RNN) is
suggested in this paper [3]. A video set can be used in HDL to extract frame data
that can be used to model various behavioral patterns, such as crowd movement
and facial features. RNNs are used to teach computers how to recognize objects
and people. Research aims to find a system with a low computational cost and a
high accuracy rate. High-performance features can be extracted from each frame
of video using HDL, a facial recognition technology. When dealing with nonlinear
problems, such as tracking and detecting objects in crowds, DNN is the method of
choice. DCNN uses the multiplayer perception model for face recognition. RNN is
for extracting the temporal actions of a person, which may then be checked against
other obtained data.

This paper [12] suggested a new approach named Deep Crime based on spatiotem-
poral CNNs. Malicious activity in video sequences will be detected with this tool.
Movement in restricted areas, throwing objects, hiking, and walking in the opposite
direction are some of the abnormalities that can be found on public sidewalks. There
have also been fights, battles, shootings, assaults, vandalism, thefts, robberies, and
arrests. New York City subway and U.S. National Railways (UMN) data sets are
used for abnormal activity detection. The strongest dataset for detecting abnor-
malities in the current world comes from UCF. There are a total of 13 recordings
about actual anomalies in this collection. For violence detection, handcrafted fea-
ture extraction and the Hierarchical Hidden Markov Model (HHMM) are used. In
addition to HOG, HOMO, LSTM, and BD-LSTM, STIP, SFIT, and MOSFIT were
used for brute force detection. For the anomalies described, multi instance learning
is applied. Deep neural network training in this scenario is limited to 32 blocks with
16 frames. When a single malicious packet frame is identified in a block, the entire
block is flagged as malicious. It has a classification accuracy of only 28 percent.
Furthermore, because of the slow rate of picture processing, it is impractical for
real-time applications.

According to the paper [8], surveillance cameras can be used to both suspect and
trace any organization’s criminal activity. A centralized computer collects video
data, scans the data for single frames, processes the frames to generate single images,
and compares the resulting images to a trained and stored dataset. By comparing
footage from various cameras, suspicious activities are suspected simultaneously.
Classified photos of criminal activity are stored in a crime database that serves as a
repository. (CNN provides the classification.) Frame extracting software is used to
extract data. The algorithms employed in the process are stated below: 1. Extrac-
tion of the video frames from the camera’s video file 2. A database of crime photos
and their classifications can be stored. 3. Suspicious activity can be seen in the
photographs that have been taken of the scene. 4. A Centralized System for Crime
Prevention and Control In the study, the proposed model was not used, but the re-
searchers were able to show that the system could be used and that it was important.

This paper’s [22] major purpose is to employ gait speed monitoring to study people’s
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behavior through video surveillance. The MM track method is applied in this situa-
tion to complete the job. Using video data, this technology is typically used to track
pedestrians. Here, the spatial coordinate module and the fixed coordinate system
module are applied to extract the gait characteristics. Based on the speed profile,
spatial analysis is applied to measure the suspicious actions of pedestrians. A fixed
coordinate is also applied to measure the suspicious behaviors of pedestrians based
on their list of components and axis. For research objectives, walk ratio and accel-
eration autocorrelation (AAC) are also used. This proposed module’s effectiveness
was examined by comparison with the RealBoost approach and the Deformable Part
Model (DPM). This proposed module beats the DPM and real boost techniques in
both gait speed detection time (PDT) and true positive rate. Another purpose of
this study is stationary crowd analysis. According to the walk ratio (WR), pedes-
trians were separated into two categories: those who walked more slowly than the
threshold value and those who crossed it. We borrowed the principle of identifying
people in crowded places who want to commit crimes by evaluating their posture
and gestures using the media pipe structure from this paper.

The application of the C3D Model (3D convolutional neural network) for crime
detection in surveillance films is the dominant issue of this paper [11]. The C3D
model was able to successfully recognize some of the events, but at one point it did
raise a false alarm since it couldn’t capture the context that was continuous from
frame to frame. The proposed model also made use of the UFC-Anomaly Detec-
tion Dataset and was constructed using a semi-supervised learning strategy. Here,
two-stage techniques were applied for research reasons. In the first stage, video fea-
tures were collected and then used as inputs in the second model, a conventional,
fully connected neural network. The AUC-ROC Curve was utilized to analyze the
model’s performance, and the AUC-ROC Curve was used to evaluate the model’s
performance, with ROC conducting the probability assessment and AUC perform-
ing the separability evaluation.

This paper [18] focuses on automating the process of feature extraction from CCTV
images by utilizing the process of feature extraction from CCTV images. The cre-
ated architecture of this research is able to manage issues including cluttered scenes,
changes in illumination, shadows, and reflection, as well as variations in appearance
and partial occlusions. The framework is capable of generating detection and track-
ing results at a rate of four frames per second. A state-of-the-art object recognition
framework called Faster R-CNN is utilized to distinguish pedestrians in each frame
of CCTV photos. The proposed framework points out issues such as partial occlu-
sion, variations in illumination, changes in stance, form, and scale of pedestrians,
crowded backgrounds; and total occlusions for short times. The framework is not
able to manage entire occlusions of long durations and fails to address the problem
of having similar people in the same frame. A new algorithm has been created for
making the connection between the detections over numerous frames. Variations in
illumination, busy backdrops, partial occlusions, and changes in scale are all issues
that the detector can overcome. The system can follow pedestrians with 71.13 per-
cent accuracy and addresses the issue of changes in appearance (position and shape)
as well as total occlusions for short periods of time.
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The aim of this study is to propose a method for classifying people’s posture by
integrating and enhancing various evaluated techniques of human posture analysis
through a machine learning phase to model the posture features. The utilization of
certain features is implemented in a statistical classifier with the aim of forecasting
human posture. The chosen method for supervising the tracking and classification
process and generating alarms, is through the use of a finite state chart. This pa-
per presents a method for extracting and tracking human bodies in a movie using
the Sakbot system, which is a statistical knowledge-based object detection system
capable of recognizing and tracking MVOs. The present study employs PMFC. The
pre-classifying step is utilized to differentiate between tracks of individuals and non-
individuals after each MVO has been tracked. This thesis explores the process of
identifying and analyzing the posture of individuals through the use of MVOs des-
ignated as ”People Tracks” and the Human Posture Monitoring System (HPMS).
The aim is to recognize and prevent unsafe conditions that may arise.

The paper [1] uses the action recognition Bag of Words (BoW) approach of STIP
and MoSIFT. The game dataset is used and categorized as fight and non-fight. Here,
the histogram intersection kernel (HIK) has been used beside STIP, which resulted
in 91.7 percent accuracy compared to the other approaches.

The primary focus of this paper [10] is to extract motion and posture features and
subsequently merge them into a comprehensive set of features. This paper presents
a novel approach to human body moving target pose detection in the Internet of
Things environment using semi-supervised learning. The proposed method utilizes
a large amount of unlabeled data and introduces three-layer restriction conditions
of time domain, space domain, and data to enable efficient training. The results
demonstrate the effectiveness of the approach in accurately detecting human body
poses. The improvement of algorithm detection accuracy is achieved through the
use of a classifier. The study demonstrates that the proposed approach is highly
accurate in both feature extraction and multi-feature fusion. This study proposes
a novel approach that achieves a high correct classification rate of up to 95 percent
and a low average running time of 1.1 s. Compared to existing literature techniques,
the suggested approach demonstrates superior efficiency and accuracy.

This [9] is a unique model and a theorized system to handle violence utilizing deep
learning. The model uses CCTV video streams as input and, via inference, de-
termines whether a violent movement is occurring. And the proposed architecture
focuses on probability-driven video feed computation, which decreases the overhead
of naively calculating for each CCTV video stream. It is a pseudo real time violence
detection system that takes a video, whether with audio or without, and somehow
alerts when violent activities are detected. This solely focuses on taking inferences
from whatever data can be extracted from the video feeds coming from the CCTV
networks to one workstation (or, in the case of parallelism, a cluster). The violent
detection challenge is tackled using two novel approaches: CNN and LSTM. In fur-
ther cases, different models of CNN are tested to see which one provides the most
accuracy.
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2.2 Weapon Detection

Three aspects of crime detection are the topic of this study [20]. The first involves
more accurate face identification from CCTV footage using the deep learning library
YOLO (you only look once). This document also implies that if a weapon—such as
a gun, knife, or other cutting implement—is found in a location under video surveil-
lance, an alarm will activate. However, no detection rates were stated in this article
to give readers a comprehensive understanding of the subject. The third component
of this study uses CNN to recognize fires in order to prevent accidents.

