Tomato Leaf Disease Detection using Convolutional Neural
Network

by

Md. Riazul Hasan
19101550

Md. Shajib Hossain
19101250

Md. Minhajul Islam
19101111

Md. Rejoanur Rahman Apu

19101260

Farzana Akter Moli
19101280

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of
B.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
BRAC University
January 2023

(©) 2023. BRAC University
All rights reserved.

Declaration
It is hereby declared that,

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Md. Riazul Hasan

19101550

AT
%

Md. Minhajul Islam

19101111

Md. Shajib Hossain

19101250

N

Md. Rejoanur Rahman Apu

19101260

’t%n:,ww Ak Mol

Farzana Akter Moli

19101280

Approval

The thesis/project titled “Tomato leaf disease detection using Convolutional Neural
Network” submitted by

1. Md. Riazul Hasan (19101550)

2. Md. Shajib Hossain (19101250)

3. Md. Minhajul Islam (19101111)

4. Md. Rejoanur Rahman Apu (19101260)
5. Farzana Akter Moli (19101280)

Of Fall, 2022 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science and Engineering on January 17,
2023.

Examining Committee:

Digitally signed by

Annajiat s sine
Supervisor: Alim
(Member) Rasel

+06'00

Annajiat Alim Rasel

Senior Lecturer

Computer Science and Engineering
BRAC University

Co-Supervisor:
(Member)

Dr. Amitabha Chakrabarty, PhD

Associate Professor
Computer Science and Engineering
BRAC University

i

Thesis Coordinator:
(Member)

Md. Golam Rabiul Alam, PhD

Assistant Professor
Computer Science and Engineering

BRAC University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD

Chairperson and Associate Professor
Department of Computer Science and Engineering

BRAC University

il

Abstract

The fertile soil and easy access to water make agriculture more suitable and valu-
able for Bangladesh. Most people are directly or indirectly dependent on agricultural
products for their livelihood. Agriculture plays an important role in the GDP of
Bangladesh, which is 12.68% in 2019. According to the UN FAO, tomato is a type
of vegetable that is ingested by 16% of the entire population. When analyzing the
agricultural environment in Bangladesh, tomatoes are considered one of the most
common vegetables. Plant infections pose a significant danger to crop production,
yet timely detection remains a challenge in several regions of the world due to a
lack of facilities. Climate changes are forcing us to take more care of agriculture
to ensure food safety. Early detection of diseases has been made possible by cur-
rent developments in computer vision. Image processing and deep learning are very
useful in this situation. The object’s impacted region is segmented using a bespoke
threshold algorithm based on HBS (hue-based segmentation). Utilizing a color co-
occurrence approach, the segmented portion’s consequential selected features are
recovered for edge detection. This research shows the diagnosis and detection of
tomato leaf diseases involving several steps, including image capture, image pre-
processing, picture segmentation, feature extraction, and classification using a Con-
volutional Neural Network(CNN). The proposed CNN model achieved 95% accuracy
while using much fewer computational resources, which makes it easily deployable
in mobile applications.

Keywords: Deep learning, Convolutional neural network, ResNet-50, Inception v3,
Tomato leaf disease detection.

v

Acknowledgement

In the first place, we would like to thank Almighty Allah for allowing us to complete
our thesis on time and without deterrent.

Having said that, we would like to express our gratitude to Annajiat Alim Rasel,
our distinguished instructor and supervisor also Amitabha Chakrabarty, our dis-
tinguished instructor and co-supervisor for their unwavering support and tenacious
oversight, which allowed us to complete our project. In addition, we would like to
thank our supportive friends who have been there for us during the difficult times.
Lastly, to our parents, without their unwavering support it may be impossible. With
their gracious assistance and prayers, we are now on the verge of graduating.

Table of Contents

Declaration

Approval

Abstract

Acknowledgment

Table of Contents

List of Figures

List of Tables

Nomenclature

1

Introduction

1.1 Motivation and goalso
1.2 Components of detection L.
1.3 Scopes and Obstructions in Experiment
1.4 Research Objective Lo
1.5 Problem Statement L

Literature Review

Datasets
3.1 Descriptionof datao
3.2 Data Pre-processing

Methodology

4.1 Model Description
4.1.1 Convolutional Neural Network (CNN)
4.1.2 Inception V3
413 RESNET S50

4.2 Implementation Lo
4.2.1 Designing and Implementation of ResNet-50
4.2.2 Designing and Implementation of Inception v3
4.2.3 Designing and Implementation of CNN

vi

ii

iv

vi

viii

13
13
15

5 Result and analysis
5.1 Analysis of predicted results
5.1.1 Performance matrics

5.1.2 Analysis of predicted results

5.1.3 Results and Analysis From CNN
5.1.4 Results and Analysis From Inception V3
5.1.5 Results and Analysis From ResNet-50
5.2 Final analysis report among the Architectures

6 Conclusion and Future Work

Bibliography

vil

38
38
38
39
39
41
44
44

46

53

List of Figures

3.1
3.2
3.3

3.4
3.5
3.6
3.7

4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10

4.11

4.12
4.13
4.14

4.15
4.16
4.17
4.18
4.19

Number of images in each classification from Plant Village Dataset.

Number of images in each classification after Augmentation.
Sample images from the Augmented dataset showing trained, valid,

and test data [14]..
ImageDataGenerator class and its parameters.
Example of images with width_shift range =-0.2
Example of images with height range=0.2
Example of images with rotation_range=45°.

a—c An diagram of the convolution procedure using a kernel size of
3*3, with no padding, and a strideof 1.
Different non-linear activation function.
Sample diagram of pooling layer.
Diagram of flatten and fully connected layer.
CNN architecture diagram
CNN architecture diagram
Mini-network replacing the 5 x 5 convolutions [35].
Original Inception module as described in [26].
The filter bank outputs on the Inception modules have been increased
[B5]. .
Auxiliary classifier helper above the final 17x17 layer. When the
layers in the side head are Batch Normalized [23] the outcome is a
0.4% absolute improvement in top-1 accuracy. The number of 32
batches processed is shown against time below [35].
Modulator of inception that expands filter banks while decreasing grid
size. It’s inexpensive and gets around the representational bottleneck,
just as Principle 1 [35] suggests. The solution is shown on the right,
although this time it is seen through the lens of grid sizes rather than
operations [35].
Inception v3 architecture oL
Inception v3 sample code.
Test error (right) and training error (left) with 20-layer and 56-layer
“plain” networks.o
Residual learning: a building block
Representation of the layers of plain and residual network
Number of iterations as the layers increase.
Error Rate with respect to number of iterations
Pre-settings of ResNet-50 and important libraries

viil

4.20
4.21
4.22
4.23
4.24
4.25
4.26

5.1
5.2
2.3
5.4
2.9

2.6
2.7
5.8
5.9
5.10
5.11

ResNet-50(fine tuned) model with activation “softmax”. 34
ResNet-50 (fine tuned) model summary. 35
Pre-settings of inception v3 and important libraries. 35
Inception v3 (fine tuned) model with activation “softmax”. 36
Inception V3 (fine tuned) model summary. 36
CNN (proposed model) with activation “softmax”.. 37
Trainable Parameters for CNN(proposed model). 37
Accuracy score with respect to the number of epochs. 40
Classifier loss with respect to number of Epochs 40
Confusion matrix for the ten classes. 41
Precision and Recall score for Inception v3 41
Train and Validation accuracy curve with respect to the number of

epochs 42
Confusion matrix for Inception V3 42
ROC curve for the classes in Inception V3 43
Precision and Recall curve for ResNet50(fine tuned). 44
Accuracy and Loss curve of ResNet50(fine tuned). 44
Confusion matrix for ResNet50 (fine tuned). 45
ROC curve for ResNet50 (fine tuned). 45

1X

List of Tables

3.1

3.2

5.1
5.2
5.3

Details number of images of tomato leaf photos for healthy and un-

healthy classifications [22]. 14
Details of tomato leaf photos for healthy and unhealthy classifications

[68] after augmentation. 15
Classification report of CNN(proposed model) 39
Classification report of inception v3 42
Classification report for ResNet-50 43

Chapter 1

Introduction

1.1 Motivation and goals

Bangladesh is a densely populated country and according to a study conducted by
the [72] World Bank in 2021, the density of population is over 1,278 per square
kilometer of land area with a total population of 164.7 million (2020). Since the
density of the population is higher than usual and with this much population it
is very difficult to meet the requirement of food for this growing population day
by day. However, to meet the requirements, there is no way but to increase the
production of food in our country and rely less on imports from foreign countries.
Fortunately, Bangladesh is an agricultural country, which makes it a bit easy to meet
the requirement of food [36]. Even in 2020 according to the World Bank collection
of development indicators, compiled from officially recognized sources 37.75% of the
total population is somehow employed in the agriculture sector. So agriculture plays
an important role in most of the sectors in Bangladesh. Therefore, talking about
the agriculture sector and Bangladesh’s requirement for food for the ever-growing
population, rice plays the main role to meet the requirement of food. But only
rice alone can not meet the demand for this huge population and it creates a huge
pressure on a single crop. On the other hand, we are very aware that there are
some other crops and vegetables which can decrease the demand and pressure of
production of rice. That is why the government has taken some necessary steps to
create diversification of food and farmer’s revenue and to do this the government
is trying to give incentives for vegetable production. Vegetables are an important
sub-sector in agricultural GDP. Vegetables contribute 3.2 percent to the agricul-
tural GDP [73]. The vegetable sector contributed approximately $718 million to
Bangladesh’s gross domestic product in 2010 (BBS, 2012). Production of vegetables
has increased over the past few years here in Bangladesh [19]. According to the
Yearbook of Agricultural Statistics of Bangladesh, 2011, within in just 2 years from
2009 to 2011 the total production in per acre yield has increased for over 200 kg and
the number jumped into 3,378 kgs. This is why the government is planning to find
a new or alternative way to meet the growing food requirements in recent years and
encourage them to produce more vegetables. In Bangladesh, as the season changes,
the production rate of some vegetables also changes. And vegetables are labeled as
summer, winter and all season vegetables. Among all the vegetables’ tomato is such
a vegetable that can grow all year round, that is why this is considered as one of the
most important vegetables in Bangladesh. Therefore, in this paper we are trying

to find a new and automated way to detect tomato leaf disease early and easily
with the help of Computer Science and Technologies so that farmers can easily take
necessary steps before it can affect the other plant and prevent before the disease
can bring down the production rate of tomatoes.

Though Tomatoes can grow all year round but their peak time for production is from
December to March because It nurtures well under an average monthly temperature
range of 21°-23 °C, commercially it may be grown at temperatures ranging from
18 °C to 27 °C. While the Detection of plant disease is an essential research topic, In
this paper we have chosen to detect the tomato plant’s leaf diseases because most
of the plant diseases are triggered by fungi, bacteria, and viruses. Morphological
changes in leaves are the primary stage of Fungi. Bacteria can generally have simpler
life cycles and can be identified by morphological changes in the leaves. Therefore,
our prime plan is to examine the leaves and detect if the plant has any sort of dis-
ease or not. And we have also found that according to [42] Vetal and Khule while
doing their research they have found that the most common diseases for tomato
plants are (a) Bacterial spot, (b) Early blight, (c¢) Late blight, (d) Leaf Mold, (e)
Septoria leaf spot, (f) Target Spot, (g)Tomato mosaic virus, (h) Tomato yellow leaf
curl virus, (i) Two-spotted spider mite. Therefore, in this paper we will be trying to
find these diseases by using a method in Computer Science called Image processing
using Convolutional Neural Network model.

1.2 Components of detection

The diagnostic system to detect tomato leaf disease would include the following
proposed and pre-trained convolutional neural network model for data processing.

1. Convolutional Neural Network

2. ResNet-50 Architecture

3. Inception V3 Architecture

1.3 Scopes and Obstructions in Experiment

Restraints in identifying tomato leaf disease include the following:

1. We are predicting our result by collecting samples images from the PlantVillage
dataset.

2. The diseases that are seen to be affecting the leaves are under experiment.

3. In our study, not all the diseases of Tomato are included.

4. The diseases that are not seen on the leaf cannot be traceable using our method-
ologies.

5. More than one diseases can be detected simultaneously.

6. In some cases, it is seen that some of the symptoms look familiar.

1.4 Research Objective

We got evidence of plant disease from fossils, which proves that plant diseases were
there even 250 million years ago. There were no technologies and diagnosis tech-
niques to identify the diseases. As a result, outbreaks took place due to plant diseases
like rust, blight, etc. A huge number of people died from lack of food during those
outbreaks. Especially, people who live in underdeveloped countries suffer the most.
Now a days, diagnosticians are there to identify the diseases of crops. He examines
the air, soil, and other cultural conditions of the field to determine whether the crops
are healthy or not. The methods which are currently used worldwide are classified
into direct and indirect methods. PCR, FISH, ELISA, IF, and FCM are included in
the direct method. Thermography, Fluorescence imaging, Gas Chromatography are
considered indirect methods. It extracts DNA from the plant tissue and uses it to
detect the target organism. It provides several advantages like an organism needs
not to be cultured, it can potentially detect a single target molecule etc. But PCR
is so sensitive that a small amount of contaminant can mislead the expected result.
FISH uses a fluorescently labeled probe to notice nucleic acid sequences that hy-
bridize mainly to the complementary sequence [9]. This process follows some steps
and after that fluorescence microscopy assesses the signal [5]. It is not used regularly
as PCR due to a couple of limitations. Probe consumption and hybridization time
are key limitations of this procedure [58]. An enzyme-labeled antigen or antibody
with several antigen-antibody combinations, ELISA measures enzyme activity. This
procedure, enzyme-linked immunosorbent assay (ELISA), may detect a specific viral
disease only. Flow cytometry (FCM) analyzes and detects the chemical and phys-
ical characteristics of cells, and is used for cell counting, and biomarker detection
[20]. The technique uses an optical method, it utilizes a laser beam as light and
produces fluorescent light signals using the sample. It has widespread applications
for studying eukaryotic cells [1]. Though, it is endorsed that it works efficiently in
terms of identifying soil-borne bacteria [1]. Almost all of these direct approaches
of identifying plant disease work for detecting specific organisms. These techniques
are not versatile enough to detect multiple diseases. Besides, it needs to be tested
in the laboratory to detect the organism causing the disease. In some techniques,
the presence of some pollutants can affect the result badly. Also, it is not a quick
process though.

