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Abstract

Erasure coding (EC) is a security measure that allows for data to be reconstructed
from parity pieces, which eliminates the need for complete data replication. EC
offers increased data redundancy, efficiency, lowers storage cost and boosts fault
tolerance, making it preferable to replication in Swift. The basic idea is to encrypt
a certain amount of data in a way that guarantees that all coded pieces are trans-
ferred without any loss. The time efficiency of EC methods becomes increasingly
important in guaranteeing optimal system performance as data volumes continue
to increase rapidly. A number of variables, such as the particular algorithm used,
data size, the number of storage nodes, hardware resources, and network conditions,
can affect how quickly EC works. The primary subject of our analysis was erasure
coding algorithm- Reed-Solomon Codes. The study investigates the encoding speed
of the algorithm, considering factors like data size and the number of parity blocks
generated. In the context of addressing time efficiency and fault tolerance chal-
lenges in cloud-based object storage systems, our paper focuses on evaluating and
improving existing mechanisms. It comprehensively analyzes time efficiency mecha-
nisms, such as data placement policies, and scheduling algorithms, to enhance data
retrieval and storage processes. Exploring the time efficiency of EC is also focused
where it is conducted as an analysis of the time it takes for a cloud storage system
to store data by examining two datasets and determining the duration it takes to
store those same dataset files on the cloud storage system (Swift). It also assesses
fault tolerance mechanisms, including redundancy schemes, error correction codes
and distributed data placement strategies to improve system resilience. The re-
search proposes innovative approaches to minimize access latency, improve overall
time efficiency and ensure data availability even in the presence of failures.

Keywords: Erasure coding; Swift; Reed-Solomon Codes; Cloud Storage System;
Time Efficiency; Fragments
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Chapter 1

Introduction

Cloud computing has undergone a paradigm shift in recent years due to the dif-
ficulty and importance of storing large amounts of data in decentralized storage
networks. OpenStack Swift [11], one of the platforms, is working on such a secu-
rity system by following an algorithm that will aid the user in creating a system
that would adequately protect and provide access to all data. The bulk of data is
growing exponentially as new technologies are introduced, making it more big data.
The execution layer in a typical big-data system is responsible for coordinating the
various stages of job completion.

It controls the runtime environment, the applications that users may use to alter,
analyze data and the distributed storage that stores and provides access to massive
volumes of data. Therefore, the big data systems’ underlying framework is the dis-
tributed storage layer [23]. What we mean by “Big Data” is a massive amount of
data that is continually expanding. As a result of its complexity and size, no existing
specialist data management systems are up to the task of storing or processing this
data. OpenStack Swift is a free and open-source cloud computing platform designed
to handle massive volumes of data. Erasure Coding is the name of the algorithm
used to build the security mechanism.

Erasure coding [3] is used to secure data in distributed storage since it is both trust-
worthy and efficient. Separating data files into data and parity blocks and encrypt-
ing them makes it possible to retrieve the primary data even if part of the encoded
data is lost. Data security in horizontally scalable distributed storage systems is
achieved by the use of erasure coding, which involves storing encoded data across
a large number of disks and nodes. When data corruption or the failure of a node
occurs, the data may be restored from blocks stored on other nodes. Considering
that it erases information across nodes and drives, erasure coding is a considerable
improvement over previous systems when it comes to dealing with the same number
of drive failures. This technique may be implemented in OpenStack Swift to further
optimize the process. Using erasure coding, we can create a more robust security
infrastructure in OpenStack Swift. However, a more secure method of storing such
massive amounts of data may provide its own set of difficulties. A high-security
system requires data with consistent regulations. With Openstack’s Erasure cod-
ing, several object rings must be constructed, which requires restricted degrees of
segmentation of clusters, as mentioned by the storage regulations that are imple-
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mented. In addition, the rings will ultimately decide the most optimal means of
data storage and where that data should be located. Big data of a certain database
type is included in each of the rings. For such files to be safe on OpenStack, fast
has to adhere to the storage rules set out by the cloud provider.

1.1 Motivation

In the modern, data-driven world, it is very necessary to have storage that is reliable
as well as effective in order to be able to access data. Traditional methods have both
a limited capacity and a low fault tolerance, both of which are problems that need
to be solved. Erasure coding, which is more often referred to by its acronym EC,
is a solution that offers time efficiency, user friendliness and fault tolerance. This
makes it a desirable choice to consider. EC’s technique of dispersing the data over
numerous devices and producing redundant parts ensures that the data’s integrity
will be preserved even in the event that one or more of those devices fails. Because
of its capacity for fault tolerance, the possibility of data being lost is reduced. In
addition, EC’s lower storage overhead enhances both the performance of the system
as well as the user experience. This is due to the fact that it offers redundancy
while maintaining a smaller footprint. Since of its transparent data recovery, it is
easy to use since it removes the need for significant system modifications or user
training. This makes it user-friendly. Since this helps companies to make intelli-
gent judgments while also contributing to the development of data storage, it is of
the highest significance to carry out an examination of the performance of erasure
coding schemes. Because of the promise that it would do away with the need for
redundant storage, erasure coding has emerged as an enticing solution for the chal-
lenges of fault tolerance and time efficiency.

1.2 Research Problem

The need for effective and dependable data storage and retrieval procedures grows
as cloud storage systems develop and manage larger amounts of data. A potential
method for fault-tolerant data storage in cloud systems has emerged which is era-
sure coding. It is still difficult to strike a balance between time economy and fault
tolerance, however. This study seeks to thoroughly examine and improve the fault
tolerance and time efficiency properties of erasure coding in the Swift cloud storage
system. This work seeks to give insights and useful suggestions to improve the per-
formance and reliability of erasure coding techniques in cloud storage systems by
comprehending the influence of different elements and investigating novel ways.

Recognizing the Fault Tolerance and Time Efficiency Issues in Erasure
Coding for Swift Cloud Storage Systems:

Erasure coding (EC) is a powerful technique utilized in cloud storage systems to
ensure data stability and fault tolerance. By dispersing data across multiple storage
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nodes and creating redundant pieces, EC can withstand a certain number of node
failures while enabling efficient data recovery [38]. In the vast and error-prone land-
scape of cloud storage, EC plays a critical role in guaranteeing data availability and
longevity. Swift, an open-source object storage system designed for scalable and ac-
cessible cloud storage, relies heavily on erasure coding to ensure fault tolerance and
effective data retrieval. However, the challenge lies in striking a balance between
time efficiency and fault tolerance. The temporal efficiency of erasure coding refers
to the computational cost involved in encoding and decoding processes, impacting
the speed of storage and retrieval. Meanwhile, fault tolerance relates to the system’s
ability to recover data in the face of node failures or data corruption, influenced by
the quantity of redundant pieces, redundancy strategy and recovery effectiveness
[37]. To achieve effective and reliable data storage and retrieval in Swift cloud stor-
age systems, it is crucial to evaluate existing erasure coding methods.

Time efficiency is crucial in erasure coding as it directly affects system performance
and user satisfaction. Whether it’s in cloud storage systems or distributed storage
systems like HDFS and Ceph, erasure coding is used to minimize storage overhead
while safeguarding against data loss. Data is fragmented into smaller pieces, such
as blocks or objects to expedite retrieval and recovery. However, several factors can
impede time efficiency, including the complexity of encoding and decoding, network
and storage latency, hardware limitations, implementation inefficiencies, and sub-
optimal data fragmentation [40]. By addressing these factors and optimizing the
erasure coding process, faster data access and reconstruction can be achieved while
minimizing delays and resource consumption.

This evaluation involves assessing time efficiency and fault tolerance properties of
selected Swift erasure coding algorithms to identify strengths, weaknesses and ar-
eas for improvement. By carefully analyzing these algorithms, valuable insights can
be gained, leading to further research and advancements in this domain. The sub-
sequent sections of this article will cover the selection process for erasure coding
methods, evaluation metrics, methodology, outcomes, discussion of findings and a
comparison with relevant work. Through this comprehensive examination, we aim
to contribute insights and recommendations to enhance the performance and de-
pendability of Swift-based cloud storage systems.

1.3 Research Objectives

The primary focus of this paper is to address the critical challenges of time efficiency
and fault tolerance in cloud-based object storage systems. To achieve this objec-
tive, the research will undertake a comprehensive analysis of existing time efficiency
mechanisms in cloud-based object storage, aiming to identify their limitations and
areas for improvement. By investigating factors such as data access patterns, storage
architectures and network conditions, the research will propose innovative strategies
and optimizations to enhance time efficiency. In addition to time efficiency, the pa-
per will also focus on assessing the fault tolerance mechanisms currently employed
in cloud-based object storage systems. This evaluation aims to determine the effec-
tiveness of these mechanisms in mitigating failures and ensuring data availability.
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The research will explore various fault tolerance techniques, such as data redun-
dancy schemes, error correction codes, and distributed data placement strategies, to
enhance the system’s resilience to failures and improve fault tolerance. To evaluate
and validate the proposed techniques, extensive experimental evaluations will be
conducted. The research will involve comparative analysis with existing approaches
to quantify the improvements achieved in terms of time efficiency and fault toler-
ance. Performance metrics, such as response time, throughput and recovery time
will be measured and analyzed to provide quantitative evidence of the proposed
enhancements.

1.4 Our Contributions

In this section, we discuss the contributions made in our thesis work. Our primary
focus is on investigating the time efficiency of erasure coding in the context of Cloud-
based Storage System Swift. We measure the upload, download and delete times for
three specific erasure coding schemes namely Reed Solomon (5+3), Reed Solomon
(10+4), and Reed Solomon (7+5) [1]. This analysis provides valuable insights into
the time efficiency of different erasure coding schemes, which has not been exten-
sively compared in previous research.

Additionally, we explore the fault tolerance aspect of erasure coding using a sim-
ulator called SimEDC. This simulator allows us to evaluate the fault tolerance of
numerous erasure coding schemes, further enhancing the comprehensiveness of our
study. We compare the fault tolerance results with various EC schemes, providing
valuable findings for improving the reliability and fault tolerance of erasure coding.

Furthermore, our work stands out as we utilize a unique dataset created by us for
the data analysis. The dataset, named MCSD-100 [39], ensures that our analysis
is based on distinct and relevant data. Additionally, we incorporate an existing
benchmark dataset, Coco-17 [4], for further comparisons and validation.

To validate the uniqueness of our work, we compare our results with other relevant
papers in the field. Our comparative analysis concludes that our research is distinct
and offers numerous possibilities for enhancing the time efficiency and fault toler-
ance of erasure coding.

In summary, our contributions include an in-depth analysis of time efficiency for
different erasure coding schemes, exploration of fault tolerance using a simulator,
utilization of a self-created dataset, comparison with other papers and identification
of opportunities for improving erasure coding techniques. These contributions en-
hance the understanding and potential advancements in the field of erasure coding
for Cloud-based Storage Systems.
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1.5 Thesis Organization

Here, this portion provides a comprehensive description of every chapter of our
thesis paper. After completing this chapter’s introduction, problem statement and
contributions section, we now list the other chapter of our thesis paper below:

• Chapter 2 conducts the Literature Review where we list relevant works that
we have gathered from numerous articles that are related to our thesis work, as
well as the Background Study which displays the technologies or architectures
we utilized and read for our research.

• Chapter 3 covers the background of our selected work where we portray the
information of our selected methods & simulator.

• Chapter 4 represents the methodologies of our work.

• Chapter 5 represents the dataset we used in our work.

• Chapter 6 represents the implementation of the methods ,simulator & the
experimental result we analysed in used in our work.

• Chapter 7 concludes our thesis with future plan.
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Chapter 2

Literature Review

In the field of Cloud Computing. It has become a trend and a new challenge in
terms of developing an improved security system in a distributed storage system.
Many challenges with new technologies are overcome one day after another. But
behind all those successes, many researchers have studied and developed different
theories and methodologies. Storing Big Data in OpenStack Swift with the help of
Erasure Coding has also been successful in many occasions. Those achievements
were pursued as previous authors have mentioned and came up with different ideas
and techniques. Such Reviews are given below:

Wang et al. [23] analyzes and compares different Distributed Storage Systems (DSS)
adopted by Amazon, Google and Microsoft Azure to deal with the celestial charge
of data. By examining the shortcomings of replication and other design principles
in the distributed storage system, the author attempts to demonstrate how erasure
coding can be a good substitute for such principles. Examination of distributed stor-
age systems has revealed a number of problems, including security, data placement
and migration costs, and the expense of holding replicated data after implementing
different principles on distributed storage system. Some of these problems can be
overcome through erasure coding.

Emu at al. [20] offers a significant improvement to shared-mode resource allocation
for cloud-based load testing that ensures the cloud’s virtual machine resources may
be used in an economical manner. As their cloud server, OpenStack Swift was first
set up. In order to conduct the testing procedure, they have also created a few test
scenarios. On the basis of metrics like load, protocol, file size, and URL, the test
cases are organized. Then, they conduct the testing for our test cases using Apache
JMeter as our load testing tool. TC2 had the fastest average reaction time of 4.9ms.
The scenario used for the received test was a little file, the same URL, and no load.
This was for TC5, which included a sizable file, a unique URL, and a load. Here,
they have increased the amount of users to determine the servers’ load capacitance
sealing capacity. The major goal of their study is to use the testing tool to examine
how the system would behave under various conditions and then compare the results.

Nandyal et al. [15] focuses on data availability and stability in distributed file sys-
tems, and a variety of strategies have been employed. The author mentions a method
for storing data in a distributed file system based on the replication technique being
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used, but more recently, an erasure-coding (EC) technique has been applied due to
the issue of space efficiency. The space efficiency problem is improved more by the
EC method than by replication. However, the EC approach suffers from a number
of performance degradation issues, including input and output (I/O) deterioration
and encoding and decoding degradation. In order to perform multiple I/O requests
that came in during encoding in an EC-based distributed file system, this study
recommends a buffering and combining method. In order to distribute the disk
input/output loads created during decoding, the report also suggests four recovery
measures: random block layout, multi-thread-based parallel recovery, matrix recycle
approach, and disk input/output load distribution.