Gun-based crimes and abandoned luggage on frames are the focus of this paper [5].
Images were analyzed using object detection and feature extraction so that guns
could be identified. The detection of weapons using x-ray and infrared imaging is
being researched. In the segmented photos, we used color-based segmentation to
segregate items, as well as the Harris interest point detector and FREAK to detect
weapons. Objects can be accurately identified with the application of image pro-
cessing and video analysis. Some people use transfer learning to avoid having to
re-teach a complex network from scratch. Background subtraction, in which moving
items are viewed as the foreground and non-moving objects as the background, is
utilized as the first step in the process of detecting abandoned luggage. Several stud-
ies, however, have combined the Blob Tracker and the Human Tracker in an effort
to reduce the number of false positives. In some cases, finite-state automata miss
two occurrences, such as one that is caused by a shadow and another that is caused
by a failure in object monitoring. Guler Farrow utilizes a new stationary algorithm
to detect moving objects. Both the tracker and the stationary item detector are
part of the system, which allows it to quickly discover abandoned objects. Based
on a TensorFlow implementation of Faster RCNN and the Inception v2 network for
feature extraction, this detection model is applied in this scenario.

This study [7] analyzes the detection of firearms, specifically guns, using a CNN-
based algorithm (SSD and faster RCNN) and two unique datasets: pre-leveled pho-
tographs and self-created images. Even if the algorithms are competent, their real-
time implementations collide in terms of accuracy and speed. The SSD algorithm
delivers a faster speed of 0.736 s/frame. In comparison, faster RCNN has a low per-
formance of 1.606 s/frame when compared to SSD. Faster RCNN delivers greater
accuracy, with a score of 84.6 percent. While RCNN is faster, SSD only delivers an
accuracy of 73.8 percent, which is mediocre. This research [13] uses a Deep Learn-
ing Algorithm to analyze CCTV footage in real-time, recognizing criminal faces and
objects using the YOLO algorithm and processing photos in real-time at a pace of
45 frames per second. The YOLO technique is employed in this real-time criminal
detection system with a mean average precision of 78.3 percent and a final aver-
age loss of 0.6 s. For the dataset, 100 high-resolution pictures of criminals and
weapons—such as knives, guns, and pistons—were added. The photos were aligned
using the YBAT annotation tool. However, due to the disparities in posture, it
was challenging for them to identify the offender. And in order to detect any crime
scene in addition to object or weapon detection, our system concentrates on posture
and gesture recognition rather than the criminal’s face. Additionally, MediaPipe is
deployed to gain exact findings for posture and gesture detection.
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This study [4] addresses the detection of criminality using real-time video or im-
age analysis and notifies the neighboring human supervisor to take further action.
The pre-trained deep learning model VGGNet-19, which recognizes the presence of a
knife or firearm in the hand of a person aiming at another person, was utilized to de-
velop the system. The VGG19 model was picked as the best match by comparing two
distinct pre-trained models, such as GoogleNet InceptionV3, in training. VGGNet19
provides better training accuracy results for crime datasets than GoogleNet’s initial
model because it leverages both the FRCNN and R-CNN algorithms to localize ob-
jects in photos, whereas GoogleNet solely uses the FRCNN technique to categorize
entities. The videos and photographs for the dataset were gathered from YouTube
and Google, and the acquired dataset was related to robbery, murder, and some
illicit behaviors like carrying firearms in locations like ATMs and banks where the
use of weapons is strictly outlawed. In order to give the closest authorities specific
information about the criminal scenario, their recommended system tries to distin-
guish firearms as well as the posture and sound effects linked to the crime scene.

The purpose of this study [19] is to integrate two machine learning models that
are both operational. Transfer learning on the VGG16 model is used for crimi-
nal/suspect face recognition, while the darknet framework and YOLOv4 algorithm
are to be employed for weapon identification. About 800 images altogether, includ-
ing relatives and acquaintances, have been changed to form the data set. A computer
vision development program called Roboflow was applied to automatically label the
training files for the custom dataset of weaponry, specifically guns. The validation
accuracy from the model’s training was 98.44 percent, and the training accuracy
was 97.66 percent.

Another study [15] compares and contrasts YOLOv5, the current popular version,
with YOLOv7, the most recent release. To determine which YOLO version yields
superior results in terms of precision, recall, mAP@0.5, and mAP@0.5:0.95, a custom
model was trained using both YOLOv5 and YOLOv7. The experimental dataset
was created specifically for Remote Weapon Station, and it included 9,779 pho-
tos annotated with 21,561 annotations from three different sources: Google’s Open
Images Dataset, Roboflow’s Public Dataset, and a locally gathered dataset. The
four categories are as follows: handguns, rifles, knives, and people. When com-
pared to YOLOv5, which achieved a precision score of 62.6%, a recall value of
53.4%, mAP@0.5 of 55.3%, and mAP@0.5:0.95 of 34.2% in its experiments, YOLOv7
achieved a precision score of 52.8%. It was shown that during testing, YOLOv7 had
a greater recall value than YOLOv5, but that YOLOv5 performed better in terms of
precision, mAP@0.5, and mAP@0.5:0.95. When compared to YOLOv7, YOLOv5 is
4.0% more precise. In order to better detect tiny objects, the HPS-YOLOv7 method
is proposed in this research [16]. To address the issue of depth model convergence
worsening over time, they presented a tweaked version of a high-efficiency layer
aggregation network for feature extraction and introduced a lightweight Bottleneck-
structured model processing method. To fully integrate shallow object semantic
information, they suggested C-recursively gated convolution, which increases the
model’s capacity. To compensate for the data loss caused by small objects, a shal-
low feature fusion network (SFN) was added to the deep convolutional network. The
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detection head was increased in size from 2020 to 160160. Model training employed
mosaic data enhancement and an a priori anchor adaptive adjustment technique to
boost detection effectiveness and efficiency. Both the VisDrone2019 and Tinyper-
son datasets were used in the experimental evaluation. When comparing mAP to
YOLOv7 at IoU=0.5, the results showed a 3.0% and 13.29% rise, respectively. The
theoretical and practical utility of HPS-YOLOv7’s benefits in tiny object detection
were demonstrated in this research. Search and rescue operations at sea rely heavily
on object detection algorithms; however, the SeaDronesee dataset offers difficulties
due to its small targets and considerable interference. To deal with these problems,
a new detection system called YOLOv7-sea was suggested in a research paper [17].
They built YOLOv7 [14] by including a prediction head that can spot people and
things at the microscopic scale. They also incorporated the Simple, Parameter-Free
Attention Module (SimAM) to identify focal points in the environment. They pre-
sented additional helpful methodologies, including data augmentation, Test time
augmentation (TTA), and bundled box fusion (WBF), that can be used to further
enhance their proposed YOLOv7-sea. The AP result of YOLOv7-sea is 59.00% on
the ODv2 challenge dataset, which is almost 7% higher than the baseline model
(YOLOv7).

The YOLO v4 and v7 algorithms have been utilized in our system to detect various
types of weapons, such as guns, knives, and other sharp metal objects, which could
potentially be utilized as tools for criminal activities. The utilization of ConvLSTM
technology enables the monitoring of hostile gestures and postures exhibited by
individuals, in addition to weapon tracking. The ability to identify distortions in
various conditions enables the detection of crime scenes and subsequent reporting
to authorities.
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Chapter 3

Research Methodology

3.1 Proposed Model

Combining the recurrent neural network (RNN) method Bidirectional LSTM with
the convolutional neural network (CNN) model MobileNetV2, we were able to de-
velop a real-time violent action detection model. The method is based on the Con-
vLSTM architecture. We proposed an additional methodology for weapon-based
aggressive behavior identification using YOLOv7 to identify and categorize all three
types of weaponry from our customized dataset.

The process of identifying violent content in a video involves segmenting the video
into individual frames to extract data at the frame level. Subsequently, the detection
of human motion within these frames occurs. Afterwards, spatial characteristics are
obtained through either manual or automated machine learning techniques. Finally,
classification algorithms are employed to categorize the extracted features. The
area of computer vision has experienced significant expansion owing to the swift
emergence of deep learning algorithms and the accessibility of extensive data and
computational capabilities. This paper presents a method for detecting violence in
real-time video using the MobileNet v2 architecture.

For proposed methodology for weapon detection is we used YOLOv7. For YOLOv7
model, after annotation, we needed to upload this annotation file to Google Drive,
load the dataset on Google Colab, install the YOLOv7 environment and weight file.
We chose three classes from among the 80 available; gun, sharp-object, and stick.
After that we trained the desired model and tested the inferences.
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Figure 3.1: Proposed ConvLSTM architecture

Figure 3.2: YOLOv4 Workflow
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Figure 3.3: YOLOv7 Workflow

3.2 Data Assembling and Pre-processing

3.2.1 Dataset collection

The initial and essential phase of our proposed work, which is real-time crime detec-
tion, was to gather and organize data for training and testing the model. We had
to collect data from multiple sources because we have concentrated on detecting
crime through comparative analysis of local and international weapons. The free
data science communities like Kaggle and others were not enough for us; we had to
look further. The datasets we used for our research were split into two categories:

• Posture dataset collection

• Weapon dataset collection

3.2.2 Description of Dataset

3.2.2.1 Posture Dataset

We collected our dataset for violence posture detection from Kaggle under the name
”Real Life Violence Situations Dataset” [21], which is a combination of 2000 videos,
1000 of which are categorized as non-violent while the remaining 1000 are violent.

