
Detection of DeepFake using
Computer Vision and Deep Learning

by

Anisur Rahman
19101631

Ehteshamul Islam Uschash
19101343

Faria Rahman
22241142

Shihaba Jamal Chowdhury Adiba
19101629

Tahmidul Labib
22241136

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University

May 2023

© 2023. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is our own original work while completing degree at Brac
University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Anisur Rahman
19101631

Ehteshamul Islam Uschash
19101343

Faria Rahman
22241142

Shihaba Jamal Chowdhury Adiba
19101629

Tahmidul Labib
22241136

i

Approval
The thesis titled “Detection of DeepFake using Computer Vision and Deep Learning
submitted by

1. Anisur Rahman(19101631)

2. Ehteshamul Islam Uschash(19101343)

3. Faria Rahman(22241142)

4. Shihaba Jamal Chowdhury Adiba(19101629)

5. Tahmidul Labib(22241136)

Of Spring, 2023 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science on May, 2023.

Examining Committee:

Supervisor:
(Member)

Dewan Ziaul Karim
Lecturer

Department of Computer Science and Engineering
Brac University

Thesis Coordinator:
(Member)

Md. Golam Rabiul Alam, PhD
Professor

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

ii

Abstract
In this era of Metaverse and technological advancement, DeepFakes are one of the
most alarming concepts. DeepFakes are mostly synthetically-generated manipulated
photos or videos which is created swapping a face of a person using Deep learn-
ing, Generated Adversarial Network (GAN), autoencoder-decoder pairing structure.
There are several other Deepfaking tools such as; FaceSwap, DeepFaceLab, DFaker,
DeepFake-tensorflow etc. Using Generative Adversarial Network (GAN), DeepFakes
have become smoother and more realistic in making the fake videos. DeepFakes can
become concerning if it is used for political purpose, committing fraud, spreading
misinformation, pornography, defamation on social media etc. This possesses a se-
curity threat on people’s lives knowingly or unknowingly. As a result, it is visible
that DeepFakes can be very distressing on the wrong hand if not detected properly.
Our purpose is to detect the DeepFake videos as successfully as possible. We want
to focus on detection using Deep learning approaches also using Image Recognition
and Computer Vision. For the detection, we used a dataset of videos, which in-
cluded both real and fake videos. We have successfully extracted it from Kaggle
where we have found dataset of more than 2352 videos from DeepFake Detection
Challenge(DFDC) and FaceForensics++. To detect the fake videos, we followed
the method of employing temporal feature and exploring visual artifacts within
frames. Employing temporal feature uses LSTM (Long Short-Term Memory) and
CNN (Convolutional Neural Network) whereas visual artifacts within frames mostly
employs deep learning method to detect DeepFakes. We ensembled LSTM (Long
Short-Term Memory) and CNN (Convolutional Neural Network) to detect Deep-
Fakes successfully. ResNeXt101_32x8d have been used to extract features and a
custom CNN model is added with LSTM for better accuracy for detecting DeepFake.
The accuracy of the model was 94.05%. After further improvement and with the in-
troduction of learning rate schedulers, we were able to achieve better accuracy. We
have used CosineAnnealingLR, CyclicLR, MultiStepLR and ReduceLRonPlateau
as learning rate scheduler among which MultiStepLR gave the highest accuracy of
95.33%.

Keywords: DeepFake, CNN, LSTM, Learning Rate Scheduler

iii

Acknowledgement
We would like to express our deepest gratitude to the Almighty for guiding and
blessing us throughout the entire journey of our thesis, enabling its successful and
fulfilling completion.

We would like to extend our heartfelt appreciation to our supervisor, Dewan
Ziaul Karim Sir, for his unwavering guidance and support throughout research,
which has been invaluable to the successful completion of this thesis.

Finally, we are grateful to our parents, whose encouragement and prayers has been
crucial towards our work.

iv

Table of Contents

Declaration i

Approval ii

Abstract iii

Acknowledgment iv

Table of Contents v

List of Figures vii

List of Tables ix

1 Introduction 1

2 Research 3
2.1 Research Problem . 3
2.2 Research Objective . 4

3 Literature Review 5
3.1 Deepfake video creation . 5
3.2 DeepFake video detection using CNN 6
3.3 DeepFake video detection using Hybrid CNN and LSTM 7

4 Workplan 9

5 Description of the data 11
5.1 Dataset and Data analysis: . 11

5.1.1 Video Data: . 11
5.1.2 MetaData: . 11
5.1.3 Data Preprocessing . 11
5.1.4 Data Augmentation . 13
5.1.5 Splitting the data: . 14

6 Implementation of Proposed model 16
6.1 Model Architecture . 16
6.2 ResNeXt101_32 ∗ 8d : . 17
6.3 CNN model: . 17

6.3.1 Convolution Layer: . 18

v

6.4 Linear Layer(linear1): . 18
6.5 Leaky Rectified Linear Unit Activation: 18
6.6 Batch Normalization(BatchNorm1d): 19
6.7 Adaptive Average Pooling 2D Layer (avgpool): 19
6.8 LSTM model: . 19

6.8.1 LSTM Layer . 19
6.9 Dropout layer: . 20
6.10 MaxPooling layer: . 20
6.11 Flatten layer: . 20

7 Result and Analysis 21
7.1 Accuracy and Loss of Proposed model 21

7.1.1 Accuracy of Proposed Model 21
7.1.2 Loss of Proposed Model . 22
7.1.3 Confusion Matrix . 23
7.1.4 Precision, Recall, F1-score . 24

7.2 Accuracy and Loss of other Models 25
7.2.1 ResNet152 . 25
7.2.2 Dataset Description for ResNet152 25
7.2.3 Accuracy of ResNet152 . 25
7.2.4 Loss of ResNet152 . 26
7.2.5 Confusion Matrix of ResNet152 27
7.2.6 Precision, Recall, F1-score of ResNet152 28
7.2.7 ResNeXt101_64x8d . 29
7.2.8 Dataset Description for ResNeXt101_64x8d 29
7.2.9 Accuracy of ResNeXt101_64x8d 29
7.2.10 Loss of ResNeXt101_64x8d 30
7.2.11 Confusion Matrix of ResNeXt101_64x8d 31
7.2.12 Precision, Recall, F1-score of ResNeXt101_64x8d 32

7.3 Accuracy and Classification comparison of
Models . 33

7.4 Model Training and Optimization Techniques 34
7.4.1 Learning Rate Scheduler . 34
7.4.2 CosineAnnealingLR . 35
7.4.3 CyclicLR . 40
7.4.4 ReduceLROnPlateau . 44
7.4.5 MultiStepLR . 48
7.4.6 Accuracy and Classification Report comparison of

Proposed model and LR schedulers 53

8 Grad-CAM Implementation 54
8.1 Grad-CAM . 54

9 Conclusion 56

Bibliography 59

vi

List of Figures

4.1 WorkFlow diagram . 10

5.1 Real video frame split . 12
5.2 Fake video frame split . 12
5.3 Frame size . 13
5.4 Training Dataset Distribution . 14
5.5 Testing Dataset Distribution . 15

6.1 Model Architecture . 16
6.2 ResNeXt101_32x8d architecture . 17
6.3 Leaky ReLu . 19

7.1 Training Accuracy and Testing Accuracy of proposed model 21
7.2 Accuracy of proposed model . 22
7.3 Training loss and Testing loss of proposed model 22
7.4 Confusion Matrix of proposed model 23
7.5 Basic ResNet152 Architecture [27] . 25
7.6 Training Accuracy and Testing Accuracy of ResNet152 26
7.7 Accuracy of ResNet152 . 26
7.8 Training loss and Testing loss of ResNet152 27
7.9 Confusion Matrix of ResNet152 . 27
7.10 Training Accuracy and Testing Accuracy of ResNeXt101_64x8d . . . 29
7.11 Accuracy of ResNeXt101_64x8d . 30
7.12 Training loss and Testing loss of ResNeXt101_64x8d 30
7.13 Confusion Matrix of ResNeXt101_64x8d 31
7.14 Cosine Annealing Graph . 36
7.15 Accuracy and Loss of Cosine Annealing Learning Rate 37
7.16 Accuracy of Cosine Annealing LR . 37
7.17 Confusion Matrix of Cosine Annealing LR 38
7.18 Cyclic LR graph . 41
7.19 Accuracy and Loss of CyclicLR . 41
7.20 Accuracy of CyclicLR . 42
7.21 Confusion Matrix of CyclicLR . 42
7.22 Accuracy and Loss of ReduceLROnPlateau 45
7.23 Accuracy of ReduceLROnPlateau: . 45
7.24 Confusion Matrix of ReduceLROnPlateau 46
7.25 MultiStepLR graph . 49
7.26 Accuracy and Loss of MultiStepLR 50
7.27 Accuracy of MultiStepLR . 50