Indirect Thermography is a process that makes possible identifying various plant
leaf diseases by observing thermographic imaging of external temperature of plant
leaves [20]. Various reports and datas have shown that many plant diseases oc-
cur due to the loss of water in stomata. This process can also detect the most
amount of water without any outermost temperature influences. On top of that,

thermography is a really favorable method to keep track of the heterogeneousness of
disease like soil-borne pathogenic infections. Insole of being a promising technique,
the implementation of thermography for detecting disease is bounded because of its
sensitivity towards the change of ecological circumstances throughout the time of
experimental mensuration. Besides, thermographic detection is insufficient in case
of identifying the specificity of diseases. Hence the method is unable to discriminate
between diseases that generate almost identical thermographic patterns [20]. Along
with Thermography, processes like Fluorescence Imaging, Hyper spectral techniques,
Gas Chromatography are included in the Indirect method. Fluorescence technique
is used to find out the deformities in photosynthesis and to examine the bacterium
infection through observing the change of photosynthetic structure and electron
transport reaction [20]. But this process is not highly encouraged for experimental
usage due to a couple of complications. Gas Chromatography is a process that makes
it possible to detect the plant leaf diseases at various phases by collecting quantita-
tive statistics from the volatile organic compounds(VOC) samples [20]. Because of
its high specificity, Gas Chromatography can come up with more precise informa-
tion about plant diseases compared to other existing direct and indirect methods.
Yet, its practical implementation is limited as it is a really time-consuming process.
Before analyzing the data, pre-collected VOC samples are needed for prolonged time
in case of Gas Chromatography, which makes the process time-consuming.

On the other hand, we are using a couple of deep learning methods and image
processing to determine whether the tomato is healthy or not. Also, it will detect
diseases if the plant is unhealthy. This approach is completely different from the
direct technique. This technique will resolve the issues of the direct approach to dis-
ease identification. In our model, it will first take an image of the targeted tomato.
Then it will differentiate the pattern of a specific portion. After that, this pattern
will be sliced into several layers. Then the deep learning architectures which are
used will be run. The whole process will take a very short time compared to those
direct techniques. Using our model, it will be possible to identify five different types
of diseases. As the agriculture scenario of our country says, the farmers are not so
familiar with modern technologies. This model will be very user-friendly even for
them. As deep learning and image processing provides a feasible solution, lots of
research is being made on this subject using different models of deep learning. We
have selected some architectures considering the accuracy and operation parameters
in priority. Inception, ResNet, and VGG are the selected ones. Among them, incep-
tion works more efficiently. There are a number of research papers where Inception,
ResNet, and VGG are used. But it is hard to find one where the architecture pro-
vides satisfactory accuracy in different species of tomato. We will train and prepare
the models with a large dataset. Then this model might work for different species
of tomato with appropriate result accuracy.

1.5 Problem Statement

Since the density of the population is higher than usual and with this much popula-
tion it is very difficult to meet the requirement of food for this growing population
day by day here in Bangladesh. However, Bangladesh being an agricultural country,

4

rice and other crops are playing a huge role in this sector. Then again we are very
much aware how many other crops especially vegetables are being consumed by the
people, that is why to fulfill the demand we need to work on creaisn the production
rate and the quality of the most consumed vegetables among the people with the
help of new technologies. Talking about vegetables, tomatoes are one of the most
consumed vegetables by the people of the country, again Tomatoes also plays a huge
rule on our nation’s GDP too. But To produce more and get the expected result
while cultivating we need to adapt more new technologies, so we have decided that
to use Artificial intelligence with the help of computer science to build an automated
system that can detect the diseases of tomato plants.

In most of the cases it is seen that farmers can not even detect the decease at a
very early stage which results in destroying most the plants, and it decreases the
production rate to a great amount. Therefore, it seems very important to detect
the disease at an early stage so that the farmers can come up with a suitable solu-
tion. Our main purpose for this paper is to detect the problem at a very early stage.
To accomplish our purpose for this paper, we are using image processing techniques.

[38] Durmus, Olcay and Kirci have described in their paper how they have used Deep
learning methods to detect the diseases of tomato leaves which are usually occurred
by using the chemical methods and pesticides, but these chemical methods increase
the production rate but eventually this method of using chemicals and pesticides
increases the production costs and also increases the chances of getting affected by
various virus related disease’s tomato leaves. So while increasing the production
rate the main problem which arises here is that the time gap between getting af-
fected by the virus and getting detected, so the main problem here to resolve is to
detect the disease using our huge data sets of healthy and unhealthy leaves at a stage.

In our paper, we are trying to investigate the leaves for detecting the disease to
resolve the problem that we are trying to resolve. And for this we need to use
the best and advanced image processing techniques and models. [47] Turcer et.al,
[37] Dhaware and Wanjale, [65] Rao and kulkarni have added in their paper that
the main advantage of using CNN model is that it can extract features from raw
images automatically and this is what we are actually truly interested in. To make
our purpose fulfill it is necessary to create a system using which farmers can use
their device to capture raw images and then using our pre-prepared datasets we can
detect the features and make a good prediction of which disease the leaf is affected
automatically. Then our main purpose will be served.

Another problem that farmers in our country face is that of the temperature issue
while planting tomatoes. Even though there are various kinds of tomatoes, and
it can be planted, and it can grow all year around but accordion to [30] Hasan
Bai, they have mentioned In Bangladesh the there are two kinds of tomatoes that
very much famous among the farmers which are Bari Hybrid Tomato and Summer
Tomato. The authors of this paper have also studied that hybrid tomatoes can grow
all year around, but the peak months for this type of tomato is from December to
March. However, for Summer Tomatoes, there are some problems that arise because
of extensive heat. [59] Grant has studies in her blog that Hybrid tomatoes can be

affected by various diseases if the temperature goes up to 32 degree Celsius, where
In Bangladesh it is very much normal for the farmers to experience temperatures
going up to 35-56 degree Celsius. So this is where we are trying to make a good
scope to detect the diseases for these tomato plants at a very early stage.

To conclude, the main reason why we are trying to make a system to detect the
disease automatically. Because the farmers in our country rely more on chemical
and pesticide based solution to increase the growth on the other hand it is not
enough to depend on chemicals fully because if the disease can be detected at an
early stage than it is very much possible for the farmers to take action after finding
the reason behind the disease that is affecting and also possible to stop spreading
the disease at a large scale.

Chapter 2

Literature Review

In this paper, they have proposed a model which can identify the disease as well as
the amount of it. It works in two phases. In the first phase, the plant is recognized by
preprocessing and extracting features of images using an Artificial neural network.
In the second phase, they classified the disease using K-Means and ANN algorithms.
In terms of grading the disease, they have considered the pixels of the diseased area.
In the case of calculating the percentage of the severity of the disease, calculating
only the area might not tell the actual severity of the disease. They could use the
color of the pixels too. For example, Late blight produces blackish/brown spots on
leaves and stems. It contains chlorotic borders in the initial stage, but the entire
leaf becomes necrotic in a few days. So, in case of determining how damaged the
crops are due to Late blight, using color pixels may increase the result accuracy [24].

In this paper, their proposed method automated the process of identification of 4
types of leaf diseases. CNN and LV(Q are mainly used for the identification and
classification of these diseases. To start convolutions in CNN they also used three
different matrices for R, G, and B channels. Learning vector quantization is used
for classification. By calculating the Euclidean distance, they selected the closest
reference vector. The reference which is the closest to the input vector is chosen.
Then they converted the R, G, and B matrices to 27 x 1 matrices to prepare these
for the input layer of the neural network. Besides, they have used 400 images only
to train the model and 100 for testing it, a larger dataset might give a more accu-
rate result. Another point is, this model might not provide an accurate result of
the severity of these four types of diseases. They could decide by counting affected
pixels or analyzing the texture of the diseased area, or approaching it similarly [48].

In this system, it detects and classifies two types of grape leaf disease, which are
Downy Mildew and Powdery Mildew. In the image acquisition module, grape leaf
images were collected using a digital camera which is used in the dataset. They
have used a Gaussian filter to decline noises from the images and K-means cluster-
ing to separate the affected area of a grape leaf. Then classification technique is
used to classify the disease based on both color and texture. They have used 9 color
features and 9 texture features combined to classify as well as differentiate diseases
with higher accuracy. It provides 83.33% accuracy in terms of the classification of
Powderly disease. But this system might have been more accurate in the case of
detecting Powdery Mildew disease if they would use CNN instead of SVM [34].

In this paper, they proposed a model for detecting ten types of tomato leaf diseases
using LeNet. LeNet is a modified version of CNN. Dataset was collected from the
plant village repository. The size of the images of the dataset was decreased to 60
x 60 resolution to enhance the processing speed. They have taken the Z-score of
the image pixels. They tried to use a simpler architecture of convolutional neural
networks with fewer layers. It is constructed with an extra block of convolutional,
pooling layers and activation, which is a variation of LeNet. Generally, it requires 7
layers to form LeNet-5. The layer composition is with 3 convolution layers, 2 sub-
sampling layers, and 2 fully connected layers. Here, for feature extraction, the first
two (convolutional and pooling layers) are used, and they use connected layers for
classification. They applied Keras to implement the model, with a resulting 94-95%
of accuracy. It has diverse uses for different diseases. This model can classify ten

different diseases. They could use optimizers to increase the resulting accuracy of
the model [49].

Here, the authors compared Deep learning and image processing methods with de-
tecting citrus plant disease. They have chosen to compare SVM, RS, and SGD
with Inception-v3, VGG-16, and VGG-19. They have considered several parame-
ters like precision, fl score, accuracy, and area under the curve for comparisons.
Furthermore, they have prepared the dataset with the guidance of experts from the
research center and the government. Images of healthy and infected citrus leaves
were captured using a DSLR with the size of 256 x 256 pixels. To compare the
methods, a confusion matrix table was prepared. It provides clear information on
the right and wrong class mapping. It classifies the prediction of the taken ML and
DL methods. Every ML and DL method got different confusion tables. Pie charts
are also displayed to represent the information. They used k subsamples where
k-1 is used for training the model and the rest is for validating the model testing.
After using a similar dataset in both ML and DL models, it shows that every DL
model (Inception-v3, VGG-16, VGG-19) provides a more accurate result than the
ML (SVM, RS, SGD) [71].

Various kinds of plant diseases and classification techniques of ML which will be used
to differentiate the diseases are discussed in this paper. Plants are mainly affected
in three ways which are bacterial, fungal, and viral diseases. The diseases like leaf
rust, bacterial blight, brown spot, mottle etc. are the result of bacteria, fungi, and
viruses. They classified the algorithms into two types, which are -supervised and
unsupervised algorithms. In the unsupervised classification section, k-means, LDA,
and fuzzy C-Means are included and explained. Here, the Fuzzy C-means algorithm
provides optimal results though the data is uncertain but takes a longer time as well
as sensitivity to noise. Whereas K-means computationally faster but provides no
guarantee of giving optimal solutions. It is also difficult to determine the number
of clusters. On the other hand, ANN, CNN, NLP, and SVM use supervised data
to process. KNN, which performs statistical estimation and pattern recognition, is
flexible and works faster with training data which has numerous outliers, but KNN
is costly in terms of computational cost. In ANN, Probabilistic Neural Network
(PNN) which uses a feed-forward algorithm provides sufficient accuracy as well as
works faster. Here, Fuzzy-Relevance Vector Machine provides enough accuracy with

unbalanced data. It reduces the outliers and uses Bayesian inference. They showed
which models work effectively in different scenarios. These results will be beneficial
for any future work using these models [51].

The authors of this paper applied CNN to detect and classify the diseases of Tomato
leaf. They have used 3 convolution and max pooling in the CNN model. They have
collected the dataset from Plant Village. Furthermore, they have collected sufficient
data for identifying 9 types of diseases which is 10000 images where 1000 are of
the healthy category. To detect and differentiate the diseases with better accuracy,
they have used CNN with the panda approach. Though in some cases they get
100% accuracy, 76% is the lower bound. This lower bound could be improved using
optimizers or modifying Convolutional neural networking. This model can classify
nine different diseases, which are useful [56].

In this paper, the proposed system detects and classifies two grape diseases which dif-
ferentiate color firstly then segment disease using it and then classify the segmented
disease. It recognizes color using back-propagation neural networking. BPNN ba-
sically extracts the leaf image from the background. For detecting diseases, a self-
organizing feature map with a genetic algorithm for optimization is used. Besides,
Gabor wavelet and support vector machines are also used to classify diseases. They
could design the model for more diseases to classify than two, as there are more
common diseases of a grape leaf. The average result of this model is 86.03% which
could be improved. Diseased areas and textures of disease could be considered in
this model to increase the accuracy of the result [11].

