
Research on the latest trends in Bangla Named Entity
Recognition

by

Niloy Farhan
23341028

Saman Sarker Joy
20101114

Tafseer Binte Mannan
20101256

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
School of Data and Sciences

BRAC University
May 2023

© 2023. BRAC University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
BRAC University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Niloy Farhan
23341028

Saman Sarker Joy
20101114

Tafseer Binte Mannan
20101256

i

Approval
The thesis/project titled “Research on the latest trends in Bangla Named Entity
Recognition” submitted by

1. Niloy Farhan(23341028)

2. Saman Sarker Joy(20101114)

3. Tafseer Binte Mannan(20101256)

Of Spring, 2023 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science on May 2023.

Examining Committee:

Supervisor:
(Member)

Dr. Farig Yousuf Sadeque
Assistant Professor

Department of Computer Science and Engineering
BRAC University

Program Coordinator:
(Member)

Dr. Md. Golam Rabiul Alam
Professor

Department of Computer Science and Engineering
BRAC University

Head of Department:
(Chair)

Dr. Sadia Hamid Kazi
Chairperson and Associate Professor

Department of Computer Science and Engineering
BRAC University

ii

Ethics Statement
We hereby declare that this thesis is based on our own findings from our own research
discoveries. All other sources used in this work have been properly acknowledged.
Furthermore, we confirm that this thesis has not been submitted or presented, either
in its entirety or partially for the purpose of receiving a degree from any other
educational institution or university.

iii

Abstract
Named Entity Recognition (NER) is a sub-task of Natural Language Processing
(NLP) that distinguishes entities from unorganized text into predefined categoriza-
tion. In recent years, a lot of Bangla NLP subtasks have received quite a lot of
attention; but Named Entity Recognition in Bangla still lags behind. In this thesis,
we explored the existing state of research in Bangla Named Entity Recognition. We
tried to figure out the limitations that current techniques and datasets face, and we
would like to address these limitations in our research. Additionally, we developed
a Gazetteer that has the ability to significantly boost the performance of NER. We
also proposed a new NER solution by taking advantage of state-of-the-art NLP tools
that outperform conventional techniques.

Keywords: NER; NLP; Transformers; BERT; Gazetteer;

iv

Dedication
We want to dedicate all of our sacrifices and educational efforts to our great parents,
without whom we would be worthless. We also dedicate our thesis to Dr. Farig
Yousuf Sadeque sir, who served as our supervisor, guided us, and showed us how to
develop our skills and personalities as successful professionals.

v

Acknowledgement
We extend our gratitude to the Great Almighty for guiding us through the com-
pletion of our thesis without any major setbacks. Our appreciation also goes to
our supervisor, Dr. Farig Yousuf Sadeque, for his invaluable support and guidance
throughout the process. Lastly, we are grateful for the unwavering support of our
parents, without whom this achievement would not have been possible.

vi

Table of Contents

Declaration i

Approval ii

Ethics Statement iii

Abstract iv

Dedication v

Acknowledgment vi

Table of Contents vii

List of Figures ix

List of Tables x

Nomenclature xi

1 Introduction 1
1.1 Named Entity Recognition in Bangla 1
1.2 Problem Statement . 3
1.3 Research Objectives . 4

2 Literature Review 5

3 Description of the Data 8
3.1 MultiCoNER Dataset . 8

3.1.1 Formation of MultiCoNER’s Bangla Dataset 10
3.1.2 Dataset Statistics . 11
3.1.3 Bangla (bn) Dataset Statistics 12

3.2 Supplementary Dataset . 13
3.2.1 Gazetteers . 13
3.2.2 Difficulties of Forming Gazetteers in Bangla 13
3.2.3 Our Bangla Gazetteer Formation 14

3.3 Data Analysis . 18
3.3.1 Large Test Data . 18
3.3.2 Irregularities in the Punctuations 18
3.3.3 Presence of Foreign Words . 19

vii

3.3.4 Word Frequency . 19
3.3.5 Imbalanced Dataset . 20
3.3.6 Alignment of tags after tokenization 20

4 Description of the Model 22
4.1 Two Layer BiLSTM Network . 22

4.1.1 LSTM . 23
4.1.2 BiLSTM . 24

4.2 Single Transformer-Based Network 25
4.2.1 Token and Position Embedding 25
4.2.2 Transformer . 26

4.3 Fine-Tuned BanglaBERT . 27
4.3.1 BERT . 27
4.3.2 ELECTRA . 29
4.3.3 BanglaBERT . 30
4.3.4 Fine-tuned BanglaBERT Base 30
4.3.5 Fine-tuned BanglaBERT Large 31
4.3.6 Custom Categorical Cross Entropy Loss Function 33

4.4 Clustering Algorithm . 34
4.4.1 K-means Clustering Algorithm 34

4.5 Feature-Based Learning . 35
4.5.1 Conditional Random Fields 35
4.5.2 Feature Engineering . 36
4.5.3 CRF Model Strategies . 42

5 Result and Analysis 44
5.1 Baseline Performance . 44
5.2 BanglaBERT Performance . 45
5.3 CRF Performance . 46

5.3.1 What CRF Classifier Learned 48
5.3.2 CRF Model State Features 49

5.4 Result Comparison . 50

6 Conclusion 52

Bibliography 54

viii

List of Figures

1.1 NER Example in Bangla . 1

3.1 BIO Tags . 9
3.2 Percentage of Each Class in Training and Test Data 12
3.3 Workflow of the formation of our gazetteer 14
3.4 An Example of SPARQL Query for WikiData 14
3.5 Total Number of Each Tag in our Gazetteer 16
3.6 Trie Data Structure . 17
3.7 Presense of foreign language . 19
3.8 Frequency of words in Training Data 19
3.9 Class Distribution of Training and Validation Data 20

4.1 Two Layer BiLSTM Network Workflow 22
4.2 A single cell of LSTM . 23
4.3 Structure of BiLSTM . 24
4.4 Single Transformer-Based Network Workflow 25
4.5 Transformer Model . 26
4.6 BERT Base Structure . 28
4.7 BERT Large Structure . 28
4.8 ELECTRA Structure . 29
4.9 Fine-tuned BanglaBERT Base Model 30
4.10 Fine-tuned BanglaBERT Large Model 31
4.11 K-means Clustering . 34
4.12 CRF . 35
4.13 Example of POS Tag . 37
4.14 Example of POS Tag . 38
4.15 Gazetteer as Features . 39
4.16 BanglaBERT Embeddings with K-means 40
4.17 CRF Model F . 43

5.1 Comparion of all Models in MultiCoNER 1 Dataset 51

ix

List of Tables

3.1 Contribution of Each Domain . 10
3.2 Class Distribution of Train Test and Dev of Bangla Data 12
3.3 Total Number of Each Tag in our Gazetteer 15
3.4 Gazetteer Representation of Words of a Sentence 17
3.5 Before and After of Punctuation Removal 18
3.6 Allignment Issue after Tokenization 21
3.7 After Fixing Alignment Issue . 21

4.1 Custom Loss Weights . 33
4.2 Transforming BanglaBERT Large’s Raw Embeddings 41
4.3 CRF Model Strategies . 42

5.1 Baseline Performances . 44
5.2 BanglaBERT Performances . 45
5.3 CRF Performances . 46
5.4 Our Best Models Performances . 50
5.5 Performance Comparison with other state-of-the-art Models 50

x

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

BERT Bidirectional Encoder Representations from Transformers

Bi� LSTM Bidirectional LSTM

CNN Convolutional Neural Network

CRF Conditional Random Fields

DL Deep Learning

ELECTRA Efficiently Learning an Encoder that Classifies Token Replacements
Accurately

F1 Balanced F-Score

GRU Gated Recurrent Unit

LSTM Long Short-Term Memory

MEMM Maximum-Entropy Markov Model

ML Machine Learning

NE Named Entity

NER Named Entity Recognition

NLP Natural Language Processing

xi

Chapter 1

Introduction

1.1 Named Entity Recognition in Bangla
Named Entity Recognition (NER) is a significant initial step in Natural Language
Processing (NLP) tasks. It has been widely used in machine translation, information
extraction, automatic question-answering, natural language understanding, text-to-
speech synthesis, etc. NER identifies text segments that make up proper nouns and
tags the entities from unstructured text into a predefined class. Generally, the most
common entity tags are: the name of a person (PER), the name of a company or
organization (ORG), the name of a place (LOC), and the geo-political entity (GPE).
But this can be reduced or extended based on the annotated corpus. An example
of Bangla NER is shown in figure 1.1.

Figure 1.1: NER Example in Bangla

NER systems can use a Rule-based approach, Machine Learning (ML) or Deep
Learning (DL) approach, or using Hybrid approach. These are the only guidelines
that a rule-based NLP system needs to classify the language and to analyze it [1].
This method can be used for a particular language depending on its grammatical
structure. Usually, it is done by using RegEx. RegEx, or regular expression, is a tool
for finding matches among characters in a string. This property to detect character
combinations is very vigorous. Compared to machine learning techniques, this type
of NE (Named Entitiy) Rule Base approach exhibits greater accuracy. But this is
hard to maintain as it is language dependent and the set of rules can be huge and
complicated. Furthermore, the use of ML and DL is more popular in NER systems
as these are easy to train and less expensive. A hybrid NER system is made by
merging the rule-based method and the statistical ML or DL methods.

1

The seventh most popular language in the world is Bangla [2]. But very few notable
works have been done in the field of NLP in this language compared to English. We
examined the current state of named entity recognition research in Bangla in this
thesis. To address these limits in our research, we had investigated the limitations
that current approaches and datasets confront. In our research, we had discussed
the poor performance of typical deep-learning methods and came up with the idea
of a knowledge-based approach. We created Gazetteer which is a set of entity lists
of each tag that can be used as an external knowledge source for neural network
models which we made publicly available. Our Gazetteer showed promising im-
provement in the NER classification task. Furthermore, we have experimented with
BanglaBERT models and tried to improve them with our custom weighted cross
entropy loss function which we have discussed in detail in the upcoming section. Fi-
nally, we experimented with different models with different features and strategies
and based on our findings, we have proposed a completely new NER solution which
is a CRF model with Gazetteer and BanglaBERT embeddings that achieved 0.8267
Macro F1 score in MultiCoNER 1 dataset, significantly outperforming conventional
techniques.

2

1.2 Problem Statement
The development of the Named Entity Recognition System in English and a few
other languages is remarkable. The English language especially has a large amount
of Named Entity annotated corpora. In contrast, in the NLP community, despite
being the 7th most widely spoken language across the world, Bangla is still now
considered as a low-resource language.