vii

7.28 Confusion Matrix of MultiStepLR: 51

8.1 Grad-CAM has identifying strong activation in the specific region . . 55
8.2 Grad-CAM showing minimal activation in the particular region . . . 55

viii

List of Tables

7.1 Classification Report of proposed model 24
7.2 Classification Report of ResNet152 28
7.3 Classification Report of ResNeXt101_64x8d 32
7.4 Classification Report of Models on Fake videos 33
7.5 Classification Report of Models on Real videos 33
7.6 Classification Report of Cosine Annealing Learning Rate 39
7.7 Classification Report of Cyclic Learning Rate 43
7.8 Classification Report of ReduceLRonPlateau 47
7.9 Classification Report of MultiStep Learning Rate 52
7.10 Classification Report of Model and LR scheduler on Fake videos . . . 53
7.11 Classification Report of Model and LR scheduler on Real videos . . . 53

ix

Chapter 1

Introduction

We are living in an era of information and technological advancement. Day by day,
we are getting introduced to more advanced Artificial Intelligence technologies which
have made our lives easier and it has enabled endless possibilities to open new doors
of advancement for us. The usage of CGI, VFX are most commonly used computer-
generated graphics we have come across. The first usage of CGI was in 1973 in
the Hollywood movie ‘Westworld’. These computer-generated graphics have always
been the talk of the town because, since 1973, it is getting improved day by day. It
is always fascinating to see such rich usage of CGI, and VFX in the field of enter-
tainment, sports, video games, etc. The recent headline is DeepFake videos which
use Deep Learning supported by Artificial Intelligence. With the improvement of
DeepFake generating, fake videos are becoming harder and harder to detect with
the naked eye and quite impossible to detect without any help from any generated
model. Deep neural networks (DNNs), in particular, are AI algorithms that can pro-
duce falsified films. This is a recent development in the problematic issue of internet
misinformation. Despite the fact that digital image and video manipulation and
fabrication are old concepts, the recent growth of DNN have made it much simpler
and faster production of persuasive fake videos. In 2017, when an account on Reddit
going by the name of ”moniker” started posting fake pornographic videos created
with the help of DNN-based face-swapping algorithm, DNN-generated fake videos
first came to the notice of the general public. The term ”DeepFake” has since been
applied more generally to any AI-generated videos that impersonate other videos[1].

DeepFakes targets social media platform where rumors, conspiracies, and false in-
formation can spread quickly because users often follow the masses. In addition,
a persistent ”Infopocalypse” makes people believe they can only trust information
that confirms what they already believe and originates from their social media,
such as family, close friends, or relatives. In fact, even if they think it might be
false, many individuals are open to everything that supports their preexisting be-
liefs. Cheap hardware, such as Effective Graphical Processing Units, are generally
accessible, and as a result, low-quality films with minimally altered genuine content
are already pervasive. More and more open source software is available for creat-
ing realistic, high-quality DeepFakes for misinformation. This makes it possible for
users to almost flawlessly edit films, change expressions, swap faces, and synthesize
speech with little to no artistic training.

1

DeepFake advancements has raised significant concerns regarding its potential ma-
licious exploitation by child predators, enabling them to adopt alternative identities
by utilizing live-stream videos to convincingly transform an adult’s face into that
of a child. Last but not least, DeepFakes can help spread malicious scripts. Re-
searchers recently discovered a website dedicated to DeepFakes was using its cus-
tomers’ Computers to mine bitcoin. DeepFake enthusiasts might thus be the target
of ”Cryptojacking” as they are most likely to have powerful machines.[2]

2

Chapter 2

Research

2.1 Research Problem
Differentiating DeepFake with the naked eyes are one of the hardest tasks. Be-
cause DeepFake technology is getting smart day by day and making DeepFakes are
getting easier. In the beginning, people had to have a deep knowledge about AI,
Deep learning, etc. to make a DeepFake video. But recently, with the emerging
technology of GAN and Deep Neural Network, anyone on the internet can make a
DeepFake video without even having knowledge about it. With a simple video and
face swapping technology, AI automatically generates the required DeepFake video.
These DeepFake videos can cause serious problems in many aspects, such as political
agenda, the social life of a particular people, political organization, etc. DeepFake
videos can also be generated in a pornographic way to harm someone’s reputation
and generating this kind of videos can cause serious harm in someone’s whole life
which they are not even responsible for. These high-quality DeepFakes can be very
deceiving to someone who does not have knowledge about DeepFake, AI, or other
components needed to make DeepFake video. The problem generally upraised by
DeepFakes are defamation, political conspiracy, etc. DeepFake could be a valid rea-
son for weakening democracy. When a powerful national leader threatens another
country or provides hate speech about others through a video, the opposition might
have no clue if the video is real or fake. The other country can take necessary steps
so fast without verifying. This type of activity can be the reason for damage to a
whole nation. This can also mislead voters in various ways. At a point, people will
lose interest in democratic politics, which is called Reality Apathy. Democracy do
not work if the general people cannot believe it. At the same time, an economic
crisis can also happen if the videos cannot be verified. The export-import between
countries could shut down due to an unintentional fake threat. This can lead to a
massive price hike due to shortage of commodities. Defaming celebrities or political
leaders can also be a reason of DeepFake. It can also happen for normal people too.
Even in this time, people are already paying to make a DeepFake video of someone
they want to blackmail or threaten. Women are in a very threatening position. In
future, it could be a very common issue. Gradually, this will reduce the trust issue
in people. DeepFakes are likely to hinder digital literacy and citizens’ trust in offi-
cial information because fake videos of officials from the government claiming things
that never happened cause people to question authorities. In fact, AI-generated
spam, false news that is based on discriminatory content, bogus movies, and a slew

3

of conspiracy theories are all affecting people more and more these days. The ”Infor-
mation Apocalypse” or ”Reality Apathy” phenomena is a result of people believing
that much information, especially video, cannot be trusted. This is perhaps the
most harmful element of DeepFakes, but it may not be misinformation per SE. Fur-
thermore, due to their ingrained belief that everything they do not want to accept
must be false, people may even dismiss real footage as fake. In other words, rather
than people being tricked, the biggest worry is that they will start to see everything
as fraud.
DeepFakes also represent a threat to Cybersecurity. The corporate sector has already
demonstrated interest in defending themselves against viral scams since DeepFakes
might be used to manipulate markets and stocks, for instance, portraying a CEO
using racist or gender insults, or proclaiming a phony merger, falsely reporting fi-
nancial losses or declaring bankruptcy, or representing them as having committed
a crime. Additionally, bogus product or porn announcements could be utilized to
harm brands, demand money, or humiliate management. DeepFake technology fur-
thermore enables real-time digital impersonation of an executive, for example, while
requesting a worker to make a swift money transfer or reveal critical information.[2]

2.2 Research Objective
The major goal of this study is to detect DeepFake videos as accurately as possible.
The advancement of technology and AI is making DeepFakes very hard to detect
with the naked eye. As a result, with the help of a combined model of CNN and
LSTM, it is going to be able to detect if the video is DeepFaked or not. This will help
to eradicate the confusion of people that the video they have seen of a personality
that might contradict with their actual personality. This will be able to resolve any
political issue that was aroused by a DeepFake video.

4

Chapter 3

Literature Review

3.1 Deepfake video creation
With the emergence of the pre-trained models and Artificial Intelligence, GAN,
DeepFakes are becoming very easier through which swapping faces for various heinous
crime are getting easier and easier every day. To emphasize the necessity of detection
of DeepFake, in paper[3], Pavel Korshunov and Sébastien Marcel created DeepFakes
based on GAN which was the open-source software, and preprocessed the whole
dataset(VidTIMIT dataset). By using two face recognition models named VGC
and FaceNet which is a deep neural network, they failed to achieve success to detect
DeepFake. Both the VGC and FaceNet models wrongfully accepted the DeepFake
videos in a major portion resulting in 85.62% for VGC and 95.0% for FaceNet.

To generate a DeepFake video, Generative Adversarial Network(GAN) plays a cru-
cial part[4]. DeepFakes are mainly dependent on GAN as swapping faces is a neces-
sity for creating a DeepFake video. GAN-based technologies are getting more and
more attention day by day for creating realistic images and videos significantly hard
for the human eye to catch.