In this research, this model can classify 9 types of different tomato leaf diseases
and can separate healthy and infected leaves. They also compared 5 CNN models.
Along with 5 deep network structures (Resnet50, Xception, MobileNet, ShuffleNet,
Densenet121_Xception), transfer learning is also used to reduce computational costs.
During building the deep learning models, transfer learning makes it much more ef-
fective. It basically can transfer the learning from a pre-trained model to a new
model. Here, Densenet_Xception provides the highest accuracy among the models,
which is 97.10%. Though it has the most parameters. Whereas, ShuffleNet has
the second-lowest accuracy, which is 83.68%, but the parameters are small. The
accuracy of the rest of the three models Xception, Resnet50, and MobileNet are
93.17%,86.56%, and 80.11% respectively. They clearly differentiate the models with
their accuracy in terms of identifying 9 different tomato leaf diseases. As their main
goal was to compare the models, they could include more structure of CNN. They
might take a couple of ML models and compare the accuracy of this too [60].

They proposed a deep-learning architecture which is called EfficientNet for the clas-
sification purpose. They choose both plain and segmented images for the classifica-
tion. They also compared the performance of binary, six class, ten class report. In
the dataset, 18,161 images of tomato leaf are used along with same number of seg-
mented leaf masks where 20% of them were used for testing. They made 10 classes
where one of the classes is healthy and rest of those are not healthy. To identify
the best performance metrics they used different kinds of loss function named BCE;,
NLL and MSE. They used EfficientNet-B0, EfficientNet-B4, EfficientNet-B7 for the

disease classification. They got 98.66% accuracy with the modified U-net segmenta-
tion model. EfficientNet-B7 showed 99.95% accuracy in binary classification. They
got more accuracy with EfficientNet which is better than most of the relevant pa-
pers. This model can beat some of the existing model’s performance. But this model
could perform better if the number of attributes could be increased. Besides, six-
class classification with Efficient-B4 should have provided more accurate results [69].

In this research paper, the author has discussed identifying diseases on plant leaves
by observing the images of both healthy and infected leaves through the method-
ologies of deep learning, along with that, this paper also shows the development of
CNN models to carry out the plant disease detection process. In order to differenti-
ate between the healthy and infected plants, in this work we can see the development
of specialized deep learning models depending on particular CNNs architectures by
using the images of leaves. The author selected this basic deep learning tool ‘CNNs’
for performing the task because CNNs is used in cases of pattern recognition in
images. The author showed some previous works that had major drawbacks, which
was, the complete procedure of photographic materials only contained laboratory
images instead of real conditions. However, this work overcame the drawback as
it successfully used images of both real cultivation and experimental setups. The
work mainly discussed the two models for accomplishing the proposal. These are
convolutional neural network models and optimal deep learning model. It was con-
firmed that, all the models of optimal deep learning gained 100% accuracy on the
experimental set. Out of total dataset of 87,848 images including 25 different plants
along with 58 distinct classes, this model gave 99.53% result in observing the disease
which proves that, this paper rarely has any drawback to improve [45].

The authors of this paper made a comparison of different CNNs models to identify
Tomato Plant diseases which are AlexNet, Inception v3, ResNet 18, ResNet 50 and
GoogleNet. The paper contained the dataset of nine various kinds of tomato dis-
eases along with a healthy class of tomato plants. A collective mathematical analysis
depending on accuracy, preciseness, specificity, sensitiveness, AVC, ROC (receiving
operating characteristic) curve etc., these data were used in order to evaluate the 5
models of CNNs architectures. In the methodology segment, data acquisition, train-
ing, classification and evaluation, these 4 steps were shown that divided the whole
operation. The authors described the procedure of each model individually under
these 4 steps, which later gave an exact result in order to view the comparison be-
tween these 5 models in different sectors. After completing the task of methodology,
the work showed different ratings on the performance based on the given statistical
analysis chart for all these models. After viewing the result, the authors made it
clear that, though all the models performances are almost the same, GoogleNet has
the most numbers of success rate among all, that can be easily used by the farmers.
GoogleNet achieved the highest AUC result which was 99.72% whereas Inception
V3 and ResNet 18 had the lower results. Apart from the AUC, the other perfor-
mance measures also had the same results, where the higher rate was achieved by the
GoogleNet while the lower one was by Inception V3. Also, AlexNet performed with
the lowest amount of time, this paper showed this as well. The authors successfully
compared 5 models on different bases and showed their performances on individual
stages. It would be better if the authors could compare a couple of ML models and

10

compare the accuracy rates [64].

In this paper, the proposed system classifies tomato leaf diseases through the usage
of Convolutional Neural Network. The authors of this paper analyzed various kinds
of CNN architectures such as VGGNet, LeNet, ResNet50, and Xception in order to
detect the diseases from tomato leaf. They tried to show the accuracy rate along
with the amount of loss through all these 4 architectures. It is a good thing that
all the applied CNN architectures gained more than 91 accuracy rate in the test.
But in comparison with other models, VGGNet delivered the best result by gaining
99.25% test accuracy along with a very little amount of loss, which is 0.03 in color
images. VGGNet also achieved the best outcome for segment images as well, here
the accuracy rate and loss amount were 99.11% and 0.04 respectively. The paper
tried to differentiate among these 4 architectures by dividing the whole procedure
into two segments, which are for color images and for segmented images. Though
the result showed VGGNet as the most useful architecture, but it cannot be used
widely for being very expensive. The major drawback of this proposed system is
that, the training procedure mentioned in this paper is really time-consuming along
with that, it requires hardware configuration that are high-end as well. They could
use the architectures which fits in smaller dataset to reduce time-consuming [55].

Here, the authors of this paper proposed to detect the diseases in tomato plants
using image processing method with the help of multi-class SVM algorithm. They
showed to detect four types of tomato plant diseases on the initial stage. The whole
procedure was done into two steps where in the first stage they used image seg-
mentation to separate the infected damaged areas of leaves from the other parts,
and in the second stage, Multi-class SVM algorithm was used in order to classify
the accurate disease. The four key diseases that they have worked on are Early
Blight, septoria Leaf spot, Iron Chlorosis etc. Firstly, they used cameras with high
resolution for capturing the images of leaves and later, the infected areas were sep-
arated through using segmented image feature extraction. In the next section, they
calculated the overall accuracy rate for each of the mentioned diseases by using
Multi-class SVM model in MATLAB 1 5a — for the disease classification process.
Here the accuracy rate was overall 93.75% where Early Blight, Septoria leaf spot,
Bacterial Spot etc. have given the result of 100%, 91.67%, and 91.67% respectively.
They also compared their proposed model with other architectures as well, such as
ANN Technique, Eigen feature, PNN (Probabilistic Neural Network). Here they
prove their proposed model to achieve the best result of all. But they could use
high-end CNNs architectures to get more accurate rates for up to 98-99%. Also,
they could focus on classifying more diseases of tomato plants instead of only four
[43].

In this paper, the authors compared among the four CNN architectures in order to
select the most optimized model for the purpose of classifying as well as identifying
the tomato leaf diseases. They selected VGG-16, VGG-19, ResNet and Inception V3
as CNNs models along with the usage of feature extraction and parameter-tuning.
The good part for their proposed system is that, they tried to experiment on both
laboratory-based dataset and real-life cultivation process. Their work on two differ-
ent datasets were used to observe the models in a better way. It was noticeable that,

11

all these models give better result on laboratory-based datasets. In the methodology
part, they used the four CNNs models mentioned above with separate datasets. For
the first self-collecting dataset, they collected tomato leaf data from uncontrolled
natural environment to detect those data into several categories. On the other hand,
they focused on identifying 4 types of tomato leaf disease from 2364 images that
were contained in the lab-based dataset. They used rate of accuracy, precision, recall
and Fl-score, the 4 segments as the assessment criteria for the performance of each
model. Later on, they calculated the values on these 4 evaluation metrics individ-
ually. Among the 4 used CNNs architectures, Inception V3 showed the best result
with giving accuracy of 93.40% for laboratory-based dataset. Inception v3 gave the
best performance in real-life dataset as well, though the average rate was 10%-15%
lower. They represented real-world scenarios by using the self-collected dataset,
which made their work different from previous works. But the models they have
used cannot work efficiently on real fields. So these models cannot be approachable
by the farmers [57].

12

Chapter 3

Datasets

3.1 Description of data

To ensure that the findings are more uniform, only photos featuring leaves were used
in this study [28] [61]. As a result, the image dataset utilized is derived from the
publicly available Plant Village dataset [33] [28]. Hughes and Salathe [22] generated
the Plant Village dataset, which comprises 61,486 tagged photos for 14 separate
species and 39 different classes containing images of healthy and sick leaf images.

We extracted characteristics from the Plant Village dataset using just 16,012 photos
of tomato leaves, sorted into one healthy class and nine harmful classes [44]. Each
picture is made up of one leaf and one backdrop. The following histogram(Figure
3.1) shows the uneven distribution of the images each classification from Plant Vil-
lage Dataset.

Number of Images per Clasification

Tomato___healthy
Tomato___Tomato_Yellow_Leaf_Curl_Virus
Tomato___Tomato_maosaic_virus
Tomato___Target_Spot
Tomato___Spider_mites_Two_spotted_spider_mite

Tomato___Septoria_leaf_spot

dassification

Tomato___Leaf_Mold
Tomato___Late_blight
Tomato___Early_blight

Tomato___Bacterial_spot

I T T T T T T
0 500 1000 1500 2000 2500 3000
Number of Images

Figure 3.1: Number of images in each classification from Plant Village Dataset.

[70] The specific classifications of the dataset are as follows, after integrating the
original tomato leaf photos and removing superfluous categories: Healthy, Bacterial
spot, Early blight, Late blight, Leaf Mold, Septoria leaf spot, Target Spot, Tomato
mosaic virus, Tomato yellow leaf curl virus, Two-spotted spider mite [44].

Table 3.1 demonstrates how well the database is organized by illness. Images were
snapped using various digital equipment and cellular smartphones [28]. Approx-
imately 25% of the photos were obtained under controlled settings, while the re-
maining 75% were captured under natural conditions, with the leaves not connected

13

Unhealthy
Class Fungi Bacteria Mold Virus Mite Healthy
S:rg; bilgglctﬁ(wz(z) T Yellow leaf curl virus (3209)
Sub Class: l:ﬁgeltl;pot((lz%él) Bacterial spot (2127)Late bright (1909) Two spotted spider mite (1676)Healthy (1591)
Toal mold (952) Mosaic virus (373)

[Total Tomato leaf images (16,012)

Table 3.1: Details number of images of tomato leaf photos for healthy and unhealthy
classifications [22].

to the host plant [28]. The size of tomato leaf images are 256x256 and all the images
are in RGB color mode.

In addition to the Plant Village Dataset, 6,918 images have been added after aug-
mentation to ensure the balance of images in the dataset. There are 6 different

augmentation methods that have been applied. The methods are,

1. Scaling: the images were scaled into 256 x 256 pixels. The focus was to make the
leaf stay at the center of the image.

2. Rotation: the image was rotated such that the tip of the leaf is in the upper side
of the image and the axial part on the lower side of the image.

3. Noise Injection: the random variation of brightness of the images was set to an
average.

4. Flipping: Some images were flipped such that the tip of the leaf is in the upper
side of the image and the axial part on the lower side of the image.

5. gamma correction: The brightness and luminosity were adjusted.

6. PCA color augmentation: The intensity of RGB channels in the images were
adjusted.

Due to this uneven distribution, the model could lead us to overfitting issues. The

additional images were collected from another well known dataset from kaggle to the
right classes. Figure 3.2 shows the distribution after additional images were added.

Number of Images per Clasification

Tomato___healthy
Tomato___Tomato_Yellow_Leaf_Curl_Wirus
Tomato___Tomato_mosaic_virus
Tomato___Target_Spot
Tomato___Spider_mites_Two_spotted_spider_mite
Tomato___Septoria_leaf_spot
Tomato___Leaf_Mold

Tomato___Llate_blight

Tomato___Early_blight

Tomato___Bacterial_spot

dassification

l T T T T T
0 500 1000 1500 2000 2500
Number of Images

Figure 3.2: Number of images in each classification after Augmentation.

14

Unhealthy
Fungi Bacteria Mold Virus Mite
[Early blight (2400)
Septoria Leaf spot (2181)

Class Healthy

Yellow leaf curl virus (2451))
Bacterial spot (2127)Late bright (2314) Two spotted spider mite (2176)Healthy (2407)
Mosaic virus (2238)

ISub Class:

Target spot (2284)
ILeaf mold (2352)
[Total Tomato leaf images (22,930)

Table 3.2: Details of tomato leaf photos for healthy and unhealthy classifications
[68] after augmentation.

[70] The specific classifications of the dataset are the same as the PlantVillage
Dataset. The classifications are as follows: Healthy, Bacterial spot, Early blight,
Late blight, Leaf Mold, Septoria leaf spot, Target Spot, Tomato mosaic virus,
Tomato yellow leaf curl virus, Two-spotted spider mite [44].

Table 3.2 also demonstrates how many images there are in the database are orga-
nized by sickness of the leaf. Images were taken using various digital cameras and
smartphones [28].