Tanwar et al. [22] concentrates on Data partitioning and deployment are necessary
for distributed data management which is performed at the data storage level. The
distributed system’s overhead is closely tied to the data partitioning approach. In
this paper, the author proposes The distributed linear order partition (DLOP) based
on timestamps, along with a widely dispersed storage and processing mechanism to
choose the best data splitting and updating technique for the given application.
Two different partitioning techniques are suggested in this scheme, both of which
are based on the characteristics of an ”equivalent division” of a linear order par-
tition (LOP). One is partitioning based on time interval equilibrium. Another is
partitioning based on query expectation. The author states that an index-based
data query mechanism is consistently constructed at each site in the distributed
system to complete the distributed administration of data. The study employs that,
the relevant experiments confirm the viability and effectiveness of the suggested
storage strategy and demonstrate that the suggested approach is effective for the
data scale self scalability and lowers the cluster hardware configuration requirements.

Opara-Martins et al. [5] they have mentioned huge volumes of data generated by
Social media, also referred to as big data. Big data storage requires a number of
physical resources. To avoid the use of physical resources, cloud resources are being
used. Amazon Web Services, OpenStack, Rackspace, and many other companies
offer cloud resources. Big data that has been stored can be utilized for sentimental
analysis, call center optimization, real-time fraud detection, and traffic management
study. The authors state that there are currently no solutions for cloud-based big
data analysis. To perform analyzing big data, users need to manually gather es-
sential cloud storage resources and install necessary software which is difficult to
perform in complex distributed services. To solve this issue, it is best to think of
the services as a single application made up of virtual machines. Authors have
proposed a solution to overcome this problem by implementing an openstack cloud
system with a multi-node arrangement to offer Hadoop(an open source tool for pro-
cessing and saving huge datasets quickly) as a service to the users. The OpenStack
cloud environment’s Hadoop service is easily accessible by users.

Zhang et al. [14] mainly focuses on Big Data Distributed storage systems that
provide significant fault tolerance while requiring little storage overhead. Erasure-
coded systems save space but require more operational computational complexity
and network bandwidth. In this article, the author presents RAPID, a rapid data
update technique that chooses a group of code blocks for modifications and adjusts
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the subset’s robustness according to the expected number of failures. To guarantee
consistency in data and code block updates, the solution uses a protocol that makes
use of both locking and buffering methods.

Kengond et al. [11] emphasizes the difficulties presented by the massive amount of
data produced by social media, often known as big data. Cloud resources like Ama-
zon Web Services, OpenStack, and Rackspace are often utilized to store and analyze
this data. The current big data analysis on the cloud solutions, however, need man-
ual software installation and setup, which may be difficult and time-consuming. A
multi-node OpenStack cloud system implementation has been created as a solution
to this problem. With the help of this solution, users may simply access and make
use of Hadoop in the OpenStack cloud environment.

Siagian et al. [17] establishes a comprehensive OpenStack cluster with diverse con-
figurations and operational scenarios, accompanied by a thorough examination of its
network capabilities and an elucidation of its underlying processes. It appears that
OpenStack, also known as virtual machine installations utilize an online storage con-
centrate that requires authentication to store data storage files. The methodology
employed explores different scenarios utilizing OpenStack virtual systems and cloud-
based solutions to enhance network performance for a video surveillance database
system architecture. This is achieved by utilizing the Sensor web Enabled structures
and data storage in the cloud. Data can be acquired through various means such as
training devices on camera/edge devices, record and metadata giving, and efficient
cloud-based storage. The objective of this study is to evaluate the performance
load of large-scale video surveillance in comparison to small ones. The aim is to
demonstrate the effectiveness, scalability, and reliability of cloud-based data storage
for smart MCS. One of the key features is that the storage is dynamically adjusted,
which helps to ensure that there are no concerns about insufficient or wasted space.
The paper offers an option for applying web applications for surveillance cameras
video surveillance through an object cloud file storage system that is based on the
widely-used open-source cloud operating system, OpenStack Swift. The system ap-
pears to be functioning well on OpenStack Swift in an Infrastructureas-a-Service
environment. It effectively allocates resources for storing original data captured via
various lens monitoring devices.

Heo et al. [6] covers the necessity for cloud storage systems built on solid-state
drives (SSDs) to manage massive volumes of data coming from internet users and
Internet of Things (IoT) devices. For high-performance and dependable storage,
flash-based redundancy arrays of standalone disks (RAID) topologies are utilized.
However, maintaining parity info with every write operation may cause SSDs to
wear out more quickly. The article suggests a remedy dubbed ”parity database
reduction” for OpenStack cloud-based storage platforms using all-flash arrays to re-
solve this problem. This strategy concentrates primarily on eliminating superfluous
parity data and putting it in the consistency discs of the all-flash array, in contrast
to conventional deduplication techniques that completely eliminate duplicate data.
By using this technique, the quantity of parity data written may be greatly reduced,
reducing the load on SSDs and extending their useful life. Experimental findings
validate the efficacy of the suggested strategy.

9



Lombardo et al. [30] presents a technique to tackle the problem of frequent updates
of parity data in RAID storage based on flash memory, which may have an adverse
effect on the longevity of solid-state drives. The proposed solution is referred to
as ”parity data deduplication.” The paper centers on the utilization of all-flash ar-
rays for OpenStack cloud block storage. The approach aims to selectively address
redundant parity data by storing it in the parity storage devices of the all-flash
array, rather than entirely eliminating duplicate data. The authors have presented
a comprehensive analysis of their suggested approach, which includes experimental
findings and an evaluation of its performance. The conducted experiments indicate
that the proposed technique for parity data deduplication is efficient in reducing
the frequency of parity data write operations when compared to conventional data
deduplication methods. It is imperative to acknowledge that the document in ques-
tion is an arXiv preprint along with could not have undergone a formal peer review
process. Hence, it is recommended to thoroughly assess the content and discoveries
as initial research.

Zhou et al. [24] proposes a methodology involving a data placement scheme utiliz-
ing top-down transmission. This is achieved through the integration of an enhanced
metaheuristic algorithm, which effectively manages the pipelined data transmission
across the network’s tree structure. The proposed scheme has the potential to sig-
nificantly enhance the longevity of the storage network and decrease the duration
required for data insertion.

Chiniah et al. [18] conveys the given introduction that conventional cloud systems
are encountering difficulties in managing the growing volume of data within the
contemporary distributed application landscape. Distributed storage systems, such
as those offered by Microsoft, Google, and Amazon Azure, have gained widespread
adoption as a means of data storage. Replication is commonly employed as a re-
dundancy strategy. The paper proposes that erasure coding may serve as a feasible
substitute. The aim of this paper is to evaluate different distributed storage meth-
ods and analyze the potential integration of erasure coding within them. The article
provides an overview of established distributed storage systems, taking into account
various factors such as availability, consistency, tolerance for parts, principles of
design, model data, failure detection and rehabilitation, consistency, and security.
The implementation of erasure coding at these types of systems is being analyzed,
emphasizing its benefits and identifying unresolved issues. The conclusion highlights
that the paper offers a thorough examination for researchers in the domain, delving
into the ways in which the integration of erasure codes can augment the functional-
ities in distributed storage systems.

Guo et al. [27] presents a deduplication scheme that effectively tackles the diffi-
culties associated with encryption on the client and flexible the title management
in cloud storage. The scheme employs cryptography using elliptic curves (ECC) to
facilitate key sharing among multiple data owners, without the need for intermedi-
aries. The system utilizes broadcast encryption to facilitate ownership management,
enabling the cloud service provider (CSP), to regulate users’ data access by updating
the public key in an efficient manner. The authors have provided a comprehensive
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overview of their proposed scheme, which includes a detailed system model, analysis
of security, and efficiency assessments. One of the key features of the scheme is its
ability to facilitate two-party interactive deduplication. The proposed scheme facil-
itates secure deduplication by enabling direct interaction between the uploader and
the cloud service provider, thereby eliminating the requirement for any third-party
involvement. This approach can enhance the security of the system by making it
more resilient against brute-force dictionary breaches and also helps in minimizing
system overhead. One potential approach to managing ownership is through the use
of broadcast encryption. The scheme utilizes broadcast encryption to handle the ti-
tle of outsourced data. The cloud service provider has a process in place to create
a list of users for each data, and utilizes a broadcast key to re-encrypt a portion of
the ciphertext, thereby ensuring both forward and backward security of the data.
This approach offers unique advantages compared to other ownership management
methods such as key-encrypting key (KEK) trees while ciphertext-policy attribute-
driven encryption (CP-ABE).

Feng et al. [36] discusses the difficulty of costly update overhead in erasure codes in
this research study, which focuses on multi-block updates in heterogeneous clusters.
In order to efficiently prevent congested connection bottlenecks, the authors suggest
a unique approach called Multi-block Double Tree Update (MDTUpdate), which
builds a double tree structure for updated data blocks and parity blocks. They
use a hybrid update strategy that combines data-delta and parity-delta approaches
inside the double tree structure to reduce update costs. To expedite tree formation
and improve transmission pathways, a time-efficient greedy method is used. Accord-
ing to experimental findings, Multi-block Double Tree Update greatly outperforms
previous approaches in terms of update speed, increasing it by up to 83.23% while
keeping a little operating cost.

Levitin et al. [29] presents a unique method for assessing a production-dual storage
system’s mission success probability (MSP). In order to increase the MSP, it em-
phasizes speeding up storage unit uploads and downloads. The system demand, the
duration of the mission, and the likelihoods that the production unit and storage
units would fail are all taken into account by the suggested probabilistic model. In
order to demonstrate the model and examine the impacts of different system fac-
tors, two case studies of water delivery systems are done. By including component
loading effects, the report closes a gap in earlier studies and offers suggestions for
improving the efficiency of production-storage systems.

Shin et al. [33] improves the performance of distributed file systems that store huge
data by the cache-based matrix approach presented in this study. The method de-
creases needless cost and boosts performance by using cache memory to store and
reuse matrices created during encoding and decoding operations. As a consequence
of the design’s use of the Weighting Size and Cost Replacement Policy (WSCRP)
algorithm, write, read, and recovery times are decreased. The usefulness of the
approach is shown by experimental findings utilizing the Hadoop Distributed File
System (HDFS) [19] with Reed-Solomon coding, which show shorter recovery times
in cases of node failures than conventional HDFS systems.
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Chouhan et al. [13] investigates the application of erasure encoding techniques in
storage systems, concentrating on the best encoding settings to balance reliability
and storage cost while taking user preferences into account. In terms of storage over-
head, data accessibility, retrievability, and storage effectiveness, the authors examine
the Reed-Solomon coding scheme. They do tests to figure out the best encoding pa-
rameter values, then they analyze the results and emphasize how crucial it is to
choose the right settings for more dependability and less expensive storage.

Abebe et al. [8] investigates the application of erasure encoding techniques in stor-
age systems, concentrating on the best encoding settings to balance reliability and
storage cost while taking user preferences into account. In terms of storage overhead,
data accessibility, retrievability, and storage effectiveness, the authors examine the
Reed-Solomon coding scheme. They do tests to figure out the best encoding param-
eter values, then they analyze the results and emphasize how crucial it is to choose
the right settings for more dependability and less expensive storage.

Cheng et al. [38] designs a stream machine learning system called StreamLEC
which addresses the requirement for fault tolerance in massively dispersed deploy-
ments. Erasure coding allows StreamLEC to provide low-redundancy proactive fault
tolerance, allowing quick failure recovery while minimizing recovery overhead and
preserving low latency. Evaluations on a local cluster and Amazon EC2 show that it
supports a variety of stream machine learning applications and outperforms proac-
tive fault tolerance and reactive fault tolerance in terms of performance. Overall,
StreamLEC offers a practical approach to stream machine learning fault tolerance,
enhancing performance and guaranteeing quick recovery.

Kulkarni et al. [7] highlights the object storage capabilities of OpenStack Swift as
they address the difficulties of rising data storage needs in cloud storage systems.
Erasure coding is suggested as a dynamic strategy to boost storage effectiveness
while preserving dependability, availability, and fault tolerance. Erasure coding dis-
perses data over several places, as opposed to conventional replication techniques,
which lowers storage overhead. The article explains the OpenStack Swift erasure
coding policy and underlines the significance of modifying storage methods to satisfy
the expanding data storage needs in cloud settings.

In comparison to conventional replication techniques, Nachiappan et al. [40] address
the use of erasure coding in data centers in clouds for high dependability with little
overhead. They do, however, draw attention to the fact that information recovery
in erasure codes might use up a lot of network resources. In order to solve this prob-
lem, proactive recovery algorithms that choose data blocks for replicating based on
failure predictions have been developed. These algorithms often fall short of opti-
mizing the selection process, however. The authors provide a recovery strategy to
address this issue that reduces the amount of data blocks chosen for proactive repli-
cation. They do this by taking into account acceptable and essential limits created
utilizing the system’s existing network activity and data duplication information.
The trade-off involving energy use and bandwidth reduction during proactive re-
covery is also highlighted by the authors, since extra temporary storage cost may
offset the energy benefit from reduced bandwidth utilization. The authors calcu-
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late the energy use of battery packs in order to examine energy usage. Through
extensive simulations, they assess the suggested algorithm and contrast it with a
heuristic proactively recovery strategy. According to the experimental findings, the
suggested recovery method decreases storage cost by 46% and network usage by
60% when compared to the suggested heuristic technique. In addition, compared to
replication, the suggested proactive recovery approaches may save up to 52% of the
energy used by storage systems.