Face swapping and Face reenactment are the two most popular techniques for gen-
erating DeepFake videos. There are several ways to generate by Face swapping.
Convolutional Neural Network (CNN) was used by Iryna Korshunova, Wenzhe Shi
et al[5], where their neural network uses multi layer architecture which has different
branches embedded with convolutions. They also used linear rectification in the
branches. Another technique for creating DeepFakes by face swap is proposed by
Kyle Olszewski, Zemo li et al[6] in which they trained the Generative Network and
made a 3D model of the face by using RGB image. The training method is required
to make the face more realistic and dynamic. DeepFaceLab is another method which
is a framework described in paper [7] by Ivan Petrov, Daiheng Gao et al, where they
have announced DeepFaceLab as a dominant framework for Face Swap. Finally,
Kevin Dale, Kaylan Sunkavalli et al, proposed Deep Generative model [8] which
swaps faces by using a multilinear model that puts a trail on the facial expression.

Another process of DeepFakes is Face Reenactment. Some popular method includes
Face2Face. Proposed by Justus Theis, Michael et al in [9], Face2Face is categorized
as a novel approach which recognizes the target face and provides output based on a

5

source face by animating the target video and its facial expressions. In paper [10] by
the same authors of Face2Face proposal, initiated another method FaceVR, same as
Face2Face, a novel approach, altering the expression and facial emblem by Virtual
Reality based Face Reenactment. Furthermore, HeadOn [11] method follows Face
Reenactment compiling Real time DeepFake videos which tracks not only the facial
expressions but also the movement of eyes, head motion etc.

DeepFake currently poses a greater threat than we can ever imagine[2][12]. In many
industries, politics, journalism, etc. DeepFake can cause various trust issues in the
mind of general people because DeepFake can be harder to spot and people who
have a limited idea about the threats of DeepFake can easily be deceived on social
media and other platforms will easily believe the video they see about a celebrity
and political leader. So detecting DeepFake videos is a necessity more than ever.

3.2 DeepFake video detection using CNN
There are various ways of detecting DeepFake using the Convolutional Neural Net-
work. In paper[13], Aditi Kohli et al, used Frequency CNN to detect the facial
forgeries. Convolutional Neural Networks, or CNNs, were designed to map image or
video data to an output variable. The spread of willing miscommunication through
synthetically generated fake but realistic images and videos has become a threat-
ening and significant problem in this modern world. Convolutional models are a
class of deep learning which have been proven to be effective in all aspects. This
tool (CNN) is pretty effective for analyzing pattern recognition and computer vision
related problems. It has multiple layers containing convolutional layer, activation
layer, an optional pooling layer followed by fully connected layer. So, basically it
contains 8 learned layers where 5 of which are convolutional layers & rest 3 are
linear or fully connected. Convolutional and fully linked layers are simply stacked
on top of one another to create CNN architecture. CNN is stack based architecture
so the deeper this kind of architecture becomes the more inaccurate it gets. This
phenomenon mainly occurs due to the conventional backpropagation way CNNs are
trained. During the CNN training phase, gradient information should be delivered
reversed into the model to avoid it being somewhat attenuated as it passes through
each layer of CNN. For CNNs with fewer layers, it is not a problem, but for CNNs
with more layers, the gradient signal effectively degrades to noise by the time it
reaches the network’s first layer once more. Then, by adopting a fundamental strat-
egy and broadly generalizing the notion of a direct link between layers, ResNet and
DenseNet largely solve the issue of disappearing gradients. The usual input pro-
cessing steps for the CNN architecture include kernel, stride, padding, and pooling.
Where the second, fourth, and fifth convolutional layers’ kernels are only connected
to the kernel maps of the layers that came before them if they are on the same GPU.
Additionally, the first convolutional layer applies 96 kernels and a 4-pixel stride to
filter the input image, while the second layer applies 256 kernels to filter the output
of the first layer. There are no pooling or normalizing levels between the following
three layers. They are simply connected to one another. The third layer has 384
kernels and the fourth layer has 384 kernels. The third layer is 3x3x256 and the
fourth layer is 3x3x192. The fifth layer has 256 kernels and is once more 3x3x192 in

6

size[14][15]. The accuracy score of CNN based models for detecting DeepFake videos
is truly remarkable. Davide Cozzolino et al [16] published their research on various
CNN-based models performed by various authors. Some of the models mentioned
in the papers based on Convolutional Neural Network are MesoInception-4 which
has an accuracy of 83.10% for High quality data and 70.47% for Low quality data.
XceptionNet is another model mentioned in the paper which has better accuracy
than MesoIncetion-4 and for High quality data the accuracy score is 95.73% and for
low data the accuracy score is 81.00%.

Deep learning-based video modification techniques have become extensively avail-
able to the general public in recent years. With little to no work, anyone can learn
how to make deepfake movies using a small number of victims or target images. This
presents a significant societal problem for everyone who have photographs which are
accessible to the public on the Internet, namely on social networking platforms. [17]

Because the spread of misleading information through convincingly realistic-looking
but artificially produced images and videos has become a critical problem, effective
manipulation detection systems are needed. Although discovering changed faces in
still photos has received a lot of attention, finding altered faces in videos using the
temporal information in the stream has received less attention. Recurrent convolu-
tional models, a subtype of deep learning models, are particularly good at exploiting
the temporal characteristics from picture streams in a number of applications. [18]

3.3 DeepFake video detection using Hybrid CNN
and LSTM

Since LSTM networks are a subtype of RNNs, the knowledge learned from studying
RNNs also applies to them because they are simpler systems. The standard RNN
equations, which we obtain from differential equations, are significant because they
serve as the initial model that specifies a clear logical path leading to the LSTM
system design[19]. Though nowadays majority of the deepfake detection techniques
heavily depends on the machine learning methods as it mainly generalises the pro-
cess of identifying certain phenomena[20].

Saikia et al.[21] has introduced a hybrid model of CNN and LSTM using VGG16
where they specifically targeted on the facial features of the deepfake videos to iden-
tify the distinguishing traits of the content. Additionally, their proposed method
mainly focuses on analyzing facial characteristics as the process of warping intro-
duces the noticeable distortion in the DeepFake videos. Furthermore, this approach
involves utilizing this information by incorporating several preprocessing steps such
as face extraction,frame extraction and optical flow field feature extraction followed
by hybrid CNN-RNN modelling. As a result, they achieved 91.21% accuracy on
FF++, 79.49% on Celeb-DF and 66.76% on DFDC. Cornia et al.[22] proposed
Saliency Attentive model, a deep learning model which mainly focuses on the crucial
parts of the input data consisting of extraction network and attention mechanism
which assigns weights to point up salient regions. Moreover, it mainly improves

7

the performance and helps the model prioritize applicable information in sentiment
analysis and object recognition.

Shivangi Aneja et al.[23] published their research on a new transfer learning ap-
proach, Deep Distribution Transfer(DDT) which mainly works on detecting facial
forgery. Additionally, they set the goal of enabling a trained model on a single
fake generation method to be adapted well to different datasets and prior unknown
manipulation techniques. As a result, they introduced a mixture of model-based
loss formulation which learns a multi-model distribution that encodes the initial
forgery methods class categories. They also suggested a approach of spatial mix-
up augmentation which helped them to enhance cross-domain generalization and
finally enabled them to reach the accuracy of 92.23% on FF++, 81.21% on Google
DFD, 60.79% on AIF, 74.28% on Dessa, 68.83% on Celeb-DF and 75.47% on com-
bined. On another research done by Ranjan et al [24] proposed similar combined
method of CNN and LSTM using XceptionNet reached the accuracy of 94.33% on
DFD, 83.49% on Celeb-DF, 78.13% on DFDC and 79.62% on combined dataset.
Moreover, as part of their research they mainly examined the effectiveness of CNN
framework that utilizes Transfer Learning which helped visualizing intermediate ac-
tivations for accessibility. Additionally, on their research the shabby performance
of the separately trained models on various levels mainly highlights the problem-
atic phenomenon of dataset shift in numerous testing environments. This finding
suggests that more diverse generating procedure and pre-processing techniques are
required while compiling datasets to capture real world circumstances. Also, by
highlighting the disparities between the edited face and its surrounding areas are
also a better data processing approach which was proposed by Chen et al [25]. They
introduced the unified framework called FSSpotter which mainly explored temporal
and spatial information in videos which has Spatial Feature Extractor (SFE) and
Temporal Feature Aggregator (TFA) that mainly detects spatial evidence and tem-
poral inconsistencies across frames. In terms of AUC (Area Under Curve) scores in
detecting DeepFakes their suggested approach has shown greater performance.