3.2.2.2 Weapon Dataset

We divided our data collection procedure for weapon detection into two subcate-
gories :

• Guns

• Local weapons
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– Sticks

– Sharp Objects

In order to get this data, we had to carry out a search on Kaggle; however, because
we did not have access to any local weapons (such as sticks or sharp things such as
machetes (ramda), knives, etc.), we were compelled to acquire it through Google. A
total of 1109 images were gathered for our weapon dataset, combined with the gun
images obtained from Kaggle under the name ”Guns Object Detection.”

3.2.3 Data Pre-processing

3.2.3.1 Posture Dataset Preprocessing

To train and test our posture detection model, we had to prepare our dataset by
going through a few procedures, which included:

1. Frame Extraction

The dataset we obtained from Kaggle consisted of 2000 videos divided into
two main classes: violence and nonviolence. Upon importing the requisite li-
braries in Google-Colab and mounting the video dataset from the drive, the
file path was designated for the extraction of frames. Utilizing the openCV
video capture module, the video file was read, then we calculated the total
number of frames in the video. Subsequently, the interval between the two
frames was calculated.

Next, we checked if it matches our sequence length or not (by sequence length,
we meant how many segments we want to extract from each video, and in our
case, we set it to be 16 segments/video). If it matches our sequence length,
next we set the frame position in the video, and if it’s not successful, the loop
breaks.
We proceeded with image/frame resizing after successfully extracting the frames.

2. Frame Resizing

In this step, we fixed our frame dimension to 64 (which means image height
= 64 and image width = 64). Resizing the images, especially the decreasing
dimension of the actual image, helps in dealing with less noise, and eventually
this helps in faster and more precise image processing algorithms. After resiz-
ing the frames, we shift to normalizing them, as it is an essential step in CNN.

3. Normalization

In this step, we divide our resized frames by the maximum pixel value, which
is 255 for 8 bit images, and this process is known as normalization.
Normalization of input data is essential because the input values influence the
speed at which a network converges during training; if its inputs are adjusted to
have a range between 0-1, it converges faster and produces the least amount of
error. It contributes to the network’s unbiasedness by keeping the pixel value
of each frame within the same range.
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4. Array listing

After normalizing each frame, we append them into an array with the help of
the Numpy library.

5. Split

We split our final dataset array into 80:20 ratios for training and testing data
by using train test split from the sklearn.model selection package.

Figure 3.4: Piechart of posture dataset splitting

Table 3.1 shows the tabular format of data pre-processing details for posture data.

Total Data
Classification

of
Dataset

Freame
extraction/
Video

Frame
Dimension

Train
Dataset

Test
Dataset

2000
videos

2
(violence &
non-violence)

16 64
80% of
total data
= 1600

20% of
total data
= 400

Table 3.1: Posture data pre-processing

3.2.3.2 Weapon Dataset Preprocessing

We had to create our dataset from scratch in order to train and test our weapon
detection model, which included:

1. Data Collection

Guns and other local weapons like knives, sticks, and machetes are included
in the images we gathered for our weapon detection model. The images of the
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guns were taken from Kaggle,we contributed a few of the knife photos, and
Google was used for the rest.
The search was discontinued upon collecting approximately 1109 images due
to a significant number of redundancies within the dataset. Subsequently, we
transitioned to the practice of annotating.

2. Data Annotation

In order to train the model with the same file format prior to annotation, we
manually converted our collected images to JPEG.
The process of annotation is considered necessary for tasks involving super-
vised machine learning. The learning process of the model is based on the
analysis of examples, which subsequently determines its efficacy.
The Labellmg annotation tool was employed to label our image dataset using
the bounding box concept, which is a widely used technique in object detec-
tion tasks. A bounding box is a rectangular box that specifies the location of
target objects.
Since our model for detecting objects is based on the YOLO technique, we
employed the YOLO labeling format, which generates a .txt file in the same
directory as each image that describes the object’s class/label, coordinates,
and dimensions.
The image dataset was partitioned into three distinct categories and subse-
quently classified into three classes, namely guns (labeled as 0), sticks (labeled
as 1), and sharp objects (labeled as 2). The knives and machetes in our data
set were stored in the ”sharp objects” category.

3. Allocation for YOLOv4 and YOLOv7 Models

After annotation, we kept the label files and images in the same directory for
utilizing the data in YOLO v4, but for v7, we had to keep them in a different
directory.

4. Split

In the weapon detection model, we split our dataset by a ratio of 70:10:20 for
training:validation:testing.

Here, we used 10% validation data to check the dataset’s accuracy by remov-
ing overfitting-related data errors.

Table 3.2 shows the tabular format of data pre-processing details for weapon data.
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Figure 3.5: Piechart of weapon dataset splitting

Total Data
Classification

of
Dataset

Train
Dataset

Validation
Dataset

Test
Dataset

1109
images

3
(gun,
sharp object
& stick)

70% of
total data
= 776

10% of
total data
= 111

20% of
total data
= 222

Table 3.2: Weapon data pre-processing

3.3 Violent and Non-violent Posture Detection

using ConvLSTM

3.3.1 CNN Architecture

Among Deep Learning models, Convolutional Neural Networks (CNN) is the most
powerful, particularly for pattern recognition. It has transformed computer vision
and is widely utilized for many different purposes, such as the identification of real-
life violent acts in video data.

Deep neural networks, known as CNNs, were created primarily to interpret visual
input, such as images or videos. They are made up of several layers, each of which
is in charge of extracting distinct features from the input data and learning them.
Convolutional layers, pooling layers and fully connected layers make up the main
parts of a fundamental CNN architecture.

3.3.1.1 Convolutional Layers

The foundation of CNNs is convolutional layers. They apply a collection of teach-
able filters to the input data to conduct convolutional operations. These filters
capture various visual patterns at various spatial locations within the picture or
video frame, including edges, textures, and shapes. Feature maps that highlight
significant features while preserving spatial information are the outcome or output
of this layer.
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3.3.1.2 Pooling Layers

By reducing the spatial dimensions of the feature maps, pooling layers can capture
the most important information while requiring less processing. Max pooling, which
takes the highest value available within a given range, is the most widely used pooling
operation. This phase of downsampling aids in the extraction of significant features
resistant to minute spatial variations.

3.3.1.3 Fully Connected Layers

Fully connected layers use extracted characteristics to learn high-level represen-
tations and make predictions. These layers enable complicated relationships and
classifying decisions by joining all neurons from one layer to the next.

3.3.1.4 Activation Functions

By introducing non-linearity to the network, activation functions allow the model to
recognize intricate, irregular patterns in the input. ReLU (Rectified Linear Unit),
a function that sets negative values to zero while maintaining positive values, and
softmax, which transforms the network output into probabilities for various classes,
are examples of common activation functions.

Figure 3.6: CNN Architecture

3.3.1.5 CNN for Detecting Violent Activities in Video Data

Analyzing temporal patterns and motion data is necessary to find violent activity
in video data. Preprocessed data should be run via the convolution layer in order to
apply CNN here. The CNN then collects features for each frame or frame sequence
by running them through the convolutional layers. These layers record temporal
dependencies, visual patterns, and motion data. Additional methods can be used to
record temporal data. To describe the temporal dependencies between frames, long
short-term memory (LSTM) is frequently used. These models sequentially process
the retrieved characteristics while taking the temporal order of the frames into ac-
count. Fully connected layers are then given the output from the preceding layers,
which represents the learned features. These layers classify the input into prede-
termined categories (such as violence vs. non-violence) or forecast the likelihood
of violent activities based on the extracted attributes. Video data with annota-
tions indicating the presence or absence of violent activity is generally used to train
the CNN model. Through the use of optimization techniques like stochastic gradi-
ent descent (SGD), training entails minimizing a loss function, such as categorical
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cross-entropy. To enhance the predictions and reduce the loss, the model iteratively
modifies its weights.

CNN has demonstrated success in detecting actual violent acts in video data. CNN
architectures may examine video frames or sequences and predict the existence of
violence by utilizing their capacity to extract visual features, record motion data,
and model temporal dependencies. This technology has the capacity to improve
security and safety in a number of contexts, helping to identify and stop violent
crimes. Mobilenetv2, a sophisticated CNN architecture-based network, was created
based on this architecture.

3.3.2 Mobilenetv2 Architecture

A convolutional neural network (CNN) architecture called MobileNetV2 was created
to enable quick and easy image classification on mobile and embedded devices. It
advances MobileNetV1 by using cutting-edge methods that increase computational
effectiveness and accuracy. In situations where computing resources are constrained,
such as with mobile phones, IoT devices, and real-time applications, MobileNetV2
is particularly beneficial. Here, we’ve provided a description of the MobileNetV2 ar-
chitecture’s operation. MobilenetV2 can be used in classification, object detection
and semantic segmentation.