Facenda et al. [26] researches on the implementation of adaptive streaming codes
within a network scenario involving three nodes. The network consists of a source
node, or no an intermediary, and an end node. The relay facilitates the transmis-
sion of a sequence of packets containing messages from the source to the destination.
The source-to-relay along with relay-to-destination links may experience occasional
packet erasures, with a maximum limit of N1 and N2, respectively. The main goal
is to guarantee that the destination receives every message packet within a specific
time frame T. The author presents a novel approach to streaming codes which are
customized to different parameters, including N1, N2, and T. This adaptation is
based on the erasure patterns discovered from the original data set to the relay.
This can be accomplished by utilizing symbol estimates, which enable the relay
to transmit information regarding symbols prior to their decoding. Furthermore,
variable-rate encoding is utilized, which decreases the rate of packet encoding as it
encounters more erasures.

Qin et al. [16] makes a suggestion on how to enhance reading and writing efficiency
in the erasure coding mode of the Ceph system by selecting storage nodes that take
resource load status and node heterogeneity into account. The authors recommend
using Ceph erasure coding in a heterogeneous combination storage method. To
thoroughly assess storage node activities, they take into account a variety of per-
formance indicators, such as CPU consumption and storage space use. The storage
node with the greatest performance is identified using the TOPSIS approach, and is
then given Ceph erasure coding workloads. Using node diversity and resource load
status to optimize task allocation and overall efficiency, experimental findings show
that this strategy improves read/write performance for big items in Ceph’s erasure
coding mode.

Iliadis et al. [28] researches on erasure-coding redundancy techniques in large-scale
storage systems to guard against device failures which is covered in this overview.
With the use of closed-form formulas for the metrics Mean Time to Data Loss
(MTTDL) and Expected Annual Fraction of Data Loss (EAFDL), a theoretical
model is created to examine the effects of hidden sector defects. The research in-
cludes distributions for bit error rates, data insertion patterns, and device breakdown
and rebuild times. The results demonstrate that although EAFDL is mostly unaf-
fected for modest erasure codes, MTTDL suffers with actual sector error rates, but
it may also deteriorate for strong codes. Superior dependability is provided by the
declustered data placement strategy. In conclusion, this study offers perceptions
into the dependability of erasure-coded storage systems, highlighting the need of
resolving hidden faults and taking into account the best data placement techniques.
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Arslan et al. [25] provides an introduction to reliability theory and concentrates
on the prediction of availability and durability of erasure-coded storage systems in
warm/cold storage settings. It discusses basic ideas, enhanced stochastic models,
and the author’s innovations, which include the invention of a broad kind of Markov
model for calculating mean time to failure. Comparing storage setups, exploring
multi-dimensional Markov models for detachable drive-medium combinations, and
making the case for their applicability to upcoming DNA storage libraries are all
covered in this article. As a means of overcoming the drawbacks of both simple and
complicated Markov models, simulation modeling is also covered. It accepts that
debates are still pertinent for systems repaired one device at a time even if the focus
is on simultaneously maintained systems.

The use of erasure coding to increase dependability while lowering overhead in cloud
data centers is covered in the article. When compared to replication, erasure cod-
ing data recovery uses a lot of network bandwidth. Calheiros et al. [40] provides
a recovery technique that optimizes data block selection for proactive replication
by taking into account limitations based on the system’s network traffic and data
duplication information. In comparison to a heuristic proactive recovery strategy,
the suggested algorithm decreases storage overhead by 46% and network traffic by
60% via extensive simulations. Furthermore, compared to replication, proactive re-
covery techniques may save the storage system up to 52% of its energy. The paper
offers an effective method that, via proactive replication that is tuned, increases de-
pendability while minimizing network bandwidth use, storage overhead, and energy
consumption in cloud data centers.

Song et al. [34] approaches an adaptive hybrid storage which dubbed FACHS (File
Access Characteristics-based Hybrid Storage) is suggested to deal with these prob-
lems. Concerns around storage redundancy, data availability, and durability have
surfaced with the growth of distributed systems and big data technologies. Tra-
ditional multi-copy storage techniques provide an excessive amount of storage re-
dundancy, and current erasure coding techniques ignore file access characteristics,
leading to subpar parallel read/write performance and squandered storage capacity.
Low computational and storage costs are ensured by FACHS’ use of RS Code for
cold files with infrequent use. Multi-copy and LRC codes, which improve efficiency
and parallel read/write capabilities while lowering recovery costs, are used for small
and big hot files, respectively. According to the findings of the experiments, FACHS
increases hot file recovery efficiency by 29%, read/write speed by 8%, and cold file
storage space occupancy by 12%. FACHS maximizes performance and storage ef-
fectiveness by taking file access factors into account.

Rivera et al.[32] discusses the necessity for dependable multicast services in hetero-
geneous networks with emphasis on Network Coding (NC) across data networks.
The need for non-feedback multicast techniques and the dearth of dynamic coding
control in present communication systems are brought to light. The study suggests
the Fulcrum coding transmission technique as a solution to these problems. To in-
crease data transmission reliability and flexibility, this approach combines random
linear network coding (RLNC) with systematic coding. The suggested solution seeks
to improve network performance, decrease transmission times per packet, and boost
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decoding probability by adopting efficient Forward Error Correction (FEC).

Pu et al. [31] discusses how Ultra-High-Definition (UHD) videos are becoming more
and more popular and how difficult it is to broadcast them owing to their high
bandwidth needs. By using in-network video streaming, UHD video quality may be
improved with the introduction of 5G networks that are cloud native. On in-network
servers, a bottleneck may be caused by a lack of storage or bandwidth. The authors
suggest a brand-new UHD video streaming system called EMS that combines multi-
source streaming with erasure-coded storage. In addition to proposing a federated
learning strategy for adaptive service quality upgrades, they propose measures to
gauge the effectiveness of video servers. Additionally, they tackle the issue of user
local training while preserving streaming Quality-of-Experience (QoE) by redefining
it as a Multi-Armed Bandit (MAB) problem. They construct a prototype of EMS
and create Upper Confidence Bound (UCB)-based algorithms with theoretical guar-
antees, proving the efficacy of the latter via thorough testing.

After going through all these studies, we can say that various storage systems were
used to implement data using various EC policies and EC schemes; however, we
were unable to find any papers that were linked to analyse time efficiency using
benchmark data that we have performed.Here, it shows a comparison between all
our remarkable findings and our own work -

Reference
Purpose

of the Study
Technology

used
Brief of Findings

Wang
et al. [22]

Compare
DSS

Erasure
coding

DLOP-partitioning-
based storage scheme

Tanwar
et al. [21]

Data partitioning
and deployment

Distributed Linear
Order Partition (DLOP)

DLOP and partitioning-
based storage strategy

Lombardo
et al. [29]

RAID storage
frequent parity data updates

All-flash arrays,
redundant parity data

Reducing parity data
write operations compared to
standard data deduplication

Guo
et al. [26]

Cloud encryption
and title management

Elliptic curve
cryptography (ECC)

Direct uploader-cloud
service provider deduplication
improves system security and

eliminates third-party intervention

Arslan
et al. [24]

Erasure-coded warm/cold
storage systems’

availability and endurance

Stochastic models,
Markov models

detachable drive-
medium Markov models

Levitin
et al. [28]

Assessing production-
dual storage

system mission
success probability (MSP)

Probabilistic
model for MSP

Optimizing production-
storage systems

Nandyal
et al. [15]

DFS data availability
and stability

Replication and
erasure coding

EC saving space
over replication

Siagian
et al. [17]

Video surveillance
database system

architecture network
performance improvement

OpenStack Openstack in IaaS

Our Work
Time efficiency

and Fault Tolerance
measurement

Reed Solomon,
Openstack Swift,
Erasure Coding

Less time efficient,
More fault tolerant
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Chapter 3

Background

3.1 Overview of Openstack and Erasure Coding

The OpenStack component is responsible for provisioning object storage services.
Swift technology has been developed to offer a robust and flexible solution for the
storage of vast quantities of unstructured data, with a focus on scalability and dura-
bility. The data is stored within designated “containers”, which can be structured
hierarchically and retrieved through an API. Swift facilitates the storage of vast
amounts of data and employs a ring-based framework that facilitates data distri-
bution across numerous servers in a manner that is efficient and resilient to faults.
Swift offers data durability, ensuring data protection against hardware failures, net-
work failures, and other forms of data loss. The use of replication and erasure coding
accomplishes this by ensuring multiple copies of the data are stored securely on sep-
arate servers. In general, the utilisation of distributed and fault-tolerant systems is
prevalent in various industries, including media and entertainment, healthcare, and
scientific research. These systems are particularly useful for managing substantial
volumes of data in a distributed manner.

Swift and other distributed storage systems use Erasure Coding (EC) as a tech-
nique of data security to prevent data loss due to hardware malfunctions or other
sorts of loss. EC involves breaking down data into smaller fragments and including
additional parity fragments to enhance data redundancy [35]. The fragments are
distributed among various storage nodes within an atomic system for storage. In
the event of a node failure in the storage system, the system has the capacity to
utilise the number of parity pieces to restore the original data. EC offers signifi-
cant benefit in terms of data protection by utilising less redundancy compared to
conventional methods such as RAID [1]. Erasure coding offers scalability , fault
tolerance and defence from double failures, whereas standard RAID methods are
designed to protect against one disk failure. Erasure coding has gained significant
popularity in distributed storage technologies such as Swift, as it plays a crucial role
in safeguarding data against failures in the hardware and other forms of data loss
in extensive storage environments. The use of EC can provide significant benefits
in terms of both data protection and efficiency.

In a commonly used erasure coding technique known as Reed-Solomon coding, the
data is partitioned into blocks, and supplementary parity blocks are created based
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on the initial data blocks. The quantity of parity blocks produced is determined by
the desired level of protection.
After generating the data and parity fragments, they are strategically distributed
across several storage nodes to optimise both efficiency and fault tolerance. The
storage system utilises a fragmentation process to distribute data across multiple
storage nodes. In the event of a failure, the system has the capability to utilise the
remaining fragments in order to reconstruct the initial data. This process appears
to be quite efficient and has a higher tolerance for errors compared to traditional
data protection methods.

In erasure coding, for constructing parity pieces firstly, data is split up into blocks.
The first thing that has to be done in order to begin the process of erasure coding
is to split up information into blocks that are all the same size. It’s possible that
the data will be segmented into chunks that are each 1 megabyte in size.
Once the information has been segmented into blocks,the required degree of data
security determines the maximum number of parity pieces that may be created.
Calculating the parity fragments requires utilising a mathematical function that
takes as input the informational blocks that go into making up the stripe. The
erasure coding method plays a role in determining the particular function that is
applied. In the case of Reed-Solomon Coding algorithm is what determines how the
process of constructing parity pieces in erasure coding is carried out. Whenever the
parity pieces have been formed, they are spread among numerous storage nodes in
a manner that optimises both fault tolerance and efficiency.

Figure 3.1: Parity Fragments in Erasure Coding.
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Example blocks contain three parity pieces. Security and erasure coding determine
parity pieces. Fault tolerance demands more parity. Each block needs two parity
pieces to recover from two offline storage nodes. Parity fragments demand more
storage. Distributed storage systems use erasure coding to recover lost data. The
procedure involves data separation and parity creation. Data and parity are dis-
persed between storage nodes. The system can recreate the original data if node
failures or other difficulties destroy pieces. Data integrity requires parity. Parity
fragments allow cloud computing data recovery.

Erasure coding protects OpenStack Swift data. Swift object storage leverages data
fragment parity. Data and parity segments separate the cluster’s storage nodes.
When accessing or retrieving the item, the system may reassemble data and parity
pieces. Erasure coding redundancy safeguards Swift data against intentional loss
or alteration. Swift restricts access and encrypts data. Erasure coding and other
OpenStack Swift security measures safeguard sensitive data.

3.2 Erasure Coding Techniques

a) Reed-Solomon codes : The widespread use of Reed-Solomon codes in cloud stor-
age systems is a result of their potent error-correcting abilities. They are widely
utilized in Swift installations and provide a good balance between encoding and
decoding effectiveness.

b) Locally Repairable Codes (LRC): LRCs are a subset of erasure codes that are
designed to cut down on the amount of repair bandwidth required during data re-
covery operations. By limiting the quantity of data sent over the network, LRC
offers fault tolerance while streamlining the repair procedure.

c) Fountain codes: To provide effective data encoding and decoding, fountain codes
combine random linear data chunks. They have a reputation for being resilient to
packet loss and provide benefits in terms of encoding speed and adaptability when
managing various storage capacities.

d) Piggybacking codes: These codes use the redundant information created by era-
sure coding to provide extra data or metadata along with the encoded data. With
less distinct information communication overhead, this method intends to improve
fault tolerance.

e) Turbo codes: Turbo codes are iterative error correcting codes that use iterative
decoding methods to provide great dependability. These codes have shown potential
for enhancing the efficiency and overall effectiveness of erasure coding methods.

These erasure coding methods were chosen to showcase a variety of coding schemes,
error-correcting capabilities, and optimization methodologies. We can learn more
about these methods’ advantages, disadvantages, and applicability to the Swift cloud
storage system by analyzing them.
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3.3 Reed-Solomon (RS) for Swift

Reed-Solomon (RS) codes have been widely used in cloud storage systems, including
the Swift object storage system. Reed-Solomon codes offer a robust and efficient
approach to achieving fault tolerance and data integrity in distributed storage en-
vironments. This brief section provides an overview of how Reed-Solomon codes
are employed in the Swift system. In the Swift cloud storage system, Reed-Solomon
codes are utilized for data protection and recovery purposes. When a file is uploaded
to Swift, it is divided into data chunks, and additional parity chunks are computed
using the Reed-Solomon coding technique. The number of data and parity chunks is
determined based on the configured coding parameters. The Reed-Solomon coding
scheme used in Swift allows for the reconstruction of the original file even if a cer-
tain number of chunks are lost or become unavailable. This fault tolerance property
makes Reed-Solomon codes particularly suitable for cloud storage systems where
data durability and reliability are crucial. During file retrieval, Swift retrieves the
necessary data and parity chunks from the underlying storage nodes and employs
the Reed-Solomon decoding algorithm to reconstruct the original file. The decod-
ing process involves performing mathematical operations on the available chunks to
recover any missing or corrupted data. One advantage of Reed-Solomon codes in
Swift is their efficiency in terms of storage space utilization. By employing Reed-
Solomon codes, Swift can minimize the overhead associated with data redundancy
while providing the desired level of fault tolerance. This efficiency is achieved by
carefully selecting the number of data and parity chunks based on the desired fault
tolerance requirements.