Firstly, the Bangla language does not have a sufficient amount of Named Entity
annotated corpus compared to English and other languages. At the time of our re-
search, the existing datasets were mostly extracted from Bangla online newspapers.
But these were not enough to represent the vast diversity of the Bangla Language.
Another problem that researchers faced while working with Bangla Language is the
lack of special features such as Capitalization. Most of the work in Bangla NER has
been done using Machine Learning models such as Support Vector Classifier, Max-
imum Entropy Markov Model (MEMM), CRF (Conditional Random Field), and
Deep Learning Models such as Bi-directional LSTM (Long Short-Term Memory),
GRU (Gated recurrent unit), CNN (Convolutional Neural Network). As the output
tag of NER can have different numbers of entities based on the corpus and task,
there was a lack of a general NER system with very high accuracy.

In light of this, the concern might be: whether we could develop a cutting-edge
system for Bangla NER. Yes, there has been a great deal of research done in this
field in the English language. We, therefore, thought that we could apply the latest
NLP methodologies in Bangla.

Hence, the concern this research is attempting to address is:

Can we create a reliable Bangla NER System using the state-of-the-art
NLP techniques and deep learning model?

By evaluating the status of Bangla Natural Language Processing, this research pro-
vided an answer to the aforementioned query.

3

1.3 Research Objectives
As the NER plays a vital role in information extraction, machine translation, etc.,
a reliable system is much needed for Bangla Language. Therefore, our research was
aimed to develop a system for Bangla NER which should be able to provide the
highest score accuracy and F1 score by implementing and experimenting with state-
of-the-art NLP techniques and models of deep learning such as Transformer Models,
etc.

1. Achieve a thorough understanding of Natural Language Processing and its
functioning as well as expertise in latest Machine Learning and Deep Learning
Techniques.

2. Understand the current drawbacks of NER models and provide solutions.

3. Create a knowledge base that can be used by different models.

4. Develop a model for recognizing named entities in Bangla and evaluate the
performance of the model.

5. Provide suggestions for enhancing the performance of the model.

4

Chapter 2

Literature Review

NER, or Name Entity Recognition, is a subtask within Natural Language Processing
(NLP) that is responsible for identifying and extracting specific entities. Over many
years lots of research work has been done with NER in different languages. Recently,
several supervised learning-based models and rule-based models were proposed.

In the paper [3], the authors have experimented with the combination of three
approaches: Dictionary-based NE detection, Rule-based NE detection, and n-gram-
based NE detection. They created the dataset from Bangla daily newspaper. Then
they took a portion for the years 2001-2003 for training their system and took a por-
tion from 2004 for testing. Their model was able to achieve 85.50% recall, 94.24%
precision, and 89.51% F1 score.

In another study [4], the author proposed a machine learning-based model for the
NER system. To categorize the named items from the Bengali language, they used a
Maximum Entropy Markov Model (MEMM). According to them, the Maximum En-
tropy Markov Model can handle complex sequences better than previous approaches.
Additionally, to improve their MEMM performance, they defined a rich set of lin-
guistic features for their model’s training. This rule base approach has been merged
with the MEMM which is helping to improve the score. They have gathered a few
articles in Bangla from different Bangla news websites. They searched articles where
they identified numerous named entities since they are working with the designated
entity here. Their corpus had 10,000 words that were taken from 690 sentences in
total. They received an F1 score of 68.98% from the MEMM model alone and an
F1 score of 71.59% from the combined model.

In this paper [5], they have focused on information extraction by using two tasks:
NER and Relation Extraction. In this work, the NER system has been implemented
for Bangla language system. For the dataset, a unique dataset is created. More than
71,000 Bangla sentences have also been collected, annotated, and categorized into
groups in their dataset using the IOB tagging scheme. They tested two different
models for the classification task. At first, they used CNN based models. But it was
outperformed by their second approach which was made with a Densely Connected
Network (DCN). Their model worked resulting in having an F1 score of 63.37%.

In their research [6], the authors focused on POS tagging and Name Entity Recog-

5

nition in the Bangla language, emphasizing that NER is a crucial aspect in NLP for
information extraction. To accomplish this, they created two distinct datasets for
POS tagging and NER by compiling news articles from different varieties on different
Bangla online news portals, utilizing standard tags and tagging methods. To solve
these two tasks separately, a different deep neural network has been used. Their
approaches were end to end, there are no handcrafted features like word suffixes
or affixes, gazetteers, or dictionaries. For this work, deep neural network models
have been implemented - Bi-directional Long short-term memory (BLSTM), Con-
volutional Neural Network (CNN), Conditional Random Field (CRF), and LSTM.
They achieved a 0.6285 F1 score with their model in the NER task.

According to the author of the [7] paper, they experimented with eleven differ-
ent architectures consisting of BERT (Bidirectional Encoder Representations from
Transformers) layer, BiLSTM layers, linear layers, a dropout layer in between and
a CRF layer. They used the dataset from Karim et al. [8] where 72000 Bangla
sentences were annotated. Their highest score was achieved with BERT + BiLSTM
+ CRF + CW with a macro averaged F1 score of 65.96% and micro-averaged F1

score of 90.66%.

There are some notable works done in order to build NER annotated corpus.

The [9] paper is dedicated to a corpus annotated with seven named entities (Person,
Location, Organization, Facility, Time, Units, Misc.) with a discreet attention on
Bangladeshi Bangla. They have worked on baseline results as well. They collected
newspaper stories from several newspapers and annotated them for the dataset.

In the [10] research paper, they worked with a large curated Bangla Articles Dataset
and many supervised learning models were proposed for analyzing these data. Ac-
cording to them, there is a very a smaller number of curated Bangla datasets so
they themselves curated a huge dataset from Bangla articles from different news
sites containing 3,76,226 articles. Applying to pre-process (removal of punctua-
tions, stopwords, etc.) they got a set of words frequency. TF-IDF and Word2Vec
approach has been used in this paper. Although this is a large dataset, it is not
annotated for the NER task.

From the above discussion, it is observed that in the above research papers mostly
deep learning models like Long Short-Term Memory (LSTM), and Bi-directional
Long short-term memory (BLSTM) have been used for Bangla name entity recog-
nition. And not every model could give perform reliably enough performance like
English, Chinese or other languages. As Bangla NER is a very unique work, the
technique should not be limited. Recently transformer models of deep learning have
come to light, such new technology should be implemented for a better and more
accurate score.

In the [11] research paper, the author proposed a knowledge based system. They
were working with the MultiCoNER 1 dataset which is similar to us. They built a
multilingual knowledge base which works on Wikipedia. The goal of this base is to
provide related context information to the NER model. The system retrieves related

6

context from the knowledge base when an input sentence is given and augments the
context information with the original sentence. This approach wins 10 out of 13
categories in the MultiCoNER task. They were able to achieve 0.8351 Macro F1

score in the test data.

The [12] paper introduced us with BanglaBERT and BanglishBERT. BanglaBERT
has a base and a large model both of which are based on BERT. In their paper,
they discussed how they collected data for pretraining the models. They pretrained
BanglaBERT using ELECTRA. For zero-shot cross-lingual transfer, their Banglish-
BERT achieved 55.56 Micro F1 score and supervised fine-tuning, their BanglaBERT
model gained 77.78% Micro F1 score in MultiCONER dataset.

In another study [13], the author presented a novel method or Named Entity Recog-
nition (NER) using a Bidirectional Long Short-Term Memory (LSTM) Conditional
Random Field (CRF) model. By employing both forward and backward contextual
information through bidirectional LSTM layers and including a CRF layer to rep-
resent the dependencies among the predicted entity labels, the authors address the
difficulties of NER. The dataset they used contains four different types of named
entities: Person (PER), Organization (ORG), Location (LOC) and Miscellaneous
(MISC). The proposed model’s efficacy is demonstrated in the study through ex-
periments on benchmark datasets, highlighting both its capacity for cutting-edge
performance in NER tasks and its potential for numerous applications in natural
language processing. Their model was able to achieve a 90.84% F1 score.

7

Chapter 3

Description of the Data

3.1 MultiCoNER Dataset
The dataset we decided to use in this thesis is MultiCoNER [14]. The MultiCoNER
dataset we have utilized, is a comprehensive multilingual dataset for Named Entity
Recognition. This dataset comprises 3 different domains (encyclopedia sentences,
QA questions, and Web queries) across 11 languages. It has a large amount of data
collected from sources such as Wikipedia, queries and questionnaires. The 11 lan-
guages included in the dataset range from well-resourced languages like English to
those with limited resources like Farsi, in order to represent a diverse range of lan-
guages and writing systems. MultiCoNER includes 13 distinct subsets, consisting
of 11 monolingual subsets for the aforementioned languages, a multilingual subset
(MULTI) and a code-mixed subset (MIX). The subsets were categorized into Mono-
lingual, Multilingual and Code-mixed.

The MultiCoNER dataset includes 11 languages such as 1. Bangla (BN), 2. Hindi
(HI), 3. German (DE), 4. Chinese (ZH), 5. Korean (KO), 6. Turkish (TR), 7.
Dutch (NL), 8. Russian (RU), 9. Farsi (FA), 10. English (EN), 11 Spanish (ES).
Long-tail entity distributions, syntactically complicated entities like movie titles,
low-context scenarios (brief, uncased text), and low-context scenarios are just a few
of the issues that the dataset is intended to convey. Additionally, this dataset is
considered particularly significant and relevant as it is the first time, a multilingual
dataset for Named Entity Recognition has been created for Bangla. The dataset is
complex and aimed at advanced Named Entity Recognition.

MultiCoNER was built on the WNUT 2017 [15] entity type taxonomy, which en-
ables the identification of a wide range of entities, including those with more complex
structures such as creative works. The NER tag-set used in this dataset includes six
classes:

1. PER: Names of individuals

2. LOC: Places and physical facilities

3. CORP: Corporations and businesses

4. GRP: Additional group types

8

5. PROD: Consumption Products.

6. CW: Creative works titles like movies, songs & books.

MultiCoNER dataset used BIO tags which are a widely used annotation scheme for
labeling words in a sentence as a named entity or not. The BIO notation stands for
”Begin, Inside, Outside”. The initial word of a named entity is identified as ”B-tag”,
where tag is the named entity class, and the subsequent words within the same
named entity are labeled as ”I-tag”. Any other words that are not part of a named
entity are labeled as ”O”. For example, if we have a sentence ”Barack Obama is the
President of the United States.” and we want to extract ”Barack Obama” as ”PER”
(person) named entity and ”United States” as ”LOC” (location) named entity, the
annotation would be ”B-PER, I-PER, O, O, O, O, B-LOC”. This scheme is useful
because it allows the model to not only identify when a named entity starts, but
also when it ends. The tag of MultiCoNER is illustrated in figure 3.1

Figure 3.1: BIO Tags

9

3.1.1 Formation of MultiCoNER’s Bangla Dataset
The MultiCoNER dataset comprised eleven different languages, and three distinct
domains (information database sentences, questions from Question Answerings, and
internet inqueries). The dataset is constructed by three different subsets:

LOWNER: This subset is composed of encyclopedic sentences extracted from vari-
ous localized versions of Wikipedia. Using Wikidata as a base, sentences were chosen
with low context and entities were linked to the appropriate entity types, according
to the Named Entity Recognition class taxonomy. A manual look-over of four hun-
dred sampled EN sentences revealed that the Named Entity Recognition gold labels
are quite accurate in 94% of the cases.