8

Chapter 4

Workplan

First, we have made a dataset of 2352 videos which are 50% real and 50% deep-
faked videos. We preferred two datasets. FaceForensic++ which has a total of 500
videos and DeepFake Detection Challenge Dataset of 1852 videos. All of the videos
will be preprocessed by splitting the videos into frame and then detecting the face
clearly on the videos. As we need to detect the face and track the expression and
inconsistency of the face, we will crop the face on preprocessing stage. Further-
more, we augmented the data using Random Horizontal Flip, Color Jitter and then
finally converted the frames into tensor. After normalizing the tensor, the features
are extracted using ResNeXt101_32x8d. ResNeXt101_32x8d is helping to extract
features/patterns which are considered meaningful. With the help of CNN layer,
the model refines and transform the extracted features before sending the output
to LSTM layer for further processing and classification. We have added LSTM to
detect the temporal inconsistency between the frames which might indicate the ab-
normality thus detecting a DeepFake video. It will be done with Temporal sequence
analysis. If consistency is found between the frames, it will be detected as Fake
video.

9

Figure 4.1: WorkFlow diagram

10

Chapter 5

Description of the data

5.1 Dataset and Data analysis:

5.1.1 Video Data:
For DeepFake videos, we have made a custom dataset consisting of 2352 videos
from DFDC(DeepFake Detection Challenge) dataset and FaceForensics++. The
quantity of videos taken from DFDC are 1852 and from FaceForensics++ we have
taken 500 videos. To prevent an uneven dataset and skewed results, real videos
and false videos are equal. From DFDC, 1000 Real videos and 852 Fake videos
have been taken. From FaceForensics++ consisting of Face2Face, FaceSwap and
NaturalTextures Deepfakes, 176 Real videos and 324 Fake videos have been enacted.
The FaceForensics++ dataset was biased and consisted mostly fake videos. The real
videos from the dataset are low quality. All the videos from DFDC dataset are of
10 seconds and contain on average 300 frames at 30FPS. So, the whole dataset from
DFDC consists of 555,600 frames. FaceForensics++ videos have 300 frames at 30
FPS with 10 seconds. The total number of frames in FaceForensics++ are 150,000.

5.1.2 MetaData:
The MetaData.csv file contains the video information which is either the video is
real or fake. The csv file helps to train the model and validate the data.

5.1.3 Data Preprocessing
The total number of videos in this dataset are 2352 and a huge number of frames(705,600)
will be very difficult for the model. We have to split the videos into frames so that
the model can detect inconsistency among the frames of faces.

Split into frames:

As there are different numbers of frames in the videos and an enormous amount of
frames will overfit the model, the quantity of frames will be 200 for all the videos.
The resolution of the frames will be 112x112. For detecting the inconsistency, we
have used Long Short Term Memory(LSTM) as a result, for better accuracy of the
LSTM model, the first 200 frames of the videos are split.

11

Face crop:

For the cropping the face, we have used built in face_recognition_models−0.3.0.tar.gz.
The videos have a surrounding and might have multiple faces. The Face Recogni-
tion model crops the face as a result, there are 200 frames in the video of just facial
images to detect inconsistencies by the LSTM layer.

Figure 5.1: Real video frame split

Figure 5.2: Fake video frame split

12

5.1.4 Data Augmentation
Convert videos to PIL Image:

PIL (Python Imaging Library) is a default python library that provides us the
opportunity to do various image processing operation such as: manipulating and
editing the extracted individual frames from the videos. PIL library gives us the
chance to perform various operation, for example: adjusting the contrast, brightness
which have been done in Color Jitter, applying filter which eventually helps our
model to have better resolution frames.

Frame size:

All the frames have been resized to 112x112 for better accuracy. This action ensures
the same and consistent dimension of each frames of the videos.

Figure 5.3: Frame size

Random Horizontal Flip:

For introducing diversity in the model training we have performed random horizontal
flip. It will help the model to learn features that are not dependent on the specific
orientation of faces, making it more robust to variations in the test data.

Color Jitter

For detecting the faces in frames more clearly, we conducted ”Color Jitter” which
is applying transformation to each frames. For adjustments, we have increased the
values of Brightness, Contrast, Saturation by 40% and Hue by 10%. This ensures
that each frames have spontaneous color adjustments and the model performs with
variation of color distributions.

Converting frames to Tensor

As we are working on video data, it is very hard for the model to process a total
number of 2352 videos with limited resources. By converting the frames of the
videos into tensor, the model can analyze the data more efficiently and compute

13

more accurately. Tensors are known as multidimensional array which can represent
the pixels of each frames as a numerical values. By converting the frames to tensors,
we enable the model to perform mathematical operations on the pixel values, such
as convolutions, matrix multiplications, and activations etc.

Normalizing the tensor

After getting the pixel values, it is necessary to standardize all the pixel value
within range and distribution of pixel values for providing the input to the model.
To maximize the efficiency in the training process, we have to ensure that the pixel
values have a similar scale across different frames and videos.

Check for number of Real and Fake videos:

After uploading the processed videos to the memory, we have to check for the total
number of Real and Fake videos uploaded in the memory. After getting the total
videos of 2352, we move forward to checking the balanced distribution of Real and
Fake videos.

5.1.5 Splitting the data:
The dataset will be split into an 8:2 ratio where 80% of the videos will be used for
training the data and 20% of the videos will be used for test videos.

Training data

Among 80% of the training data, which is 1881 videos, the quantity of Real videos
are 960 and the quantity of fake videos are 921.

Figure 5.4: Training Dataset Distribution

14

Testing data

There are a total of 471 videos in testing data which consists of 216 Real videos and
255 Fake videos.

Figure 5.5: Testing Dataset Distribution

15

Chapter 6

Implementation of Proposed
model

6.1 Model Architecture

Figure 6.1: Model Architecture

The DeepFake detection model is an integrated CNN and LSTM model. CNN
model is used to analyze the visual data and extract the feature. For extracting
the feature, a ResNeXt architecture has been used and a custom CNN model has
been used for analyzing the data. The CNN model’s output will be used as the

16

LSTM model’s input to analyze the temporal sequence and detect inconsistencies
between the frames. The overall architecture combines convolutional operations,
adaptive pooling, LSTM for temporal analysis, and linear layers to extract discrim-
inative features from the input frames and learn representations that can be used
for DeepFake detection.

6.2 ResNeXt101_32 ∗ 8d :

The ResNeXt101 model is based on the ResNet model. ResNeXt replicates a struc-
tural component that combines a number of transformations with the same topol-
ogy. In addition to the depth and width dimensions, it also highlights cardinality
(the size of the set of transformations) as a new dimension in comparison to ResNet.
ResNeXt101_32∗8d has 88791336 parameters. The ResNeXt architecture is known
for its ability to capture high-level features and patterns from images. There are a
total of 101 layers and the number of Cardinality is 32. This ResNeXt architecutre
help the model to recognize general visual patterns present in both real and deepfake
videos. The model can identify distortion from the patterns observed in fake videos

Figure 6.2: ResNeXt101_32x8d architecture

6.3 CNN model:
For the Deep Learning approach to detect Deep Fake, CNN models have proven to
have the best accuracy. CNN is known to have multiple layers and each and every
layer has different parameters to transform data using convolutional kernels. These
transformations help to extract valuable characteristics. Basic CNN architectures
consist of Convolution Layer, Pooling Layer, Fully Connected Layer. For our custom
CNN model following layers have been used after we have extracted the features from
ResNeXt101_32 ∗ 8d.

17

6.3.1 Convolution Layer:
For the custom CNN model, a layer of Conv2D has been added. As the frame size
was 112x112, the input of Conv2D was 112x112. The kernel size is 3 and stride is
(4,1). Padding for the Conv2D layer is (4,3). Afer applying Conv2D

wout =
w − k + 2p

s
+ 1

=
112− 4 + 2× 4

4
+ 1

= 30

(6.1)

Hout =
H − k + 2p

s
+ 1

=
112− 4 + 2× 3

1
+ 1

= 115

(6.2)

The convolutional layer helps to further process and refine the extracted features by
capturing more localized patterns and spatial relationships within the features .