A series of layers gradually change the input image in MobileNetV2’s ”bottleneck”
architecture in order to learn higher-level representations. It primarily consists of
three essential elements: depthwise separable convolutions, inverted residuals, and
linear bottlenecks.

3.3.2.1 Depthwise separable convolutions

Depthwise separable convolutions have two parts. It divides the typical convolution
into a depthwise convolution and a pointwise convolution. This is the key compo-
nent of MobileNetV2’s significant use of convolutions and its uniqueness. Depthwise
convolution considerably lowers the computational cost by applying a single convolu-
tional filter to each input channel separately. The output channels of the depthwise
convolution are combined using the pointwise convolution, also referred to as the
1x1 convolution. The number of parameters and computing complexity can be de-
creased because of this separation without compromising accuracy.

The computational cost of a standard convolutional layer is hi.wi.di.dj.k.k. Stan-
dard convolutional layers can be swapped out for depthwise separable convolutions.
In terms of empirical performance, they are nearly as effective as standard convolu-
tions, but they only cost:

hi · wi · di(k2 + dj) (3.1)

which is the total of the depthwise and 1x1 pointwise convolutions. This layer
decreases processing by almost a factor of k2, k2dj/(k2 + dj) to be specific when
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compared to standard layers. With only a slight accuracy loss, MobileNetV2’s com-
putational cost is 8 to 9 times lower than that of ordinary convolutions because of
its use of 3 x 3 depthwise separable convolutions.

Figure 3.7: MobilenetV2 Architecture

3.3.2.2 Inverted Residuals

Inverted residuals have been added to MobileNetV2 to improve the network’s capac-
ity for representation. Expansion, depthwise convolution, and projection are a few
of the lightweight operations that make up inverted residuals. The expansion stage
boosts the input’s channel count, enabling it to record a wider range of information.
The extended features are subjected to separable convolutions during the depthwise
convolution. The projection stage then brings the channel dimensions back down to
the desired level and produces the intended result.

3.3.2.3 Linear Bottlenecks

MobileNetV2 uses linear bottlenecks, which include limiting the number of channels
prior to expensive activities and then expanding them later, to further optimize the
architecture. This strategy aids in preserving the network’s expressive power while
lowering the computational cost of expensive operations.

The following stages can be used to summarize how MobileNetV2 operates:
MobileNetV2 accepts either an input image or a feature map for its initial convolu-
tion. The initial convolutional layer uses a conventional 3x3 convolution to transform
the input into a set of feature maps. MobileNetV2 is made up of several building
blocks, each of which is made up of a series of layers. These building components
include linear bottlenecks, inverted residuals, and depthwise separable convolutions.
These stacked construction blocks process the input as it travels through them,
gradually extracting higher-level information from the input image.

Downsampling and Upsampling: To decrease the spatial dimensions of the fea-
ture maps while increasing the number of channels, downsampling is carried out
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via strided convolutions or pooling procedures. This downsampling process aids in
gathering more abstract and comprehensive data. Transposed convolutions are fre-
quently used in upsampling to reduce the number of channels while increasing the
spatial dimensions, which makes it easier to recover finer details.

The classification layer is the last component of MobileNetV2, often consisting of a
fully connected layer with an activation after a global average pooling layer. This
layer effectively summarizes the learned features by reducing the spatial dimensions
of the feature maps to a vector representation. Utilizing the fully connected layer,
we can map this vector to the necessary number of classes and produce the classifi-
cation probabilities.

3.3.3 Bi-directional LSTM architecture

The long-short-term memory network is a recurrent neural network used primar-
ily for sequential data. To address the issue of vanishing and exploding gradients,
LSTM plays a vital role. This network is also better at understanding the connection
between values at the start and end of a sequence. LSTM networks share RNN-like
structures; however, the LSTM for the memory or repeating module is different.
Memory blocks are recurrently linked to form an LSTM layer. Each includes three
units, which are the input, output, and forget gates, along with recurrently con-
nected memory cells.

Bidirectional LSTM is better than the usual LSTM in terms of sequence data. Un-
like regular LSTM, as it can use data from both sides and input flows from both
direction, it is a powerful method for modeling the sequential relationships between
data. By adding one extra LSTM layer, BiLSTM reverses the direction of informa-
tion flow. As a result,the input sequence flows backward in the new layer. After
that, outputs from the two LSTM layers are combined in multiple ways.

Each training sequence is presented both forward and backward to two separate
LSTM networks that are both connected to the same output layer in order for bidi-
rectional LSTM networks to work. This indicates that the Bi-LSTM has detailed
sequential information about all points prior to and following each point in a specific
sequence. So, the outputs from both the forward and the backward LSTM are con-
catenated at each time step rather than just encoding the sequence in the forward
direction. Due to the sequence of images in video data, to extract temporal features,
bidirectional LSTM will be a better option than regular LSTM in this situation.
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Figure 3.8: Bidirectional LSTM Architecture

3.3.4 Proposed ConvLSTM architecture

In this research, we propose a violence detection model with the combination of
MobilenetV2 and bi-directional LSTM. We provide preprocessed video input data
that includes both violent and nonviolent actions. In the first part of the model,
we used the convolutional layers of MobilenetV2 to extract the spatial information
from the dataset. As it is a lightweight model, real-time detection will be faster and
cheaper. Further layers with the proper settings, such as the Time Distributed layer,
Dropout, Time Distributed Flatten layer, LSTM, Dense layer, etc., are included as
the network’s remaining layers once MobilenetV2 is added to the topmost layer. We
used bi-directional LSTM to capture temporal information and deal with variable
dependencies. Finally, the flattened and combined feature maps are passed to fully
connected layers for classification. The sizes of the layers are 256, 128, 64, and 32,
and between each fully connected dense layer we used the ReLU activation function.
In the final binary output dense layer, we used the activation function softmax. We
used the SGD optimizer. For the loss function, we used categorical cross entropy to
calculate loss from the output layer. The ratio of 80:20 data is selected as training
and testing data. Lastly, the model is tested using video data and predicts violence
and non-violence actions, showing the detection in real-time.

Figure 3.9: Proposed ConvLSTM model Architecture

3.3.5 Posture Detection method

A collection of preprocessed violent and nonviolent action data is trained in this
model to successfully predict the actions in real time. The model learns through

22



transfer learning. We use the first few layers of the pretrained MobilenetV2 model to
extract the spatial features from which our model learns about patterns and LSTM
to extract temporal data. After that, the rest of the layers of our model learn to
classify the actions into two categories. As a result, after proper training of the
model, if we pass a video containing violent activities, we get the predicted class
name on top of the frames.

3.4 Weapon Detection and Classification

3.4.1 YOLOv4 Architecture

3.4.1.1 YOLOv4 in Object Detection

The components of the architecture can be divided into the following groups: The
GPU processes the input, which arrives first and essentially represents the collec-
tion of training images that will be supplied to the network, in simultaneous batches.
The following are the backbone and neck, which carry out feature extraction and
aggregation. The Detection Head and Detection Neck are referred to as the Object
Detector together. The detection and prediction are then carried out by the head.
The crown is primarily in charge of detection (including localization and categoriza-
tion).

Figure 3.10: Object Detector of YoloV4

The YOLO detector, also known as dense detection, performs both of these simulta-
neously because it is a one-stage detector. A two-stage detector, however, does each
individually and then combines the findings (sparse detection).YOLOv4 investigates
various data augmentation techniques and backbone networks.

Backbone Network

What acts as the foundation? The majority of the layers in this deep neural net-
work are convolution layers. Because the backbone’s main objective is to extract the
essential information, choosing the right backbone is an essential step that will im-
prove object identification performance. Frequently, the neural network that trains
the backbone has already been trained. The backbone networks were initially antic-
ipated to be CSPResNext50, CSPDarknet53, and EfficientNet-B3. They ultimately
settled on CSPDarknet53 CNN after conducting rigorous testing and analyzing the
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results. The CSPDarkNet53 design is built on the DenseNet platform. It concate-
nates the previous inputs with the present input before entering the dense layers;
this is referred to as the dense connection pattern. There are two blocks in CSP-
DarkNet53: 1. Convolutional Base Block Cross Stage Partial (CSP) for Layer 2.
Over Stage The base layer’s feature map is split in half and merged using the partial
technique, which addresses the dreaded ”vanishing gradient” problem by allowing
more gradients to flow across the layers.

The convolutional base layer is composed of the entire input feature map. The
CSP block, which is stacked next to the Convolutional Base layer, divides the in-
put into two parts; one is sent through the dense block, while the other is routed
directly to the next step without any processing, as was previously indicated. CSP
promotes the reuse of network features, safeguards fine-grained features for better
forwarding, and minimizes the number of network parameters. Only the last con-
volutional block in the backbone network, which can extract more semantic data,
is dense because more tightly coupled convolutional layers may slow down detection.

Figure 3.11: CSP

Neck

The neck is where features come together. The feature maps are gathered from the
multiple backbone stages and blended and merged to prepare them for the next
stage. A neck often consists of both a number of top-down and bottom-up routes.
Typically, only the last few levels of the convolutional network’s neck’s connections
move between layers.