MSQ-NER: This subset is created from the MS-MARCO Question and Answer
corpus [16] by extracting question impressions, putting the entities with their NER
variety (MultiCoNER NER taxonomy) and translating them into other languages.
Entities in the questions are identified using spaCy.

ORCAS-NER: Similarly, this subset is created by extracting templates from Web
user queries from the ORCAS dataset [17] and translating them into different lan-
guages. Instances are generated from each template by replacing the designated
spots with actual named entities in the target languages, creating multiple varia-
tions of the original template.

To create the dataset of Bangla, Google Translation API and other automatic trans-
lation techniques were used. The total number of Bangla data in MultiCoNER is
133,119, where LOWNER is 15,698, ORCAS-NER is 100,000 and MSQ-NER is
17,421. Translation quality for languages such as Bangla, Chinese, German and
Hindi in LOWNER, ORCASNER, and MSQ-NER is exceptional, boasting an ac-
curacy rate of over 90%. Contribution of each domain is presented in the table 3.1

lang LOWNER ORCAS-NER MSQ-NER
BN 15,698 100,000 17,421

Table 3.1: Contribution of Each Domain

10

3.1.2 Dataset Statistics
To corroborate that the Named Entity Recognition results obtained from this dataset
are consistent and can be replicated, it has been divided into three prearranged sets
for training, development, and testing. 15,300 training and 800 development data
are instances available for each language. The vast majority of instances in the train-
ing splits are from the Wikipedia domain (LOWNER), while only 100 instances—50
each from the domains of Web Questions (MSQ-NER) and Web Query (i.ORCAS-
NER) - represent domain-adaptation data.

The test splits are substantially bigger. According to MultiCoNER’s authors, this
is done primarily for two reasons:

1. To evaluate how well the NER models works on unknown and complicated
words

2. To evaluate the effectiveness of NER models for cross-domain adaptation

11

3.1.3 Bangla (bn) Dataset Statistics
Our work focuses solely on the Bangla language. We aimed to work with Bangla
NER, hence we have explained the Bangla language part among all the 11 languages
included in this MultiCoNER dataset.

There are a total of 149, 219 sentences in the whole BN split of the MultiCoNER
dataset. This BN data is separated into three different sets for training, develop-
ment, and testing purposes.

For the training data split, there are 15,300 sentences (10.25%). To evaluate model
generalizability, a random sample of 800 (0.53%) sentences per subset was selected
from the LOWNER domain and used as the Development data split. The Testing
data set comprised the remaining instances that were not part of the Training or De-
velopment data. It has a total of 133,119 sentences (89.21%). As previously stated,
the training data was fairly large because it should help us to evaluate how well our
NER models work on unknown and complicated words. The class distribution of
train, test and dev of Bangla data is presented on table 3.2 and percentage of each
class in training and test data is visualized in figure 3.2.

class PER LOC GRP CORP CW PROD #TOTAL
TRAIN 2,606 2,351 2,405 2,598 2,157 3,188 15,300
DEV 144 101 118 127 120 190 800
TEST 24,601 29,628 19,177 20,066 21,280 20,878 133,119

Table 3.2: Class Distribution of Train Test and Dev of Bangla Data

Figure 3.2: Percentage of Each Class in Training and Test Data

12

3.2 Supplementary Dataset
3.2.1 Gazetteers
The word gazetteer means a geographical dictionary or directory used in conjunc-
tion with a map or atlas. However, in NER research area, the word “gazetteer” is
used interchangeably for both the set of entity lists and for the processing resource
that uses those lists to find occurrences of named entities in texts.

There has been many research on this Gazetteer technique and it has shown promis-
ing improvements to tasks like NER. From the paper [18], we can see that the im-
plementation of gazetteer has an impact on the overall performance of their NER
system. Without it they were getting a F1 score of 0.771 in CRF Models, however,
with the help of gazetteers it was boosted to 0.816.

3.2.2 Difficulties of Forming Gazetteers in Bangla
It is a huge challenge to form an entire set of gazetteers in Bangla language. The
information is mostly incomplete and not updated properly. It can be difficult and
time-consuming to gather correct and current information for a gazetteer. It’s also
difficult to create a thorough and precise gazetteer in Bangla because some regions
are off-limits or have scant information available. We know there are many areas in
Bangladesh that may have local dialects which are tough to understand and gathered
for proper documentation. Additionally, it can be difficult to translate information
from regional dialects into Bangla, particularly if there are no accepted spellings or
pronunciations. Also the resources in the Bangla language are very limited. Some
words are found easily in English but not in Bangla. Bangla language also has a lot
of English words that are used the way they are. Bengali names and entities can
have various forms and transliterations. There can be multiple ways to represent
the same entity due to different spelling conventions, variations in pronunciation,
and transliteration from other scripts.

But despite all these challenges and difficulties it has been possible to develop
gazetteers and it is now an ongoing process. Some of the major organizations
involved in this work include the Bangladesh Bureau of Statistics, the Survey of
Bangladesh, and the National Institute of Local Government. Beside this in many
research works in NER, a proper set of Bangla gazetteers have been formed and
used as well.

13

3.2.3 Our Bangla Gazetteer Formation
We have created a Gazetteer in this research. The whole workflow of the formation
of our gazetteer is given in figure 3.3.

Figure 3.3: Workflow of the formation of our gazetteer

Extracting Bangla Data from Wikidata
We have collected a huge amount of data for each of the tags (LOC, PER, CORP,
GRP, PROD, CW). The source we mainly used is Wikidata. Wikidata acts as central
storage for the structured data of its Wikimedia sister projects including Wikipedia,
Wikivoyage, Wiktionary, Wikisource, and others. We have used Wikidata Query
Service where we have put different queries like this and got the desired data.The
queries are written in SPARQL language. One example query that we used to make
the gazetteer is given in 3.4.

1 LIMIT 1000.
2 SELECT ?location ?locationLabel
3 WHERE {
4 ?location wdt:P31/wdt:P279* wd:Q486972.
5 SERVICE wikibase:label { bd:serviceParam wikibase:language "bn". }
6 }

Figure 3.4: An Example of SPARQL Query for WikiData

Using these queries, we extracted several CSV files containing a lot of Bangla data
for each of the NER tags we focused on. However, we couldn’t get enough data
using it for some tags.

Manual Scraping of Bangla Data
Apart from the data we got from Wikidata, we also scraped a lot of websites includ-
ing Wikipedia and newspaper portals to gather Bangla data. For scraping, we used
frameworks like BeautifulSoup which is a Python package made for web scraping.
However, as those data were randomly gathered, we had to manually hand-pick the
data according to our tags. We especially did this for PROD and CW as the number
of Bangla Wikidata of these were significantly low.

14

Using English Data
As we were exploring with Wikidata, we found that the amount of English data on
this was enormous. So, like how we gathered the Bangla Data, we also gathered
a lot of English data according to the tags required. We used both Wikidata and
manual scraping for this as well. Then with the English data, we did two things:

1. Translation: We translated the English data to Bangla data as it is. For
example, “Hilsa Fish Fry” is translated to “ই�লশ মাছ ভাজা”. We did this using
the help of Google API translation tool.

2. Transliteration: Transliteration refers to the method of mapping from one
system of writing to another based on phonetic similarity. We transliterated
the English data to Bangla data. We did this because some foreign words
in Bangla are written based on the foreign phonetics. For example, if we
translated “Chicken fry” in Bangla it would be translated into “মরু�গ ভাজা”.
However, in Bangla, we do not use “মরু�গ ভাজা” in our sentences instead we use
it as “�চ�কন ফ্রাই”. That’s why we kept both the translated and transliterated
version in the gazetteer.

Cleansing the Data
As we were working on a large list of words, there were some broken words and
some unnecessary punctuations here and there. We cleaned the data by removing
all these unnecessary punctuations and broken words. Then we also removed any
duplicate words. For doing all these we made some custom Python scripts and also
did some manual inspection.

After collecting all 93,749 data, the distribution of each tags is given in table 3.3
and figure 3.5.

NER Tags Number of data
PER 26296
CW 20446
LOC 16617

CORP 13737
GRP 10517

PROD 6136

Table 3.3: Total Number of Each Tag in our Gazetteer

15

Figure 3.5: Total Number of Each Tag in our Gazetteer

Trie Data Structure
This data structure follows a treelike structure where every node represents a single
character. The root of the tree is an empty string and the edges are the characters
which stay connected with the nodes. The nodes can have multiple child nodes.
The string can be reconstructed which is connected to the nodes by traversing the
tree from the root to that node.

This data structure provides the fastest search operations. It is very good at retriev-
ing the strings that include a specific prefix. You can quickly explore all descendants
and extract all matching strings by moving up the tree from the root to the node
that corresponds to the prefix. Because of this, Trie is especially beneficial for ap-
plications and autocomplete systems that require prefix-based searches. Moreover it
can sort automatically. As it has a tree-like structure, traversing the Trie from root
to leaf nodes will provide strings that are sorted. The figure 3.6shows an example of
Trie. We created a Trie Data Structure where we inserted all the gazetteer words.
We modified the node class so that it can return us their corresponding NER tags.
As we have 93,749 entities, by using Trie DS, we can quickly find if given token is
present in gazetteer or not. The time complexity of searching in Trie Data Structure
is O(N) where N is the length of the string.

16

Figure 3.6: Trie Data Structure

We have also implemented a function that takes a Bangla sentence as input and
it gives corresponding one-hot vector representation for each word in the sentence.
For example - if we search this Bangla sentence “তানভীর �হা�সন ব্র্যাক �বশ্ব�বদ্যাল�য়
প��ন” we will get the following output like table 3.4.

Sentence One Hot Vector Tags
তানভীর [0,0,0,0,0,0,0,0,0,0,0,1,0] B-PER
�হা�সন [0,0,0,0,0,0,0,0,0,0,0,0,1] I-PER
ব্র্যাক [0,0,0,0,1,0,0,0,0,0,0,0,0] B-CORP

�বশ্ব�বদ্যাল�য় [0,0,0,0,0,1,0,0,0,0,0,0,0] I-CORP
প��ন [0,0,0,0,0,0,0,0,0,0,0,0,0] O

Table 3.4: Gazetteer Representation of Words of a Sentence

17

3.3 Data Analysis
We have performed Exploratory Data Analysis (EDA) in the MultiCoNER dataset.
Our findings are presented below:

3.3.1 Large Test Data
At the very beginning of our data analysis, we saw that the amount of test data
(133,119 sentences) was overwhelmingly larger than the train data (15,300 sen-
tences), which is mainly done in order to make the model ready to deal with real-
world data. However, this means the features from our train data alone are not
sufficient enough for our models to perform a good result which can be reflected in
the baseline score (XLM-RoBERTa) of MultiCoNER’s paper [14].