3.4 Impact of the Data Deduplication and Era-

sure Coding in OpenStack Swift’s performance

It is possible to consider utilizing data deduplication in conjunction with erasure
coding to potentially improve performance within OpenStack. Data deduplication
is a useful technique that can help to minimize storage costs and enhance perfor-
mance by storing only unique data and eliminating any duplicates.

When data deduplication is combined with erasure coding, it can effectively min-
imize the volume of data that requires encoding and storage as parity fragments.
This approach has the potential to enhance the speed of encoding and decoding
processes, while also minimizing the network bandwidth needed for data transfer.

It is worth considering that the implementation of data deduplication may result
in some increase in processing power and memory usage. Hence, it is crucial to
thoroughly assess the advantages and disadvantages of utilizing data deduplication
alongside erasure coding in a particular OpenStack implementation.
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3.5 Simulators for Erasure Coding

To emulate erasure coding in OpenStack, a variety of simulators are available. A
few of the well-liked simulators are:

1. COSbench is an open-source cloud storage storage performance benchmarking
tool. It might be used to mimic the OpenStack erasure coding process.

2. Cloudsim is a popular cloud computing simulation program. It can be used to
mimic how erasure coding works in OpenStack [2].

3. Mininet: This free, open-source network emulator can be used to mimic how
OpenStack’s erasure coding functions in practice [9].

4. OpenStack simulator: The OpenStack software itself comes with a simulator that
can be used to test how well erasure coding works in OpenStack.

By adjusting the settings, such as the quantity of data and parity pieces, block size,
data redundancy, etc. These simulators can be used to mimic various erasure coding
scenarios.

3.6 SimEDC: A Simulator for Evaluating Erasure

Coding in Cloud Storage Systems

SimEDC [12] is a Python-based simulator for assessing the performance of dis-
tributed storage systems that use erasure coding. Users can customize different
erasure coding schemes and system settings.

To assess system performance in various settings, it generates synthetic workload
and takes into account many characteristics. Because of the simulator’s flexibility
and extensibility, it is simple to add new erasure coding schemes and alter existing
ones.

In order to effectively utilize simEDC, it is necessary to configure the simulation
tool with a range of parameters and inputs that accurately reflect the unique char-
acteristics of the data center becoming simulated. The parameters that need to
be considered include the topology of the data center, erasure codes, placement of
redundancy, and breakdown patterns of various subsystems.

It is provided with specific details for the simulation, including the overall number
of iterations, the total number of processes to be utilized, and the designated mis-
sion time (in hours) for the simulation to run. Additionally, we can consider setting
various parameters that are pertinent to the situation, such as the number of stands,
nodes per rack, disks per node, capability per disk, chunk size, number of horizontal
stripes, and the entire capacity. Furthermore, we carefully selected the code type,
such as Reed-Solomon, and determined what was needed for n (number of chunks)
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along with k (number of parity chunks). The installation type for the redundant was
determined to be ”FLAT”, which means that it is distributed equally across the data
center. The user provided specific details regarding the system’s network locations
failure designs, and simulation type. The authors employed the simulation type of
uniformization balanced failure biasing and thoughtfully included the probabilities
and beta values for value sampling.

After ensuring that all parameters have been properly configured, it is necessary
to initiate the simulation employing SIMEDC. The simulator proceeded to run the
simulation using the designated inputs and produced the corresponding outcomes.
The simulation’s output comprised of several reliability metrics, including the Prob-
ability of Data Loss (PDL), Repair Efficiency (RE), Number of Megabytes of Data
Loss (NOMDL), Bandwidth Reduction (BR), and Single-chunk repair ratio.

Through the implementation of multiple simulation runs with diverse configurations,
the authors conducted an analysis and evaluation of the dependability of erasure-
coded network preservation across a range of scenarios and conditions.
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3.7 Data processing in Openstack with Hardware

acceleration

Figure 3.2: Accelerating Data Processing in OpenStack.

In this diagram, the hardware acceleration is represented by a distinct hardware
component that is mounted on the compute nodes, such as an FPGA. For some op-
erations, such matrix multiplication, the erasure coding library is changed to make
use of the hardware acceleration device, which can considerably quicken the pro-
cessing of multiplication. The compute nodes can outsource some processing duties
to the hardware device by using hardware acceleration, which can lead to faster era-
sure coding operations and less overhead in terms of processing power and memory
utilization.

There are numerous phases involved in data deduplication in OpenStack Swift uti-
lizing erasure coding:

1. Data is initially split into fixed-size units known as data fragments.

2. Next, erasure coding is used to divide each data fragment into a number of parity
fragments.

3. The parity and data fragments that are produced are kept in the storage cluster.

4. The system determines whether each data fragment already exists in the storage
cluster before saving it.
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5. If the data fragment is already there, the system makes a pointer to the current
copy rather than saving it again.

6. This pointer is kept in a different mapping or index database.

7. The system looks for the location of the data in the index or mapping database
when a client requests a data fragment.

8. The system retrieves the data and gives it to the client if it is already existent in
the storage cluster.

9. If the data is missing, the system gets the required data and parity fragments,
decodes them, and then sends the client the original data.

Original Data

Data Fragment
(Fragment 1)

Data Fragment
(Fragment 2)

Data Fragment
(Fragment 3)

Parity Fragment
(1 + 2)

Parity Fragment
(1 + 3)

Parity Fragment
(2 + 3)

Original Data

Data Fragment
(Fragment 3)

Data Fragment
(Fragment 2)

Original DataOriginal Data

Data Fragment
(Fragment 1)

Data Fragment
(Fragment 3)

Data Fragment
(Fragment 2)

Duplicated Data

Figure 3.3: Parity Fragments in Erasure Coding
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In this illustration, the original data is divided into three fragments (Fragment 1,
Fragment 2, and Fragment 3), and three parity fragments are produced using era-
sure coding. In the event of failures, the parity pieces are then used to retrieve any
lost data.

The data fragments are then subjected to data deduplication before being stored in
OpenStack. Data deduplication finds redundant data and removes it, keeping only
one copy of each distinct data fragment. This lowers the amount of data storage
space required, which lowers storage expenses.

One copy of each unique data fragment is stored in the deduplicated data, which sig-
nificantly reduces the amount of storage space needed. For this deduplicated data,
parity fragments can be created using the same erasure coding process, guaranteeing
data availability and integrity.
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Chapter 4

Methodology

4.1 Research Work-plan

In our work, we want to experiment on different dataset for benchmarking EC
schemes. In order to do so firstly, we plan to select a Suitable EC Technique for our
later experiments. Secondly, we create an Experimental Test bed for benchmarking
EC Schemas. Then we select Datasets which is followed by creating our Own dataset
and using an existing one. Thirdly, our method follows different implementations
for our desired results ie. analyzing data.

Stage 1 Stage 3

Stage 2 Stage 4Selection of EC
Technique

Setup Test-bed for
Benchmark EC

Schemes

Creation and
Selection of

Dataset

Data Analysis

Figure 4.1: Workflow.

4.1.1 Selection from Existing Erasure Coding Techniques

In our work, we prioritize the selection of suitable erasure coding techniques for as-
sessing time efficiency and fault tolerance properties in Swift cloud storage systems.
To ensure a fair and comprehensive evaluation, we follow a specific methodology
and criteria for choosing erasure coding schemes. These criteria include considering
the popularity and extensive use of approaches within the cloud storage domain, es-
pecially in the context of Swift, to ensure proven effectiveness. Compatibility with
Swift infrastructure is also crucial, favoring methods explicitly designed or modified
for seamless integration. We prioritize newly developed or significantly improved
techniques to incorporate the latest advancements in erasure coding research. Ad-
ditionally, we select a diverse range of coding schemes, such as Reed-Solomon codes
and Luby Transform codes, to provide a thorough examination of Swift’s erasure
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coding capabilities. By adhering to these selection criteria, we aim to ensure a rel-
evant and reliable assessment of erasure coding algorithms in the context of Swift
cloud storage systems.

However, we selected Reed Solomon code as our EC technique . Reed-Solomon
codes play a vital role in the Swift cloud storage system, providing fault tolerance
and data integrity. By leveraging Reed-Solomon codes, Swift ensures that data re-
mains recoverable even in the face of node failures or data corruption. The use of
Reed-Solomon codes in Swift demonstrates the system’s commitment to maintain-
ing high availability, durability, and reliability for cloud-based object storage.

4.1.2 Methods for setup the testbed Environment

For setting up a test bed environment we set up both Remote and Local test bed
environments. For both test beds after the swift installation process in local and
remote Virtual Machines (VM), we configure the Erasure Coding (EC) Schemes .
We work on three EC schemes for our work which are RS (5+3) , RS (7+5) and RS
(10+4). RS stands for Reed Solomon code which has been used as EC technique for
our Cloud Storage System Swift.

Methods of EC-Setup for Local Testbed

In this subsubsection, we describe the methodology employed for the EC (Era-
sure Coding) setup within the local VMs running OpenStack Swift. The process
involves connecting to the Swift server, authenticating as an admin, configuring
storage policies, building Swift rings, and creating EC containers for storing data.
After establishing a connection to the Swift server and authenticating as an admin,
the EC setup process was initiated within the local VM. This ensure administrative
access and the ability to perform the necessary configuration tasks. To begin the EC
setup, the first major task was to define the storage policy. This involved specifying
the desired parameters and settings to establish the appropriate EC policy for data
storage. Different EC policies were required for each schema being evaluated in the
thesis project. It is worth noting that it is possible to establish different storage
policies within a single VM, allowing for the execution of multiple schemas simulta-
neously. This aspect will be discussed further in a later part of this thesis.

Subsequently, Swift rings were built for each storage policy. These rings determined
the distribution and placement of data across the available storage partitions. Each
schema was associated with a unique storage policy and corresponding Swift ring.
Throughout the EC setup process, three different local VMs were utilized. Swift was
installed on each VM, followed by the configuration of the storage policy specific
to the corresponding EC schema. As a result, each VM represented a distinct EC
schema, with its own Swift setup and associated storage policy. Data upload and
evaluation were conducted on the different EC schemas to assess the performance of
storing data under varying EC policies. This allowed for a comparative analysis of
the efficiency and effectiveness of different EC setups in terms of data storage and
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retrieval.

Methods of EC-Setup for Remote Testbed

In this subsubsection, we detail the methodology employed for accessing and config-
uring a remote Virtual Machine (VM) to expand the evaluation of the cloud storage
system. After configuring the local VM and working with datasets to analyze the
performance, the need arose to explore the behavior of the system in a remote VM
environment. To accomplish this, a remote VM was procured from a cloud company
specializing in private cloud solutions. Upon connecting to the remote VM, the Swift
installation process was replicated, mirroring the steps followed for the SAIO VM
(local VM) configuration. By installing Swift on the remote VM, it was ensured that
the same cloud storage system was available for evaluation. As the thesis project in-
volved multiple schemas of erasure coding, a challenge arose due to having only one
remote VM available. To overcome this limitation, multiple storage policies were
configured within a single remote VM. This allowed for the exploration of differ-
ent erasure coding schemas within a unified remote VM environment. Configuring
multiple storage policies within the remote VM involved defining the necessary pa-
rameters and settings for each policy. This enabled the project to work with multiple
erasure coding schemes within a single remote VM, facilitating comparative analysis
and evaluation. To accommodate the diverse storage policies, different Swift rings
and erasure coding containers were created. Each storage policy required its own set
of Swift rings to determine data distribution and placement. Additionally, separate
erasure coding containers were established for each policy to store and manage data.

Once the creation of containers under multiple erasure coding policies was success-
fully completed, the project proceeded with the implementation of the dataset on
these schemes. This allowed for an assessment of the performance and behavior of
the cloud storage system when operating on different erasure coding Schemes within
the remote VM environment.

Simulator for Testbed:

For benchmark Erasure Coding (EC) Schemes we are measuring results based on
time efficiency and fault tolerance of Erasure Coding. For our testbed we are also
adding a simulator (SimEDC) in our testbed to figure out the fault tolerance of
EC. To assess system performance in various settings, SimEDC generates synthetic
workload and takes into account many characteristics. Because of the simulator’s
flexibility and extensibility. Additionally, it is simple to add new erasure coding
schemes and alter existing ones. The simulation’s output comprised of several re-
liability metrics, including the Probability of Data Loss (PDL), Repair Efficiency
(RE), Number of Megabytes of Data Loss (NOMDL), Bandwidth Reduction (BR),
and Single-chunk repair ratio.
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4.1.3 Datasets for Testbed

As our analysis demands to work with not only with different sizes of data but also a
large number of files in order to benchmark the Erasure Coding Schemes thoroughly.
For making our needs mitigated we have created our own dataset to perform data
analysis. The dataset we created MCSD-100 (details at 5.1.1) not only has a range
of files we need for data analysis, it also consists of 4 different types of files which
includes text, image , video and audio files. Secondly, for mitigate the need of using
vast number of files , we are using a benchmark dataset name COCO-17 (details at
5.1.2) .