6.4 Linear Layer(linear1):
The Linear Layer added to the model applies linear transformation of the output
data from the Convolutional Layer. Linear Layer also known as Fully Connected
Layer has input feature and output feature. The in_features of the layer is 2048
and out_feature is the same as the number of classes. The bias is set to True. The
formula for the linear transformation is following:

y = Wx+ b (6.3)

Here, x is the input sample which has the shape(batch_size, 2048) and it is passed
to network as a single tensor and using the formula it transform the input to the y
which has the shape(batch_size, number of classes). b indicates bias whereas W=
weight. The purpose of this linear layer is to adjust the dimensionality of the features
to better align with the requirements of the subsequent LSTM layer. It helps in
reducing the dimensionality if needed or expanding it to a higher-dimensional space
to capture relevant information for sequence modeling. It also helps in summarizing
the information learned from previous layers

6.5 Leaky Rectified Linear Unit Activation:
The Leaky ReLu activation operates by a fixed scaler which multiplies any input
which is less than 0. Leaky ReLu helps the model capture a wider range of infor-
mation. The formula for Leaky ReLU is given below:

f(x) =

{
0.1x, for x < 0

x, for x ≥ 0
(6.4)

The Leaky ReLU activation can enhance and refine the learned features by intro-
ducing non-linearity and amplifying the activations.

18

Figure 6.3: Leaky ReLu

6.6 Batch Normalization(BatchNorm1d):
To avoid overfitting of the data, Batch Normalization layer have been used. Also,
Batch normalization is applied to normalize the input along the batch dimension.
Because of overfitting of the data, the model will not be able to predict the test
dataset properly. By adding more layers in the model, the Batch Normalization
layer makes the model more stable and fast. It standardizes and normalizes the
data which is output from LeakyReLu layer.

6.7 Adaptive Average Pooling 2D Layer (avgpool):
The final layer before providing the input to LSTM is Adaptive Average Pooling.
The Avgpool layer dynamically computes the output size based on the input size and
ensures a fixed output size regardless of the input size. Adaptive Average Pooling2D
layer prepares the feature maps to be compatible with the LSTM layer. By reducing
the spatial dimensionality to 1x1, the output of the Adaptive Average Pooling2D
layer can be easily reshaped into a suitable input format for the LSTM layer.

6.8 LSTM model:

6.8.1 LSTM Layer
The Recurrent Neural Network (RNN) variant known as Long Short Term Mem-
ory (LSTM) features feedforward connections. They are unique RNN variant that
addresses the issues with limited memory. The vanishing gradient issue in RNN
was eliminated by LSTM, and they are made in a method that enables them to
learn long-term dependencies of data and process it sequentially. In the context
of deepfake detection, the LSTM layer processes each frame of the input video se-
quentially, capturing temporal information and comparing the frame properties at
different time points. By analyzing the sequential nature of the frames, the LSTM
layer can identify inconsistencies and patterns that may indicate the presence of
deepfakes. The LSTM layer in our model has 2048 hidden units. The 2048 LSTM
layer receives its input from the CNN network’s output. After processing each frame
in turn, LSTM compares its properties at various points in time. It is possible to
tell whether a video is deep-faked or not by comparing the frames. Any video can be
supplied to the model for prediction after training. The number of latent dimensions
of the LSTM layer is 2048 which is the same as the parameter of hidden dimensions.
The LSTM model has 1 layer. The LSTM model is not Bidirectional RNN as the

19

parameter was set to bidirectional =false. To summarize, LSTM enables the model
to understand the context and temporal dynamics within the video, which can be
helpful in detecting inconsistencies or patterns associated with deepfake manipula-
tion. It also remembers important past frames and utilize that information to make
predictions for the current frame.

6.9 Dropout layer:
The Dropout layer sets the input to 0 randomly at a dropout rate which we have
set to 0.4 for our model. The dropout layer mainly deals with the overfitting of the
model. In this case, 40% of the inputs will be zeroed out during training.

6.10 MaxPooling layer:
MaxPooling2D layer have been added after the dropout layer to downsample. The
MaxPooling2D layer downsamples the input feature maps and reduce the spatial
dimensions of the frames. As a result, it can help the model to capture more
important features and reduce computational costs. After the MaxPooling layer,
the dimensions of the frames have been reduced and helped the model to predict
more efficiently. By using a pooling size of (4x4) and a stride of 2, the MaxPooling2D
layer downsamples the feature maps by taking the maximum value within each 4x4
region and moving 2 units at a time and the input spatial dimensions are reduced
by a factor of 2.

6.11 Flatten layer:
By using the Flatten layer, the model simplifies the data representation, reduce
dimensionality, and ensure compatibility with classification algorithms, ultimately
aiding in the accurate detection of DeepFake videos. It reshapes the input tensor
and 2D or 3D feature maps into a 1D vector.

20

Chapter 7

Result and Analysis

After running the CNN and LSTM model, we have determined the accuracy with
Training accuracy and Validation accuracy, Training loss and Validation loss, con-
fusion matrix, precision, recall and f1 score. We have run 50 epochs with a learning
rate of 5e-5.

7.1 Accuracy and Loss of Proposed model

7.1.1 Accuracy of Proposed Model
The training accuracy of the model is 99.52% after 50 epoch which started as 55.56%
and after 25 epochs the training accuracy was 98.25%. There were a total of 188
batches with 10 videos in each batch. Analyzing the overall trend of training ac-
curacy, it is observed that the model consistently improved from the beginning of
training. This indicates that the model was able to capture important patterns
and features in the training data, gradually refining its ability to make accurate
predictions.
After various number of adjustments in the parameters of layers and changing the
learning rate, we have found the highest accuracy with learning rate of 5e-5 which
is 94.055%. With a learning rate of 1e-4, the accuracy was slightly above 90%
and below 90% for learning rate of 1e-6. After tuning adjustments, using Adam
optimizer provided better result. After 25 epochs, the accuracy was 94.479% and
highest accuracy reached in the model was 95.966% on epoch number 30.

Figure 7.1: Training Accuracy and Testing Accuracy of proposed model

21

Figure 7.2: Accuracy of proposed model

7.1.2 Loss of Proposed Model
The loss function works as a determiner that differentiates between expected result
and model generated result. For generating the loss, we used Cross Entropy loss
which adjust the weight of the model during the training. The loss starts very high
at the beginning of the model and after adjustments and tuning, the final loss of the
training data is 0.127077 which started at 0.701769 and final loss of testing data is
0.253015 which was 0.501568 at the beginning. So, it is safe to say that the downfall
of loss data predicts the success of the model.

Figure 7.3: Training loss and Testing loss of proposed model

22

7.1.3 Confusion Matrix
The total number of testing data is 471 where 216 data is Real videos and 255
Videos are Fake videos. Our model has predicted at an accuracy of 94.055%. 242
Fake videos have been predicted correctly and 13 Fake videos were predicted as
Real videos by the model. For Real videos, 201 videos have been predicted correctly
whereas 15 videos were anticipated as Fake videos.

Figure 7.4: Confusion Matrix of proposed model

True positive = 242
False negative = 13
False positive = 15
True negative = 201

True positive indicates the Fake videos predicted correctly by the model. False
negative is the value of fake videos which are labeled incorrectly by the model. For
real videos, true negative values indicates correctly labeled videos by the model and
false positive values which are predicted as Fake videos.

23

7.1.4 Precision, Recall, F1-score
For our model, precision indicates how accurately our model detects DeepFake videos
out of all the videos it predicts as DeepFake whereas, recall indicates how accurately
our model identifies DeepFake videos among all the actual DeepFake videos. The
F1 score combines precision and recall to give an overall evaluation of the model’s
performance by taking account of the model’s ability to detect DeepFake videos
(recall) and the accuracy of those predictions (precision).

Precision Recall f1-Score Support
Fake video 0.94 0.95 0.95 255
Real video 0.94 0.93 0.93 216
accuracy 0.94 471
macro avg 0.94 0.94 0.94 471
weighted avg 0.94 0.94 0.94 471

Table 7.1: Classification Report of proposed model

The F1-score is 0.95 for False videos and 0.93 for Real videos
F1-score for Fake videos

F1− score = 2 ∗ precision ∗ recall
precision+ recall

= 2 ∗ 0.94 ∗ 0.95
0.94 + 0.95

= 0.95

(7.1)

F1-score for Real videos

F1− score = 2 ∗ precision ∗ recall
precision+ recall

= 2 ∗ 0.94 ∗ 0.93
0.94 + 0.93

= 0.93

(7.2)

24

7.2 Accuracy and Loss of other Models

7.2.1 ResNet152
ResNet-152 is a deep convolutional neural network architecture and it was intro-
duced as part of the ResNet (Residual Network) family of models. It is an extension
of the original ResNet model proposed by He et al.[26] in 2015, with 152 layers. The
ResNet-152 architecture follows a basic building block called a residual block. It
consists of a stack of convolutional layers. Each residual block has two main paths:
the identity path and the shortcut path. The identity path performs a series of con-
volutional operations. The shortcut path directly connects the input to the output
of the block. The ResNet-152 architecture has shown impressive performance in
various computer vision tasks, particularly in image classification and object detec-
tion. It has been pre-trained on large-scale datasets, such as ImageNet, and can be
fine-tuned or used as a feature extractor for transfer learning in various applications.