3.3.2 Irregularities in the Punctuations
We noticed that in the tokens, there were a lot of irregularities in the punctuations
which sometimes caused issues. For example, a sentence ‘অ�নক চ�কা�লট! আ�ছ’ is
sometimes tokenized as <‘অ�নক’>, <‘চ�কা�লট!’> <‘আ�ছ’> <‘চ�কা�লট।‘> and
sometimes as <‘অ�নক’>, <‘চ�কা�লট’> <‘চ�কা�লট!‘> <‘আ�ছ।’> . The problem
arises as the tokenizer will detect <‘চ�কা�লট!‘> and <‘চ�কা�লট’> as two different
tokens which actually shouldn’t be the case. This occured when we were preparing
our data for our first two models: BiLSTM and Transformer Based Model. The
problem occurred a bit differently when we used the BanglaBERT tokenizer. The
way we handled that case is explained in section 3.3.6. To make our BiLSTM
and Transformer based model to work, we removed the punctuation from those
tokens where they are added as prefixes. We were careful while removing it, because
some tokens had only one punctuation and were tagged as ‘O’. We did not remove
those punctuation which were a single token. We also didn’t remove the period in
abbreviations of the words. The effect of our punctuation removal can be seen in
the table 3.5.

Before Removing Punctuation After Removing Punctuation
Sentence Word Tag Sentence Word Tag

2 (খাবার) I-PROD 2 খাবার I-PROD
23 যায়। O 23 যায় O
27 , O 27 , O
31 �ছাট। O 31 �ছাট O
43 ক�মউ�ন�ট, B-CW 43 ক�মউ�ন�ট B-CW

123 �প.এইচ.�ড O 123 �প.এইচ.�ড O

Table 3.5: Before and After of Punctuation Removal

18

3.3.3 Presence of Foreign Words
In the dataset, we also found words of some other languages such as Hindi, Farsi,
English, Chinese, and Russian. The presence of foreign language data in Bangla
Dataset can be caused by translation errors as we have discussed in the formation
of MultiCoNER Dataset. Some examples of foreign words in train data are given in
figure 3.7.

Figure 3.7: Presense of foreign language

3.3.4 Word Frequency
We calculated the word frequency of our dataset. Word frequency determines how
many times a word is being used in sentences. As we observed the word frequency
of the Bangla Datasets, from figure 3.8, we could see that in the train dataset 'এবং':
4346, 'এর': 3545, 'এক�ট': 3404, '�ত�ন': 2824, 'সা�ল': 2238 are the top 5 most frequent
words with their frequency. So, we saw that a large number of these words are
stopwords, which have “O” tags.

Figure 3.8: Frequency of words in Training Data

19

3.3.5 Imbalanced Dataset
One common problem of NER is, the most frequent class is ‘O’. This causes an
imbalance in the dataset. When there is an imbalance in a dataset, the model
is more likely to be biased towards the majority class and perform poorly on the
minority class. This can lead to poor overall performance, as well as skewed metrics
such as accuracy. In the MultiCoNER dataset, this problem was more extreme
because 83.5% the ‘O’ tag in training data. The detailed distribution of classes in
train and dev dataset is given in 3.9.

Figure 3.9: Class Distribution of Training and Validation Data

3.3.6 Alignment of tags after tokenization
Models like BanglaBERT base and BanglaBERT large use their BanglaBERT tok-
enizer. This tokenizer takes a sentence and breaks it into tokens with their input
ids and attention masks. However, this created a problem of misalignment of the
tags in the sentence. To visualize the alignment problem, the following example is
given in table 3.6.

To fix this issue, we have to manually iterate through the dataset, and align the
tags based on the tokens generated by the tokenizer. We had to fix the alignment
issue by creating a preprocessing function which was executed in the train, test and
validation dataset. This alignment function uses BERT tokenizer to tokenize the
sentence. Then it analyzes each token with its corresponding tags. As we have
noticed, the broken part of the word starts with “#” such as: “�হন�রচ” is broken
into “�হন�র” and “##চ”. We utilized this “#” to detect the broken word and as-
sign them to their original tag. The table 3.7 shows the output of this alignment
function.

20

Sentence: আরও জন��য়তা �ছল �হন�রচ ডু�মৌ�লন এর �লখার কার��।
Given Sentence

in Dataset
Given Tags
in Dataset After Tokenization Predicted Tag

By BanglaBERT
Comments while

measuring F1

আরও O আরও O Correct
জন��য়তা O জন��য়তা O Correct

�ছল O �ছল O Correct
�হন�রচ B-PER �হন�র B-PER Correct

ডু�মৌ�লন I-PER ##চ B-PER Misaligned
& Incorrect

এর O ডুম I-PER Misaligned
& Incorrect

�লখার O ##��ৌল I-PER Misaligned
& Incorrect

কার��। O ##��ন I-PER Misaligned
& Incorrect

[PAD] O এর O Misaligned
& Correct

[PAD] O �লখার O Misaligned
& Correct

[PAD] O কার�� O Misaligned
& Correct

[PAD] O । O Misaligned
& Correct

Table 3.6: Allignment Issue after Tokenization

Given Sentence
in Dataset

Given Tags
in Dataset

Preprocessed
Dataset

Aligned
Tag

আরও O আরও O
জন��য়তা O জন��য়তা O

�ছল O �ছল O
�হন�রচ B-PER �হন�র B-PER
ডু�মৌ�লন I-PER ##চ B-PER
এর O ডুম I-PER

�লখার O ##��ৌল I-PER
কার��। O ##��ন I-PER

এর O
�লখার O
কার�� O
। O

Table 3.7: After Fixing Alignment Issue

21

Chapter 4

Description of the Model

As we were dealing with data where understanding the context was extremely im-
portant, we tried two different deep learning architectures which are especially great
at time series prediction and Natural Language Processing. A detailed description
of our models are given below:

4.1 Two Layer BiLSTM Network
The architecture of the Two Layer BiLSTM Network is shown in figure 4.1.

Figure 4.1: Two Layer BiLSTM Network Workflow

At first, we used an embedding layer that has 300 dimensions for each token. Then
we used our first BiLSTM layer followed by a Feed Forward Neural Network(FFNN).
After that, the model has the second BiLSTM Layer which is again followed by the
second FFNN. Both BiLSTM and FFNN layers have 200 dimensions. Finally, we
used the time distribution layer to get our tags.

22

4.1.1 LSTM
A Recurrent Neural Network (RNN) type, Long Short-Term Memory (LSTM) [19],
has the capability to efficiently capture long-term dependencies in sequential data.
A standard RNN processes sequential data by passing the information from one
time step to the next through a hidden state, however, this hidden state can only
remember information for a short period of time. This makes it difficult for RNNs
to accurately model data with long-term dependencies, such as in natural language
processing tasks where the meaning of a word depends on the context of the entire
sentence. LSTMs address this problem by introducing an additional memory cell,
which can store information over a longer period of time. A memory cell in LSTM
is managed by three gates: input, forget, and output gates. The input gate decides
the portion of newly arrived data being saved in the memory cell, the forget gate
determines the amount of previous information to be kept and the output gate
controls the amount of information to be passed on to the following time step.
Additionally, LSTMs introduce a new structure called the ”hidden state” which is
used to store information that is passed from one-time step to the next. At each
time step, the hidden state is revised according to the current input, previous hidden
state and current memory cell state. A single cell of LSTM is shown in figure 4.2

Figure 4.2: A single cell of LSTM

The ability of LSTMs to efficiently capture long-term dependencies in sequential
data makes them useful for a variety of tasks, including speech recognition, natural
language processing, and other sequential data processing tasks.

23

4.1.2 BiLSTM
In a bidirectional LSTM (BiLSTM), there are two separate LSTM networks: one
that processes the data in the forward direction and one that processes the data
in the backward direction. The output from both LSTMs is then concatenated
and passed through a fully connected layer to produce the final output. Because a
BiLSTM processes the data in both directions, it is able to capture context from
both the past and future time steps. This is particularly useful in the Named Entity
Recognition (NER) where the model needs to understand the context of the name to
identify whether it is a person, location, or organization. A BiLSTM would be able
to take into account the context from both past and future time steps to identify
the entity correctly. The structure of BiLSTM can be found in 4.3

Figure 4.3: Structure of BiLSTM

24

4.2 Single Transformer-Based Network
The architecture of the Transformer Based Network is shown in figure 4.4.

Figure 4.4: Single Transformer-Based Network Workflow

Initially, we used token and position embedding of 128 dimensions for our word
token and pos tag of word tokens. Then the model passes it to the transformer
block. The output of the transformer block then goes through the average pooling
2d layer. Here, we used a dropout layer to prevent overfitting. Then, It passes
through a fully connected layer with 200 nodes which is also a dropout layer. The
final layer is our output layer which is another fully connected neural network.

4.2.1 Token and Position Embedding
Token embedding and position embedding are two types of embeddings used in nat-
ural language processing tasks. Token embedding is a method applied to stand for
words or tokens in a continuous vector space by converting words, which are dis-
crete symbols, into continuous vectors that can be processed by a machine learning
model. Position embedding, on the other hand, is a technique used to represent
the position of a token in a sequence of tokens, this can be useful in tasks such as
language understanding and machine translation, where the position of a word in a
sentence can be important for understanding its meaning. Both token embedding
and position embedding are commonly used together in neural networks such as
Transformer and BERT, to represent the words and their positions in a sentence
in a continuous vector space, and are updated during the training process to learn
useful representations for the specific task at hand. We used this embedding to
process our words and their pos tag simultaneously.

25

4.2.2 Transformer
A revolutionary deep learning architecture, the Transformer [20], was first mentioned
in the paper ”Attention Is All You Need” by Google researchers back in 2017. This
neural network model is versatile and can be practiced to a range of natural language
processing tasks, as well as language translation, text summarization, and language
understanding. The Transformer model is built on the principle of self-attention,
which enables it to assign different levels of significance to various segments of the
input while making predictions. The model uses multiple attention heads to learn
different relationships between the input tokens, which allows it to capture more
complex patterns in the data.

The Transformer model architecture has an encoder as well as a decoder. The
encoder receives the input sentence and passes it through multiple layers of self-
attention and feed-forward neural networks to produce a set of hidden representa-
tions. The decoder then takes these hidden representations and generates the output
sequence.

One of the key innovations of the Transformer model is the use of a technique
called positional encoding, which allows the model to take into account the order of
the input tokens. This is important for tasks such as language translation, where
the meaning of a word depends on its position in the sentence. The structure of the
Transformer Model is given in figure 4.5.

Figure 4.5: Transformer Model

In summary, the Transformer is a neural network architecture that builds upon the
concept of self-attention, it uses multiple attention heads to learn different rela-
tionships between input tokens, it consists of an encoder and a decoder, it uses a
technique called positional encoding to take into account the order of the input to-
kens, and it is proven to be highly beneficial in many Natural Language Processing
tasks.