The following figure shows the random sample images of train, validation and test
data. 70% data used to train the model, 20% data were used to validate the model
and 10% data used to test the model.

il b i

i I i R [! . .

I

Figure 3.3: Sample images from the Augmented dataset showing trained, valid, and
test data [14].

3.2 Data Pre-processing

Data preprocessing steps are the steps that we needed to cover in order to trans-
form our image data into some useful data stream or some of the models that we are
going to use.This pre-processed data is used to train our desired and used models
such as CNN;, Inception V3 and ResNet50 can train by extracting the features from

15

the image dataset. Image pre-processing is a very crucial step before we can dive
into training our model. It is because if the classes of dataset are distributed in
an uneven way, then it is seen that our used models are unable to train themselves
properly to classify the exact class while predicting.

Firstly, In order to start pre-processing before even starting to train our machine
learning models our first job is Image Acquisition, here the dataset containing the
images is collected from the Plantvillage tomato leaf data set containing 10 classes
of tomato leaf diseases [22].

Secondly, the major step of data preprocessing is augmentation over the dataset.
Here in our paper, we have already discussed in our previous section that the dataset
needs to be augmented so that we can prevent the problem of uneven distribution
of data. Initially, there are 6,918 images but after completing the steps of augmen-
tation we achieved a total number of 16,012 images. Here in our models, we have
used Keras’s ImageDataGenerator class to generate batches of images with real-time
data augmentation with parameters like width_shift, height_shift, rotation, and hor-
izontal and vertical flip to augment our image data.

datagen_train = ImageDataGenerator(rescale=1./255,
width_shift _range=06.1,
height shift _range=0.1,
horizontal flip=True,
vertical_flip=False)

Figure 3.4: ImageDataGenerator class and its parameters.

In the above figure we have passed the parameter “horizontal flip” and “height_flip”
which ranges from 0 to 1 and by setting horizontal flip = true the image data will
be rotated in such a manner so that the tip of the leaves will be straightened and
be on the upper side.

If the above figure 1 is considered which is actually done on our original dataset
then for setting width_shift_range=0.2 the image will be shifted its x-axis 20% of
its total image to the left side. An example of the result has been shown in figure 3.5 .

Figure 3.5: Example of images with width_shift_range =-0.2

Then again, considering the other parameter that has been passed, this parameter
would also give the result of how the y-axis is being changed by setting height _shift
_range=0.2. This also shifts the image by 20% to the upward to y-axis. An example

16

Figure 3.6: Example of images with height_range=0.2

of this changing y-axis is shown in figure 3.6 .

And lastly, the parameter that we use to augment our data is rotation_range. Ro-
tation_range parameter is basically used to rotate an image under a given range
from 0-360. Here for our usage rotaion_range=45° has been used as a result this
parameter rotates each of the images by 45-degree angle. Therefore, this is how by
using these parameters we have gone through with the data augmentation task.

Figure 3.7: Example of images with rotation_range=45°.

17

Chapter 4

Methodology

4.1 Model Description

4.1.1 Convolutional Neural Network (CNN)

Around the 1980s, CNNs were first created and put to use and aside from providing
the vision for robots and autonomous vehicles, ConvNets have proved effective at
recognizing faces, objects, and traffic signs. Since 1988, there have been several
versions of LeNet, the most recent of which, developed by Yann LeCun, is known
as LeNetb [7]. LeNet was among the earliest convolutional neural networks to ad-
vance deep learning. All major firms have been vying for this since Alex Krizhevsky
deployed a convolutional neural network in the 2012 ImageNet competition [17].
Among the many significant advances in computer vision, CNNs stand out as the
most important. LeNet architecture was mostly utilized for character recognition
jobs in the 1990s, such as reading zip codes and other data.

Deep Convolutional Neural Network [67], which is a supervised machine learning
model that has proven successful implementation in several Computer Vision and
Image Processing fields [62]. CNN is commonly used for analyzing images by per-
forming tasks related to image segmentation, classification, recognition, and retrieval
[54] [63]. CNN is a multilayered hierarchical feedforward network where a set of con-
volutional kernels is used to execute several changes in each layer [13]. Convolutional
Networks are trainable multi-layered architecture consisting of multiple layers [29].

The analysis of visual data is a common application of Convolutional Neural Net-
works (CNNs), a subset of deep neural networks. A convolutional neural network
(CNN) is an artificial neural network (ANN) whose architecture is tailored to process
data with a grid-like structure, such as an image, and thus learn spatial hierarchies
of features.

Convolutional layers, pooling layers, and fully connected layers are typical compo-
nents of a CNN’s structure [50]. Image classification, object detection, and semantic
segmentation are just some of the computer vision tasks where CNNs have proven
to be highly effective. Natural language processing and voice recognition are just
two more fields where they have been put to use.

18

Input layer

In a Convolutional Neural Network (CNN), the input layer is the first layer that
receives the input data. The input data is typically an image, but it can also be other
types of data such as audio, text, or time-series data. The input layer is responsible
for preparing the input data for processing by the rest of the network. This may
include tasks such as normalizing the data, resizing the data, or converting the data
into a suitable format for the network. The input layer does not have any trainable
parameters, it just passes the input data to the next layers in the network. The
input layer is not always explicitly defined in the CNN architecture, it is considered
as the first layer and its output is passed to the next layers.It is worth noting that
the input data in CNN is typically a multidimensional array (tensor) with shape
(batch_size, height, width, channels), where batch_size is the number of images in
a batch, height and width are the dimensions of an image, and channels are the
number of color channels in an image (for example, 3 for RGB images or 1 for
grayscale images)

Convolutional Layer

The Convolution layer is the first layer of a Convolutional Neural Network (CNN),
and it consists of convolution kernels (M x M) that extract patterns from the input
pictures [68]. Each neuron in the figure is like a kernel that reads in an image and
spits out information about it [29]. Features are extracted from the input data by
a convolutional layer of a Convolutional Neural Network (CNN). Convolution is a
mathematical process performed locally on the input picture by the convolutional
layer, which consists of a series of filters (sometimes called kernels or weights).
Afterward, the feature maps are sent on to the next layer. Tiny (3x3 or 5x5 pixel)
filters are slid over the input picture to calculate dot products of filter values with
the corresponding input values at each pixel. Dot product (or convolution) is an
operation that modifies the feature map by multiplying it by a new value at each
position. As the training progresses, the filters’” weights are adjusted to reflect the
information gained. Features like edges, corners, textures, and patterns are what
the convolutional layer is designed to pull out of the input picture. The network may
learn many characteristics by using a variety of filters on the input picture and then
combining them to generate a prediction. A convolutional layer’s hyperparameter
is the number of filters it employs. Most CNNs employ convolutional layers in their
first stages, while the network is still learning basic characteristics. The deeper
the network goes, the more it is able to integrate these simple traits to learn more
complex ones and make more nuanced predictions.

Nonlinear activation function

Non-linearity may be introduced into a neural network by use of a nonlinear activa-
tion function, which is a mathematical transformation added to the layer’s result.
Nonlinear activation functions enable a network to learn complicated patterns and
carry out tasks like classification and regression by transforming the input into the
desired output. The input is then fed into a nonlinear activation function after the
results of a linear operation (like convolution) have been applied to it. Although
smooth nonlinear functions, such as the hyperbolic tangent (tanh) or sigmoid func-

19

Feature map

nnnnnnnnnnnnn

Figure 4.1: a—c An diagram of the convolution procedure using a kernel size of 3*3,
with no padding, and a stride of 1.

tion, were formerly employed because they mathematically mirror the activity of
biological neurons, the rectified linear unit (ReLU) is currently the most often used
nonlinear activation function. f(x)=max(0,x) [39] [14] [40] [15]. The output of a
layer is then subjected to one or more activation functions, the selection of which is
task- and architecture-dependent. Softmax, for instance, is utilized for multi classi-
fication, whereas Sigmoid is often used for Binary classification [6] [66].

The most common nonlinear activation functions used in neural networks are:

e ReLLU (Rectified Linear Unit): This function replaces all negative values with zero,
allowing the network to introduce non-linearity and improve its ability to learn com-
plex patterns.

e Sigmoid: This method is helpful for binary classification jobs since it converts the
input to a value between 0 and 1.

e Tanh (hyperbolic tangent): This function maps the input to a value between -1
and 1, which is useful for regression tasks.

e Leaky ReLU: This function is similar to ReLLU but it allows a small gradient when
the unit is not active, this helps to avoid dying ReLLU problems.

e ELU (Exponential Linear Unit): This function is similar to ReLU, but it tends to
produce more negative outputs, allowing the network to learn more complex features.

e Maxout:All negative values are converted to zero in this version of the rectified
linear unit (ReLU) activation function. Instead of returning zero for negative values,
the Maxout activation function selects the highest positive value from the given
collection.

20

Nonlinear activation function

Sigmoid ‘ Leaky ReLU
o) = max(0.1z, x)
14e—=

tanh Maxout
tanh(x) o max(w] + by, wl z + by)

ReLU ELU
max (0,) {” -
Oc‘(el.—].) <0 - P io

Figure 4.2: Different non-linear activation function.

Pooling layers

The relative placement of features is maintained after extraction [54]. When data is
pooled, it is down-sampled, a local procedure [74]. The ascending response within
the local area is then generated by performing a summing operation on comparable
information within the receptive field [75].

The feature maps are down-sampled using pooling layers, decreasing their dimen-
sionality and enabling the network to zero in on the most relevant characteristics.
To make the network more computationally efficient and less susceptible to tiny
translations or distortions in the input picture, pooling layers are used to minimize
the spatial size of the feature maps. Because of this, overfitting is also mitigated.
Note that although stride, padding and filter size are all hyperparameters in pooling
operations, there is no learnable parameter in any of the pooling layers themselves.
It’s because convolution operations and pooling operations are quite similar [50].

There are various types of down-sampling methods used in CNN such as max pool-
ing, average pooling, overlapping pooling etc. [75].

e Max pooling: The feature map is partitioned into many non-overlapping sections,
or "pooling windows,” to facilitate the process. The max pooling layer chooses the
largest value in each window as the output for that window. The result is a feature
map with a smaller pixel size, achieved by retaining just the most crucial details.
When the network has to be resilient to slight changes in the location of an item in
an image, as is the case with tasks like image classification, max pooling comes in
handy. Overfitting is mitigated as a result of the feature maps’ reduced dimension-
ality, which allows just the most crucial details to be retained.

e Average pooling: It is similar to max pooling, but it selects the average value within

21

the window, instead of the maximum value. Average pooling is less commonly
used than max pooling, as it is less robust to extreme values, which are usually
the most important values for feature extraction. However, some architectures use
average pooling as an alternative to max pooling, as it can help to smooth out small
variations in the feature maps.

Max pooling
/
12| 7
817|153
2x2 pooling, 13| 14
1219|157 stride 2
13| 2 (10 3 Average pooling
914|514 91 5
.
71 8

Figure 4.3: Sample diagram of pooling layer.

CNN can be overfitted with training dataset. To regulate this issue, dropout comes
out. In dropout, it randomly skips some connections with a certain probability, thus
the model is not overfitted and the performance of the model improves [16].

Flatten layer

The output of the preceding layers can be transformed into a one-dimensional vector
by using a flatten layer. The fully connected layers that follow the convolutional
layers can only handle input in a single dimension, so this step is essential.

The preceding layers’ output, which normally has a three-dimensional shape (height,
width, and number of channels), is transformed into a one-dimensional shape by the
flatten layer (height x width x number of channels).

Fully connected layer

Since it is a global operation, it is often utilized before the output layer [41]. When
building a deep neural network, it is common practice to flatten the feature maps
produced by the last convolution or pooling layer, converting them into a 1D array
of integers (or vector), before feeding them into one or more fully connected layers,
sometimes called dense layers, in which each input is coupled to every output by a
trainable weight [50].

Fully connected layers, which make up the last layers of a CNN, are in charge of

creating a prediction based on the characteristics that were retrieved. A probability
distribution across a number of predetermined classes is generally the result of the

22

last fully linked layer.

Taking the output of the preceding layers, which may have a complicated structure,
and turning it into a prediction or classification is the function of a fully connected
layer. An optional bias term, an activation function, and a dot product between the
input and a set of weights are used to achieve this.

A fully connected layer contains a set of weights, which are also known as parameters
and are discovered during training. When the input is multiplied by these weights,
a new set of values is produced as the dot product. These values are multiplied by
the bias term, and the result is then subjected element-by-element to the activation
function.

The number of outputs, which also influences the number of neurons in the next
layer, is determined by the number of neurons in the completely linked layer. The
dense layer may represent functions that are more complicated the more neurons
there are in it.

-

Clattening

£ully-conmected layers

Figure 4.4: Diagram of flatten and fully connected layer.

Dropout

Dropout is a technique that can be used on any layer’s output and is not thought
of as a separate layer in a neural network. In order to prevent overfitting in neu-
ral networks, the regularization technique known as ”dropout” randomly removes a
predetermined percentage of neurons during training.

Dropout can be applied to other types of layers, such as convolutional or recurrent
layers, but in practice it is typically only applied to fully connected layers. The per-
centage of neurons that will be dropped out during each forward pass is indicated
by the hyperparameter known as the dropout rate, which can be altered depending
on the architecture and the nature of the problem.

CNN can be overfitted with training dataset. To regulate this issue, dropout comes
out. In dropout, it randomly skips some connections with a certain probability, thus

23

the model is not overfitted and the performance of the model improves [16].