Figure 7.5: Basic ResNet152 Architecture [27]

7.2.2 Dataset Description for ResNet152
The dataset will be split into an 8:2 ratio where 80% of the videos will be used for
training the data and 20% of the videos will be used for test videos.

Training data

Among 80% of the training data, which is 1881 videos, The quantity of Real videos
are 910 and The quantity of fake videos are 971.

Testing data

There are a total of 471 videos in testing data which consists of 266 Real videos and
205 Fake videos.

7.2.3 Accuracy of ResNet152
The training accuracy of the model is 92.82% after 50 epoch which started as 50.93%
and after 25 epochs the training accuracy was 88.94%. There were a total of 188

25

batches with 10 videos in each batch.
The final accuracy of the model is 91.51% after 50 epoch which is less than the
proposed model.

Figure 7.6: Training Accuracy and Testing Accuracy of ResNet152

Figure 7.7: Accuracy of ResNet152

7.2.4 Loss of ResNet152
For generating the loss, we used Cross Entropy loss which adjust the weight of the
model during the training. The loss starts very high at the beginning of the model
and after adjustments and tuning, the final loss of the training data is 0.342545 which
started at 0.706269 and final loss of testing data is 0.236721 which was 0.675880 at
the beginning.

26

Figure 7.8: Training loss and Testing loss of ResNet152

7.2.5 Confusion Matrix of ResNet152
The total number of testing data is 471 where 266 data is Real videos and 205 Videos
are Fake videos. ResNet152 has predicted at an accuracy of 91.51%. 196 Fake videos
have been predicted correctly and 9 Fake videos were predicted as Real videos by
the model. For Real videos, 235 videos have been predicted correctly whereas 31
videos were anticipated as Fake videos.

Figure 7.9: Confusion Matrix of ResNet152

True positive = 196
False negative = 9
False positive = 31
True negative = 235

27

7.2.6 Precision, Recall, F1-score of ResNet152

Precision Recall f1-Score Support
Fake video 0.86 0.96 0.91 205
Real video 0.96 0.88 0.92 266
accuracy 0.92 471
macro avg 0.91 0.92 0.91 471
weighted avg 0.92 0.92 0.92 471

Table 7.2: Classification Report of ResNet152

The F1-score is 0.91 for False videos and 0.92 for Real videos
F1-score for Fake videos

F1− score = 2 ∗ precision ∗ recall
precision+ recall

= 2 ∗ 0.86 ∗ 0.96
0.86 + 0.96

= 0.91

(7.3)

F1-score for Real videos

F1− score = 2 ∗ precision ∗ recall
precision+ recall

= 2 ∗ 0.96 ∗ 0.88
0.96 + 0.88

= 0.92

(7.4)

28

7.2.7 ResNeXt101_64x8d
ResNeXt101_64x8d is a variant of the ResNet architecture introduced by Xie et
al[28]. It is designed to improve the representational power and efficiency of deep
neural networks. ResNeXt101_64x8d has a cardinality of 64 and our proposed model
ResNeXt101_64x8d has cardinality of 32. So, ResNeXt101_64x8d uses multiple
parallel path instead of single convolutional path. Each path consists of a group
of convolutional filters, and the cardinality determines the number of such groups.
In this case, there are 64 groups of convolutional filters. The overall structure of
ResNeXt101_64x8d is similar to the original ResNet architecture. It consists of a
series of residual blocks stacked on top of each other. Each residual block includes
multiple convolutional layers, batch normalization, and ReLU activation functions.
The skip connections, or shortcut connections allows the network to learn residual
mappings.

7.2.8 Dataset Description for ResNeXt101_64x8d
The dataset will be split into an 8:2 ratio where 80% of the videos will be used for
training the data and 20% of the videos will be used for test videos.

Training data

Among 80% of the training data, which is 1881 videos, The quantity of Real videos
are 931 and The quantity of fake videos are 950.

Testing data

There are a total of 471 videos in testing data which consists of 245 Real videos and
226 Fake videos.

7.2.9 Accuracy of ResNeXt101_64x8d
The training accuracy of the model is 96.07% after 50 epoch which started as 53.54%
and after 25 epochs the training accuracy was 93.46%. There were a total of 188
batches with 10 videos in each batch.
The final accuracy of the model is 92.36% which is more than ResNet152 but less
than propposed model.

Figure 7.10: Training Accuracy and Testing Accuracy of ResNeXt101_64x8d

29

Figure 7.11: Accuracy of ResNeXt101_64x8d

7.2.10 Loss of ResNeXt101_64x8d
The loss starts very high at the beginning of the model and after adjustments and
tuning, the final loss of the training data is 0.264879 which started at 0.699409 and
final loss of testing data is 0.205366 which was 0.675796 at the beginning. So, it is
safe to say that the downfall of loss data predicts the success of the model.

Figure 7.12: Training loss and Testing loss of ResNeXt101_64x8d

30

7.2.11 Confusion Matrix of ResNeXt101_64x8d
The total number of testing data is 471 where 245 data is Real videos and 226 Videos
are Fake videos. ResNeXt101_64 ∗ 4d has predicted at an accuracy of 92.36%. 209
Fake videos have been predicted correctly and 17 Fake videos were predicted as
Real videos by the model. For Real videos, 226 videos have been predicted correctly
whereas 19 videos were anticipated as Fake videos.

Figure 7.13: Confusion Matrix of ResNeXt101_64x8d

True positive = 209
False negative = 17
False positive = 19
True negative = 226

31

7.2.12 Precision, Recall, F1-score of ResNeXt101_64x8d

Precision Recall f1-Score Support
Fake video 0.92 0.92 0.92 226
Real video 0.93 0.92 0.93 245
accuracy 0.92 471
macro avg 0.92 0.92 0.92 471
weighted avg 0.92 0.92 0.92 471

Table 7.3: Classification Report of ResNeXt101_64x8d

Finally, the F1-score is 0.92 for False videos and 0.93 for Real videos
F1-score for Fake videos

F1− score = 2 ∗ precision ∗ recall
precision+ recall

= 2 ∗ 0.92 ∗ 0.92
0.92 + 0.92

= 0.92

(7.5)

F1-score for Real videos

F1− score = 2 ∗ precision ∗ recall
precision+ recall

= 2 ∗ 0.93 ∗ 0.92
0.93 + 0.92

= 0.93

(7.6)

32

7.3 Accuracy and Classification comparison of
Models

Based on these results, the proposed model has the highest F1 score for fake videos
(0.95) among all the models compared. ResNet152 and ResNeXt101_64x8d have
slightly lower F1 scores for fake videos. However, for real videos, the proposed
model and ResNeXt101_64x8d have the same F1 score of 0.93, while ResNet152
has a slightly lower F1 score (0.92).

Model Accuracy Precision Recall f1-Score
Proposed Model 0.9405 0.94 0.95 0.95
ResNet152 0.9151 0.86 0.96 0.91
ResNeXt101_64x8d 0.9236 0.92 0.92 0.92

Table 7.4: Classification Report of Models on Fake videos

Model Accuracy Precision Recall f1-Score
Proposed Model 0.9405 0.94 0.93 0.93
ResNet152 0.9151 0.96 0.88 0.92
ResNeXt101_64x8d 0.9236 0.93 0.92 0.93

Table 7.5: Classification Report of Models on Real videos

33

7.4 Model Training and Optimization Techniques
For achieving the best outcome of the model, we have tried an iterative approach
of trial and error. Though this approach was becoming inefficient as we had to
explore a huge range of learning rate. Analyzing the loss function and accuracy of
the model, it was obvious that maintaining a fixed learning rate was not an effective
strategy. To overcome this problem, we used Learning Rate Scheduler to adjust the
learning rate as the training of the model progressed.