SPP

The feature aggregator network (PANet) and the CSPDarkNet53 backbone are con-
nected by an additional block called SPP (Spatial Pyramid Pooling). This has little
to no effect on network operation speed and serves to increase the receptive field and
segregate the most crucial context characteristics. It is connected to the strongly
coupled final CSPDarkNet convolutional layers.

The receptive field is the area of the image that is exposed to one kernel or filter at
a time. It grows linearly as more convolutional layers are added, but when dilated
convolutions are introduced, which causes non-linearity, it expands exponentially.
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Figure 3.12: SPP

Here in Figure 3.13 is a summary of the actions taken:

Figure 3.13: Summary of Operations
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PANet

YOLOv4 principally uses a modified path aggregation network as a design improve-
ment to make it more suitable for training on a single GPU. By maintaining spatial
information, PANet’s main purpose is to improve the instance segmentation process,
which in turn helps with precise pixel localization for mask prediction. Bottom-up
path augmentation, adaptive feature pooling, and Fully-Connected Fusion are es-
sential features that contribute to their high level of mask prediction accuracy. The
modified PANet concatenates neighbouring layers rather than adding them while
using adaptive feature pooling.

Figure 3.14: PANet

Head

The main duties in this situation are finding bounding boxes and doing categoriza-
tion. The bounding box coordinates (x, y, height, and width) are discovered along
with the scores. The b-box’s center is indicated here by the x and y coordinates in
reference to the boundary of the grid cell. Forecasts for height and breadth take
into account the complete image.

Additionals of YoloV4

The terms ”Bag of Freebies” (BoF) and ”Bag of Specials” (BoS) were created by
the authors.

1. Bag of Freebies (BoF)

Most of these data augmentation techniques improve network efficiency with-
out lengthening inference times. The ability to create different versions of a
single image is made feasible through data augmentation, which improves the
network’s prediction abilities. The two main techniques included in this archi-
tecture are self-adversarial training (SAT) and mosaic data augmentation.

2. BoF for the backbone

Class label smoothing, DropBlock regularization, CutMix, and mosaic data
augmentation.
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3. BoF for detector

When employing many anchors for a single ground truth, CIoU-loss, CmBN,
DropBlock regularization, mosaic data augmentation, Self-Adversarial train-
ing, grid sensitivity be gone, cosine annealing scheduler, ideal hyperparam-
eters, and random training shapes are employed. The primary and crucial
components of BoF are explained below.

The model can be trained to find smaller items and pay less attention to
the surroundings by combining four training photographs into a mosaic. Self-
adversarial Training (SAT), another technique, drives the network to recognize
new features by concealing the region of the image it relies on the most. To en-
able training on just one GPU, Cross mini-Batch normalization is introduced.
since the majority of batch normalization solutions use multiple GPUs. A
regularization method to address over-fitting is called DropBlock. A block of
pixels is dropped. In contrast to pixel dropout, which is ineffective on convo-
lution layers, it does so. A regularizer that lowers the prediction’s goal upper
bound is class label smoothing. This is an additional measure implemented to
solve the over-fitting problem. Its formula is:

ylb = (1− α) ∗ yhot + α/C (3.2)

C = how many label classes there are
α = Smoothing Hyper-Parameters

4. Bag of Specials (BoS)

Although they somewhat lengthen inference times, BoS considerably improves
performance. The backbone’s BoS is composed of Mish activation, Cross-
stage partial connections (CSP), and Multiinput weighted residual connections
(MiWRC). The detector’s BoS includes Mish activation, SPP-block, SAM-
block, PAN path-aggregation block, and DIoU-NMS.

5. Mish Activation

Using this activation function, signals can be pushed to the left and right,
which is not possible with ReLU-style activation functions. Mish performs
better than ReLU, Swish, and Leaky ReLU in terms of empirical results. Fur-
thermore, when Mish is applied, various data augmentation techniques react
consistently.

6. Multi-input weighted residual connections (MiWRC)

EfficientDet’s weighted bidirectional feature network-based tailored compound
scaling method, which improves accuracy and efficiency, uses MiWRCs to
construct a crucial part.

7. Non-Maximum Suppression (NMS)

The DIoU-NMS method only keeps the box with the highest confidence score
after filtering out all other boxes. Distance IoU (DIoU) is used to achieve this,
which considers the IoU values and the distance between the center points
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of two bounding boxes while suppressing the redundant boxes. In situations
where there is occlusion, this is ideal.

3.4.1.2 Loss Function

The YOLOv4 loss function combines a number of elements in order to maximize
the model’s performance in reliably recognizing and localizing objects. The three
main elements of the overall loss function in YOLOv4 are the localization loss, the
confidence loss, and the class loss.

1. Localization Loss (Lcoord)

The localization loss (Lcoord) gauges how well bounding box predictions are
made. The model is penalized based on the discrepancy between the predicted
and real bounding boxes. YOLOv4 use the sum of squared differences (SSD)
loss to calculate the Euclidean distance between the predicted box coordinates
and the ground truth box coordinates.

2. Confidence Loss (Lobj)

The confidence loss measures how well the model can distinguish between
object and background regions. It assesses the confidence of the model’s pre-
dictions. In order to compare the anticipated objectness score—which denotes
the presence of an object—with the ground truth label, YOLOv4 uses binary
cross-entropy loss.

3. Class Loss (Lcls)

The class loss gauges the object classification’s precision. To determine the dif-
ference between the anticipated class probabilities and the actual class labels,
YOLOv4 uses categorical cross-entropy loss.

The weighted sum of the aforementioned elements—which includes factors to
balance the effects of each loss term—represents the overall loss (Ltotal) for
YOLOv4. During training, the relative importance of each component can be
changed to highlight particular features, for as emphasizing correct localiza-
tion or enhancing classification accuracy. With the help of backpropagation,
YOLOv4 tries to jointly optimize these loss components in order to reduce
total loss and enhance the model’s performance in object detection tasks.

3.4.2 YOLOv7 Architecture

3.4.2.1 YOLOv7 in Object Detection

To gain a thorough understanding of the image or video, we should estimate the
positions of items in each image and focus on classifying the various images. The
term ”object detection” refers to this action, which frequently entails a number
of smaller ones like ”face detection,” ”vehicle detection,” ”person detection,” and
so forth. Object detection techniques are used in many commercial applications,
including picture classification, face recognition, autonomous driving, and the anal-
ysis of human behavior. They are one of the fundamental computer vision issues
that can offer crucial data for comprehending the semantics of both images and
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videos. Meanwhile, advancements in these fields have had a big impact on the field
of computer vision and its ability to cross numerous boundaries. These abilities are
inherited from the neural network and related learning system families.

Among the many various object detection models that are efficient for particular
use cases, the recently released YOLOv7 stands out. It asserts that it outperforms
all known object detectors in both speed and accuracy and has the highest accuracy
(56.8% AP) among all known real-time object detectors. The proposed YOLOv7
version E6 outperformed transformer-based detectors like the SWINL Cascade-Mask
R-CNNR-CNN in terms of accuracy and speed. Scaled-YOLOv4, Scaled-YOLOv5,
DETR, Deformable DETR, DINO-5scale-R50, and Vit-Adapter-B have all under-
performed YOLOv7.

Figure 3.15: Trainable bag-of-freebies sets new state-of-the-art for real-time object
detectors

3.4.2.2 Model Re-parameterization

By integrating numerous computational modules into one during the inference step,
model re-parameterization aims to shorten inference time. Model-level ensembles
and module-level ensembles are the two types of model re-parameterization tech-
niques. In the first instance, training several identical models using various train-
ing sets results in the averaging of their weights. In the latter, a weighted aver-
age of model weights over various iteration counts is calculated. Module-level re-
parameterization has gained favor recently. Additionally, some re-parameterization
techniques are architecture-specific, which limits their applicability to a small num-
ber of architectures. A new kind of re-parameterization is introduced in YOLO v7
to solve the drawbacks of earlier techniques.

3.4.2.3 Model Scaling

A method for scaling an existing model to accommodate any computer platform is
called ”model scaling.” The architecture is very flexible as a result. Stage scaling
(number of feature pyramids), depth scaling (number of layers), width scaling (num-
ber of channels), and resolution scaling (size of the input image) are a few of the
several scaling methods. The trade-off between accuracy and speed is revealed via
model scaling. Techniques for model scaling, such as network architecture search
(NAS), are frequently employed. Without setting unduly complicated rules, NAS
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may automatically explore the search space for suitable scaling factors. The draw-
back of using NAS is that finding model scaling factors needs expensive compute.
The main problem with NAS is the independent study of the scaling factors. To
deal with the problem of independent assessments, YOLO v7 provides a new scale
method.