The completed architecture incorporates each of the aforementioned ideas into a
unified whole(figure 4.5).
E =gt
= Danger
o o

= E g
/ g . i
W : :
L - Damaged
INFUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN co:‘lﬂ‘éasn SOFTMAX

v

Aircraft Feature Learnin Structural Condition
Sensing Input E Classification

Figure 4.5: CNN architecture diagram

Sample Code

° 1 model = Sequential()
2 model.add(Conv2D(32, kernel_size = (3, 3), activation = 'relu’', input_shape = input_shape))
3 model.add(Conv2D(64, (3, 3), activation = 'relu'))
4 model.add(MaxPooling2D(pool_size = (2, 2)))
5 model.add(Dropout(@.25)) model.add(Flatten())

6 model.add(Dense(128, activation = 'relu’))
7 model.add(Dropout(2.5))
8 model.add(Dense(10, activation = 'softmax'))

Figure 4.6: CNN architecture diagram

4.1.2 Inception V3

Inception-v3 is a supervised deep learning method that is effective at recognizing
patterns with low computational cost. Introduced by Szegedy et al. in 2015 [35],
inception-v3 is a popular method for training deep neural networks [32].

It was created by Google and released as a component of the Inception architecture
in 2015. The network can categorize photos into 1000 different item categories after
being trained on more than a million photographs from the ImageNet database.
The Inception V3 architecture is distinguished by the use of batch normalization
to accelerate training and decrease overfitting, as well as by the usage of Inception
modules, which are tiny networks nestled within larger ones.

It was created by Google and released as a component of the Inception architecture
in 2015. The network can categorize photos into 1000 different item categories after
being trained on more than a million photographs from the ImageNet database.
The Inception V3 architecture is distinguished by the use of batch normalization

24

to accelerate training and decrease overfitting, as well as by the usage of Inception
modules, which are tiny networks nestled within larger ones.

To "get deeper” is the fundamental objective. The model that was suggested in-
cluded 27 layers, including inception layers. The inception layer is composed of the
combined filter banks from the 11 convolutional layer, the 33 convolutional layer,
and the 55 convolutional layer. The combined filter banks were concatenated into a
single output vector, which served as the input for the next step [35].

Inception-v3 is a newer version of the Inception neural network architecture, intro-
duced in 2016 [35]. It has several improvements over previous versions, including the
use of a more efficient factorized 7x7 convolutional layer. Inception v3 is successful
in recognizing objects in the ImageNet dataset, which is more than 78%. Convolu-
tions, max pooling, average pooling, dropout, concatenations and fully linked layers
are some of the symmetric and asymmetric building pieces that make up the model.
The model extensively applies batch normalization to the activation inputs. The
loss is computed using Softmax [46] [52].

A number of substantial adjustments have been made to the Inception V3 model,
including the following:

e Factorized Convolutions: Inception V3 uses a technique called ”factorized convo-
lutions” to reduce the number of parameters and computational cost in the convo-
lutional layers. In addition to that, it monitors the effectiveness of the network.

The idea behind factorized convolutions is to decompose a standard convolution
operation into two smaller convolution operations with fewer filters. In the case of
Inception V3, factorized convolutions are used to decompose a standard 3x3 convo-
lution into two smaller 1x3 and 3x1 convolutions. This allows the network to use
fewer filters and reduce the number of parameters, while still capturing the same
types of features as a standard 3x3 convolution.

Additionally, factorized convolutions are also used to decompose a standard 5x5
convolution into two smaller 3x3 and 5x1 or 1x5 convolution. This technique allows
the network to use fewer filters and reduce the number of parameters, while still
capturing the same types of features as a standard 5x5 convolution.

e Smaller convolutions: Increasing the number of smaller convolutions in place of
larger ones will most certainly result in quicker training. Let’s say a 5 x 5 filter has
25 parameters; two 3 x 3 filters working in conjunction to replace a 5 x 5 convolution
have just 18 parameters (3 * 3 + 3 * 3).

Inception V3 also uses smaller convolutional filters (i.e., 1x1 convolutions) in some
of its branches [53]. These 1x1 convolutions are used to reduce the dimensionality of
the input before it is passed through the larger convolutional filters. This allows the
network to focus on specific features while also reducing the number of parameters
and computational cost.

25

In particular, a 1x1 convolution is used as a bottleneck layer before the 3x3 and
5x5 convolutional layers in some branches of the Inception modules. This allows
the network to reduce the number of input channels and the number of parameters
before passing the data through the larger filters. This in turn helps to control the
overfitting by reducing the number of parameters, and also allows the network to
focus on more abstract features.

In summary, the Inception V3 architecture uses a combination of smaller convo-
lutional filters, factorized convolutions, and larger convolutional filters to extract
features from the input image. By using convolutional filters with fewer layers, we
may minimize the input’s dimensionality and keep the number of parameters under
control, both of which boost the network’s computational efficiency and accuracy.

7N\ B
/AN

g NN / /
//] A\ / /
7 A | [\ [/ /

/A T |
[| [N []

Figure 4.7: Mini-network replacing the 5 x 5 convolutions [35].

Above the fully-connected layer is a 3x3 convolution, which can be found in the
center of the image. As a result of the fact that the two 3x3 convolutions may share
weights with one another, it is possible to do fewer calculations.

e Asymmetric convolutions: Asymmetric convolutions, a technique where different
filter sizes are used in the horizontal and vertical dimensions of the convolution. The
Inception V3 architecture uses standard symmetric convolutional filters such as 1x1,
3x3, and 5xb5 filters, which are applied uniformly in both the horizontal and vertical
dimensions of the input. These filters are used in various branches of the Inception
modules to extract features at different scales and abstraction levels.

Asymmetric convolutions have been proposed in some recent architectures as a way

to further reduce the number of parameters and computational cost while still cap-
turing the same types of features as symmetric convolution.

26

A 1x3 convolution might be used instead of a 3x3 convolution, and then a 3x1 con-
volution could be used after that. The number of parameters would be somewhat
more than what was recommended for the asymmetric convolution if a 3x3 convo-
lution was changed to a 2x2 convolution.

Filter Concat

5x5 3x3 1x1
1 [[
1x1 1x1 Pool 1x1
Base

Figure 4.8: Original Inception module as described in [26].

The inception module seems to have below configuration after the first two opti-
mization procedures have been applied.

Filter Concat

i N\ 1
1x1 1x1 Pool 1%1
Base

Figure 4.9: The filter bank outputs on the Inception modules have been increased
[35].

In the event when the number of input and output filters is the same, the two-layer
method is 33% more cost-effective for the same number of output filters.

e Auxiliary classifier: A tiny convolutional neural network (CNN) is an auxiliary
classifier that is introduced between training layers. The loss that this causes is

27

added to the loss of the main network. Auxiliary classifiers were used for the purpose
of creating a deeper network in GoogleNet; however, in Inception v3, an auxiliary
classifier serves the purpose of a regularizer.

To aid in the training of the primary classifier, an auxiliary classifier was introduced
to the design of Inception V3. Added on top of the primary classifier, the auxiliary
classifier is a compact fully connected network that has been trained to forecast the
class labels of the input pictures.

The output of the main classifier, which is a few levels before the final fully con-
nected layer, is coupled to the auxiliary classifier during training. As a result, the
primary classifier’s characteristics that were retrieved earlier in the network’s devel-
opment may be sent to the auxiliary classifier. By giving the primary classifier an
extra source of supervision, this may aid in improving its training.

Additionally, the primary classifier’s weights and biases are not shared with the
auxiliary classifier. The primary classifier and the auxiliary classifier are trained
together, and the weights of both classifiers are updated at the same time.

Only during training is the auxiliary classifier employed; during inference, it is not
used at all. The primary classifier’s training is improved by the auxiliary classifier’s
added supervision and regularization, which helps the main classifier generalize more
effectively to new data.

1x1x1024
Fully connected
8x8x1280
5x5x128
1x1 Convolution
Inception

5x5x768

e e

x5 Average pooling with stride 3
17x17x768

Figure 4.10: Auxiliary classifier helper above the final 17x17 layer. When the layers
in the side head are Batch Normalized [23] the outcome is a 0.4% absolute improve-
ment in top-1 accuracy. The number of 32 batches processed is shown against time

below [35].

e Grid size reduction: Pooling procedures are often used to reduce the grid size. The
resolution of the input picture is decreased by using grid size reduction, yet crucial
details are preserved. Using max pooling layers in the network’s root and Inception
modules helps reduce the size of the grid.

28

To do this, the input picture is down - sampled by a factor of 2 in both the width
and the height in the network’s stem using a max pooling layer with a kernel size of
3x3 and a stride of 2. The size of the grid is virtually halved in both directions as
a result of this. Some of the branches in the Inception architecture employ a max
pooling layer with a kernel size of 3x3 and a stride of 1 to scale down the input reso-
lution by a factor of 2. This may happen in either the width or the height dimension.

By reducing the resolution of the input image, the network is able to focus on the
important features while reducing the computational cost and number of parame-
ters. This is particularly useful in the early stages of the network where the spatial
resolution is high, but the features are not yet well-formed, and the computational
cost could be high.

Grid size reduction is also called spatial downsampling, and it is an important tech-
nique in CNN architectures, where the resolution of the input is often reduced as the
features are extracted, allowing the network to focus on more abstract features while
reducing the computational cost and the number of parameters. This technique can
also help to reduce overfitting by reducing the number of parameters.

Filter Concat

3x3
strit):i(e 2 17x17x640

3x3 3x3 17x17x320 17x17x320
stride 1 stride 2

T T cor‘w\ A)I
Pool
1x1 1x1 stride 2 35x35x320
Base

Figure 4.11: Modulator of inception that expands filter banks while decreasing grid
size. It’s inexpensive and gets around the representational bottleneck, just as Prin-
ciple 1 [35] suggests. The solution is shown on the right, although this time it is
seen through the lens of grid sizes rather than operations [35].

29

Input: 299x299x3, Output:8x8x2048

""" (}{}{}{ }{X}'{}(

Convolution Input: Qutput:
AvgPool 299x299x3 BxBx2048
MaxPool
Concat

Dropout

Fully connected
Softmax

=
e T
A} [i

H

Figure 4.12: Inception v3 architecture

° 1 tf.keras.applications.Inceptionv3(

2 include_top=True,
3 weights="imagenet",
4 input_tensor=None,
5 input_shape=None,
pooling=None,
7 classes=1000,
8 classifier_activation="softmax",
9)

Figure 4.13: Inception v3 sample code.

Sample Code
4.1.3 RESNET 50

There are different kinds of convolutional neural networks and Resnet is one of them.
It stands for Residual Network. This ground-breaking neural network was first de-
scribed in a study by Kaiming, Xiangyu, Shaoqing, and Jian titled ”Deep Residual
Learning for Image Recognition” [31]. In this paper, Kaiming and et al. have shown
that Resnet creates a fundamental breakthrough in neural networks as using this
extremely deep neural networks model can be trained having over 150 layers. Also,
This new neural architecture has helped to overcome the biggest disadvantage of
convolutional neural networks, which is the vanishing Gradient Problem [25].

The base model ResNet architecture was introduced with 34 weighted layers, and it
provided some easy ways to add more layers to convolutional layers to a CNN [21].
However, the Resnet50 has 50 layers of convolutional neural network, and A sort of
artificial neural network known as a residual neural network constructs networks by
stacking blocks of residual information.

Now, before going into how ResNet50 architecture works, we need to develop an
idea of how this architecture has made a great breakthrough in the field of image
Recognition. [31] LeCun et al., [2] Krizhevsky and et al. have mentioned in their
paper how CNN has made a series of breakthroughs. However, recent research has
shown that adding more layers can enhance the features of the image (depth). [18]

30

HHH

Final part:8x8x2048 -> 1001

K. Simonyan and A. Zisserman and then [27] Szeged and W. Li have mentioned in
their paper about the importance of network and depth in how the result changes
significantly. A graph(figure 4.14) for loss error count with respect to irritations of

the layers can give us an idea of how the result changes just by stacking the new
layers.

20-layer

training error (%)
test error (%)

20-layer

" iter. (led) " ter. (1ed)

Figure 4.14: Test error (right) and training error (left) with 20-layer and 56-layer
“plain” networks.

Considering figurel we can say that the deeper the layer the higher the training
error, but previously we have stated that the features of an image can be extracted
more precisely by adding more layers or depth. That is why a great question arises,
“Is learning better networks as easy as stacking more layers?”. This is the problem
of vanishing gradients that have been mentioned by [3] Bengio, P. Simard, and P.
Frasconi, and later [12] Glorot and Y. Bengio in their study they have mentioned
the dependencies with gradient descent while learning.

When deeper networks are able to start converging, A degradation problem gets ex-
posed. If the accuracy saturates (perhaps unsurprisingly) and decreases rapidly as
the depth of the network increases, then these decreases are not due to overfitting
[30] [59], and adding more layers to the model increases training error. Accord-
ing to our tests, Figure 1 shows a typical example of this. Deep residual learning
framework has introduced to tackle the degradation problem and this solution has
mentioned in the paper submitted by [31] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun.