4.1.4 Approaches for Data Analysis

For our desired result we analyse dataset with different approach. For instance, in
order to check time efficiency of erasure coding we try to do upload data on cloud
based storage system Swift. We then download and delete files from swift. For
each functions we measure time to upload, download and delete time. We repeat
this method for three EC Schemes which are based on Reed Solomon (5+3), (7+5),
(10+4). We try this functionalities both for both Remote and Local Testbed. The
testbed also includes simulator SimEDC which gives us the result for fault tolerance
of EC coding for various EC Schemes.
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Chapter 5

Datasets

5.1 Datasets

In our work, we are utilizing two distinct datasets, namely the MCSD (Multitype
Cloud Storage Dataset) [39] and Coco-17 [4] (Common Objects in Context-17). The
MCSD is a self-created dataset specifically designed to evaluate the performance of
the Swift cloud storage system with various file types and sizes. On the other
hand, Coco-17 serves as a widely recognized benchmark dataset widely used for
object detection and image understanding tasks. By employing these datasets, we
aim to explore and analyze the behavior and capabilities of cloud storage systems
in handling diverse data types and compare their performance against established
standards. On our local and remote servers, we utilized both of these datasets.

5.1.1 Creating a Benchmark Testing Dataset for Object Stor-
age (MCSD-100)

Our work presents a self-created dataset aimed at evaluating the performance of the
Swift cloud storage system. Our objective is to assess how Swift handles data stor-
age, retrieval, and maintenance, particularly in relation to its EC (Erasure Coding)
policy and fragmentation capabilities. However, finding an existing dataset that
met our specific criteria proved challenging. We required a dataset encompassing a
diverse range of data types and sizes, ranging from 100KB to 1GB. To address this
gap, we curated a comprehensive dataset consisting of text, audio, image, and video
files, representative of real-world data. These files were carefully selected to mirror
typical file sizes encountered in cloud storage scenarios. By examining the behavior
of each file type and size under various EC schemas, we can provide valuable insights
into the suitability and efficiency of Swift’s storage mechanisms. This dataset serves
as a valuable resource for researchers and practitioners interested in cloud storage
systems. Its availability allows for reproducibility and facilitates future studies to
build upon our findings. In our work, we describe the dataset creation process,
provide detailed information on the included file types and sizes, and present the
experimental setup for evaluating Swift’s performance. The results of our analysis
contribute to a better understanding of cloud storage performance and offer recom-
mendations for optimizing the utilization of Swift in practical deployments.

So as per its Description, let’s name it ”Multitype Cloud Storage Dataset (MCSD-
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100): A Comprehensive Collection of 100 Text, Audio, Image, and Video Files.”

Data Collection:

The data collection process involves employing various approaches to ensure the in-
clusion of diverse file types and sizes in our dataset. To obtain video files with a wide
range of sizes, we captured videos of different lengths using mobile devices. This
approach allows us to generate a distribution of video file sizes that closely resem-
bled real-world scenarios. In addition to video files, we have sourced pictures from
our personal mobile devices to incorporate image files in the dataset. To achieve
the desired sizes for the image files, we have utilized online converters, enabling us
to obtain JPEG files of specific sizes. By employing these data collection strategies,
we are ensuring that our dataset comprised a comprehensive range of file types and
sizes, closely mirroring the characteristics of data commonly encountered in cloud
storage environments. This approach enhances the representativeness and applica-
bility of our dataset, allowing for more accurate assessments of Swift’s performance
under diverse file size distributions.

File Sizes:

The dataset comprises 100 files, distributed across four different file types: text,
mp3, jpeg, and mp4. Each file type exhibits distinct size characteristics, which are
summarized below:

1. Text Files (in KB): The 25 text files present in the dataset exhibit sizes rang-
ing from 102 KB to 4786 KB. The average size of the text files is 2092.6 KB, with
the smallest file measuring 102 KB and the largest file measuring 4786 KB. The
distribution of text file sizes provides a representation of common document sizes
encountered in practical cloud storage scenarios.

2. Mp3 Files (in KB): The 25 mp3 files span a range of sizes from 101 KB to 20357
KB. On average, the mp3 files in the dataset have a size of 10176.96 KB. The small-
est mp3 file has a size of 101 KB, while the largest mp3 file measures 20357 KB.
The inclusion of mp3 files of various sizes allows for a comprehensive evaluation of
Swift’s handling of audio files, capturing typical file size variations in this format.

3. Jpeg Files (in KB): Our dataset includes 25 jpeg files, with sizes ranging from
644 KB to 95832 KB. The average size of the jpeg files is 36399.28 KB, with the
smallest file measuring 644 KB and the largest file measuring 36399.28 KB. The
diverse range of jpeg file sizes reflects the variability in image file sizes commonly
encountered in cloud storage scenarios.

4. Mp4 Files (in KB): The 25 mp4 files encompass sizes ranging from 1000 KB to
1015100 KB. On average, the mp4 files in the dataset have a size of 399460 KB.
The smallest mp4 file has a size of 1000 KB, while the largest mp4 file measures
1015100 KB. The inclusion of mp4 files with different sizes enables a comprehensive
examination of Swift’s performance in storing and retrieving video files.
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By incorporating files of varying sizes within each file type, our dataset encompasses
a wide range of file size distributions. This enables a robust evaluation of Swift’s
performance across different EC schemas and fragmentation techniques, providing
valuable insights into the behavior of the cloud storage system under real-world con-
ditions.

Our comparison and analysis of the self-created dataset revealed valuable insights
into the performance of the Swift cloud storage system across different file types
and sizes. Swift demonstrated efficient storage and retrieval of text files, robust
handling of audio and video files, and reliable preservation and distribution of im-
age files. These findings have implications for enterprise data management, multi-
media content platforms, image hosting and sharing, long-term data preservation,
and collaborative content creation. Swift’s capabilities in handling diverse file types
and sizes make it a versatile solution for various data storage and retrieval needs.
Overall, our analysis indicates that Swift performs admirably in storing and retriev-
ing files across various types and sizes. The system showcases robust capabilities
in managing text, audio, image, and video data, demonstrating its suitability for
diverse cloud storage requirements.

In the subsequent sections, we will discuss the implications of our findings and pro-
vide recommendations for optimizing Swift’s performance based on the observed
behaviors and performance characteristics across different file types and sizes.

fil
e 

si
ze

(K
B

)

Files

Fi
le

 S
iz

e 
(K

B
)

0

250000

500000

750000

1000000

Histogram of MCSD-100 Dataset's file size (KB) 

Figure 5.1: Histogram of MCSD-100 Dataset’s file size.

Potential Applications: The findings from our research indicate several potential
applications for the Swift cloud storage system. These include enterprise data man-
agement, multimedia content distribution, image hosting and sharing, data archiv-
ing and long-term preservation, and collaborative content creation. Swift’s efficient
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handling of text, audio, image, and video files makes it suitable for storing and re-
trieving diverse data types. Organizations can leverage Swift for managing textual
data, distributing multimedia content, hosting and sharing images, preserving valu-
able data over the long term, and facilitating collaborative content creation. These
applications highlight the versatility and adaptability of Swift in meeting various
data storage and retrieval needs.

Availability and Access:

To ensure the broader accessibility and usability of our dataset, we have made it
publicly available for download. Researchers, practitioners, and interested individ-
uals can access and retrieve the dataset from the following link: [39]. By providing
open access to our dataset, we aim to facilitate further research, experimentation,
and collaboration in the field of cloud storage and data management.

5.1.2 Another Dataset: COCO-17 (Common Objects in Context-
17)

The COCO-17 [4] dataset, created primarily for object identification and picture
interpretation tasks, is a widely used benchmark in the area of computer vision. It
consists of a vast array of annotated photos covering 17 different item categories,
providing a varied and rich dataset for analysis and assessment. The dataset is care-
fully selected to include circumstances and situations that occur in the real world,
assuring its relevance and suitability for use in a variety of computer vision applica-
tions. It includes photos taken in a variety of settings, such as interior and outdoor
situations, and under varying lighting and vantage points. COCO-17 offers accurate
and comprehensive annotations for 17 popular item types. These categories include
a broad variety of things, including people, animals, cars, and everyday household
goods. The annotations provide useful data for training and assessing object iden-
tification and instance segmentation algorithms. They comprise object bounding
boxes, segmentation masks, and keypoints. The COCO-17 dataset is big in that it
includes several pictures and their related annotations. This scale facilitates thor-
ough examination and assessment of computer vision models and methods. The
dataset has also evolved into a common benchmark for academics and practition-
ers, promoting cooperation and enabling accurate performance comparisons across
various methodologies. The COCO-17 dataset, which offers a uniform baseline for
assessing object identification, instance segmentation, and picture interpretation
tasks, has been significant in developing the area of computer vision. Modern al-
gorithms have been developed as a result, and it has been widely used in research
articles, challenges, and contests. We used a subset of the COCO-17 dataset made
up of 3000 JPEG photos for our particular investigation. To provide a representa-
tive sample for our study goals, this subset was chosen, enabling us to concentrate
on certain elements while using the variety and richness of the overall dataset. In
conclusion, the COCO-17 dataset presents an extensive collection of pictures with
in-depth descriptions, including 17 different item categories. Its widespread use and
meticulous annotation procedure make it a useful tool for analyzing and comparing
computer vision algorithms, advancing the field’s knowledge of object identification
and picture interpretation.
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Dataset Size and Subset Size:

The widely used COCO-17 dataset for computer vision contains a big collection of
pictures and comments. The overall number of pictures in the COCO-17 dataset
is significant, totaling to [enter total number of photos]. These photos have been
painstakingly annotated with specific details like object bounding boxes, segmenta-
tion masks, and keypoints.

We made sure that our selection had exactly 3000 photos by defining’max samples=3000’.
This strategy enabled us to concentrate our research while taking into account the
practical restrictions of processing resources and time constraints on a subset that
properly reflected the variety and richness of the whole COCO-17 dataset.

In conclusion, we used the FiftyOne library to download 3000 pictures from the
COCO-17 dataset for our thesis study, specifying the’max samples=3000’ option.
This carefully chosen subset, which was based on certain object types, served as
the basis for our investigation. We were able to address our research goals while
efficiently managing computing resources and time restrictions by using this repre-
sentative subset, which allowed us to conduct a focused and insightful analysis that
fit within the parameters of our study.

Importance of COCO-17 in Our Research Work:

Due to a number of crucial reasons, the COCO-17 dataset must be included in our
thesis study. First off, compared to our test dataset, MCSD, the COCO-17 dataset
provides a substantially higher size and diversity of files. This dataset offers a rare
chance to investigate the behavior and traits of object storage systems, notably
Swift, while dealing with a large number of files since it has a wide range of file
sizes, ranging from 0 KB to 600 KB. It is impossible to overstate the difficulties we
faced while gathering the information for such a vast number of files. It took a lot of
work and careful preparation to gather and organize the COCO-17 dataset’s various
file kinds and sizes. In order to ensure their inclusion across different size distribu-
tions, the technique entailed acquiring a broad variety of picture files. Through this
project, we were able to extensively examine and analyze the interactions between
various file kinds and sizes and the underlying storage infrastructure and assess how
well object storage regulations, including EC schemas, handled these data changes.
By using the COCO-17 dataset, we were able to get beyond the constraints placed
on us by our smaller test dataset, MCSD, and we were able to learn a great deal
about the behavior and efficiency of object storage systems. The addition of this
dataset in our study improves the validity and dependability of our conclusions since
it provides a larger, more varied collection of data that more accurately reflects ac-
tual situations.

Overall, by including the COCO-17 dataset in our thesis study, we have been able
to broaden the breadth and depth of our analysis and investigate the potential and
difficulties that come with handling a large number of files of various sizes. We
want to advance the area of data management and storage in large-scale contexts by
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advancing our knowledge of and improvements to object storage systems like Swift.
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Chapter 6

Experimental Evaluation

6.1 Experimental Setup

Experimental setup consists of testbed environment setup, setup dataset for testbed
and testbed simulation implementation. For testbed environment after installing
Swift for both local and remote testbed we setup EC-coding for both environments.
Then for setup dataset for testbed, we use some code to upload , download and
delete data on Swift and then analyse the results from the output.

6.1.1 Testbed Environment Setup:

Cloud Setup

Local VM Setup

Setup Proxy Server Setup Swift Server EC Container Creation 
on Swift

Erasure Coding Policy Setup

Remote VM Setup

Uploading File
 on Swift VM

Dwonloading File
on Swift VM

Deleting File 
from Swift VM

Figure 6.1: Test bed Environment Setup

EC-setup for Local Testbed:

To see how well erasure coding saves time, we need to break up the data into
different rules. To do this, we must first install Swift and set up erasure coding by
using different EC strategies. The following is how EC is set up:
After installing swift on our local computer and making sure it works, we need to
set up EC strategy in swift. To set up an EC policy in Swift, we made a policy de-
scription file that lists the settings for the EC method. Most of the time, the policy
description file is in the /etc/swift folder on the Swift proxy server. The erasure
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coding strategy says how many data and parity pieces there will be and where it
will go on the storage nodes. To define EC policy we need to change the value
of names policy type, ec type, ec num data fragments, ec num parity fragments,
ec object segment size. For both schemas ”5 + 3” and ”7 + 5” we set:

policy_type = erasure coding,

ec_type = liberasurecode_rs_vand

ec_object_segment_size = 1048576

ec_num_data_fragments = n

ec_num_parity_fragments = m

Here , ’n’ and ’m’ will be changed according with schemas. For example, for ’5+3’
schema, the value of n will be 5 and the value of m will be 3 .

After creating the policy definition files for the EC policies, we can use them to
build a ring. A ring is a configuration file that describes the layout of the Swift
cluster, including the number of nodes, their IP addresses, and their assigned roles
(e.g., proxy server, storage server, etc.). We created a ring for both of the policies
using this swift command-

swift-ring-builder <ringfile> create <part_power> <replicas>

<min_part_hours>.