7.4.1 Learning Rate Scheduler
The learning rate scheduler operates by defining specific milestones or events during
the training process. The learning rate is adjusted according to a predetermined
schedule. These adjustments can be based on various factors such as the number
of training epochs, the model’s performance on the validation set, or other criteria.
The choice of milestones and the decay factor was determined through a combination
of experimentation and empirical observations. By reducing the learning rate at
appropriate intervals, the learning rate scheduler aims enhance the model’s stability,
and potentially overcome issues such as overfitting or reaching suboptimal solutions.
For our model, we have used

• CosineAnnealing Learning Rate

• Cyclic Learning Rate

• Reduce LR on Plateau

• MultiStep Learning Rate

34

7.4.2 CosineAnnealingLR
Cosine Annealing Learning Rate adjusts the learning rate in a cosine function. It
provides a gradual and smooth decrease in learning rate during the training. Our
model provides best accuracy with starting of higher learning rate of 5e-5. The
initial plan was to check if the model provides better accuracy and stability with
lower learning rate. After gradual decrement in learning rate, the model becomes
more precise updating and reaching to optimal solution. As a result, the minimum
learning rate was set to inspect the accuracy and loss of the model. The formula for
learning rate in a certain epoch for CosineAnnealingLR is:

learning_rate = etamin + (base_lr − etamin) ·
(
1 + cos

(
π · epoch
Tmax

))
/2 (7.7)

The parameter for CossineAnnealingLR are given below:

base_lr:

The base_lr is the initial value of the learning rate. The value for base_lr is 5e-5.

T_max:

T_max represents the number of epoch for which CosineAnnealingLR will decrease
the learning rate. After T_max epoch, the learning rate will reach to the minimum
value which is eta_min. After reaching T_max, learning rate restarts from it’s
initial value provided in the optimizer. The T_max for our model is 40.

eta_min:

CosineAnnealingLR gradually decreases the learning rate and it reaches to a mini-
mum value. The value for eta_min is 1.945e-5. After reaching the minimum value,
the learning rate sets its value to 5e-5.

last_epoch:

This parameter indicates the index of the last epoch. It allows us to manually set
the starting epoch index. By default, it is set to -1, which means that the scheduler
will start from epoch 0.

35

Figure 7.14: Cosine Annealing Graph

For initial epoch, learning rate was 5e-5. After performing cosine function, the
learning rate gradually decreases and the learning rate after 10,20,30 epochs are
4.553e-5, 3.472e-5 and 2.392e-5 respectively. After reaching to (T_max,eta_min)
the model reaches to final learning rate of the model and restarts the learning rate.
So, from 40 epoch, the model starts training at 5e-5 learning rate and on final
epoch(50th epoch) the model finally reaches to learning rate of 4.478e-5.

36

Accuracy and Loss of Cosine Annealing Learning Rate:

(a) Cosine Annealing accuracy (b) Cosine Annealing loss

Figure 7.15: Accuracy and Loss of Cosine Annealing Learning Rate

The training accuracy increased from 52.37% to 96.07%, which suggests that the
model was becoming more accurate in its predictions on the training data. The
training loss steadily decreased from 0.7079 to 0.2301, indicating that the model
was learning and improving over time. The testing accuracy started at 57.75% and
improved to a peak of 95.75% at epoch 31. The testing loss decreased from 0.6777
to 0.1319. The testing accuracy fluctuated slightly after epoch 31, but generally
remained above 90%. The final accuracy of the model is 91.30%.

Figure 7.16: Accuracy of Cosine Annealing LR

37

Confusion Matrix of Cosine Annealing Learning Rate:

The total number of testing data is 471 where 246 data is Real videos and 225
Videos are Fake videos. Using CosineAnnealingLR, our model has predicted at an
accuracy of 91.30%. 217 Fake videos have been predicted correctly and 8 Fake videos
were predicted as Real videos by the model. For Real videos, 213 videos have been
predicted correctly whereas 33 videos were anticipated as Fake videos.

Figure 7.17: Confusion Matrix of Cosine Annealing LR

True positive = 217
False negative = 8
False positive = 33
True negative = 213

38

Precision, Recall, F1-score of Cosine Annealing Learning Rate:

Precision Recall f1-Score Support
Fake video 0.87 0.96 0.91 225
Real video 0.96 0.87 0.91 246
accuracy 0.91 471
macro avg 0.92 0.92 0.91 471
weighted avg 0.92 0.91 0.91 471

Table 7.6: Classification Report of Cosine Annealing Learning Rate

The F1-score is 0.91 for False videos and 0.91 for Real videos
F1-score for Fake videos

F1− score = 2 ∗ precision ∗ recall
precision+ recall

= 2 ∗ 0.87 ∗ 0.96
0.87 + 0.96

= 0.91

(7.8)

F1-score for Real videos

F1− score = 2 ∗ precision ∗ recall
precision+ recall

= 2 ∗ 0.96 ∗ 0.87
0.96 + 0.87

= 0.91

(7.9)

39

7.4.3 CyclicLR
Cyclic Learning Rate involves cyclically varying the learning rate between a min-
imum and maximum value during training. This cyclic variation intends to help
the model escape from poor local minima, explore different regions of the loss land-
scape, and potentially find better solutions. The CyclicLR scheduler operates in
cycles, with each cycle consisting of two phases: the increasing phase and the de-
creasing phase. During the increasing phase, the learning rate is gradually increased
from the minimum value (base_lr) to the maximum value (max_lr) over a specified
number of iterations (step_size_up). This linear increase allows the model to ex-
plore different areas of the loss landscape. The CyclicLR scheduler can be configured
to follow different patterns within each cycle. We have chosen ”Triangular” mode.
The parameters of CyclicLR are given below:

base_lr:

This parameter specifies the minimum learning rate in the cyclic schedule. The
learning rate will not go below this value during training. For our model, the
minimum learning rate is set to 0.

max_lr:

This parameter specifies the maximum learning rate in the cyclic schedule. The
learning rate will not exceed this value during training. The maximum learning rate
is set to 0.01.

step_size_up:

This parameter sets the number of steps or iterations it takes to increase the learning
rate from the base_lr to the max_lr. During this phase, the learning rate gradually
increases in a linear manner. In this case, the learning rate will increase for 2000
steps before entering the decreasing phase.

step_size_down:

This parameter determines the number of steps or iterations for the decreasing phase
where the learning rate decreases back to the base_lr. Setting it to None means that
the scheduler will use the same number of steps as step_size_up for the decreasing
phase as well.

mode:

This parameter specifies the shape of the cyclic learning rate schedule within each
cycle. It can be set to ’triangular’ or ’triangular2’. For our model, the ’triangular’
mode is used. The ”triangular” mode provides a smooth and continuous transition
between the increasing and decreasing phases of the learning rate schedule. It also
allows the model to explore a larger portion of the loss landscape, which can lead
to improved generalization.

40

Figure 7.18: Cyclic LR graph

Accuracy and Loss of Cyclic Learning Rate:

(a) CyclicLR accuracy (b) CyclicLR loss

Figure 7.19: Accuracy and Loss of CyclicLR

During the training process, the model’s accuracy steadily improved, reaching a
peak of 97.87% at epoch 46. The initial accuracy of training data was 50.98% and
the final accuracy was 97.77%.
The initial accuracy on the test dataset was around 59.24%. As the training pro-
gressed, the accuracy steadily improved, reaching a peak of 94.48% at epoch 21.
However, after epoch 21, the accuracy fluctuated slightly but remained relatively
high, ranging from 88.32% to 94.48%. The final accuracy of the model using Cy-
cliLR was 92.78%.
The loss value also decreased throughout the training process, indicating that the
model was learning and becoming more accurate. The loss started at 0.710275 and
reached its lowest point at 0.195157 at epoch 25. After epoch 25, the loss remained
relatively stable, ranging from 0.195157 to 0.361157. The loss was 0.0235826 after
50 epochs.

41

Figure 7.20: Accuracy of CyclicLR

Confusion Matrix of Cyclic Learning Rate:

The total number of testing data is 471 where 224 data is Real videos and 247 Videos
are Fake videos. Using CyclicLR, our model has predicted at an accuracy of 92.78%.
227 Fake videos have been predicted correctly and 20 Fake videos were predicted as
Real videos by the model. For Real videos, 210 videos have been predicted correctly
whereas 14 videos were anticipated as Fake videos.