3.4.2.4 Extended efficient layer aggregation networks

The size, quantity, and processing density of a model are the main factors to be
taken into account while creating an efficient architecture. The VovNet model goes
one step further by examining how the input/output channel ratio, the quantity of
architectural branches, and element-wise operation affect network inference speed.
The next significant advancement in architecture search is ELAN, which YOLOv7
expanded into E-ELAN. The ELAN article claims that if the shortest and longest
gradient pathways are controlled, a deeper network can successfully train and con-
verge.

No matter how many processing blocks are stacked or how long the gradient path
is, large-scale ELAN has attained stability. This stable condition can be lost, and
the rate of parameter utilisation will decrease, if there are infinitely more processing
blocks added to the stack. While maintaining the initial gradient path, E-ELAN
uses expanding, shuffling, and merging cardinality to continuously enhance the net-
work’s learning capacity. E-ELAN solely modifies the computer block’s architecture;
the transition layer’s architecture is unaffected. To expand the channel and cardi-
nality of computing blocks, the E-ELAN approach uses group convolution. It gives
each computational block in a computational layer the same group parameter and
channel multiplier. The generated feature maps from each computation block are
then split into g groups and concatenated using the specified group parameter g.
There will be the same number of channels in each group of feature maps as there
were in the original architecture. Merge cardinality by including g feature map
groupings lastly. While preserving the original ELAN design architecture, E-ELAN
can instruct other collections of computational blocks to pick up extra, more varied
functionality.

Figure 3.16: E-ELAN architecture
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Model scaling for concatenation-based models

Model scaling is typically used to alter specific model characteristics and produce
models at various scales to account for various inference speeds. They scale width,
depth, and resolution in the well-known Google architectural design, EfficeintNet.
Later, scientists made an effort to ascertain the impact of scale-running groups and
vanilla convolution on the quantity of parameters and computation.

Concatenation-based architecture is incompatible with EfficientNet’s methodology
because it affects the degree of the translation layer that comes after a concatenation-
based computation block when scaling up or down in depth. For instance, scaling-up
depth will alter the proportion of a transition layer’s input channel to its output
channel, potentially lowering the hardware requirements of the model. The sug-
gested method should also identify how a computational block’s output channel
changes as its depth factor changes. After making the same amount of adjustment
to the width factor scaling for the transition layers, the outcome is displayed in the
image below. The ideal structure and the model’s original characteristics can both
be preserved using the YOLOv7 compound scaling method.

Figure 3.17: Model Scaling
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Trainable bag-of-freebies

1. Planned re-parameterized convolution

Before we go into more detail about RepConv, another type of convolutional
block, let’s take a closer look at it. RepConv, like Resnet, has one identification
connection as well as a second connection with a 1x1 filter in between.

Figure 3.18: RepConv being used in VGG

Before we go into more detail about this, on RepConv, a different form of con-
volutional block. RepConv, like Resnet, has a 1x1 filter sandwiched between
a first identifying connection and a second connection.

Figure 3.19: Planned re-parameterized model

2. Coarse for auxiliary and fine for lead loss

When training deep neural networks, deep supervision is a common strategy.
Increasing the number of auxiliary heads at the middle level of the network
is the primary objective of the assistant loss-guided shallow network weights.
Deep supervision, even for architectures that commonly converge effectively,
like ResNet and DenseNet, can greatly boost the model’s performance on
numerous tasks. Below is an illustration of the object detector architecture

32



in both the ”without” and ”with” deep supervision stages.In the YOLOv7
architecture, the lead head is in charge of producing output, while the auxiliary
head is in charge of assisting in training.

Figure 3.20: Causes of auxiliary and fine for lead head label assigner

Label assignment during deep network training directly references ground
truth and produces complex labels per the prescribed rules.

3. Assigned lead head directed label

The lead head can focus on learning the remaining information that is yet
undiscovered by having the shallower auxiliary head directly absorb the knowl-
edge the lead head has learned.

4. Assigned coarse-to-fine lead head guiding label

Because of this approach,the fine label’s optimizable upper bound is always
more important than the coarse label’s, allowing for dynamic adjustment of
the relative relevance of fine and coarse tags during the learning process.

3.4.2.5 Loss Function

Confidence loss(L(obj), classification loss(L(cls), and localization loss(L(box) make
up the three components of the YOLOv7 model’s loss function. The sum of the
three losses with varying weights is the overall loss. Formula 3.3 is used to express
the total loss function.

LOSS = a× Lobj + b× Lcls + c× Lbox (3.3)
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Chapter 4

Implementation

4.1 Posture Detection

The implementation process for violence detection will be described here. Our model
will work using a CCTV camera for real-time inferences or predictions. After ex-
tracting spatial and temporal features and training, our model can accurately predict
violence in real time. For this, our system has combined two models for a better
result, as mentioned before. Firstly, the models check to see if there are any activi-
ties or sequential actions of violence in the frames of the video. If there are any, the
class name ‘violence’ is shown in those video frames. The step by step processes are
explained further.

4.1.1 Splitting

We divided our preprocessed dataset into train, test, and validation. We had 1000
videos of violence and nonviolence each. After enough preprocessing, we have a
usable custom dataset.

Data Segments Percentage Total Dataset
Training 80% of total data 1600
Testing 20% of total data 400

Table 4.1: Posture data splitting

4.1.2 Model Training

Mobilenetv2 is a pre-trained deep learning network that is trained on millions of
images from the ImageNet dataset. First of all, we import the weights from the Im-
ageNet dataset to use in our custom dataset. During the training process, the model
learns parameters known as weights. The purpose of using them is to convert input
data into a more beneficial format for the purpose of classification or prediction.
Imagenet has 1000 classes. Since there are only two classes in our dataset, we will
just employ this model’s convolution layers to obtain feature maps so that we can
train it on our dataset. By removing the last few dense layers from the pre-trained
model Mobilenetv2, we can get a feature vector instead of the predicted class.
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4.1.2.1 Fine tuning and Hyperparameter Selection

The final study applies a fine-tuning method to the model by using the training set
from the dataset in order to obtain further improvements to the proposed model.
The proposed model’s hyper-parameters are adjusted, such as by decreasing the
learning rate and increasing the number of epochs. The accuracy results obtained
from testing the refined model with the test set of the dataset are on par with the
state of the art.

Mobilenetv2 is 53 layers deep. In the first few layers, the model learns simple or
generic features. The higher the layers go, the features become more specific. To
stop that and train the model solely for our dataset, we need to freeze the layers
and modify the rest. Here, we modified the last 40 layers for our purpose. For that,
all the layers except the last 40 should be set to untrainable.

The subsequent section will explicate the model’s structure. After splitting the
preprocessed data in an 80:20 ratio for the train and test sets, we import the Mo-
bilenetV2 model. We used the weights of the ImageNet dataset to utilize the model.
Then we froze the first 13 layers and started training the rest of the 40 layers. We
used the sequential function of Keras to create the model layer by layer. Here, we
used the top layers of convolution from the pretrained model.

Firstly, for the input dimension, we passed sequence length, image height, image
weight, and parameter 3, which represents the RGB factor of the image. Here, the
sequence length represents a batch of 16 successive frames. The dimension of the
image is 64x64. In the input layer, the difference between each pair of adjacent
frames is calculated.

As mobilenet uses conv3D, it expects the input to have a shape that is three dimen-
sional in size. As our input has 4 parameters, we have to use a time distributed layer
to handle that and pass the sequence length. So we passed mobilenet to the time
distributed layer. Then we added a time-distributed flatten layer, which converts
the feature maps into a 1D vector or array so that they can be passed to dense
layers. Feature maps are the output that we get from convolution layers.

After that, we used bidirectional LSTM with units 32 for both forward and back-
ward. Bidirectional LSTM is better than basic LSTM for sequence data. Also, it
can learn from both the past and future contexts of a sequence. We include a regular
dropout layer after every other dense layer and LSTM to deal with the overfitting.
The dropout layers drop 25% of the information each time. Finally, we added a
chain of dense layers, or normal ann layers. The sizes of the layers are 256, 128,
64, and 32. Between each fully connected dense layer, we use the ReLU activation
function. In the final binary output dense layer, we used the activation function
softmax. We used categorical cross entropy as the loss function to calculate loss
from the output layer and the stochastic gradient descent (SGD) optimizer. The
default learning rate is kept at 0.001. We used only 20 epochs and an early stopping
point of 10. The ratio of 80:20 data is selected for training and testing data. We
used dropout layers regularizer: early stopping to prevent overfitting. Lastly, we get
two neurons as we have two classes.
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Figure 4.1: Model Architecture
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4.1.3 Model Testing

Following training, model testing is done. A test dataset is used to evaluate the
model after each iteration is complete. Testing is carried out after training. A test
dataset is used to evaluate the model after each iteration is complete. Finally, future
predictions are made using the model. Multiple classifiers are evaluated by utilizing
a testing set. After testing the model using video data, it predicts the violence and
non-violence actions shown by the label. Here, we tested our model in two ways.
Firstly, we tested it in real time using the webcam on our PC. If there are any
actions like slaps, kicks, punches, or any other violent movements engaging multiple
people, the model detects them and classifies them as violence. If violence is absent
in a frame, then the classification name becomes ”non-violence. The classification
name is shown at the top of the frame on the screen.