26

4.3 Fine-Tuned BanglaBERT
4.3.1 BERT
The full form of BERT [13] is Bidirectional Encoder Representations from Trans-
formers. It is a pre-trained deep learning model which has revolutionized Natural
Language Processing tasks like sentiment analysis, question answering, named en-
tity recognition, etc. BERT was introduced by Google AI in 2018 and since then it
has achieved many state-of-the-art results in various NLP tasks.

BERT is based on transformer architecture which we have mentioned in section
4.2.2. As we discussed before, transformer architecture is highly effective in captur-
ing contextual relationships in language which is a major advantage in named entity
recognition tasks. BERT is a deep bidirectional transformer model that consists of
multiple layers of self-attention mechanisms and a feed-forward neural network. To
consider the dependencies between all the words in a sentence, the self-attention
mechanism plays an important role.

BERT is trained using a large amount of unlabeled text data in an unsupervised
manner. This unsupervised manner is called masked language modeling (MLM).
In MLM, BERT randomly masks out a certain percentage of words in a sentence.
Then, it tries to predict the original masked words from the context of the sur-
rounding word. Because of this unique way, BERT learns a deep understanding of
language semantics and syntax. Furthermore, BERT also performs an NSP (next
sentence prediction) task during the pre-training phase. In this phase, it takes a
pair of sentences as input. This time, BERT tries to predict whether the second
sentence follows the first sentence or not. This phase allows BERT to understand
the relationships between sentences and captures the ability to understand discourse
and coherence.

After the pre-training phase, BERT now can be trained for a specific task which
usually is done in labeled data. This phase is called fine-tuning. In this phase, the
model is further trained with task-specific input and output layers. We can also
use the last layer’s output as embeddings for other neural network models. This
transfer learning approach allows BERT to perform at or near state-of-the-art levels
performance in less task-specific labeled data.

Based on the number of encoders, BERT has a base model and a large model.
The BERT base model has 12 encoders each producing (1x768) sized vector for each
token and BERT large has 24 encoders that produce (1x1024) sized vector for each
token. The structure of the BERT base model and the BERT large model can be
found in figure 4.6 and 4.7.

27

Figure 4.6: BERT Base Structure

Figure 4.7: BERT Large Structure

28

4.3.2 ELECTRA
ELECTRA [21] (Efficiently Learning an Encoder that Classifies Token Replacements
Accurately) is another important deep learning model. It is introduced by Stanford
and Google Brain in 2020. The researchers proposed an alternative approach to
pre-training language models. ELECTRA has achieved competitive performance in
various NLP tasks and benchmarks, often surpassing or achieving similar perfor-
mance as BERT while being more computationally efficient.

The main idea behind ELECTRA is to employ a discriminative pre-training instead
of generative one like BERT. During pretraining, it replaces a certain percentage of
the input tokens with plausible alternatives whereas BERT masks out and predicts
randomly selected tokens in a sentence. Now, the task of the discriminator is to
determine if the replacements are correct or not. As it is focused on discrimination
task, ELECTRA can efficiently learn from the difference between replaced and orig-
inal tokens.

The core architecture of ELECTRA is based on the same transformer model that is
used in BERT. It has stacked layers of self-attention mechanisms and feed-forward
neural networks. But, the differentiator of ELECTRA is the generator and the
discriminator. The generator proposes replacement tokens, while the discriminator
learns to distinguish between replaced and original tokens.

The pre-training phase have some similarities with GAN (Generative Adversarial
Networks). During Pre-training, ELECTRA trains both the generator and the dis-
criminator simultaneously. The generator proposes replacement tokens from a gen-
erator distribution. The discriminator discriminates every token as either replaced
or original. This adversarial training setup makes generators produce more plausi-
ble replacements that are difficult for the discriminator to distinguish from original
words. The generator and discriminator of ELECTRA are jointly trained using a
modified version of MLM.

Figure 4.8: ELECTRA Structure

The fine-tuning of ELECTRA on specific tasks is similar to BERT. Its encoder’s
output can also be used as embeddings for other neural network architecture. It is
computationally more efficient than BERT, making it an effective option for NLP
tasks.

29

4.3.3 BanglaBERT
BanglaBERT [12] is a pre-trained language model based on ELECTRA. It is trained
on a large corpus of Bangla text. As Bangla is a rather resource-constrained language
in the web domain, the researcher of BanglaBERT used data from Wikipedia and
110 Bangla websites (selected by their Amazon Alexa rankings). This data includes
blogs, e-books, news etc. The architecture of BanglaBERT is the same as the
original BERT model. The base model has 12 layers of transformers encoder and
each encoder has an embedding size of 768. On the other hand, the BanglaBERT
large model has 24 layers of encoder, each encoder has an embedding size of 1024.

4.3.4 Fine-tuned BanglaBERT Base
As we have mentioned earlier, the base model has 12 layers of transformers encoder
and each encoder has an embedding size of 768. The process of fine-tuning is taking a
pre-trained model and further training it on a task-specific dataset in order to adjust
it for certain applications or domains. The model for Fine-tuned BanglaBERT Base
has been improved on a variety of tasks involving the Bangla language, including
sentiment analysis, question answering, named entity recognition, text categoriza-
tion, and machine translation. The structure of the model given in figure 4.9.

Figure 4.9: Fine-tuned BanglaBERT Base Model

30

We fine-tuned the pre-trained BanglaBERT Base model on the MultiCoNER dataset
to perform Named Entity Recognition (NER) in Bangla. We used BanglaBERT to-
kenizer to get the input ids and attention masks. Then the data was padded using
the DataCollatorForTokenClassification function where the max sequence length
was 64. The learning rate was set to 2e-5 and the batch size was 32. We used
Pytorch’s Cross-Entropy loss function. At first, we did not use any custom weights
for each tag. Later, we used our custom weights for each tag in the categorical
cross-entropy loss function, which can be found in section 4.3.6. We used 6 epochs
for fine-tuning the model as the score was not improving after that.

4.3.5 Fine-tuned BanglaBERT Large
The BanglaBERT model has 24 layers of transformers encoder and each encoder
has an embedding size of 1024. As it is bigger than the base model, we expect it to
perform better in this task. The structure of the model is given in figure 4.10.

Figure 4.10: Fine-tuned BanglaBERT Large Model

31

We fine-tuned the pre-trained BanglaBERT large model on the MultiCoNER dataset
to perform Named Entity Recognition (NER) in Bangla. Like the base model, we
used BanglaBERT tokenizer to get the input ids and attention masks. Then the
data was padded using the DataCollatorForTokenClassification function where the
max sequence length was 64. Similar to the base model, the learning rate was set
to 2e-5 and the batch size was 32. We used Pytorch’s Cross-Entropy loss function.
At first, we did not use any custom weights for each tag. Later, we used our custom
weights for the categorical cross-entropy loss function, which can be found in section
4.3.6. We used 6 epochs for fine-tuning the model as the score was not improving
after that.

32

4.3.6 Custom Categorical Cross Entropy Loss Function
As our dataset was imbalanced, we developed a custom loss weights to ensure the
model reduces the bias toward more encountering tags. The custom loss weights are
calculated using the following formula:

✓
1� (n+ 2) ⇤ count(Tag)

total

◆
⇤ 10

Here, n represents the number of classes, count(Tag) is representing the number of
that tag in the dataset and the total is representing the total number of tokens in
the dataset. The added 2 was for normalizing the weights. By using this formula,
the weights of each tag in the loss function can be adjusted based on their frequency
in the dataset.

Our calculated weights are given in the following table 4.1.

O 1.054019840917585
B-CORP 9.855210087105194

B-CW 9.879546876946478
I-CW 9.841391266206811

B-GRP 9.865504269474840
B-PER 9.854258994168868

B-PROD 9.821698047760531
I-PROD 9.890232685819315
B-LOC 9.868581334857073
I-LOC 9.918709527265783
I-GRP 9.762394605848439
I-PER 9.824887006429389

I-CORP 9.849279742913984

Table 4.1: Custom Loss Weights

33

4.4 Clustering Algorithm
Clustering Algorithm or Clustering is a machine learning technique that refers to
an unsupervised algorithm that is used to group similar types of data points. Some
data points, even though they represent different values, have similar features or
properties to other data points. Clustering algorithms use these similar types of
properties to group the data points into specific groups. These kinds of clustering
are necessary when we have a lot of data. There are different kinds of clustering
algorithms K-means, Gaussian Mixture Model, BIRCH algorithm, etc.

4.4.1 K-means Clustering Algorithm
K-means clustering is one of the widely used clustering algorithms. The algorithm
tries to reduce the variance of data points within a cluster. Formally, it wants to
partition n number of data points into k number of clusters. So, before using this
algorithm we must know how many clusters we want. The objective of K-Means
clustering is to minimize total intra-cluster variance, or, the squared error function:

J =
kX

j=1

nX

i=1

���x(j)
i � cj

���
2

In the formula, the first summation is the number of clusters we want. The second
summation is the number of cases and then it is followed by the Distance Function
which is cj, the centroid of the cluster.

Figure 4.11: K-means Clustering

In figure 4.11, we can see the data points are clustered into 3 groups.

However, we are not making a NER model with this algorithm, rather we use this
later as a feature extraction method discussed in 4.5.2.

34

4.5 Feature-Based Learning
In the field of Natural Language Processing and Machine Learning, feature engi-
neering is a vital aspect when it comes to constructing effective models for complex
tasks like Named Entity Recognition (NER). While traditional machine learning
methods depend upon predefined inputs that are used by the algorithm to generate
predictions, these techniques do not have an inherent ability to discover meaningful
patterns or structures within raw data. On the other hand, advanced deep learn-
ing frameworks can extract valuable insights and relationships directly from large
amounts of data through automatic representation discovery. As a result, incor-
porating sophisticated techniques for feature engineering into NER models helps
enhance their accuracy and efficiency significantly. Ultimately, this process enables
researchers to build more robust and accurate systems capable of handling challenges
unique to natural language understanding.

4.5.1 Conditional Random Fields
CRF is a probabilistic graphical model dedicated to tasks like named entity recog-
nition, part-of-speech tagging, semantic role labeling, and handwriting recognition.
This model is particularly useful in natural language processing (NLP) and com-
puter vision. CRF models are trained using labeled data, where parameters are
learned to maximize the likelihood of observed label sequences. During inference,
the most likely sequence of labels is computed based on the learned parameters and
observed features. CRF is widely used in NLP for capturing contextual information
and achieving accurate sequence labeling.

Figure 4.12: CRF

To comprehend how CRF functions in practice, let us consider an example with
n words represented by feature vectors x1, x2, ..., xn. Correspondingly, there exists
a label sequence y1, y2, ..., yn associated with each word. A feature function denoted
by Φ(x, y) takes both the input feature sequence and the label sequence as argu-
ments and generates a vector of weights w that capture the relationship between
them. The primary aim of CRF is to locate the most plausible label string given

35

the input features, which can be expressed mathematically as follows:

arg max
y

P (y | x) = arg max
y

exp

�
w

T�(x, y)
�

P
y0 exp (wT� (x, y0))

!