The Swift ring builder builds and handles the linking of the data and parity pieces
to the storage nodes. This makes sure that the fragments are spread out evenly
across the cluster. The Swift ring maker also figures out how many copies of the
data should be made and sent to different parts of the cluster. In erasure coding,
replicas are not exact copies of the data. Instead, these are extra pieces of data that
are made using the same math method as parity fragments. The Swift ring maker
makes sure that the right number of copies are made and spread across the cluster
so that data is always available. After the fast ring builder makes the ring, the ring
file needs to be sent to all of the storage nodes in the cluster. This has been done
using the swift-ring-builder command,

<ringfile> rebalance

Which distributes the ring file to all of the nodes and ensures that the data and
parity fragments are evenly distributed across the nodes. As soon as our cluster
was ready to take in data, we prepared our data by breaking it up into pieces and
making the right parity pieces. Once the data is ready, it can be sent to the Swift
object store system using the normal calls to the Swift API.

EC-setup for Remote Testbed:

In order to achieve superior analytical results, we implemented our benchmark data
(Coco 17) [4] and our own dataset on a remote server in addition to our local server.
We could access our remote server via a network connection by establishing an SSH
connection. Secure Shell (SSH) is a network protocol that provides secure access to a
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remote host using cryptography. We used the ”ssh” command followed by the user-
name and the server’s IP address or domain name to establish an SSH connection to
a remote server (ssh username@server-ip-address). We employed a password-based
authentication method to establish connections with remote servers. After connect-
ing via SSH, we can access the remote server’s command-line interface. Through
the command-line interface, swift and erasure coding is configured within the swift
configuration. We set up EC on a remote server like the way we described before.

Each server on our local server independently implements a unique EC policy. Nev-
ertheless, a single server is responsible for storing data using various EC policies
on the remote server. The primary advantage of this method is its centralized
storage and management. Utilizing a single remote server optimizes the use of hard-
ware resources, such as CPU and storage space. The server can allocate resources
dynamically based on the requirements of various EC policies. The various EC
policies applied to a single remote server were 10+4, 7+5, and 5+3.In order to
configure three different erasure coding (EC) policies in the Swift configuration file
(swift.conf), we modified the [storage-policy: default] section. In the swift config-
uration file (swift.conf), within the [storage-policy: default] section, we define the
three distinct EC policies with distinct identities. Each policy specifies comparable
values for,
ec type, policy type, and ec object segment size but unique values for
ec num data fragments and ec num parity fragments. For a 10+4 policy,
ec num data fragments=10 and ec num parityfragments=4 are specified. The same
holds true for 7+5 and 5+3. Swift will recognize the three EC policies defined in the
[storage-policy: default] [41] section following these modifications. Using the Swift
API or command-line tools, we can now designate these policies to specific storage
containers or objects, allowing us to select the desired EC policy for each item of
data based on our needs.

6.1.2 Setup Dataset for Testbed

Our main objective is to investigate how different data kinds behave in accordance
with different EC regulations depending on upload, download, and deletion time-
frames. After establishing EC policies in our swift server, we created a swift ring
based on them. Swift ring is built to choose the locations for data storage inside
the Swift storage cluster. A request to store the data is made, and the ring is ex-
amined to select the appropriate storage nodes for the data. Then, we create an
AUTH token so that we may access the Swift storage service for authentication and
authorisation. To generate Auth token we use the command -

curl -v -H 'X-Auth-User: <username>' -H 'X-Auth-Key: <password>

<auth_url>

We may establish an ec-container to manage and organize our data after producing
the Auth token. To build containers-

curl -v -X PUT -H ‘X-Auth-Token: <auth_token>’ \<auth_url>" -H

"X-Storage-Policy: <ec_policy>" <swift_url>/<container_name>

37



We generated three python script files to analyze data based on upload, download,
and delete times. By using the command line to launch the Python3 interpreter, we
can execute our Python files on local and distant VMs.
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Uploading Data on Swift:

The following code is used to upload files to Swift and calculate how long it takes.
The directory of the specific folder we want to work on was provided, and the code
uploaded and timed each file in that folder.

Algorithm 1 File Upload Algorithm

1: admin← ”AUTH admin”
2: auth token← ’AUTH tk675285d84f05430389bf74dbbaa14e6c’
3: container name← ’ec-container’
4: url← ’http://127.0.0.1:8080/v1.0/{}/{}’.format(admin, container name)
5: headers← {’X-Auth-Token’ : auth token}
6: folder path← ’/home/upom/Documents/coco’
7: file paths← an empty list
8: for all file in the list of files in folder path do
9: if file is a file (not a directory) then

10: append os.path.join(folder path, file) to file paths
11: end if
12: end for
13: for all file path in file paths do
14: container file name← basename of file path
15: open file path as f in read binary mode
16: start time← current time
17: make PUT request to ’{}/{}’.format(url, container file name) with

data = f and headers = headers
18: end time← current time
19: if status code of the response is 201 then
20: upload time← end time− start time
21: display ”File {} uploaded successfully. Upload time: { .2f} seconds.”
22: .format(container file name, upload time)
23: else
24: display ”File {} upload failed with status code: {}”
25: .format(container file name, status code of the response)
26: end if
27: end for

This code assumes that the file we wish to upload resides on our local system in the
”/home/upom/Desktop/coco” folder. The local folder path variable will need to be
updated to reflect the path of the folder from which we want our files to upload.
Additionally, we need to confirm that the Swift instance’s Swift endpoint URL and
authentication token are appropriately configured. The time.time() method is being
used to determine the beginning and ending timings for each file upload. The total
upload time is then determined by subtracting the two times, and it is included in
the output message for each file that has been uploaded. The UPLOAD request
will return a 404 status code if the requested file name cannot be located in the
container. We display an error message in this instance to inform the user that the
file could not be uploaded.

To further clarify, in order to automate the system, add the module ”time” before
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the upload command prompt. If we also want to know the system time, user time,
and actual time it takes to upload a file, the code will look like this:

Algorithm 2 File Upload Algorithm

1: admin← ”AUTH admin”
2: auth token← ’AUTH tk52bab9c40d22465bb856cec97cce0a77’
3: container name← ’ec-container’
4: url← ’http://127.0.0.1:8080/v1.0/’.format(admin, container name)
5: headers← {’X-Auth-Token’ : auth token}
6: display ”Enter a list of file paths to upload, separated by commas: ”
7: read file paths str
8: file paths← split file paths str by commas
9: for all file path in file paths do

10: strip leading/trailing whitespace from file path
11: container file name← basename of file path
12: upload command ← ’time curl -v -X PUT -H "X-Auth-Token: {}" {}

-T ""’ .format(auth token, ’/’

13: .format(url, container file name), file path)

14: display upload command
15: make PUT request to ’{}/{}’.format(url, container file name) with

data = open(file path, ’rb’) and headers = headers
16: r ← the response of the request
17: if status code of the response is 201 then
18: execute upload command using a subprocess
19: else
20: display ”File {} upload failed with status code: {}”
21: .format(container file name, status code of the response)
22: end if
23: end for

At upload command in the code, we inserted a ”time” module. A Unix function
called time calculates how long it takes a command or program to execute. We
may get information about the execution time, such as system time, user time, and
actual time, in the output by prefixing the curl command with time.

Downloading Data from Swift

The below code is used to download files from Swift and calculate the download time.
File names are inputted into this code, which then deletes the files in accordance
with the Swift server.
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Algorithm 3 File Download Algorithm

admin← ”AUTH admin”
auth token← ’AUTH tk8ec2188bf76e45cd8b5ef90ed2d5998e’

3: container name← ’ec-container’
url← ’http://127.0.0.1:8080/v1.0/{}/{}’.format(admin, container name)
headers← {’X-Auth-Token’ : auth token}

6: display ”Enter the file names to download (separated by commas):”
read file names str
file names← split file names str by commas and trim whitespace

9: local file path← ’/home/upom/Desktop’
for all file name in file names do

start time← current time
12: make GET request to ’{}/{}’.format(url, file name) with headers =

headers
end time← current time
if status code of the response is 200 then

15: open file with path os.path.join(local file path, file name) in write bi-
nary mode

write content of the response to the file
display

18: ”File {} downloaded successfully in { .2f} seconds.”.format(file name, end time
- start time)

else
display ”File {} download failed with status code: {}”.format

21: (file name, status code of the response)
end if

end for
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The ”file names” variable in this code would simply hold a list of file names, and
the function would loop over each file name and download each file from Swift. The
downloaded files would be stored with identical filenames to the container in the
”local file path” directory. The start and finish timings of each file download are
obtained using the time.time() method. The total download time is then determined
by subtracting the two times, and it is included in the output message for each file
that has been downloaded. The Download request will return a 404 status code if
the requested file name cannot be located in the container. In this instance, we pro-
duce an error message to inform the user that they were unable to download the file.

Deleting Data from Swift:

Using the following code, it may remove files from Swift and calculate how long it
takes to do so. File names are inputted into this code, which then deletes the files
in accordance with the Swift server.

Algorithm 4 File Deletion Algorithm

admin← ”AUTH admin”
auth token← ’AUTH tk8ec2188bf76e45cd8b5ef90ed2d5998e’
container name← ’ec-container’

4: url← ’http://127.0.0.1:8080/v1.0/{}/{}’.format(admin, container name)
headers← {’X-Auth-Token’ : auth token}
display ”Enter the file names to delete (separated by commas): ”
read file names str

8: file names← split file names str by commas and trim whitespace
for all file name in file names do

start time← current time
make DELETE request to ’{}/{}’.format(url, file name) with headers

= headers
12: end time← current time

delete time← end time− start time
if status code of the response is 204 then

display ”File {} deleted successfully in { .2f} seconds.”
16: .format(file name, delete time)

else
display ”File {} delete failed with status code: {}”

.format(file name, status code of the response)
20: end if

end for

For each file we wish to remove, a remove request is sent to Swift using the ’re-
quests.delete()’ method in this code. In order to confirm that the file was success-
fully erased, we are also looking at the status code of the response. The DELETE
request will return a 404 status code if the requested file name cannot be located in
the container. For the user’s information, we display an error notice in this scenario
to indicate that the file cannot be erased.

42



We link our Python file with our Swift cluster using the URL of the code. The
aforementioned algorithms enable us to generate our projected data results on both
local and distant servers based on time.

6.1.3 Setup Simulator for Testbed: SimEDC

The SIMEDC simulator is a discrete-event simulator that has been specifically de-
signed to analyze the reliability of erasure-coded data center storage. Please find
below a brief outline of the operational process of SIMEDC.

In the configuration phase, the user defines the simulation elements and inputs. The
aforementioned factors encompass the data center topology, erasure codes, redun-
dancy duty, failure themes, and other pertinent configurations. The parameters that
can be considered include the number of racks, the number of nodes per rack, the
quantity of disks per node, the capacity per disk, the size of each chunk, the type
of code used (such as Reed-Solomon), and the number of data chunks and parity
chunks.

The simulation environment is initialized by SIMEDC in accordance with the speci-
fied configuration. The process involves configuring the data center topology, storage
equipment, failing structures, and other relevant elements of the simulated system.

The simulation’s event scheduling is managed through an event queue by the simu-
lator. Events may encompass data read and write requests, system failures, repairs,
and other related occurrences. The scheduling of events is based on their respective
occurrence times.

SIMEDC follows a chronological order to process events from the event queue. The
system manages various events by executing their respective actions and updating
the simulation’s state accordingly. In the event of a failure, the simulator designates
the affected component as inaccessible and initiates a repair event.

SIMEDC employs repair and redundancy techniques to address system failures. In
the event of data loss or unavailability, the system simulates the repair process by
initiating data reconstruction. The system computes the data recovery by utilizing
the erasure codes and redundant placement parameters specified in the arrangement.
The simulation tool also monitors the maintenance activities and their influence on
the system’s dependability.

Data Loss Probability, Repair Efficiency, Number of Megabytes Lost, Bandwidth
Reduced, and Other Measures are Collected During Simulation by SIMEDC. The
aforementioned metrics offer valuable insights regarding both the efficiency and de-
pendability of the erasure-coded storage system utilized in the data center.

The simulation will execute events until it meets a predetermined termination cri-
terion, such as a designated mission duration or the fulfillment of a specific number
of iterations.
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Analysis of Results: Upon completion of the simulation, SIMEDC furnishes the anal-
ysis results based on the gathered metrics. The aforementioned outcomes provide
valuable information regarding the dependability, effectiveness, and functionality of
the erasure-coded storage system in a data center setting, as per the given configu-
ration.

The aforementioned process provides a comprehensive overview of the functioning of
SIMEDC. The simulator provides the flexibility to configure inputs and customize
simulations, thereby facilitating researchers to assess and appraise the dependabil-
ity of erasure-coded information preservation under diverse scenarios and conditions.

6.2 Experimental Result

6.2.1 Graph Analysis

Here we made an analysis of upload time on remote and local VM of coco data set
and also we have used 100 data sets to determine upload download and delete time.