Figure 4.2: Real-time Violence and Non-violence Detection

The second method of testing involves giving video data as input. It will again be
converted into frames, and the model will predict the violence.

Figure 4.3: Violence and Non-violence Detection from video input
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4.2 Weapon Detection and Classification

using YOLOv4

In this section how yolov4 is implemented for weapon detection will be discussed
Yolov4 is excellent for detecting multiple objects in a single frame. Here we will
be focusing on mainly the detection of weapons. We used our own custom dataset
for the training method. Three groups are made from the dataset. The first group
of datasets is guns. This dataset only consists of guns, specifically handguns and
rifles. The second group of the dataset is Sharp Objects. Here for this dataset, we
specifically collected sharp objects that are widely used in Bangladesh. So that we
can create an accurate dataset that is viable for the training of yolov4 so that it
can detect the sharp objects used in Bangladesh easily. Lastly, the final group of
the dataset is sticks. This entire category only consists of sticks that can be used as
weapons in a fight.

4.2.1 Data Pre-processing

In order to preprocess our data, we need to split our dataset into some specific seg-
ments. Our dataset here is a custom dataset, and it has to be split into three specific
segments. These are Train, Test and Valid. For this purpose, we used Roboflow.
By offering better methods for data collection, preprocessing, and model training,
users may more rapidly and accurately develop computer vision models thanks to
the Roboflow computer vision platform. To build our own dataset, we utilized the
YOLOV4 model and the model-expected image size. Our final, acceptable dataset
was adjusted as a result of these procedures. We also used Labellimg to annotate
the entire custom dataset. We took three classes for annotation in Labelimg. We
labeled guns as 0 , sharp objects as 1, and sticks as 2.

4.2.2 Model Implementation

Two of the key responsibilities of this methodology are to identify and categorize
weapons. In the following procedure, a specially trained YOLOV4 classifier makes
our proposed model weapon-compatible.

1. Setup

In order to speed up processing, we must first build a new Colab notebook and
link it to a GPU runtime. Next, we must copy the YOLOv4 implementation
from the Darknet repository. The Makefile must then be modified in order
to configure the darknet for YOLOv4. Set ”GPU=1” to enable GPU acceler-
ation and ”OPENCV=1” to support OpenCV. After completing these steps,
compile Darknet by executing the ”!make” command to create the executable
for Darknet. We also have to download the weights of the pre-trained YoloV4.
We must download a file from a specified URL using the wget command.
Yolov4.conv.137, a pre-trained weight file for the YOLOv4 object detection
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model, is the file that is now being downloaded. When this command is run,
the file yolov4.conv.137 will be downloaded from the provided URL and saved
in the current directory.

Next, we must execute a particular command. Using the Darknet framework,
this command starts the training of an object detection model. The data file,
model setup, weights that have already been trained, and other choices for
the training process are all specified. Once more, we must use two distinct
commands. When it comes to computer vision tasks like object identifica-
tion and image processing, cv2 is employed, and matplotlib.pyplot is used to
create visualizations like plots and graphs. The studies of computer vision,
image analysis, and data visualization make extensive use of these libraries.
The darknet detection test will be the next phase. 0.3 threshold: This is a
command-line operation carried out in Colab or a Jupyter Notebook using
the! syntax. It applies the Darknet framework to an image to perform object
detection.

2. Real Time Implementation

Using a specific piece of code, the Colab notebook that we are using will be
able to take a picture using the webcam, identify objects in the picture, and
display the result. The take photo() function takes a picture from the web-
cam using JavaScript and Colab-specific tools. When the ”Capture” button
is hit, it produces a JavaScript function that manages the photo-taking pro-
cess, including showing the webcam’s video stream and taking a picture. A
base64-encoded JPEG image is then created using the acquired image.

3. Model Testing

Here, the Yolov4 is able to detect weapons from an image and also detected
sharp objects and sticks from different images. This pictures illustrates how
the suggested algorithm successfully detects and classifies firearms by con-
structing a perfect bounding box.
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Figure 4.4: Detecting Sticks, sharp Object and gun

4.3 Weapon Detection and Classification

using YOLOv7

The implementation portion of Yolov7 will be covered in this chapter. A variety
of items in pictures and videos can be found using the effective object detection
algorithm YOLOv7. It is a quick and precise algorithm that has a number of uses,
including robotics, surveillance, and security. We are going to focus on how we can
detect the weapon by using Yolov7. To train our Yolov7 model, we gathered three
different types of datasets. The first type is a gun, the second type is sharp objects,
with a focus on Bangladeshi sharp objects like knives and machetes, and the third
type is sticks used as weapons. Since Yolov7 is a single-stage object detection algo-
rithm, it can identify objects in just one pass through the image.

4.3.1 Data Pre-processing

Additionally, we used ”Roboflow” to divide our custom dataset into train, test, and
valid segments. We used the YOLOv7 model and the model-expected image size
to create our own dataset. Following these processes, our final usable dataset was
modified. Before dividing our dataset, we used Labellimg to annotate the entire
custom dataset. We took 3 classes for annotation in Labelimg. We labeled the gun
as 0 , the sharp object as 1, and the stick as 2.

4.3.2 YOLOv7 Training Process

Identification and classification of weapons are two of this methodology’s main re-
sponsibilities. Through the process described below, a specially trained YOLOv7
classifier is utilized to make our suggested model compatible with the weapon. The
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Data Segments Percentage Total Dataset
Training 70% of total data 776
Validation 10% of total data 111
Testing 20% of total data 222

Table 4.2: Weapon data splitting

experiment on the detection models was conducted using Google Colab, a platform
that provides free coding notebooks, cloud virtual machines with storage, a GPU,
and tensor processing units (TPU) for doing time-consuming and difficult compu-
tations. Google Colab, which doesn’t require configuration and offers free access to
potent GPUs, was used to train the model. We applied YOLOv7-based pre-trained
COCO weights from a Roboflow.ai notebook. The Google Colab drive module is
first imported using the code from the google.colab import drive file. The drive
module gives Google Colab notebook users access to Google Drive files. Google
Drive is mounted to the current working directory.

4.3.3 Real-time Implementation

We are proposing code for taking a picture with a camera in a Google colab setting,
then using a trained YOLOv7 model to identify objects in the picture. The usage
The (take photo()) function in JavaScript is used to take a webcam picture. The
process initiates the activation of the camera feed, creates a video element, and re-
mains in a state of readiness until the user initiates the ”Capture” function. When
the button is pressed, a video frame is recorded, the stream is stopped, and the
picture is returned as a base64-encoded string. Using the b64decode function and
the open block, the taken image is then saved to a file with the name ”photo.jpg.”
Additionally, the try-except block makes an attempt to take the picture and uses
the display(Image) function to show it. Errors that happen throughout the capture
process are detected and shown as error messages. Lastly, the script (detect.py)
uses the recorded photo as input. The input image is resized to 224x224 pixels, the
confidence threshold is set to 0.5, and object detection is carried out on the image
using the loaded weights of a trained YOLOv7 model (best.pt).The (–no-trace) op-
tion specifies that no tracing data should be shown throughout the detection process.

4.3.4 Model Testing

Firstly, we’ve gathered pictures of weapons. Then we labeled every picture with
boundary boxes that surrounded the weapon. We have developed a configuration
file that contains the video path, model architecture, training parameters, and clas-
sification labels in order to instruct our model on how to label weapons. We also
specified how many classes we wanted to identify and categorize. The results of
visualizing the three different types of weapons are shown in the figure. By creating
a perfect bounding box, this figure shows how the suggested algorithm accurately
detects and identifies weapons. Our method exhibits the ability to effectively iden-
tify and differentiate various occurrences, such as a civil protest, a solitary gun, or
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an individual carrying a knife. Furthermore, upon playing a video on our model, it
was able to accurately detect the presence of weapons. As can be seen in Fig.?? and
Fig.4.6, our model successfully detected both the sharp object and the stick that
was used in the strike.

Figure 4.5: Detecting stick, sharp object and gun

Figure 4.6: Detecting weapon from video
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Chapter 5

Result Analysis

5.1 Result of ConvLSTM Posture Detection Model

5.1.1 Classification Report

We assessed the model’s effectiveness using a number of factors, including classifica-
tion accuracy, recall, F1 score, precision, etc. The accuracy metric is considered to
be the main evaluation metric for detection and classification models. 1000s violent
and non violent videos of average duration of 6 seconds were given as input data.
From the classification report we can see that the accuracy of the overall prediction
is 91% which is for 20 epochs. Here, we can see that The f1-score is similar to the
accuracy where precision and recall for the categories are 93%, 89% and 90%, 93%.
The results are remarkable along with low detection time compared to the other
existing detection methods considering the number of epochs.