4.5.2 Feature Engineering
We approached the task of developing a powerful Natural Language Processing
(NLP) system using an array of different feature sets. Through rigorous experimen-
tation and analysis, we sought to optimize the classifier’s capability to learn from
data and generalize effectively on unseen instances. Selecting appropriate features
played a critical role in achieving this goal. Here, we faced several difficulties due
to linguistic differences between English and Bangla languages. For instance, while
certain features may perform well for English text, they might prove redundant or ir-
relevant for Bangla, impeding the model’s effectiveness. To tackle this challenge, we
focused on designing specialized features targeted specifically toward Bangla NER
requirements. Below, we presented the detailed descriptions of the feature set that
we employed for the NER task.

Suffixes: We recognized the significance of considering cultural nuances while deal-
ing with Bangla text. Many locations in Bangladesh tend to finish with popular
suffixes such as ”##আলয়”, ”##পরু”, ”##�লয়া”. Similarly, some names in Bangla
often terminate with ”#আ”. By including suffixes as features, our classifier could
capitalize on Bangla-centric patterns, ultimately improving its NER capabilities.
For our NER models, we took up to the last 3 suffixes, for example, for the word
“ফারহান” we used “হান”, “�ান” and “ন” as the suffix features.

Prefixes: Exploring information beyond just a single word could provide additional
insight into the contextual meaning of the term under consideration. Our implemen-
tation therefore leveraged preceding and succeeding words’ contents as useful prefix
information. For our NER models, we took up to the last 3 prefixes, for example,
for the word “ফারহান” we used “ফার”, “ফা” and “ফ” as the prefix features.

Length: Length can be a helpful feature because it provides an indication of the
structure or complexity of certain types of entities. For instance, many place names
may have longer lengths due to their geographical specificity. On the other hand,
person names, which typically follow a pattern of first name + last name, will also
exhibit varying lengths depending on individual preferences and cultural norms. By
incorporating length as a feature, NER algorithms can capture patterns associated
with different classes, potentially allowing them to learn the subtle differences be-
tween diverse entity types.

Neighboring Words: Encountering similar words before or immediately after the
current one frequently implies relatedness and shared topics. Harvesting those words
(for up to three positions away) as separate features allowed us to investigate how
adjacent terms could aid NER tasks. For example, if the next word is “ক�র�ছ�লন”
it is likely that the word that we are investigating is a person’s name. Similarly, if a
word is neighbored by words like “ম্যাগা�জন”, “গান”, “�স�নমা”, is likely these words
are creative word.

36

IsDigit: Knowledge of whether a given word consists entirely of numbers can prove
useful in discriminating between various types of texts and facilitate filtering out
irrelevant content. This feature alone might not contribute significantly toward im-
proving general NER accuracy, especially when considered independently. However,
combining it with other indicators can be quite helpful.

IsPunctuation: If a word is entirely punctuation (such as commas, periods, ques-
tion/exclamation marks, etc.) would not influence the NER output directly, but
it can serve as a convenient indicator that a word should be skipped or should be
detected as “O” tag as it can never be any other tag.

IsBangla: Even though we were working with Bangla Data, the dataset contains
some words that are not Bangla. In particular, there are some occurrences of Hindi,
Farsi, Chinese, and English languages. For these words, there is this special feature
where if a word is not Bangla, it will indicate that the word is not Bangla which
should give the model information to maybe skip these words. We implemented
this by converting all the letters of the word into Unicode and then all the Unicode
between 2432 to 2559 or 32 (Unicode of space) is considered as a Bangla word, else
it is not a Bangla word.

IsStopword: Similarly to IsDigit, IsPunctuation, and IsBangla, if a word is a
stopword, it contains little to no value to the NER model hence it should be ex-
cused or should be tagged as “O”.

Word Frequency: Word frequency plays a crucial role in influencing the perfor-
mance of Conditional Random Fields (CRF) models in natural language processing
tasks such as named entity recognition (NER). Although not directly affecting the
outcome itself, word frequencies can indirectly impact model efficacy.

Part of Speech (POS) Tags: Incorporating Part of Speech (POS) tags offers
valuable insights into the grammatical composition of sentences and the functional
roles played by individual words. An example of a POS tag is given in figure 4.13.

Figure 4.13: Example of POS Tag

POS tags are essential features in Conditional Random Fields (CRF)-based named
entity recognition (NER) systems, enabling efficient discrimination between named
entities and other linguistic elements. In our implementation, we leveraged the Ben-
gali POS tag model of BNLP [22], a CRF-driven POS tagger built upon the NLTR
dataset with an 80.75 F1 score. However, as the POS tagger was only trained with

37

2247 sentences, we highly doubt it will bring that much significance to the model as
the dataset we are working on is very diverse and has new words. So, to enhance
the effectiveness of the POS tags, we incorporated their information for every word
and its three neighboring positions prior and posterior.

Figure 4.14: Example of POS Tag

BOS and EOS: BOS (Beginning of Sentence) and EOS (End of Sentence) tags
serve crucial roles in guiding a Conditional Random Field (CRF) toward identifying
named entities accurately. These two special symbols signify the start and end po-
sitions of sentences within the text input and provide valuable cues that can inform
the CRF’s decision-making during the training and inference phases. By encod-
ing local syntax rules through BOS and EOS markers, the CRF inherently learns
about common phrase structures associated with various named entities. This al-
lows the model to develop a more sophisticated understanding of how to identify
and separate named entities from surrounding text. Additionally, exploiting the
spatial distribution patterns of BOS and EOS tags within the input text improves
the CRF’s interpretative abilities regarding linguistic relationships between phrases.

38

Gazetteer Information: We used the idea of Gazetteer Lists (discussed in section
3.2.1) to further improve our model. As discussed previously in the Dataset section,
the Gazetteer we built is a very big and comprehensive list of PER, LOC, GRP,
CORP, CW, and PROD. Utilizing gazetteer entries provides explicit labels for oth-
erwise ambiguous text spans, allowing the CRF to make confident judgments when
encountering unseen variations. When incorporating gazetteer entries, the CRF
framework becomes aware of existing named entities already documented within the
gazetteer’s scope. Real-world named entities follow intricate hierarchical structures,
reflecting subcategory inclusions, parent-child relations, and other complex organi-
zation schemes. Utilizing gazetteers in conjunction with CRFs facilitates learning
these interrelationships, allowing the model to make better predictions when con-
fronting less frequent or unusual combinations of entity types. By design, this means
the model may avoid misclassifications caused by isolated substrings resembling real
names yet lacking any genuine significance in the current context. For implementing
this feature, we created is_corp, is_per, is_loc, is_grp, is_prod, is_cw for the cur-
rent word and its neighboring words. This should drastically help the CRF model
to confidently predict words present in the gazetteer list.

Figure 4.15: Gazetteer as Features

39

BanglaBERT Large Embeddings Cluster Information: Instead of utilizing
raw BanglaBERTLarge Embeddings directly, we adopted a modified strategy tai-
lored to our diverse dataset exhibiting domain shifts and OOV (out-of-vocabulary)
words. We anticipated that applying raw BanglaBERTLarge Embeddings might
lead to lower robustness against unseen data, hindering the model’s generalizabil-
ity. To address this concern, we decided to employ additional clustering methods
to group together semantically related tokens before processing them further. We
reasoned that such clusters would be more effective at capturing shared character-
istics across similarly named entities, regardless of their exact instantiations. For
generating this cluster information, we used the BanglaBERTLarge Embeddings of
all the Training data (15,300 sentences) which is of length 1024 for each word. Then
we have fit these values to a K-means clustering to group similar words together.
The length of the list that was used to fit the K-means algorithm was 2,02.266
which is a huge number. As the words are very diverse and we do not want to lose
any significant information, we used a big enough number 1000 for the number of
clusters in K-means. Then we predicted this K-means value for each word in our
dataset to use as a feature. We trained two different K-Means Clustering Models
one with the BanglaBERTLarge’s 23rd Layer’s Embedding and another with the
24th Layer’s Embedding. We then predicted two different clustering values for each
of the sentences so that we could use these as features in our CRF model.

Figure 4.16: BanglaBERT Embeddings with K-means

40

BanglaBERT Large Softmax Outputs: We also experimented with Fine-tuned
BanglaBERT Large’s (discussed in section 4.3.5) Softmax outputs as a feature for
our CRF model. We anticipate that this may lead to some improvements to our
CRF model. However, it’s also a possibility that it may worsen the performance of
our model if the BanglaBERTLarge’s output is not up to the mark. To use this as
a feature, we took every sentence of the training dataset and predicted the labels;
this prediction gave us Softmax values for each word that was used as the features.

Raw BanglaBERT Large 24th Layer’s 1024-Sized Embedding: We wanted
to use the BanglaBERT Large model’s full potential, so, we also used the raw em-
bedding of BanglaBERT Large as a feature as well. However, the values of the
raw embeddings were mostly in the range of 0 to 1. If we train with these values,
then the model will be overfitted with train data, so, to overcome this problem, we
transformed the embeddings by using the following formula.

Enew = Rround (Eraw ⇤ 100)

An example of the converted embedding can be found in table 4.2.

Eraw 0.56543 0.56549 -0.353434 1.452232 4.56431
Enew 56 56 -35 145 456

Table 4.2: Transforming BanglaBERT Large’s Raw Embeddings

We can see, this transformation eliminates the minor differences in embedding values
(0.01 scale) which theoretically should help to reduce the overfitting.

41

4.5.3 CRF Model Strategies
We have discussed in section 4.5.2 all the features that we could engineer from the
train data. However, we did not have a single model out of all these features, rather,
we experimented with several strategies. These strategies are discussed in table 4.3.

Name Features (Added feature are in bold)
CRF Model A Suffix, Prefix, Index, Length

CRF Model B Suffix, Prefix, Index, Length, isDigit, isPunctuation,
Frequency

CRF Model C Suffix, Prefix, Index, Length, isDigit, isPunctuation,
Frequency, POS

CRF Model D Suffix, Prefix, Index, Length, isDigit, isPunctuation,
Frequency, POS, Gazetteer

CRF Model E
Suffix, Prefix, Index, Length, isDigit, isPunctuation,

isBangla, isStopword, Frequency, POS,
Gazetteer

CRF Model F
Suffix, Prefix, Index, Length, isDigit, isPunctuation,

Frequency, POS, Gazetteer, K-means of
BanglaBERTLarge Embeddings of 24th Layer

CRF Model G
Suffix, Prefix, Index, Length, isDigit, isPunctuation,

Frequency, POS, Gazetteer, K-means of
BanglaBERTLarge Embeddings

of 23rd and 24th Layer

CRF Model H
Suffix, Prefix, Index, Length, isDigit, isPunctuation,

Frequency, POS, Gazetteer, K-means of
BanglaBERTLarge Embeddings of 24th Layer,

BanglaBERT Large Softmax Outputs

CRF Model I
Suffix, Prefix, Index, Length, isDigit, isPunctuation,

Frequency, POS, Gazetteer, K-means of
BanglaBERTLarge Embeddings 24th Layer,

All BanglaBERT 1024 Layers Information

Table 4.3: CRF Model Strategies

42

The flowchart of one of our CRF models is given in figure 4.17.