So, in this paper, the author tried to represent H(x) as desired mapping, and the
mapping equation F(x)= H(x)x is used to stack nonlinear layers by mapping. Then
F(x)+x is transformed to original mapping.

x
identity

Figure 4.15: Residual learning: a building block
This figure shows the formation of F(x)+x then again by adding more feedforward

31

neural networks with shortcut connections the formation of F(x)+x can be achieved.
This technique has already been mentioned in the recent work by [4] Bishop, [10]
B.D. Ripley, [8] N.N. screwdorf. By shortcut connections, we meant skipping one
or more layers. In another case, the shortcut connection performs identity mapping
and one output getting from previous layers are being added to the output coming
from the next layers. These shortcut connections do not add any extra parameter
neither these connections add more computational complexity and just by using
common libraries this can be implemented, and it does not even need to modify any
solvers too.

Deep Residual Learning with shortcut identity layers

Residual learning can be applied by several stack layers and building blocks, as
shown in Figure 2. [31] Kaiming, Xiangyu, Shaoqing, and Jian have shown in their
paper that the block can be defined as y = F(x, Wi) + x.

Here, the input and output vectors of the layer are represented as x and y respec-
tively for feature extraction. F(x, Wi) represents the residual map to learn. If you
look at the explanation of Figure 2, there are two layers, so F = W2(W1x). And
this formation was [48] V. Nair and G. E. Hinton states in his paper that stands
for ReLU and that the operation F + x is performed by shortcut connections and
element wise addition. And let t be her second nonlinearity after addition (that
is, (y)). So you can see that the shortcut link in the above equation does not add
any additional parameters or computational complexity. Comparing the simple con-
volutional networks and residual networks, we can see that the residual networks
behave similarly to the simple convolutional neural networks with the same number
of computational cost, depth and parameters. However, in this case, the dimensions
of x and F must again be the same. If the dimensions are not the same, you can
perform a linear projection to make them match. So we can get more information
about the input image.

Here in this section of our paper, we are going to show a difference between Plain
convolutional neural networks and deep residual networks, both having 34 layers.
Based on the figure 4.16, we can insert shortcut connections of residual networks.
Again, when output and input have the same dimensions, identity shortcuts can
directly be used.

Figure 4.16: Representation of the layers of plain and residual network

32

Implementation of Resnet50

In the figure 4.17, the residual and plain network layers have 34 layers. First,
the image is scaled down to 224x224 and the default color expansion is used here.
Weights are initialized immediately after each convolutional layer is activated. Here,
a stack size of SGD of 2566 is used as a minimum desired stack size and the learning
rate starts at 0.1 and is divided by 10 when an error plateau is reached. The model
is then trained with up to 60 x 104 iterations.

layer name | output size 18-layer | 34-layer | S-layer ‘ 101-layer | 152-layer
convl 112x112 77, 64, stride 2
33 max pool, stride 2
oy . 121,64 1x1. 64 1x1. 64
com2n | 36x36 [e]xz [pooeebol PETN I e SE 2 P 3x3,64 | x3 3x3.64 | %3
A e 1x1,256 | 131,256 121,256 |
=1, 128 11, 128 =1, 128
3Ix3, 12 3x3, 12 N
convi_x 28w 2 x2 x4 =3, 12 w4 3x3, 12 x4 3x3, 12 »
3 2828 ;“"“};: 2 %*“};ﬁ 3x3, 128 353, 128 33,128 | %8
e A 1%1.512 | 131,512 1%1,512 |
%1256 %1256 11, 256
3Ix3.2 3x3.2 .
convdx | 14x14 ['1:"'::2%2 ['1:"::2]»«' 3%3,256 | x6 || 3x3,256 %23 || 3x3,256 |x36
e T | 1x1.1024 | 1x1, 1024 11, 1024 |
1x1.512] [121,512 11,512
covSx | 7x7 [e } x2 [e Jx.‘ 33512 (%3 || 33512 [x3 | | ka2 |3
ares s | 11,2048 | | 11,2048 | | 11,2048 |
1x1 average pool, 1000-d fe, softmax
FLOPs 18 107 I 362107 | 382107 I T6x 107 | 113107

Figure 4.17: Number of iterations as the layers increase.

Looking at figure above, we can see that the number of iterations increases as the
number of layers increases. Now we can plot the error rate over the number of
iterations. In contrast to a simple convolutional neural network, just skipping a few
layers gives a clear picture of how well the rest of the neural network is actually
performing.

6l

50

.
=

crror (%)

30
ResNet-18 At et
=—ResNet-34 34-layer
il 10 20 30 40 50
iter. (led)

Figure 4.18: Error Rate with respect to number of iterations

As we can see (figure 4.18) that by adding the number of layers, the error rate is
getting lesser and lesser. So we can take 50 layers then the error rate will come down
more but here the number of iterations got increased for 50 layers, but it is at an
optimal level and can be performed on almost every platform where a base model
of Convolutional neural networks can be performed.

33

4.2 Implementation

4.2.1 Designing and Implementation of ResNet-50

ResNet, short for Residual Networks, is a neural network used as a strength for
many computer vision tasks and can be trained for over 150+ layers. For our study
we have also used this ResNet architecture but for our convenience, only the last 50
layers of the Residual block have been set to true for training.

Important libraries:

e Tensorflow.

e Tensorflow.keras and datasets, layers, models.

import tensorflow as tf

from tensorflow.keras import datasets, layers, models

resnet = ResNet5@(include_top=False, weights='imagenet', input_shape=(128,128,3)

output resnet.layers[-1].output
output = tf.keras.layers.GlobalAveragePooling2D() (output)
resnet = Model(resnet.input, output)

Figure 4.19: Pre-settings of ResNet-50 and important libraries

After we have imported the important libraries and now only the last 50 layers set
to true. For this experiment, we have set, Epochs=100, batch size = 32 and number
of classes = 10.

However, in this experiment, we created a sequential model hence we have added
three Dense layers consecutively 1024, 512, and 256 with a dropout amount of 0.5
in between the dense layers. And then after the last dense layer, we have set the
activation method of “Softmax” since we are dealing with multiple classes.

set_trainable = False
for layer in resnet.layers:
if layer.name in res_name[-50:]:
set_trainable = True
if set_trainable:
layer.trainable = True
else:
layer.trainable = False

num_classes = 10

model = Sequential()

model.add(resnet)

model.add(Dense (1624, activation='relu'))
model.add(Dropout(0.5))

model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))

model.add(Dense (256, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))

model. summary ()

Figure 4.20: ResNet-50(fine tuned) model with activation “softmax”.

Considering this figure, the total Trainable parameters are 19,707,402 which provides
the model a good amount of data to be trained over the dataset. Lastly, we have

34

Model: "sequential 2"

Layer (type) Output Shape Param #
model 2 (Functional) (None, 2048) 23587712
dense_6 (Dense) (None, 1024) 2098176
dropout_2 (Dropout) (None, 1024) 0

dense_7 (Dense) (None, 512) 524800
dropout_3 (Dropout) (None, 512) %]

dense_8 (Dense) (None, 256) 131328
dense_9 (Dense) (None, 18) 2570

Total params: 26,344,586
Trainable params: 19,707,402
Non-trainable params: 6,637,184

Figure 4.21: ResNet-50 (fine tuned) model summary.

trained our model in our local machine with CPU configuration - Ryzen 9 5950x
with 64gb of ram and dedicated gpu GTX Nvidia 3080ti with 12gb of memory.

4.2.2 Designing and Implementation of Inception v3

In our study we have also used this Inception architecture but for our convenience,
we set all the parameters just like we have used in ResNet50. This architecture
also have the same amount of layers that have been trained like we have described
previously while implementing ResNet50. Though we have used Flatten() layers for
output unlike Resnet-50 architecture we used GlobalAvergaePooling2D. All other
settings are the same here for this fine tuned model.

Important libraries:
e Tensorflow.

e Tensorflow.keras and datasets, layers, models.

import tensorflow as tf

from tensorflow.keras import datasets, layers, models

inceptionv3 = InceptionV3(include_ top=False, weights='imagenet', input_shape=(128,128,3))
output = inceptionv3.layers[-1].output

output = tf.keras.layers.Flatten()(output)
inceptionv3 = Model(inceptionv3.input, output)

Figure 4.22: Pre-settings of inception v3 and important libraries.

35

After we have imported the important libraries and now only the last 50 layers will
be set to true. For this experiment in our study, we have set Epochs=100, batch
size = 32 and Number of classes = 10. However, in this experiment, we created a
sequential model hence we have added three Dense layers of 1024,512, and 256 with
a dropout amount of 0.5. Here the activation method has been set to softmax since

we are dealing with multiple classes.

set_trainable = False

for layer in inceptionv3.layers:
if layer.name in incep_name[-58:]:

set_trainable =
if set_trainable:

layer.trainable
else:

layer.trainable

num_classes = 10

model = Sequential()
model.add(inceptionv3)

True

True

= False

model.add(Dense (1024, activation='relu'))

model.add (Dropout(8.5))

model.add(Dense(512, activation="relu'))

model.add (Dropout(@.5))

model.add(Dense(254, activation='relu'))

model.add(Dense(num_classes, activation='softmax'))

model.summary ()

Figure 4.23: Inception v3 (fine tuned) model with activation “softmax”.

Here the activation method has been set to

tiple classes.

Model: "sequential"

softmax since we are dealing with mul-

Layer (type)

Qutput

Shape

Param #

model (Functional)

(None,

8192)

21862784

dense (Dense)

(None,

1824)

8389632

dropout (Dropout)

(None,

1024)

°

dense_1 (Dense)

(None,

512)

524800

dropout_1 (Dropout)

(None,

512)

2}

dense_2 (Dense)

(None,

254)

13@302

dense_3 (Dense)

(None,

2550

Total params: 30,850,068
Trainable params: 15,778,228
Non-trainable params: 15,0871,

840

Figure 4.24: Inception V3 (fine tuned) model summary.

Considering this figure, the total Trainable parameters are 15,778,228 which provides
the model a good amount of parameters to get the features extracted from our
dataset to be trained. Lastly, we have trained our model in our local machine with

36

CPU configuration - Ryzen 9 5950x with 64gb of ram and dedicated GPU GTX
Nvidia 3080ti with 12gb of memory.

4.2.3 Designing and Implementation of CNN

In our experiment, we have also used Convolulation Neural Network architecture
model. Here have. The following import libraries have been imported to use the
desired dense layer and dropout level and flatten any layer.

Important libraries:

e keras.utils to_categorical.
e Tensorflow.keras.models Sequential.

e tensorflow.keras.layers Conv2D,Dense,Flatten,MaxPooling2D,Dropout.

classifier=Sequential()

classifier.add(Conv2D(32,(3,3), input_shape=(64,64,3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2,2)))
classifier.add(Dropout(0.2))

classifier.add(Conv2D(64,(3,3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2,2)))
classifier.add(Dropout(0.2))

classifier.add(Conv2D(128,(3,3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2,2)))
classifier.add(Dropout(0.4))

classifier.add(Flatten())
classifier.add(Dense(activation='relu', units=64))
classifier.add(Dense(activation='relu', units=128))

classifier.add(Dense(activation='relu', units=64))
classifier.add(Dense(activation='softmax', units=10))

classifier.compile(optimizer="'adam', loss='categorical crossentropy', metrics=['accuracy'])

Figure 4.25: CNN (proposed model) with activation “softmax”.

Total params: 405,450
Trainable params: 405,450
Non-trainable params: 0

Figure 4.26: Trainable Parameters for CNN(proposed model).

Considering this figure 4.26, the total trainable parameters are 405,450 which pro-
vides the model a good amount of parameters to get the features extracted from
our dataset to be trained. And also trainable parameter is much more less than
previous fine tuned pre-trained models.

37

Chapter 5

Result and analysis

5.1 Analysis of predicted results

The performance of various models in our experiments depending on our dataset is
described in this section. To represent how precisely the three different methods of
our proposed models can actually classify the diseases of the tomato leaves, there
are some performance metrics we need to mention first.

5.1.1 Performance matrics

To represent how precisely the three different methods of our proposed models can
actually classify the decreases of the tomato leaves, there are some performance
metrics we need to mention first. In our study, we have constructed a confusion
matrix consisting of precision, recall, and F_1 scores. These terms are - i) True
positive classes(TP), ii) True negative classes (TN), iii) False positive classes (FP),
iv) False Negative classes(FN). the number of positive class predictions that actually
belong to the positive classes are denoted by Precision.

TP
Precision = ———— 5.1
recision = o5 s (5.1)

Since we have 10 different classes to classy therefore the term TP, FP would come
10 times as TP1,FP1,TP2,FP2 and so on for the rest of the classes.

Then the number of positive class predictions made out of all positive examples in
the dataset is denoted as recall. Also, the ratio between the number of Positive
samples correctly classified as Positive to the total number of Positive samples is
denoted as Recall score. This parameter denoted the ability of the model to predict
the positive samples only.Unlike the precision metric, this metric only cross-outs
the negatively predicted classes and then only considers the true positive (TP) pre-
dicted classes among all the classes that have been predicted by the model. How
a model performs generally across all the different classes is acutely measured by
accuracy. This parameter is also important in order to elaborate on how the model
is actually working. This is mainly the ratio of the number of correct predictions to

38

the number of total predictions. This can be calculated in the equation shown below.

TP +TN
TP+TN+ FP+ FN

Accuracy = (5.2)

Lastly, the metric that we have considered in our study to show how the three
different models are working if it knows as F1_Score. F1 score, is a single score that
balances both the concerns of precision and recall in one number.

1 2 x Precision x Recall B 2% TP
"~ Precision + Recall 2xTP+ FP+ FN

(5.3)

5.1.2 Analysis of predicted results

In this section of our study, all results using the metrics that we have discussed
above will be elaborated precisely and individually for each of the models used in
this study.