Benchmark COCO-17 Dataset Analysis Result for Local and Remote
Testbed

Figure 6.2: Benchmark Dataset(coco17-remote swift server).
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The graph from FIgure 6.2 illustrates a benchmark dataset upload Time analysis
(COCO-17) [4] on the basis of a remote swift server. Here the x-axis demonstrates
upload time in second and the y-axis shows size range expressed in KB. The blue bar
shows data fragmentation of 10+4 whereas the red and yellow bar represents data
fragmentation of 7+5 & data fragmentation of 5+3 respectively. Within the range
0 KB to 150 KB The 10+4 bar takes the longest upload time in comparison with
red and yellow. Within this range the upload time for blue bar is 0.10 s and the red
and yellow bar takes nearly 0.07 and 0.05 seconds. The same relationship between
the bars are easily unravelled within the other ranges ; For example from 151 KB-
250 KB upto 451 KB-550 KB.That means,within the limit of 0KB to 550 KB size
range 10+4 data fragmentation takes the prolonged time and the time gradually in-
creases with the increasing data size ranges. The same way 7+5 data fragmentation
takes the shortest time compared to 10+4. The data fragmentation of 5+3 takes
the shortest time assimilating with that two. Moreover, 7+5 and 5+3 also increase
following the same manner as the blue with growing size ranges.So, the result of
overall representation of the graph is showing the relationship of upload time with
size range of data where the 10+5 data fragmentation takes the prolonged time &
the 5+3 data fragmentation takes the shortest time in comparison among them.

Figure 6.3: Benchmark Dataset(coco17- local swift server ).

The graph from Figure 6.3 demonstrates a benchmark dataset upload Time analysis
(COCO-17) on the basis of local swift server. Here the x-axis shows average time
in second and the y-axis shows size range expressed in KB. The red and yellow bars
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reflect data fragmentation of 7+5 and 5+3, while the blue bar depicts data fragmen-
tation of 10+4. Within the range 0 KB to 150 KB The 10+4 bar takes the longest
upload time in comparison with red and yellow. Within this range the upload time
for the blue bar is nearly 0.16 s and the red and yellow bar takes nearly 0.11 and
0.10 seconds. The same relationship between the bars are easily unravelled within
the other ranges ; For example from 151 KB-250 KB upto 451 KB-550 KB. But
the differences of the average time for each of the types of data fragments gradually
mitigates as they reach the range of 451KB-550 KB. That means,within the limit of
0Kb to 550 KB size range the 10+4 data fragmentation takes the prolonged time and
the time gradually increases with the increasing data size ranges upto the limit of
450 KB. When the size range increases from 451 KB upto 550 KB the time for 10+4
data fragment somewhat decreases. From the previous range that means within
351KB-450 KB but the relationship will be same for the other two types. Besides
this, 7+5 data fragmentation takes the shortest time compared to 10+4. The 5+3
data fragmentation takes the shortest time assimilating with that two. Moreover,
the 7+5 & 5+3 also increases following the growing size ranges. So, the result of the
overall representation of the graph is showing the relationship of the average time
with size range of data where the 10+4 data fragmentation takes the prolonged time
upto the range of 450 KB & the time slightly decreases in 451-550 KB size range &
the 5+3 data fragments takes the shortest time in comparison among them.

Benchmark Testing Dataset (MCSD-100) Analysis Result for Local Testbed

Figure 6.4: Upload time analysis
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The line graph from Figure 6.4 compares the upload times for our self made dataset
MCSD-100 [39] ranging in size from 100 KB to 1000000 KB on a local server for
the 5+3, 7+5, & 10+4 EC policies. Here the x-axis shows average time in second
and the y-axis shows size range expressed in KB. Each data point shows the amount
of time needed to upload a particular size of files. As we can see, the upload time
lengthens for the 5+3, 7+5, and 10+4 EC policies as the data file size does. How-
ever, if we contrast the line graph for the three policies shown in the graph, it is
evident that higher fragmentation results in a longer upload time on Swift.

After examining the graph showing the upload time on a local server, we discovered
that the upload times for 5+3, 7+5, and 10+4 are, respectively, 3.831789474 seconds,
4.671368421 seconds and 4.921578947 seconds. The average values we obtained after
analysis support the finding that more valuable fragmentation requires a longer
upload time than less valuable fragmentation.

Figure 6.5: Download time analysis

The line graph from Figure 6.5 shows how three erasure coding (EC) policies—5+3,
7+5, and 10+4—differ in terms of download times. The figure includes a range of
file sizes from 100 KB to 250,000 KB. Here the x-axis demonstrates download time
in second and the y-axis shows size range expressed in KB The graph’s data points
are connected by straight lines to indicate the overall trend. Each data point on the
graph reflects the download time for a particular file size.

The chart demonstrates that as the file size increases, the download time also in-
creases for all three EC policies: 5+3, 7+5, and 10+4. However, upon comparing
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the line graphs for the three policies, it becomes evident that the policies with higher
levels of fragmentation (10+4) require more time to download the files on the swift
storage system.

The average download time for the 5+3 policy was determined to be 0.7124418605
seconds, the average download time for the 7+5 policy was 0.9238372093 seconds
and the average download time for the 10+4 policy was 0.9439772727 seconds after
examining the download time data on the local server. These average figures confirm
the finding that download times are longer when there is more fragmentation than
when there is less fragmentation.

Figure 6.6: Delete time analysis

The line graph from Figure 6.6 shows how three erasure coding (EC) policies—5+3,
7+5, and 10+4—variate in their delete timings. On a local server, the chart shows
various file sizes ranging from 100 KB to 350,000 KB. The x-axis displays the file sizes
in KB and the y-axis shows the delete time in seconds. Each data point represents
the delete time of a certain file size. Examining the data results from the graph,
it was found that employing these three erasure coding (EC) policies, deleting files
from swift typically takes 0.09515031897 seconds.
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Benchmark Testing Dataset (MCSD-100) Analysis Results for Remote
Testbed

Figure 6.7: Upload time comparison

The line graph from Figure 6.7 above compares the upload times for our self made
dataset MCSD-100 [39] ranging in size from 100 KB to 800000 KB on a remote
server for the 5+3, 7+5, & 10+4 EC policies. The x-axis displays the file sizes
in KB and the y-axis the upload time in seconds. Each data point represents the
upload time of a particular file size.

The chart shows that for all three EC policies—5+3, 7+5, and 10+4—the upload
time increases as the file size increases. Comparing the line graphs, however, reveals
that longer upload times on the swift storage system are a direct result of bigger
data fragmentation.

The average upload time for the 5+3 policy was found to be 1.259361702 seconds,
the average upload time for the 7+5 policy was 1.76712766 seconds and the average
upload time for the 10+4 policy was 1.820425532 seconds after analysis of the upload
time data on the remote server. These average values are consistent with the finding
that upload times increase when fragmentation levels rise relative to lesser levels.
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Figure 6.8: Download time comparison

The line graph from Figure 6.8 illustrates the differences in download times for 100
files ranging in size from 100 KB to 250,000 KB on a remote server for three EC
policies: 5+3, 7+5, and 10+4. The time is displayed on the y-axis in seconds, while
the file sizes are displayed on the x-axis in KB. The data points on the graph are
connected by straight lines to show the general trend. The download time for each
data point on the graph corresponds to a specific file size.

The graph shows that for all three EC policies—5+3, 7+5, and 10+4—the down-
load time increases as the file size does. In contrast, it is clear from comparing the
line graphs for the three policies that the higher levels of fragmentation (10+4) take
longer time to download the files.

The average download time for the 5+3 policy was found to be 0.9977659574 seconds
after analyzing the data on download times from the remote server. The average
download time for the 10+4 policy was calculated to be 1.9839772727 seconds, while
the average download time for the 7+5 policy was found to be 1.362021277 seconds.
These average results proves that, big data fragmentation take longer time to down-
load files in compare to small data fragment.
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Figure 6.9: Delete time comparison

The line graph of Figure 6.9 depicts the differences in delete times for 100 files
ranging in size from 100 KB to 150,000 KB on a remote server for three EC policies:
5+3, 7+5, and 10+4. The y-axis shows the delete time in seconds and the x-axis
the file sizes in KB. Each data point on the chart represents the delete time of a
certain file size. After examining the data from the graph, we discovered that it
takes an average of 0.048142610696667 seconds to delete data from swift for three
EC policies.
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Data Analysis of Waiting Time for Remote Testbed

Table that displays the Real time, User time, System time, and Waiting time for
each of the 20 data files that we transferred to Swift from a distant virtual machine
to study waiting times.

Data size
(MB)

Real Time
(S)

User Time
(S)

System Time (S) Waiting Time (S)

1.2 0.459 0.009 0.031 0.419
4.4 0.392 0 0.024 0.368
10.5 0.595 0.012 0.021 0.562
15.7 0.64 0.008 0.033 0.599
20.8 0.948 0.004 0.049 0.895
26.5 0.967 0.038 0.028 0.901
30.8 1.155 0.026 0.071 1.058
39.9 1.477 0.016 0.083 1.378
42.2 1.486 0.042 0.077 1.367
57.4 1.781 0.037 0.096 0.648
66.1 2.15 0.029 0.114 2.007
70.6 2.551 0.036 0.115 2.4
85.2 3.496 0.078 0.102 3.316
98.1 4.579 0.051 0.163 4.365
118.4 4.713 0.071 0.166 4.476
233.5 12.845 0.145 0.428 12.272
321.5 12.758 0.171 0.565 12.022
417.5 13.913 0.187 0.817 12.909
514.7 22.926 0.268 0.896 21.762
560.9 22.341 0.31 0.926 21.105

Table 6.1: Upload time, Real time , user time, System time, Waiting time for
different size data.
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Figure 6.10: waiting time analysis for uploading 20 files on Swift Remote Server

This graph from Figure 6.10 demonstrates how waiting times grow exponentially as
size increases. Therefore, larger files require greater waiting time.

6.2.2 Results from Testbed Simulator: SimEDC

The following is an encouraged output generated by executing the Python script
simedc.py with various arguments. This script is designed to simulate erasure cod-
ing along with storage systems by taking into account various parameters such as
the quantity of data chunks, parity chunks, and the coding scheme utilized. The
script generates multiple performance metrics, including but not limited to the like-
lihood of data loss, repair efficiency, and network bandwidth utilization. In this
particular instance, the script was executed on three separate occasions, each time
with distinct arguments.

1.The command “python simedc.py -n 6 -k 4 -t rs -T flat” executes the script using
the Reed-Solomon coding scheme, with 6 data chunks, four parity chunks, and a
flat location type. The software generates a range of statistical data pertaining to
the simulation, including but not limited to the likelihood of data loss, efficiency of
repairs, and utilization of bandwidth.

2.The command “python simedc.py -n 10 -k 6 -t rs -T flat” executes the script with
the Reed-Solomon coding scheme, 10 data chunks, 6 parity segments, and a flat
placement type. The script generates diverse statistics pertaining to the simulation,
including but not limited to the likelihood of data loss, efficiency of repair, and
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utilization of bandwidth.

Variables
Data

Fragment
num
zero

PDL RE
NOMDL
(bytes)

BR:
Single-chunk
repair ratio

6+4 0 l.959e-06 142.23 2.503e-06 0.000000e+00 0.000000
7+5 0 l.131e-06 166.43 l.532e-06 0.000000e+00 0.000000
8+7 0 7.203e-10 164.03 l.271e-06 0.000000e+00 0.000000
9+6 0 l.068e-26 196.03 l.430e-06 0.000000e+00 0.000000
10+7 0 2.506e-12 195.93 l.716e-06 0.000000e+00 0.000000
11+8 0 3.955e-07 187.13 1.820e-06 0.000000e+00 0.000000
12+9 0 l.222e-08 181.83 l.192e-06 0.000000e+00 0.000000

Table 6.2: Output simulation table of simEDC.

The explanations for each measure in the result summary are as follows:

Number of Zeroes (NOM) : The numerical count of occurrences of the digit
zero denotes that there was no instance where a particular pattern had a likelihood
of zero. In simulations of erasure coding, patterns that have a probability of zero
denote situations where the loss of data is inevitable. The absence of patterns with
a probability of zero indicates that there were no instances where the loss of data
was certain.

PDL(Probability of Data Loss): The concept of Probabilistic Data Loss (PDL)
pertains to the probability or likelihood of data loss taking place in the context of
a simulation. Assuming that the values of n and k are 9 and 6, respectively, the ob-
tained result of 3.605068e-10, presented in scientific notation, suggests an extremely
minimal likelihood of experiencing data loss. A reduced PDL value indicates a de-
creased probability of data loss within the simulated system.

Relative Error (RE): The term “RE” denotes the relative error that pertains to
the computed mean value. At n=9 and k=6, the computed value is 168.8%, denot-
ing a margin of error of 168.8% for the estimated mean. This implies that there
exists a possibility for the PDL’s true value to deviate from the computed mean by
around 168.8%. A greater value of the RE metric signifies a wider range of potential
error and suggests that the estimated mean may lack precision.

Normalized Overhead in Multi-Disk Loss (NOMDL) : The Normalized Over-
head in Multi-Disk Loss (NOMDL) metric quantifies the impact of lost data chunks
on system overhead, which is then normalized by the total number of bytes stored in
the system. The numerical value of 1.430517e-06 denotes the Non-observable Mini-
mum Detection Limit (NOMDL) in units of bytes per byte. It can be inferred that
a data storage system requires an extra 1.430517e-06 bytes for each byte of data
stored to account for the probable loss of data chunks. A reduced Non-Overlapping-
Maximum-Distance-to-Loss (NOMDL) value denotes an enhanced efficacy in the
utilization of storage capacity while encountering data loss.
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Bandwidth Ratio (BR): The Bandwidth Ratio (BR) is a metric that indicates
the proportion of requests that were unable to be fulfilled during a simulation. The
numerical representation of 0.000000e+00 denotes the absence of any blocked re-
quests. In a system devoid of any obstructed requests, all data and repair requests
were effectively attended to, and no instances were observed where the requested
data was either unavailable or inaccessible.

The Single-chunk Repair Ratio: The Single-chunk Repair Ratio is a metric used
to evaluate the effectiveness of a repair technique in fixing a single chunk of code.
The Single-chunk Repair Ratio is a metric that quantifies the percentage of repairs
that exclusively involve a solitary chunk.

The numerical value of 0.000000 denotes the absence of any repairs that were carried
out on a singular chunk. The process of repairing operations generally entails the
reconstruction of data through the utilization of multiple chunks. A reduced repair
ratio for a single chunk implies that the system is capable of effectively restoring
and retrieving data without necessitating the reconstruction of individual chunks.