Figure 4.17: CRF Model F

All of our CRF models used the L-BFGS (Limited memory Broyden Fletcher Gold-
farb Shanno) algorithm. The all_possible_transitions were set to True so that the
model generates transition features that associate all the possible label pairs. Both
coefficients of L1 and L2 regularization were set to 0.1. The maximum number of
iterations for optimization algorithms was set to 150.

43

Chapter 5

Result and Analysis

In this section, we have analyzed our results of our baseline performance in the
MultiCoNER 1 dataset at first. Then, we evaluated our BanglaBERT performances
with both Default Categorical Cross Entropy Loss Function and Custom Categorical
Cross Entropy Loss Function. Later, we have elaborately analyzed the performance
of all strategies we experimented with our CRF Model. Finally, we have summarised
all of our findings and compared it with other state-of-the-art models.

As the MultiCoNER 1 paper suggested Macro F1 score to evaluate the dataset,
we have evaluated and compared all of the models according to the Macro F1 score
in the test data.

5.1 Baseline Performance
At first, we would like to set our benchmark score by using the Two Layer BiLSTM
Network and Single Transformer-Based Network. We also compared our result to
the MultiCoNER paper’s XLM-RoBERTa (baseline) performance.

Model Names Macro-F1 (Test Data: 133,199 data)
Two-Layer BiLSTM Network 0.30

Single Transformer-Based Network 0.44
XLM-RoBERTa Baseline 0.391

Table 5.1: Baseline Performances

As we can see in table 5.1, the performance of our baseline performance is very low.
As the training data is really insufficient compared to the test data, it is clearly
visible that using only a deep learning model without any additional information will
not be enough for this dataset. XLM-RoBERTa is pre-trained in 100 languages so it
performed a little better as it has some contextual knowledge. Single Transformer-
Based Network performed best here as it was a transformer that can understand
some context of the text. From this baseline score, the significance of using extra
knowledge in this task becomes more apparent.

44

5.2 BanglaBERT Performance
After setting our baseline benchmarks, we explored a dedicated BERT model for
Bangla. At the time of our research, BanglaBERT Base and BanglaBERT Large
were published by the CSE department of BUET. As these models showed promising
performance in different NLP tasks, we fine-tuned them for our NER task. At first,
we used default Categorical Cross Entropy weights and later we experimented with
our custom weighted Categorical Cross Entropy function discussed in 4.3.6. The
result of this experiment is given in table 5.2.

Model Name Macro F1

(Dev: 800 data)
Macro F1

(Test: 133,199 data)
BanglaBERT Base 0.4518 0.2710
BanglaBERT Base

(Custom Weight LF) 0.6853 0.4858

BanglaBERT Large 0.7778 0.61
BanglaBERT Large

(Custom Weight LF) 0.7609 0.5883

Table 5.2: BanglaBERT Performances

The fine-tuned BanglaBERT Large with default Categorical Cross Entropy loss
function gets the highest F1 score (0.61 in test) among the rest of the fine-tuned
BanglaBERT models. In this experiment, the implementation of the custom weight
loss function has inconsistent results. Our custom loss function impacted positively
on the Base model of BanglaBERT by improving 0.2148 of F1 score. However, it
impacted slightly negatively on BanglaBERT Large by reducing 0.0217 score. More
experiments need to be done with this custom weight loss function to understand
its impact on the other BERT models which is left as future work.

45

5.3 CRF Performance
As we have discussed in section 4.5.3, we used several strategies for our CRF models.
The detailed performance of each model (with added and removed features) can be
found in table 5.3.

Model Name Added
features

Removed
Features

Macro F1

(Dev)
Macro F1

(Test)
CRF Model A Suffix, Prefix, Index, Length 0.671 0.3369
CRF Model B isDigit, isPunctuation, Frequency 0.6705 0.4379
CRF Model C POS Tag 0.6829 0.4534
CRF Model D Gazetteer 0.8103 0.8155
CRF Model E isBangla, isStopword 0.8221 0.8074

CRF Model F K-Means of BanglaBERT
24th layer Embedding

isBangla,
isStopword 0.815 0.8267

CRF Model G
K-Means of BanglaBERT

23rd and 24th layer
Embedding

0.8172 0.8216

CRF Model H BanglaBERT Large
Softmax Output

K-Means of
BanglaBERT

23rd layer
embeddings

0.8467 0.8038

CRF Model I
BanglaBERT Large 24th

layers 1024 sized
embedding

0.8416 0.7398

Table 5.3: CRF Performances

In CRF Model A, we used basic features such as suffix, prefix, index, length. This
gave us a score close to the BanglaBERT base model’s in dev; however, it performed
poorly in test data.

Then we incorporated some new features: isDigit, isPunctuation, and Frequency
of the words. This CRF Model B gave us similar results in dev data; however, there
was a significant boost of 0.101 F1 score in the test data. So, we knew these features
were quite useful.

After that, we added the POS tags, and this CRF Model C gave us a very slight
boost over Model B as we anticipated. There was a minor increase because the POS
tagger we used is not trained on a large corpus and was not giving promising POS
tags for our sentences.

Later, we added the Gazetteer. CRF Model D showed a drastic increase of 0.1274
F1 in the dev data and a whopping 0.3621 F1 increase in the test data. We can
clearly see the significance of creating this gazetteer as it massively improved the
overall scores. As expected, cooperating knowledge-based solutions like gazetteer
have a monumental impact on the performance of the Named Entity Recognition
task.

Next, we tried to incorporate some other basic features like isBangla and isStopword.
This CRF Model E showed a little performance boost in the dev data; however, in

46

the test data, the F1 dropped. It was mainly because the features were not very
useful and overfitted the model. So, we dropped this feature for our later model
strategies.

We added the K-Means of BanglaBERT Large’s 24th layer Embedding the. This
CRF Model G did mot improve the dev score; rather the score dropped. But it was
the only time the model performed better in the test than the dev data. This clearly
showed that this feature is very promising.

As the K-Means of BanglaBERT Large’s 24th layer Embedding worked pretty fine,
we tried to add another additional layer’s K-means value, basically the K-Means
of BanglaBERT 23rd layer Embedding; however, in CRF Model G, we saw a per-
formance drop in the test data. So, we did not experiment with additional layers
and dropped the K-Means of BanglaBERT 23rd layer embeddings for later model
strategies.

Then in CRF Model H, we added the BanglaBERT Large Softmax Outputs. Even
though it produced the best result in the dev data, the model performed poorly in
the test data. It was mainly due to the performance issue of the BanglaBERT Large
itself. As we discussed in section , the macro F1 score of BanglaBERT Large was
only 0.61 in the test data, so, the features gathered from this were not very useful
and were accelerating toward bad predictions.

Finally, in our last strategy, we used all 1024 dimensions values of the embedding as
features. Similar to CRF Model H, CRF Model I also faced the same problem, doing
very well on dev but failing in test data. It was due to having too many diverse sets
of words in the test sentences.

In conclusion, CRF Model F showed the best performance in our experiment on
this dataset.

47

5.3.1 What CRF Classifier Learned
In CRF models, transition features represent the learned weights or parameters as-
sociated with the transitions between labels in the sequence. These features capture
the dependencies between neighboring labels and help model the sequential struc-
ture of the data. As CRF Model F, mentioned in section 5.3, showed the best
performance, we tried to understand what our model learned.

Top likely transitions:
B-PER -> I-PER 6.360221
B-CW -> I-CW 4.440876
B-LOC -> I-LOC 4.244385
B-PROD -> I-PROD 3.875165
I-LOC -> I-LOC 3.732626
B-GRP -> I-GRP 3.700956
B-CORP -> I-CORP 3.689070
I-CW -> I-CW 3.402518
I-GRP -> I-GRP 3.350253
I-CORP -> I-CORP 3.265144

From the top likely transitions, we can see it has learned pretty well about how
the NER works in general. It was mostly trying to transition from a B-tagged entity
to an I-tagged entity which is correct. From this, we can also see it was trying to
predict the bigger length of LOC, CW, GRP, and CORP which is also correct as
they are usually more than 2-3 words.

Top unlikely transitions:
I-GRP -> B-GRP -4.310401
I-PER -> B-PER -4.406159
I-CORP -> B-CORP -4.520391
B-GRP -> B-GRP -4.677539
I-CW -> B-CW -4.903207
I-LOC -> B-LOC -4.948305
I-PROD -> B-PROD -5.381020
O -> I-PROD -6.745918
O -> I-GRP -7.427158
O -> I-CW -7.869977

From the top unlikely transitions, it was trying its best not to predict a B-tagged
entity after an I-tagged entity which was correct for NER tasks, as it is not possible.
So, our CRF model was working properly. It’s also showing there cant be Two star-
ing of GRP and it was trying its best not to predict it. It’s also trying not to predict
I-tagged entitles after O which is also correct as they need to be either followed by
a B-tagged entity or an I-tagged entity.

48

5.3.2 CRF Model State Features
In a CRF, state features represent the learned weights or parameters associated with
individual labels or states in the sequence. These features capture the characteris-
tics or properties of each label independently. As CRF Model F showed the best
performance, we tried to understand our model’s State Features.

Top positive:
5.176312 O BOS
4.167283 O word.ispunctuation
4.129853 O word[:2]:(�
3.825457 B-LOC is_loc
3.812146 B-PROD is_prod
3.274901 O word[:2]:১৯
2.884351 B-CORP is_corp
2.702784 B-PER is_per
2.587418 B-CW word:�চত্রসংগীত
1.453978 B-GRP word:ন্যা�টা
1.323634 B-GRP word[-3:]:সংঘ

As we can see, it was trying to memorize BOS as O which mostly is a good thing
however it might have some problems with some sentences. We can also see a word
being a punctuation is remembered as O which is helping the model so much. The
gazetteer’s information is also having a massive impact on the model. We can see
if a word is is_loc, is_prod, is_corp, or is_per the model is trying to remember
it as those represented Tags. This is why the gazetteer had a massive performance
boost in the model. We saw it was trying to memorize some words for some entities,
which here we can see as helpful however it may have led to some overfitting as well
sometimes.

49

5.4 Result Comparison
We have conducted extensive experiments with different types of models with dif-
ferent strategies. The comprehensive summarized result in test data of every model
that are developed by us is presented in table 5.4.