5.1.3 Results and Analysis From CNN

precision | recall | fl-score | support
BACTERIAL SPOT 0.94 0.99 | 0.96 426
EARLY BLIGHT 0.95 0.91 |0.93 480
HEALTHY 0.95 0.99 | 097 482
LATE BLIGHT 0.95 0.93 | 0.94 463
LEAF MOLD 0.95 0.98 | 0.96 471
SEPTORIA LEAF SPOT 0.96 0.91 | 0.94 437
SPIDER MITE 0.96 0.92 | 0.94 436
TARGET SPOT 0.92 0.92 |0.92 457
MOSAIC VIRUS 0.97 1.00 | 0.98 448
YELLOW LEAF CURL VIRUS | 1.00 0.98 | 0.99 491
micro avg 0.96 0.95 | 0.95 4591
macro avg 0.96 0.95 | 0.95 4591
weighted avg 0.96 0.95 | 0.95 4591
sample avg 0.95 0.95 | 0.95 4591

Table 5.1: Classification report of CNN(proposed model)

Among the models trained using the tomato leaf images consisting of ten classes,
the experiment done using basic CNN gives a pretty good result having the F'1_score
of 95% which is shown in above table 5.1. Considering the above report, it is seen
that all the ten classes of leaf diseases have precision score, not below 92%.

39

1.0

0.9

0.8

Accuracy

0.6 1

0.5 A

0.4

Classifier Accuracy

0.7

—— Train

Validation

e

T T T T T
20 40 60 80 100

Epoch

Figure 5.1: Accuracy score with respect to the number of epochs.

In the above figure 5.1 the number or epoch increases the accuracy also increases
for both training and validation up to 98% for trained data and not below than 96%

for validation data.

1.75 4

1.50 4

1.25 4

1.00 +

Loss

0.75 A

0.50 A

0.25 A

0.00 A

Classifier Loss

N\

A

—— Train
Validation

M

2

T T T T T
] 40 60 80 100

Epoch

Figure 5.2: Classifier loss with respect to number of Epochs

In this experiment the classification loss of the information extracted from the
dataset remains high at the initial stage but as the number of epochs increases
the loss decreases in gradual way for both training data and validation data and
there not many ridges to be seen here in the graph figure 5.2 shown above . Lastly
to elaborate and to come to a definite decision if the model is working fine the
dataset and predicting the actually classes of the images a confusion matrix is a

must thing to create.

In the figure 5.3, a confusion matrix has been generated using our trained CNN
model with the help of test set data to predict the classes. And it is proven by the
above figure that for every class the model is giving an optimal result.

40

Confusion Matrix

BACTERIAL SPOT -

EARLY BLIGHT

- 400

HEALTHY

LATE BLIGHT

LEAF MOLD

True labels

SEPTORIA LEAF SPOT

SPIDER MITE

TARGET SPOT

MOSAIC VIRUS

YELLOW LEAF CURL VIRUS

Predicted labels

Figure 5.3: Confusion matrix for the ten classes.

5.1.4 Results and Analysis From Inception V3

The table 5.2 gives an overview of the accuracy of the precision and the F1_score.
Here the precision score gives a maximum of 96% for a single class but not less than
75% for any of the ten classes. Again The overall accuracy is 87% which is a bit
lower than the CNN.

Model precision Model recall

— train — tain

val 080 val

0.86

precision
°
2
2
recall

082

0 20 40 60 80 100 o 20 40 60 80 100
epochs epochs

Figure 5.4: Precision and Recall score for Inception v3

In the above figure 5.4, it shows hot the precision and accuracy and recall metrics
are changing in a good manner as the number of epoch is increasing. And the loss of
features of the data is also decreasing as the number of epochs increases. However, a
confusion matrix can state a how perfectly the model is predicting the classes from
the validation data set using the test dataset.

Since the accuracy in this experiment is not much higher so it is clearly seen that

not all the classes are getting predicted correctly as class 5 is getting the highest
positive predicting score.

41

precision | recall | fl-score | support
BACTERIAL SPOT 0.8818 0.9065 | 0.8940 | 214
EARLY BLIGHT 0.8670 0.7875 | 0.8253 | 240
HEALTHY 0.8571 0.8793 | 0.8681 | 232
LATE BLIGHT 0.9075 0.8729 | 0.8898 | 236
LEAF MOLD 0.7542 0.8265 | 0.7887 | 219
SEPTORIA LEAF SPOT 0.8578 0.8813 | 0.8694 | 219
SPIDER MITE 0.8230 0.7511 | 0.7854 | 229
TARGET SPOT 0.9672 0.9593 | 0.9633 | 246
MOSAIC VIRUS 0.9321 0.9156 | 0.9238 | 225
YELLOW LEAF CURL VIRUS | 0.900 0.9669 | 0.9323 | 242
accuracy 0.8753 | 2302
macro avg 0.8748 0.8747 | 0.8740 | 2302
weighted avg 0.8761 0.8753 | 0.8750 | 2302

Table 5.2: Classification report of inception v3

InceptionV3 Model accuracy

0

Figure 5.5:
epochs

Confusion matrix of CNN

True label
7 6 5 4 3 2 1
N - o gl N w N
o o & 2 . o
N O
> o o B @ 3

8

(=}
3}
w

Figure 5.6: Confusion matrix for Inception V3

Here, every class has its own legend color which represents in the graph and also

0o 0 5 3
o 0 4 7
0 1 16 14
29 15 26 1
1 65 20 37
0 1 5
0 195
0 0 57 0
0 1 42

0 1 5 94

3 4 5 6
Predicted label

InceptionV3 Model loss

3

o
1=

69 2

0 1
8 9

eeeeee

200

175

150

125

-100

-75

-50

-25

-0

gives an overview of our trained model in this experiment.

42

Train and Validation accuracy curve with respect to the number of

Tomato Leaves Diseases ROC curve

e
o
L

True Positive rate
o
)
1

o
¥
L

0.0

1.0 —
0.8 ;

Bacterial Spot AUC = 0.991
—— Early Blight AUC = 0.984
—— Healthy AUC = 0.991
—— Late Blight AUC = 0.992
Leaf Mold AUC = 0.980
—— Septoria Leaf Spot AUC = 0.993
—— Spider Mites AUC = 0.983
Target Spot AUC = 0.999
Mosaic Virus AUC = 0.997
— Yellow Leaf Curl Virus AUC = 0.999

T
0.0

T T T T T
0.2 04 0.6 0.8 10
False Positive Rate

Figure 5.7: ROC curve for the classes in Inception V3

precision | recall | fl-score | support
BACTERIAL SPOT 0.6796 0.9813 | 0.8031 | 214
EARLY BLIGHT 0.7381 0.6458 | 0.6889 | 240
HEALTHY 0.7664 0.7069 | 0.7354 | 232
LATE BLIGHT 0.9441 0.5720 | 0.7124 | 236
LEAF MOLD 0.7150 0.7658 | 0.6948 | 219
SEPTORIA LEAF SPOT 0.6181 0.8721 | 0.7235 | 219
SPIDER MITE 0.6220 0.6681 | 0.6442 | 229
TARGET SPOT 0.9691 0.7642 | 0.8545 | 246
MOSAIC VIRUS 0.9623 0.6800 | 0.7969 | 225
YELLOW LEAF CURL VIRUS | 0.7621 0.9793 | 0.8571 | 242
accuracy 0.7533 | 2302
macro avg 0.7777 0.7546 | 0.7511 | 2302
weighted avg 0.7806 0.7533 | 0.7520 | 2302

Table 5.3: Classification report for ResNet-50

43

5.1.5 Results and Analysis From ResNet-50

The above table 5.3 gives an overview of the accuracy of the precision and the
F1_score. Here, the precision score gives a maximum of 96% for a 2 classes, but
not less than 71% for any of the nine classes. Again The overall accuracy is 75.33%
which is the lowest among all the two other experiments we have shown above.

Resnet50 Model precision 08 Resnet50 Model recall

10 " — tain | A MADAS

0.8 /Mvadl MV N VAT W 06 ~— va ik
506 =
@ S04
04 @
[N

0.2 —— frain 0.2

val
0.0 0.0
0 20 40 60 80 100 0 20 40 60 80 100
epochs epochs

Figure 5.8: Precision and Recall curve for ResNet50(fine tuned).

Resnet50 Model accuracy Resnet50 Model loss
08 _/~/ﬁ.,>-«-/--"“"”’ —— train
o vald 2.0 — val
06 /
I 215
3 3
304 =
©
—— train 10 __‘
0.2 val B paa A LATAAY
0.5
0 20 40 60 80 100 0 20 40 60 80 100
epochs epochs

Figure 5.9: Accuracy and Loss curve of ResNet50(fine tuned).

Here in our Experiment even after training our model for 100 epochs we were unable
to get good accuracy on both the train and validation dataset. Therefore, for this
reason in the above figures, the line of the graphs have more ridges than we have
expected.

5.2 Final analysis report among the Architectures

Since have discussed all the experiments that we are gone through for our study
we can state that the maximum accuracy for our image classification we have got

44

Confusion matrix of Resnet50
o 2 0 0 0 0 1 1 0 O

- 21 19 0 7 17 18 0 1 2 200
~ 5 22 3 1 2 16 1 0 8

150
28 5

4

True label
5
=)

-100

-50

0O 1 2 3 4 5 6
Predicted label

Figure 5.10: Confusion matrix for ResNet50 (fine tuned).

Tomato Leaves Diseases ROC curve

1.0 o

0.8

0.6

s 04

sitive rate

e

=
= 0.2

0.0

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Figure 5.11: ROC curve for ResNet50 (fine tuned).
from CNN is 95%. However, the lowest accuracy was from the ResNet50 model.
Also considering the figures above we also state that the lowest validation loss we

have achieved was from CNN among the rest of the architecture (Inception V3 and
ResNet50).

45

Chapter 6

Conclusion and Future Work

A greater part of Bangladeshi population depends on the agricultural sector, for
which this is still one of the most important sectors of the country. Even the growth
of the economy relies on various agricultural sectors. Therefore, to maintain the
growth of our economy, we need to adapt advanced technologies with the help of
computer science to prevent or to cure problems that arise to our farmers. And it is
generally seen that even though the farmers are mostly dependent on pesticides and
chemical fertilizers though this helps to prevent most of the diseases of the crops
but for most of the cases the farmers are not able to detect the exact diseases by
examining the leaves of a certain crop which hampers the production rate of the of
crops. And can become a threat to our nation’s economic growth. So in our paper
we are trying to develop a system through various image processing techniques, us-
ing which we can help the farmers to detect crop’s disease through their own device
by providing a raw image of the selected crop’s leaf. Tomato is known as a staple
food as it is eaten often by the larger portion of people. Hence, in this paper we have
evaluated three models known as Convolutional Neural Networks(CNN), Resnet-50,
Inception-v3 for classifying 10 types of tomato leaf diseases. We implemented mul-
tiple data transformation techniques and augmentation processes. Training data is
visualized for better understanding the data and performance of the models. The
disease identification is evaluated by training loss, valid loss, confusion matrix, and
accuracy data output from models. Although the currently existing direct and in-
direct models are already accessible and ready to use broadly for the detection of
plant leaf diseases, those models are not much encouraged for the practical appli-
cation because of having a couple of limitations. That is why we have brought
different models from the available models for better accuracy rate and better effec-
tiveness. Which has proved to obtain an accuracy rate of 75.33% in the Resnet-50
and 87.55% in Inception-v3 and 95.5% in CNN. Yet, the main drawback for our
proposed methodology is that the process is a bit time-consuming and high-end
hardware configuration is compulsory for model training. To solve this problem, we
customized a CNN model, transformed the train images into 64 x 64 x 3, augmented
the images such that the images were in focus in the images. After customizing, our
models became faster and light weight which is easy to deploy.

For further work, we will be trying to extend our process for several new algorithms

so that we can come up with the most favorable results compared to existing tech-
niques. Furthermore, since we have already discussed that we are only working on

46

the diseases that are seen on the leaf but in real a life scenario the diseases are not
seen only the leaf, so we will be trying to cover more parts of the plants so that we
can include more detailed dataset and classify the diseases. Again our study has
been on a processed data which was collected, but we are planning to deploy our
model into real life scenario where our system will be trained over mostly all the dis-
eases of the tomato plant so that the end user can upload image as an input and the
system build using our methodologies will detect instantly the diseases.Therefore,
our mentioned model can be operable as a promising tool to assist and support the
farmers in classifying the diseases that can be found in tomato plants.

47

Bibliography

1]

[10]

[11]

N. Mackenzie and A. Pinder, “Flow cytometry and its applications in veteri-
nary medicine,” Research in veterinary science, vol. 42, no. 2, pp. 131-139,

1987.

Y. LeCun, B. Boser, J. S. Denker, et al., “Backpropagation applied to hand-
written zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541-551,
1989.

Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” IEEE transactions on neural networks, vol. 5,
no. 2, pp. 157-166, 1994.

C. M. Bishop et al., Neural networks for pattern recognition. Oxford university
press, 1995.

J. L. Lange, P. S. Thorne, and N. Lynch, “Application of flow cytometry
and fluorescent in situ hybridization for assessment of exposures to airborne
bacteria,” Applied and Environmental Microbiology, vol. 63, no. 4, pp. 1557—
1563, 1997.