6.3 Experimental Findings and Discussion

After analyzing the results of our experiments, we can conclude that there is a trade-
off between data and parity fragments in terms of time efficiency. As the number
of data and parity fragments increases, the time efficiency of the erasure coding
schemes decreases. This finding highlights the importance of carefully consider-
ing the number of data and parity fragments when implementing erasure coding in
Cloud-based Storage Systems.

Additionally, we observed that the waiting time increases with the size of the file.
As the file size grows larger, it takes more time to process and handle the file. This
increase in waiting time can have implications for system performance and user ex-
perience, as longer waiting times may lead to delays in data access and retrieval.

Furthermore, the outcome summary of the remaining data sets demonstrates several
key benefits of erasure coding. Firstly, it reveals a reduced probability of data loss,
indicating that the implemented erasure coding schemes effectively protect against
data loss. This highlights the reliability and fault tolerance advantages of erasure
coding in ensuring data integrity.

Moreover, optimal storage utilization is observed in the simulated system. Erasure
coding enables efficient distribution and utilization of storage resources, minimiz-
ing wasted space and maximizing storage capacity. This efficiency is crucial in
cloud storage environments where efficient resource utilization is essential for cost-
effectiveness.

Additionally, the absence of obstructed requests indicates that the erasure coding
schemes effectively handle data retrieval requests. The retrieval process remains
smooth and uninterrupted, ensuring a seamless user experience and minimizing de-
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lays or bottlenecks in data access.

Lastly, effective repair mechanisms within the simulated system showcase the sys-
tem’s ability to recover and repair data in case of failures or errors. The repair
mechanisms provided by erasure coding schemes contribute to maintaining data in-
tegrity and reliability, further enhancing the overall dependability of the system.

By considering these metrics, including time efficiency, data loss probability, stor-
age utilization, absence of obstructed requests, repair mechanisms, and the impact
of file size on waiting time, our study provides a comprehensive understanding of
the dependability, efficiency, and additional costs associated with erasure coding
in the specified simulation setup. These insights can inform future research and
development efforts in improving the performance and reliability of erasure coding
techniques in Cloud-based Storage Systems.

6.3.1 Comparative Analysis of Erasure Coding Techniques
in Cloud Storage Systems

“Lightweight Cloud Storage Systems: Analysis and Performance Evaluation” by
Smith et al. [37] conducted an in-depth analysis and performance evaluation of
lightweight cloud storage systems. They aimed to assess the efficiency of various cod-
ing schemes, including Replication, Reed-Solomon (RS), and Functional-Minimum
Storage Regenerating (FMSR) codes, in terms of file upload, file download, and re-
pair operations. To carry out their evaluation, the authors designed and executed
experiments using a dataset consisting of randomly generated files ranging from
10MB to 50MB. They measured the response times of different operations for each
coding scheme. The paper provides detailed numerical comparisons of the response
times for each operation and coding scheme. For instance, when uploading a 50MB
file with a configuration of n = 4 (number of storage nodes) and k = 2 (number of
nodes required for successful file retrieval) using the Reed-Solomon code, the average
upload time was found to be 33.17 seconds. In comparison, the FMSR code took
an average of 35.02 seconds, and the Replication scheme took 65.26 seconds for the
same file and configuration. Similar comparisons are provided for file download and
repair operations, enabling a comprehensive evaluation of the performance of differ-
ent coding schemes in lightweight cloud storage systems. The authors also discuss
the impact of emulation on the obtained results. They found that emulation, which
is running the experiments on a single machine without network latency, tends to
yield shorter response times compared to real-world experimentation. However, the
authors suggest that emulation results can still be useful for predicting experimen-
tal results in scenarios where testbed experimentation is not feasible. In addition
to the performance evaluation, the paper includes a review and survey of various
multiple cloud storage systems proposed for fault tolerance, data integrity, and con-
fidentiality. This provides a broader context for understanding the significance and
implications of the performance evaluation.

“Fault Tolerance Performance Evaluation of Large-Scale Distributed Storage Sys-
tems HDFS and Ceph Case Study” by Yehia et al. [10] focuses on evaluating the
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fault tolerance performance of two widely used large-scale distributed storage sys-
tems: Hadoop Distributed File System (HDFS) and Ceph. The authors specifically
investigate the use of erasure coding (EC) in these systems. The paper begins by dis-
cussing the default erasure code policies supported by Hadoop 3.0.0 and highlights
the block size increase in Hadoop 3.0. It then introduces a new EC policy called
Dynamic Erasure Coding Policy Allocation (DECPA), which aims to minimize the
number of stripes produced and the storage usage. To evaluate the fault tolerance
performance, the authors provide detailed explanations of how erasure coding works
in both HDFS and Ceph. They describe the division of data into chunks and the
reconstruction process in the event of node failures. The implementation section of
the paper describes the tests performed on HDFS using the TestDFSIO benchmark
and on Ceph using the Rados Bench. These tests measure the read and write perfor-
mance under different configurations and simulate node failures to evaluate the fault
tolerance mechanisms. The results of the experiments show that, in HDFS, using
a replication factor of 3X generally leads to better read performance compared to
erasure coding in terms of response time. However, EC requires less storage space.
In Ceph, 3X replication also outperforms EC in terms of reading, while EC performs
better in write operations and requires less storage space.

Features
EC on different Object Storage

Swift HDFS Ceph
Time Efficiency Analysis Yes No No
Data Durability High Low High
Difficulty in EC setup Medium High High
Fault Tolerance Analysis Yes Yes Yes
Benchmarking Data (MCSD-100) Yes No No
File Analysis 100 KB - 1 GB No No

Table 6.3: Comparison of EC in different Object Storage Systems

The table 6.3 shows the comparison of EC in different Object Storage Systems on
the basis of different parameters applied on those systems throughout various analy-
sis. The table illustrates how EC in Swift is better on the aspects of Time Efficiency
Analysis , Data Durability , Difficulty in EC setup in comparison to EC on HDFS
and Ceph. It also shows our work on Benchmarking Data & File Analysis (100 KB
- 1GB) of EC in swift , which makes our work different from other Object Storage
Systems.

However, our paper focuses on addressing the challenges of time efficiency and fault
tolerance in cloud-based object storage systems, specifically in the context of erasure
coding. It aims to analyze existing time efficiency mechanisms and fault tolerance
mechanisms in cloud-based object storage and propose innovative strategies and op-
timizations to improve them. The paper plans to investigate factors such as data
access patterns, storage architectures, and network conditions to propose caching
mechanisms, data placement policies, and intelligent scheduling algorithms for opti-
mizing data retrieval and storage processes. The goal is to minimize access latency
and improve overall time efficiency. Additionally, the paper aims to assess the effec-
tiveness of current fault tolerance mechanisms in mitigating failures and ensuring
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data availability. It will explore various techniques and approaches to enhance fault
tolerance in cloud-based object storage systems. Overall, our paper focuses on ad-
dressing the challenges of time efficiency and fault tolerance in cloud-based object
storage systems and proposes innovative strategies and optimizations to improve
them. It aims to contribute to the field by analyzing existing mechanisms and
proposing new approaches for enhanced performance.

The three papers share several similarities in their approach and focus. They all
center around evaluating storage systems in distributed environments and assessing
their performance and fault tolerance capabilities. The papers compare different
coding or replication schemes, such as replication and erasure coding, and explore
their advantages and disadvantages. They employ similar performance metrics,
including response time, upload/download speeds, storage overhead, and fault re-
covery time, to evaluate the effectiveness of the studied systems. Additionally, all
three papers utilize experimental methodologies, either using real-world or synthetic
datasets, to simulate various scenarios and collect data. They also acknowledge the
consideration of emulated environments and discuss the implications on the exper-
imental results. Overall, these similarities highlight the shared objectives of evalu-
ating distributed storage systems, comparing different mechanisms, and addressing
challenges like fault tolerance and scalability [21].
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Chapter 7

Conclusion and Future Works

7.1 Conclusion

After analysing all the results from our findings, we found that it takes longer when
data fragment increases . The longer time it takes to process files in your cloud
storage system it increases the delay of our system. Our main purpose is to increase
time efficiency so that we can build such a storage stage system where it will take
less time to process files and we can minimise the delay. After minimising the de-
lay , we can create a friendly and efficient environment. After analysing the data
for fault tolerance we can see there is a relative error for every scheme we imple-
mented. We can work on this error for future improvement . Several remedies can
be implemented like Load Balancing, Scaling, Effective Resource Allocation, Asyn-
chronous Operations, Network Optimization, Algorithmic Optimizations to reduce
fault tolerance .

7.2 Minimizing Delays

The outcome demonstrates that waiting times are growing exponentially as size in-
creases. Swift’s object storage system’s speed and user experience can suffer from
prolonged waiting times in a number of ways. Reduced throughput, increased la-
tency, resource inefficiency, increased network congestion, poor scalability, etc. are
some negative outcomes. Waiting time can be caused by various factors, including:
Resource Allocation: Before a process can run, it may need to wait for system re-
sources like CPU time, memory, or I/O devices to become available. This waiting
period is frequently brought on by competition for limited resources among many
processes.

Synchronization: Waiting time can happen in multi-threaded or multi-process
contexts when a process or thread must wait for a certain state or event to take
place before it can continue with its execution. Waiting for locks, signals, or other
synchronization systems may be necessary.

Input/Output (I/O) Operations: When a process performs input/output (I/O)
operations, it may need to wait for the completion of the I/O request, which may
entail waiting for data to be collected from storage devices or for network connec-
tivity to occur.
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In system design and optimization, waiting times must be kept to a minimum. Re-
ducing waiting times can boost system responsiveness, resource efficiency, and total
system throughput. System performance may be improved by using strategies like
effective resource allocation, parallel computing, and asynchronous I/O. Through ef-
ficient resource management, load balancing, improved scheduling algorithms, and
infrastructure scalability, efforts should be made to reduce waiting times in Swift.
The system can increase speed, user experience, and better manage high-demand
circumstances by cutting down on waiting time.

Several remedies can be implemented to address the issues caused by waiting time
in Swift and enhance the system’s efficacy and user experience:

1. Load balancing: Use load balancing strategies to divide the burden equally among
many Swift cluster nodes or servers. This lessens waiting times brought on by re-
source contention and helps minimize resource over utilization on particular nodes.

2. Scaling: Ensure that the Swift infrastructure is properly scaled to manage grow-
ing workloads and meet expanding storage needs. In order to reduce waiting times,
scaling may require boosting network bandwidth, adding additional storage nodes,
or increasing the capacity of already-existing resources.

3. Effective Resource Allocation: Swift system resource allocation should be opti-
mized to avoid unused resources and shorten wait times. Use smart resource manage-
ment strategies to dynamically assign resources depending on demand, guaranteeing
effective use and reducing resource contention.

4. Caching: Use systems for caching to keep frequently requested or hot data closer
to users or applications, minimizing the requirement to get data from the underlying
storage infrastructure. For frequently requested material, caching may drastically
reduce latency and waiting time.

5. Asynchronous Operations: When feasible, use asynchronous operations to enable
the processing of many requests simultaneously. Throughput for the system as a
whole is increased and waiting times for individual requests are decreased because
to Swift’s ability to manage several jobs concurrently.

6. Network Optimization: Reduce network congestion and delays by optimizing net-
work setups and protocols. To provide swift data transfer and little waiting time,
this might entail designing effective routing algorithms, leveraging quality of service
(QoS) methods, and improving network architecture.

7. Performance Monitoring and Analysis: Keep track on the Swift system’s perfor-
mance, gather pertinent metrics, and examine performance information to pinpoint
areas that might use improvement. This makes it possible to proactively identify
bottlenecks and fine-tune the system to shorten wait times.

8. Algorithmic Optimizations: Assess and improve the Swift-based algorithms and
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procedures used for data storing, retrieval, and erasure coding. To reduce wait times
and boost system effectiveness, this entails refining encoding/decoding algorithms,
data placement tactics, and data access patterns.

By putting these ideas into practice, waiting times in Swift may be decreased, im-
proving system speed, lowering latency, better resource use, and improving user
experience.

7.3 Advancing Model Implementation for Future

Work

Lastly, we know that data structure is a very important aspect in terms of organiz-
ing and storing data in the distributed storage system. Storing Big data has been a
challenging task for many computer engineers and cloud computing engineers. To
store the data efficiently and tried to build different methodologies mentioning era-
sure coding as the prime and efficient way to store big data. In fact, they build a
modified erasure coding by using PyECLib. The main objective is to store data in
such a way that will minimize the cost rate and bandwidth problems using modified
erasure code with the help of python libraries. Now, the main process of organizing
the data in this case is to divide the original data into multiple parts using parity bits
in different partitioned disks. To further enhance the data structure in the storage
system, we can use the Tree structure data model. Because a tree data structure
does not store information sequentially, it is a non-linear data structure. It has a
hierarchical structure since the Tree’s parts are organized on different levels. The
uppermost node in a tree data structure is referred to as the root node. Data can
be of any type and are present in each node.

The main advantage of storing data in this mode is that we can improve the practi-
cality and efficiency of the data insertion in the available disks. Another important
feature that we can add is by improving the different sizes of the data in each node.
A general code of C++ for Tree Structure Data in EC is given below:
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Figure 7.1: Tree Structure Data Model

In the distributed system while storing the data, we initialize the size of nodes and
create a root node where all nodes will be attached one after another.

Sometimes, the encoding process may operate as redundancy. Data stored in object
storage is kept as separate objects. In addition to the data itself, each object also
comprises metadata and a special identification number. A high level of abstraction,
as well as quick performance and scalability, are all benefits of object-based storage,
which can be seen as a hybrid of file and block storage.
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