Model name Macro F1 (Test: 133,199 data)
Two-Layer BiLSTM Network 0.30

Single Transformer-Based Network 0.44
BanglaBERT Base (custom weight) 0.4858
BanglaBERT Large (custom weight) 0.5883

CRF Model F 0.8267

Table 5.4: Our Best Models Performances

Among all the models we conducted experiments with, CRF model F performed
the best with 0.8267 macro F1 score in test data. Undoubtedly, the implementation
of a knowledge-based approach in corporations to state-of-the-art BERT model’s
embeddings makes the CRF model provide outstanding performance.

The MultiCoNER dataset was introduced in Task 11 of the SemEval 2022 Compe-
tition. A comparison of our best-performing model with other researchers is given
in table 5.5.

Team/Model name
(Rank in bn dataset)

Macro F1

(Test: 133,199 data)
USTC-NELSLIP (Ranked 1) 0.8424

DAMO-NLP (Ranked 2) 0.8351
CRF model F (Ours) 0.8267
NetEase.AI (Ranked 3) 0.6628

BanglaBERT Large 0.61

Table 5.5: Performance Comparison with other state-of-the-art Models

From the table 5.5, we can see that our model outperformed the 3rd Rank in the
competition by a huge margin. It performed really well and placed very near to the
Rank 1 and Rank 2 teams.

A complete overview of all the models we experimented with and compared with is
given in figure 5.1.

50

Figure 5.1: Comparion of all Models in MultiCoNER 1 Dataset

51

Chapter 6

Conclusion

In this research work, we explored the current trends of Bangla Named Entity Recog-
nition tasks. As Bangla is a low-resource language, limited work was done. We had
chosen MultiCoNER’s Bangla dataset which is considered as one of the toughest.
We conducted experiments with available models and tried to improve them. We
proposed a custom loss function to improve BanglaBERT base model performance.
Furthermore, we created a Gazetteer containing over 96 thousand entities. The im-
plementation of the Gazetteer showed drastic improvement. Finally, we proposed a
complex CRF model which uses the embeddings of the final layer in BanglaBERT
with Gazetteer and other features which show promising state-of-the-art perfor-
mance in Bangla NER tasks. For future work, we would like to explore the custom
weights for categorical cross entropy loss with other BERT models in other datasets
and more features for our proposed CRF model.

52

Bibliography

[1] Ben Goodey. Machine learning vs rule-based NLP. June 2021. url: https :
//www.sentisum.com/success-article/machine-learning-nlp.

[2] Ethnologue. The Ethnologue 200: What are the top 200 most spoken languages?
[Online]. Available: https://www.ethnologue.com/guides/ethnologue200. [Ac-
cessed: 18-Sep-2022]. June 2022. url: https://www.ethnologue.com/guides/
ethnologue200.

[3] B. B. Chaudhuri and S. Bhattacharya. An experiment on automatic detection
of named entities in Bangla. [Online]. Available: https://aclanthology.org/I08-
5011/. [Accessed: 18-Sep-2022]. 2008. url: https : //aclanthology .org/ I08 -
5011/.

[4] F. Alam and M. A. Islam. “A proposed model for Bengali named entity recog-
nition using maximum entropy Markov model incorporated with Rich Linguis-
tic Feature Set.” In: Proceedings of the International Conference on Computing
Advancements. 2020.

[5] R. Karim et al. “A step towards information extraction: Named entity recog-
nition in Bangla using Deep Learning.” In: Journal of Intelligent & Fuzzy
Systems 37.6 (2019), pp. 7401–7413.

[6] J. R. Saurav, S. Haque, and F. Chowdhury. “End to end parts of speech tag-
ging and named entity recognition in Bangla language.” In: 2019 International
Conference on Bangla Speech and Language Processing (ICBSLP). 2019.

[7] I. Ashrafi et al. “Banner: A cost-sensitive contextualized model for Bangla
named entity recognition.” In: IEEE Access 8 (2020), pp. 58206–58226.

[8] Redwanul Karim et al. “A step towards information extraction: Named entity
recognition in Bangla using deep learning.” In: Journal of Intelligent & Fuzzy
Systems 37 (July 2019), pp. 1–13. doi: 10.3233/JIFS-179349.

[9] S. A. Chowdhury, F. Alam, and N. Khan. “Towards Bangla named entity
recognition.” In: 2018 21st International Conference of Computer and Infor-
mation Technology (ICCIT). 2018.

[10] M. Tanvir Alam and M. Mofijul Islam. “Bard: Bangla Article Classification
using a new comprehensive dataset.” In: 2018 International Conference on
Bangla Speech and Language Processing (ICBSLP). 2018.

[11] Xinyu Wang et al. DAMO-NLP at SemEval-2022 Task 11: A Knowledge-based
System for Multilingual Named Entity Recognition. 2022. arXiv: 2203.00545
[cs.CL].

53

https://www.sentisum.com/success-article/machine-learning-nlp
https://www.sentisum.com/success-article/machine-learning-nlp
https://www.ethnologue.com/guides/ethnologue200
https://www.ethnologue.com/guides/ethnologue200
https://aclanthology.org/I08-5011/
https://aclanthology.org/I08-5011/
https://doi.org/10.3233/JIFS-179349
https://arxiv.org/abs/2203.00545
https://arxiv.org/abs/2203.00545

[12] Abhik Bhattacharjee et al. “BanglaBERT: Language Model Pretraining and
Benchmarks for Low-Resource Language Understanding Evaluation in Bangla.”
In: Findings of the Association for Computational Linguistics: NAACL 2022.
Seattle, United States: Association for Computational Linguistics, July 2022,
pp. 1318–1327. doi: 10 . 18653/v1/2022 . findings -naacl . 98. url: https : //
aclanthology.org/2022.findings-naacl.98.

[13] Rrubaa Panchendrarajan and Aravindh Amaresan. “Bidirectional LSTM-CRF
for Named Entity Recognition.” In: Proceedings of the 32nd Pacific Asia Con-
ference on Language, Information and Computation. Hong Kong: Association
for Computational Linguistics, Jan. 2018. url: https://aclanthology.org/Y18-
1061.

[14] Shervin Malmasi et al. “SemEval-2022 Task 11: Multilingual Complex Named
Entity Recognition (MultiCoNER).” In: Proceedings of the 16th International
Workshop on Semantic Evaluation (SemEval-2022). Seattle, United States:
Association for Computational Linguistics, July 2022, pp. 1412–1437. doi:
10 . 18653/v1/2022 . semeval - 1 . 196. url: https : //aclanthology . org/2022 .
semeval-1.196.

[15] Leon Derczynski et al. “Results of the WNUT2017 Shared Task on Novel and
Emerging Entity Recognition.” In: Proceedings of the 3rd Workshop on Noisy
User-generated Text. Copenhagen, Denmark: Association for Computational
Linguistics, Sept. 2017, pp. 140–147. doi: 10 . 18653 / v1 / W17 - 4418. url:
https://aclanthology.org/W17-4418.

[16] Tri Nguyen et al. “MS MARCO: A Human Generated MAchine Reading COm-
prehension Dataset.” In: CoRR abs/1611.09268 (2016). arXiv: 1611 . 09268.
url: http://arxiv.org/abs/1611.09268.

[17] Nick Craswell et al. “ORCAS: 18 Million Clicked Query-Document Pairs for
Analyzing Search.” In: CoRR abs/2006.05324 (2020). arXiv: 2006.05324. url:
https://arxiv.org/abs/2006.05324.

[18] Beiduo Chen et al. “USTC-NELSLIP at SemEval-2022 Task 11: Gazetteer-
Adapted Integration Network for Multilingual Complex Named Entity Recog-
nition.” In: Proceedings of the 16th International Workshop on Semantic Eval-
uation (SemEval-2022). Association for Computational Linguistics, 2022. doi:
10.18653/v1/2022.semeval-1.223. url: https://doi.org/10.18653%5C%2Fv1%
5C%2F2022.semeval-1.223.

[19] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Memory.” In:
Neural computation 9 (Dec. 1997), pp. 1735–80. doi: 10.1162/neco.1997.9.8.
1735.

[20] Ashish Vaswani et al. “Attention Is All You Need.” In: CoRR abs/1706.03762
(2017). arXiv: 1706.03762. url: http://arxiv.org/abs/1706.03762.

[21] Kevin Clark et al. ELECTRA: Pre-training Text Encoders as Discriminators
Rather Than Generators. 2020. arXiv: 2003.10555 [cs.CL].

[22] Sagor Sarker. “BNLP: Natural language processing toolkit for Bengali lan-
guage.” In: CoRR abs/2102.00405 (2021). arXiv: 2102 . 00405. url: https :
//arxiv.org/abs/2102.00405.

54

https://doi.org/10.18653/v1/2022.findings-naacl.98
https://aclanthology.org/2022.findings-naacl.98
https://aclanthology.org/2022.findings-naacl.98
https://aclanthology.org/Y18-1061
https://aclanthology.org/Y18-1061
https://doi.org/10.18653/v1/2022.semeval-1.196
https://aclanthology.org/2022.semeval-1.196
https://aclanthology.org/2022.semeval-1.196
https://doi.org/10.18653/v1/W17-4418
https://aclanthology.org/W17-4418
https://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
https://arxiv.org/abs/2006.05324
https://arxiv.org/abs/2006.05324
https://doi.org/10.18653/v1/2022.semeval-1.223
https://doi.org/10.18653%5C%2Fv1%5C%2F2022.semeval-1.223
https://doi.org/10.18653%5C%2Fv1%5C%2F2022.semeval-1.223
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2003.10555
https://arxiv.org/abs/2102.00405
https://arxiv.org/abs/2102.00405
https://arxiv.org/abs/2102.00405

	Declaration
	Approval
	Ethics Statement
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Named Entity Recognition in Bangla
	Problem Statement
	Research Objectives

	Literature Review
	Description of the Data
	MultiCoNER Dataset
	Formation of MultiCoNER's Bangla Dataset
	Dataset Statistics
	Bangla (bn) Dataset Statistics

	Supplementary Dataset
	Gazetteers
	Difficulties of Forming Gazetteers in Bangla
	Our Bangla Gazetteer Formation

	Data Analysis
	Large Test Data
	Irregularities in the Punctuations
	Presence of Foreign Words
	Word Frequency
	Imbalanced Dataset
	Alignment of tags after tokenization

	Description of the Model
	Two Layer BiLSTM Network
	LSTM
	BiLSTM

	Single Transformer-Based Network
	Token and Position Embedding
	Transformer

	Fine-Tuned BanglaBERT
	BERT
	ELECTRA
	BanglaBERT
	Fine-tuned BanglaBERT Base
	Fine-tuned BanglaBERT Large
	Custom Categorical Cross Entropy Loss Function

	Clustering Algorithm
	K-means Clustering Algorithm

	Feature-Based Learning
	Conditional Random Fields
	Feature Engineering
	CRF Model Strategies

	Result and Analysis
	Baseline Performance
	BanglaBERT Performance
	CRF Performance
	What CRF Classifier Learned
	CRF Model State Features

	Result Comparison

	Conclusion
	Bibliography