Figure 5.1: Classification report

5.1.2 Evaluation metrics

The model was trained using 20 epochs with a batch Size of 16.. The training and
validation accuracy of the model is 0.97 and 0.91 respectively which surpasses many
existing models. At the same time, the training loss converged at 0.1 and the vali-
dation loss was 0.25 though it had some fluctuations over the training period.
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Figure 5.2: Total loss vs validation loss graph and Total accuracy vs validation
accuracy graph

The confusion matrix shows the evaluation findings with the true labels and the
predicted labels. We have come upon a collection of results that can illuminate
the precision of our classification. We have reached a true positive count of 178 for
non-violence detection, which means that 178 non-violent incidents were accurately
recognized and classified. It is crucial to remember that our classification model
has occasionally made mistakes, leading to a total of 21 false positives. These false
positives show that we misclassified 21 incidents, labeling them as non-violent when
they actually involved violence. On the other hand, we have discovered a genuine
negative count of 187 while seeking to identify instances of violence. These ”true
negatives” show situations where our model correctly classified 187 incidents as vi-
olent. But there have also been 14 false negatives that we have encountered. These
”false negatives” represent occasions where our model mistook violence for some-
thing else and labeled them as such.

Figure 5.3: Confusion matrix of violent posture detection
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5.2 Result of YOLOv4

We trained our model using 2000 iterations because we have 3 classes of weapons.
The entire training process used the GPU provided by Google Colaboratory and
took 3 hours. The loss score converges, as shown in the figure, after around 2000
iterations, and the current average loss is recorded as 0.674020. We also used a
variety of test data to assess the model’s performance.

5.2.1 mAP@0.5

mAP@.5 measures the overall accuracy of the model in YOLO v4. The mean av-
erage precision at a threshold of 0.5 is used to calculate it. Our mAP@.5 is 0.67,
which means that the model achieves an average precision of 67% when the de-
tection threshold is set to 0.5. mAP@.5 is a well-liked metric for evaluating the
performance of object identification models. It is a trustworthy sign of the model’s
accuracy and completeness. A precise and thorough object detection is indicated by
a high mAP@.5 value. A mAP@.5 of 0.67 is a good result for an object detection
model. It demonstrates how precise and detailed the model’s object identification is.

5.3 Result of YOLOv7

5.3.1 Graph Analysis

In this part,we are going to explain the overall performance of YOLO v7 by ana-
lyzing the performance graph. Box loss, objectness loss, and categorization loss are
three different types of loss depicted in Figure 1.The box loss measures the precision
with which a bounding box and precise center can be determined for an object by
an algorithm. The term ”objectness” describes how likely it is that an object will
turn up somewhere in particular. According to high objectivity, an object is likely
to be present in the visible area of an image. The classification loss is a measure of
how accurately an algorithm determines an object’s class. The model’s performance
was consistently improved as the epochs count went from 100 to 500.
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Figure 5.4: Analyzing model evaluation indicators visually (during training) for the
proposed YOLOv7’s

5.3.1.1 Precision

Precision in YOLOv7 refers to the model’s sensitivity to object detection. It is
calculated by dividing the total number of objects detected by the total number
of correctly identified objects. Our precision rate of 0.964 indicates that the model
correctly identified 96.4% of the objects in the image. We are all aware that precision
is a crucial parameter to take into account when assessing object detection models,
as it can help to guarantee that the model is not only detecting a high number of
items but also accurately identifying the ones that are present.

5.3.1.2 Recall

Recall in YOLOv7 refers to the proportion of objects that the model correctly iden-
tified from the image. It is determined by dividing the total number of objects in
the image by the number of things that were successfully detected. Our r recall rate
of 0.713 indicates that the model correctly identified 71.3% of the image’s objects.
When assessing object detection models, recall is a crucial measure to take into
account because it can help to guarantee that the model is not just detecting a lot
of items but also the actual objects that are present.

5.3.1.3 mAP@0.5

In YOLOv7, mAP@.5 serves as a gauge of the model’s general accuracy. The mean
average precision at a threshold of 0.5 is used to calculate it. Our mAP@.5 is 0.759,
which indicates that when the detection threshold is set to 0.5, the model achieves
an average precision of 75.9%. A popular statistic for assessing the effectiveness
of object identification models is mAP@.5. It is a reliable indicator of the model’s
correctness and comprehensiveness. A high mAP@.5 value means that the model’s
object detection is accurate and thorough. An excellent outcome for an object
detection model is a mAP@.5 of 0.759. It shows that the model is accurate and
thorough in identifying things.

46



5.3.1.4 mAP@0.5:0.95

The YOLO v7, mAP@.5:.95 serves as a gauge of the model’s general accuracy. It is
calculated using the mean average precision at a threshold of 0.5 and an IoU thresh-
old of 0.95. Our mAP@.5:.95 value is 0.544, which indicates that when the detection
threshold and IoU threshold are both set to 0.5, the model achieves an average pre-
cision of 54.4%. The metric mAP@.5:.95 is more demanding than mAP@.5, since
it calls for accurate localization and detection of objects. A high mAP@.5:.95 value
means that the model’s object detection is accurate and thorough. Another success-
ful outcome for an object detection model is a mAP@.5:.95 of 0.544. It shows that
the model detects things accurately and completely, even when they are obscured
or partially obscured.

Figure 5.5: Overall result of YOLOv7 model

5.4 Comparison between YOLOv4 Model and

YOLOv7 Model

5.4.1 Dataset Analysis

We used the same custom dataset we created to compare the performance of the
YOLOv4 and YOLOv7 models. The custom dataset is divided into three categories.
These categories are Sharp Objects, Sticks and automatic weapons. The total data
in the custom dataset is 1109. The percentage of splitting the data segments is equal
for both YOLOv4 and YOLOv7 models. The percentages of splitting the data seg-
ments are 70 percent for training, 10 percent for validation, and lastly, 20 percent
for testing. We annotated the dataset only once for both of the models, the reason
for doing this is that we used the same custom dataset.

5.4.2 Comparison in Detection

Here in the prediction, we can see that YOLOv7’s prediction is much better than
YOLOv4. In terms of stick objects, YOLOv4’s prediction for this picture is 0.74; on
the other hand, for YOLOv7, it is 0.97. Lastly, the other stick result of this model
for YOLOv7 is 0.76, but for YOLOv4, it is 0.41, 0.81. YOLOv7 provided an over-
all prediction on the same stick object at the same time while YOLOV4 provided
two predictions in only one stick due to a poor bounding box. So we can see that
for object detection, YOLOv7’s prediction is much better than YOLOv4’s in those
pictures.
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Figure 5.6: Comparison between YOLOv4 and YOLOv7 prediction

5.4.3 Comparison in terms of mAP@.5

Model mAP@.5
YOLOv4 0.67
YOLOv7 0.759

Table 5.1: Yolo v4 vs Yolov7 compare in terms of mAP@.5

The Yolov7 model was trained over a period of 500 epochs, indicating that the
dataset was utilized for training purposes 500 times in total. The model achieved
a mAP@.5 score of 0.759 following 500 epochs. The value of 0.759 indicates that
the model attains an average precision of 75.9%. Conversely, the YOLOv4 model
attains a mAP@.5 of 0.67, indicating that it obtains a mean average precision of
67% at a detection threshold of 0.5. The metric mAP@.5 is commonly utilized in
the assessment of object detection models. Therefore, it is evident that our model,
YOLOv7, performs significantly better than YOLOv4.
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Chapter 6

Conclusion and Future Work

6.1 Future Scope

In the future, we will try to aggregate the two models with ensemble learning so that
they can provide better accuracy. In this scenario, where two models with different
inferences are being combined, we must first train each model independently before
combining their predictions to arrive at a single prediction.
Since we want to execute real-time processing, we will need to decrease the compu-
tational complexity for further deployment. To achieve this goal, we will attempt to
train our model using a significantly larger dataset, which will increase the inference
speed and make the model deployment possible.
We also have a plan to include an alert mechanism in the system that would notify
a human supervisor or local police station of potential trouble and prompt them
to take appropriate action. Our intention is to create an online police system that
alerts authorities to impending and ongoing criminal activity. The police can use
this information to better anticipate and avoid such situations in the future. In order
to mitigate the risk of the model misidentifying patrolling officers as criminals, we
will incorporate images of uniformed officers into the training data.

6.2 Conclusion

Even in this day of advanced technology, the number of reported criminal offenses
continues to climb steadily. These days, investigators utilize a wide variety of tools
to study crime scenes and follow suspects. CCTV camera data can be used in a
number of different ways to determine the nature of a crime and the identity of any
suspects present. There are a variety of approaches, but there is always a chance
that the wrong people will be caught. Our studies aim to improve the efficiency with
which CCTV cameras can identify criminal activity. Our goal is to improve upon
pre-existing frameworks and algorithms for machine learning in order to produce
more reliable results in our training procedures. In this regard, we are striving to
make an effort to improve the reliability of the system in order to make people’s
lives safer.
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