S. Hochreiter, “The vanishing gradient problem during learning recurrent neu-
ral nets and problem solutions,” International Journal of Uncertainty, Fuzzi-
ness and Knowledge-Based Systems, vol. 6, no. 02, pp. 107-116, 1998.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEFE, vol. 86, no. 11,
pp. 2278-2324, 1998.

N. N. Schraudolph, “Centering neural network gradient factors,” in Neural
Networks: Tricks of the Trade, Springer, 1998, pp. 207-226.

A. Moter and U. B. Gobel, “Fluorescence in situ hybridization (fish) for direct
visualization of microorganisms,” Journal of microbiological methods, vol. 41,
no. 2, pp. 85-112, 2000.

B. D. Ripley, Pattern recognition and neural networks. Cambridge university
press, 2007.

A. Meunkaewjinda, P. Kumsawat, K. Attakitmongcol, and A. Srikaew, “Grape
leaf disease detection from color imagery using hybrid intelligent system,” in
2008 5th international conference on electrical engineering/electronics, com-
puter, telecommunications and information technology, IEEE, vol. 1, 2008,
pp. 513-516.

48

[12]

[13]

[14]

[15]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-
forward neural networks,” in Proceedings of the thirteenth international confer-
ence on artificial intelligence and statistics, JMLR Workshop and Conference
Proceedings, 2010, pp. 249-256.

Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks and
applications in vision,” in Proceedings of 2010 IEEE international symposium
on circuits and systems, IEEE, 2010, pp. 253-256.

V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in Ieml, 2010.

X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,”
in Proceedings of the fourteenth international conference on artificial intel-
ligence and statistics, JMLR Workshop and Conference Proceedings, 2011,
pp. 315-323.

G. Hinton, L. Deng, D. Yu, et al., “Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research groups,” IEEE Signal
processing magazine, vol. 29, no. 6, pp. 82-97, 2012.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhut-
dinov, “Improving neural networks by preventing co-adaptation of feature de-
tectors,” arXiv preprint arXiv:1207.0580, 2012.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXww preprint arXiw:1409.1556, 2014.

M. Zakaria, M. A. Aziz, M. 1. Hossain, and N. M. F. Rahman, “Effects of
rainfall and maximum temperature on aman rice production of bangladesh: A

case study for last decade,” International Journal of Scientific € Technology
Research, vol. 3, no. 2, pp. 131-137, 2014.

Y. Fang and R. P. Ramasamy, “Current and prospective methods for plant
disease detection,” Biosensors, vol. 5, no. 3, pp. 537-561, 2015.

K. He and J. Sun, “Convolutional neural networks at constrained time cost,”
in Proceedings of the IEEE conference on computer vision and pattern recog-
nition, 2015, pp. 5353-5360.

D. Hughes, M. Salathé, et al., “An open access repository of images on plant
health to enable the development of mobile disease diagnostics,” arXiv preprint
arXiv:1511.08060, 2015.

S. Toffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in International conference on

machine learning, PMLR, 2015, pp. 448-456.

A. Rastogi, R. Arora, and S. Sharma, “Leaf disease detection and grading
using computer vision technology & fuzzy logic,” in 2015 2nd international
conference on signal processing and integrated networks (SPIN), IEEE, 2015,
pp. 500-505.

R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,” arXiv
preprint arXiv:1505.00387, 2015.

49

2]

[27]

[37]

Y

C. Szegedy, W. Liu, Y. Jia, et al., “Going deeper with convolutions,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1-9.

C. Szegedy, W. Liu, Y. Jia, et al., “Going deeper with convolutions,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1-9.

)

J. G. A. Barbedo, “A review on the main challenges in automatic plant disease
identification based on visible range images,” Biosystems engineering, vol. 144,
pp- 52-60, 2016.

I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

M. Hasan and B. HU, “Profitability of tomato production in three districts
of bangladesh,” International Journal of BioResearch, vol. 21, no. 6, pp. 1-8,
2016.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770-778.

G. Hua and H. Jégou, Computer Vision-ECCV 2016 Workshops: Amster-
dam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II.
Springer, 2016, vol. 9914.

S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for image-
based plant disease detection,” Frontiers in plant science, vol. 7, p. 1419, 2016.

P. B. Padol and A. A. Yadav, “Svm classifier based grape leaf disease detec-
tion,” in 2016 Conference on advances in signal processing (CASP), IEEE,
2016, pp. 175-179.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 2818-2826.

H. A. Bekhet, A. Matar, and T. Yasmin, “Co2 emissions, energy consumption,
economic growth, and financial development in gce countries: Dynamic simul-
taneous equation models,” Renewable and sustainable energy reviews, vol. 70,
pp. 117-132, 2017.

C. G. Dhaware and K. Wanjale, “A modern approach for plant leaf disease
classification which depends on leaf image processing,” in 2017 International
Conference on Computer Communication and Informatics (ICCCI), IEEE,
2017, pp. 1-4.

H. Durmusg, E. O. Giines, and M. Kirci, “Disease detection on the leaves of the
tomato plants by using deep learning,” in 2017 6th International conference
on agro-geoinformatics, IEEE, 2017, pp. 1-5.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Communications of the ACM, vol. 60,
no. 6, pp. 84-90, 2017.

P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,”
arXw preprint arXw:1710.05941, 2017.

20

[44]

[45]

[46]

[50]

[51]

[52]

[53]

[54]

W. Rawat and Z. Wang, “Deep convolutional neural networks for image classi-
fication: A comprehensive review,” Neural computation, vol. 29, no. 9, pp. 2352—
2449, 2017.

S. Vetal and R. Khule, “Tomato plant disease detection using image process-
ing,” International Journal of Advanced Research in Computer and Commu-
nication Engineering, vol. 6, no. 6, pp. 293-297, 2017.

S. Vetal and R. Khule, “Tomato plant disease detection using image process-
ing,” International Journal of Advanced Research in Computer and Commu-
nication Engineering, vol. 6, no. 6, pp. 293-297, 2017.

J. G. A. Barbedo, “Impact of dataset size and variety on the effectiveness of
deep learning and transfer learning for plant disease classification,” Computers
and electronics in agriculture, vol. 153, pp. 46-53, 2018.

K. P. Ferentinos, “Deep learning models for plant disease detection and diag-
nosis,” Computers and electronics in agriculture, vol. 145, pp. 311-318, 2018.

L. D. Nguyen, D. Lin, Z. Lin, and J. Cao, “Deep cnns for microscopic image
classification by exploiting transfer learning and feature concatenation,” in
2018 IEEE international symposium on circuits and systems (ISCAS), IEEE,
2018, pp. 1-5.

M. Sardogan, A. Tuncer, and Y. Ozen, “Plant leaf disease detection and classi-
fication based on cnn with lvq algorithm,” in 2018 3rd international conference
on computer science and engineering (UBMK), IEEE, 2018, pp. 382-385.

M. Sardogan, A. Tuncer, and Y. Ozen, “Plant leaf disease detection and classi-
fication based on cnn with lvq algorithm,” in 2018 3rd international conference
on computer science and engineering (UBMK), IEEE, 2018, pp. 382-385.

P. Tm, A. Pranathi, K. SaiAshritha, N. B. Chittaragi, and S. G. Koolagudi,
“Tomato leaf disease detection using convolutional neural networks,” in 2018
eleventh international conference on contemporary computing (1C3), IEEE,
2018, pp. 1-5.

R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural
networks: An overview and application in radiology,” Insights into imaging,
vol. 9, no. 4, pp. 611-629, 2018.

L. S. P. Annabel, T. Annapoorani, and P. Deepalakshmi, “Machine learning for
plant leaf disease detection and classification—a review,” in 2019 International
Conference on Communication and Signal Processing (ICCSP), IEEE, 2019,
pp- 0538-0542.

T. Binoy and K. Lakshmi, “Comparative analysis of vehicle make and model

recognition using deep learning techniques,” in 2019 2nd International Con-

ference on Intelligent Computing, Instrumentation and Control Technologies
(ICICICT), IEEE, vol. 1, 2019, pp. 1298-1305.

M. H. Kamrul, P. Paul, and M. Rahman, “Machine vision based rice dis-
ease recognition by deep learning,” in 2019 22nd International Conference on
Computer and Information Technology (ICCIT), IEEE, 2019, pp. 1-6.

A. Khan, A. Sohail, U. Zahoora, and A. Qureshi, “A survey of the recent ar-
chitectures of deep convolutional neural networks. arxiv 2019,” arXiv preprint
arXw:1901.06052, 2019.

51

[55]

[56]

[57]

[58]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

A. Kumar and M. Vani, “Image based tomato leaf disease detection,” in 2019
10th International Conference on Computing, Communication and Networking
Technologies (ICCCNT), IEEE, 2019, pp. 1-6.

M. Agarwal, A. Singh, S. Arjaria, A. Sinha, and S. Gupta, “Toled: Tomato
leaf disease detection using convolution neural network,” Procedia Computer
Science, vol. 167, pp. 293-301, 2020.

I. Ahmad, M. Hamid, S. Yousaf, S. T. Shah, and M. O. Ahmad, “Optimizing
pretrained convolutional neural networks for tomato leaf disease detection,”
Complexity, vol. 2020, 2020.

E. I. Atli, H. Gurkan, H. O. Kirkizlar, et al., “Pros and cons for fluorescent
hybridization, karyotyping and next generation sequencing for diagnosis and

follow-up of multiple myeloma,” Balkan Journal of Medical Genetics, vol. 23,
no. 2, pp. 59-64, 2020.

A. Grant, omato temperature tolerance: Best growing temp for tomatoes. gar-
dening know how, 2020.

H. Hong, J. Lin, and F. Huang, “Tomato disease detection and classification
by deep learning,” in 2020 International Conference on Big Data, Artificial In-
telligence and Internet of Things Engineering (ICBAIE), IEEE, 2020, pp. 25—
29.

M.-L. Huang and Y.-H. Chang, “Dataset of tomato leaves,” Mendeley Data,
vol. 1, 2020.

A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent
architectures of deep convolutional neural networks,” Artificial intelligence
review, vol. 53, no. 8, pp. 54555516, 2020.

A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent
architectures of deep convolutional neural networks,” Artificial intelligence
review, vol. 53, no. 8, pp. 5455-5516, 2020.

V. Maeda-Gutiérrez, C. E. Galvan-Tejada, L.. A. Zanella-Calzada, et al., “Com-
parison of convolutional neural network architectures for classification of tomato
plant diseases,” Applied Sciences, vol. 10, no. 4, p. 1245, 2020.

A. Rao and S. Kulkarni, “A hybrid approach for plant leaf disease detection
and classification using digital image processing methods,” The International
Journal of Electrical Engineering & Education, p. 0020 720 920 953 126, 2020.

M. S. Uddin and J. C. Bansal, Proceedings of International Joint Conference
on Computational Intelligence. Springer, 2020.

L. Alzubaidi, J. Zhang, A. J. Humaidi, et al., “Review of deep learning: Con-
cepts, cnn architectures, challenges, applications, future directions,” Journal
of big Data, vol. 8, no. 1, pp. 1-74, 2021.

P. Bansal, R. Kumar, and S. Kumar, “Disease detection in apple leaves using
deep convolutional neural network,” Agriculture, vol. 11, no. 7, p. 617, 2021.

M. E. Chowdhury, T. Rahman, A. Khandakar, et al., “Automatic and reliable
leaf disease detection using deep learning techniques,” AgriEngineering, vol. 3,
no. 2, pp. 294-312, 2021.

52

[70]

[71]

[72]

[73]

M. E. Chowdhury, T. Rahman, A. Khandakar, et al., “Tomato leaf diseases
detection using deep learning technique,” Technology in Agriculture, p. 453,
2021.

R. Sujatha, J. M. Chatterjee, N. Jhanjhi, and S. N. Brohi, “Performance of
deep learning vs machine learning in plant leaf disease detection,” Micropro-
cessors and Microsystems, vol. 80, p. 103615, 2021.

M. J. Alam, L. Hand, and E. Ballard, “Communication disability in bangladesh:
Issues and solutions,” Speech, Language and Hearing, pp. 1-12, 2022.

T. C. Fahim and B. B. Sikder, “Exploring farmers’ perception of climate-
induced events and adaptation practices to protect crop production and live-
stock farming in the haor area of north-eastern bangladesh,” Theoretical and
Applied Climatology, vol. 148, no. 1, pp. 441-454, 2022.

Z. Tao, C. XiaoYu, L. HuiLing, Y. XinYu, L. YunCan, and Z. XiaoMin, “Pool-
ing operations in deep learning: From “invariable” to “variable”,” BioMed
Research International, vol. 2022, 2022.

Z. Tao, C. XiaoYu, L. HuiLing, Y. XinYu, L. YunCan, and Z. XiaoMin, “Pool-
ing operations in deep learning: From “invariable” to “variable”,” BioMed
Research International, vol. 2022, 2022.

23

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivation and goals
	Components of detection
	Scopes and Obstructions in Experiment
	Research Objective
	Problem Statement

	Literature Review
	Datasets
	Description of data
	Data Pre-processing

	Methodology
	Model Description
	Convolutional Neural Network (CNN)
	Inception V3
	RESNET 50

	Implementation
	Designing and Implementation of ResNet-50
	Designing and Implementation of Inception v3
	Designing and Implementation of CNN

	Result and analysis
	Analysis of predicted results
	Performance matrics
	Analysis of predicted results
	Results and Analysis From CNN
	Results and Analysis From Inception V3
	Results and Analysis From ResNet-50

	Final analysis report among the Architectures

	Conclusion and Future Work
	Bibliography