True positive = 227
False negative = 20
False positive = 14
True negative = 210

Figure 7.21: Confusion Matrix of CyclicLR

42

Precision, Recall, F1-score of Cyclic Learning Rate:

The F1-score is 0.93 for False videos and 0.93 for Real videos

Precision Recall f1-Score Support
Fake video 0.94 0.92 0.93 247
Real video 0.91 0.94 0.93 224
accuracy 0.93 471
macro avg 0.93 0.93 0.93 471
weighted avg 0.93 0.93 0.93 471

Table 7.7: Classification Report of Cyclic Learning Rate

F1-score for Fake videos

F1− score = 2 ∗ precision ∗ recall
precision+ recall

= 2 ∗ 0.94 ∗ 0.92
0.94 + 0.92

= 0.93

(7.10)

F1-score for Real videos

F1− score = 2 ∗ precision ∗ recall
precision+ recall

= 2 ∗ 0.91 ∗ 0.94
0.91 + 0.94

= 0.93

(7.11)

43

7.4.4 ReduceLROnPlateau
The ”ReduceLROnPlateau” scheduler adjusts the learning rate during training based
on the behavior of the model’s validation loss. ”ReduceLROnPlateau” scheduler
monitors the validation loss or metric and reduce the learning rate when the model’s
performance on the validation set stops improving. As we struggled to get better
accuracy from epoch 40 on our proposed model, ReduceLROnPlateau ensures to get
better accuracy by adjusting the learning rate by observing the progress so far. It
also prevents large learning rate reductions that might hamper the progress.
The parameter for ReduceLROnPlateauLR are given below:

mode:

This parameter specifies whether the monitored quantity should be minimized or
maximized. It can be set to ’min’, ’max’, or ’auto’. For our model, the scheduler is
set to minimize the monitored quantity (e.g., validation loss) as ’min’. By setting
the mode to ’min’, the scheduler focuses on reducing the loss and helps the model
converge to a better solution.

factor:

This parameter determines the factor by which the learning rate will be reduced.
Our value for factor is 0.1. So, the learning rate will be multiplied by 0.1 after
monitoring the validation loss.

patience:

This parameter sets the number of epochs to wait before reducing the learning rate if
no improvement is observed. If the monitored quantity does not improve for patience
consecutive epochs, the learning rate will be reduced. For our model, patience was
set to 5.

threshold:

This parameter specifies the threshold for measuring the improvement in the moni-
tored quantity. If the improvement is less than the threshold=0.01, it is considered
insignificant.

threshold_mode:

This parameter determines how the threshold is interpreted. It can be set to ’rel’
or ’abs’. In ’rel’ mode, the threshold is relative to the initial value of the monitored
quantity. In ’abs’ mode, the threshold is an absolute value.

min_lr:

This parameter specifies the lower bound for the learning rate. The scheduler will
not reduce the learning rate below this value. The value for min_lr is 0.

44

Accuracy and Loss of ReduceLROnPlateau:

(a) ReduceLROnPlateau accuracy (b) ReduceLROnPlateau loss

Figure 7.22: Accuracy and Loss of ReduceLROnPlateau

During the training process, the model started with an initial training accuracy of
52.10%. As the training progressed, the model showed improvements in accuracy,
steadily increasing its performance. The highest training accuracy achieved was
93.67% in epoch 37. The final training accuracy was 92.40%. Training loss measures
the dissimilarity between the predicted and actual values during training, the initial
value was 0.702869. The final loss of training was 0.335139.
Regarding test accuracy, the highest accuracy achieved was 94.90% in epoch 42
whereas, the initial accuracy was 54.56%. However, after epoch 42, there was a
slight decrease in test accuracy. It indicates the model’s generalization performance
started to decline or become less stable. The final accuracy of the model was 92.78%.
The test accuracy showed improvement up to epoch 42, followed by a slight decline,
while the test loss initially decreased but slightly increased after epoch 30. The final
loss of the model was 0.197027. These observations suggest that the model achieved
a reasonably good level of performance but started to exhibit signs of overfitting or
diminishing returns as the training progressed further.

Figure 7.23: Accuracy of ReduceLROnPlateau:

45

Confusion Matrix of ReduceLROnPlateau:

The total number of testing data is 471 where 246 data is Real videos and 225
Videos are Fake videos. Using ReduceLROnPlateau, our model has predicted at
an accuracy of 92.78%. 210 Fake videos have been predicted correctly and 15 Fake
videos were predicted as Real videos by the model. For Real videos, 227 videos have
been predicted correctly whereas 19 videos were anticipated as Fake videos.

Figure 7.24: Confusion Matrix of ReduceLROnPlateau

True positive = 210
False negative = 15
False positive = 19
True negative = 227

46

Precision, Recall, F1-score of ReduceLROnPlateau:

Precision Recall f1-Score Support
Fake video 0.92 0.93 0.93 225
Real video 0.94 0.92 0.93 246
accuracy 0.93 471
macro avg 0.93 0.93 0.93 471
weighted avg 0.93 0.93 0.93 471

Table 7.8: Classification Report of ReduceLRonPlateau

The F1-score is 0.93 for False videos and 0.93 for Real videos
F1-score for Fake videos

F1− score = 2 ∗ precision ∗ recall
precision+ recall

= 2 ∗ 0.92 ∗ 0.93
0.92 + 0.93

= 0.93

(7.12)

F1-score for Real videos

F1− score = 2 ∗ precision ∗ recall
precision+ recall

= 2 ∗ 0.94 ∗ 0.92
0.94 + 0.92

= 0.93

(7.13)

47

7.4.5 MultiStepLR
The MultiStepLR scheduler helps us adjust the learning rate during the training.
It divides the training process into different phases, and at specific points called
”milestones,” it changes the learning rate to guide the optimization process. Af-
ter using 3 different LR schedulers and observing the accuracy and loss curve, we
needed a LR scheduler which we can control manually by providing the milestone in
which learning rate will change. Unlike Cosine Annealing, where the learning rate
decreases gradually following a cosine curve, the MultiStepLR scheduler allows us to
define the decay strategy at each milestone. Also, MultiStepLR scheduler provides
a stable learning rate schedule with clearly defined adjustments at specified epochs.
Unlike CyclicLR or ReduceLRonPlateau, which may introduce fluctuations or rapid
changes in the learning rate, the MultiStepLR scheduler allows for smoother transi-
tions. Overall, MultiStepLR scheduler provides us with control and flexibility over
the learning rate schedule, potentially achieve more stable and consistent training
behavior. The parameters for MultiStepLR are:

milestones:

It is a list of epochs at which we want to adjust the learning rate. For our model,
the milestones are set to [5, 15], which means that the learning rate will be adjusted
at epochs 5 and 15.

gamma:

The gamma parameter determines how much the learning rate should be adjusted
at each milestone. It is a multiplicative factor that controls the magnitude of the
adjustment. Gamma is set to 0.1, indicating that the learning rate will be multiplied
by 0.1 when each milestone is reached.

last_epoch:

This parameter specifies the index of the last epoch. By default, it is set to -1, which
means that the scheduler will start from the beginning. It can be set to a different
value if we want to resume training from a specific epoch.
In summary, MultiStepLR scheduler is initialized with an optimizer and a list of
milestones. At each milestone epoch, the learning rate is adjusted by multiplying it
with the specified gamma factor. This allows us to manually control the learning rate
schedule, making adjustments at specific points during training. The last_epoch
parameter determines the starting point for the scheduler

48

Figure 7.25: MultiStepLR graph

Accuracy and Loss of MultiStepLR:

In the training process, the model started with an initial training accuracy of 53.54%.
As the training progressed, the model exhibited a consistent improvement in accu-
racy, achieving a peak accuracy of 98.99% in epoch 48. The model’s improvement in
training accuracy began to show from the early epochs, with a noticeable increase
in accuracy starting from epoch 2. From epoch 2 onwards, the model exhibited a
consistent upward trend, indicating a steady learning process. The last recorded
training accuracy was 98.14% in epoch 50, which indicates that the model main-
tained a high level of performance at the end of training. Regarding training loss,
the initial value was 0.712566. As the training progressed, the loss consistently
decreased, indicating that the model’s predictions gradually aligned more closely
with the true labels. The lowest training loss achieved was 0.134682 in epoch 39,
which signifies that the model effectively minimized the dissimilarity between its
predictions and the actual values.

49

(a) MultiStepLR accuracy (b) ReduceLROnPlateau loss

Figure 7.26: Accuracy and Loss of MultiStepLR

The initial test accuracy was 77.92% and the highest accuracy obtained was 97.03%
in epoch 35. This demonstrates that the model achieved a high level of generaliza-
tion, accurately predicting unseen data. However, after epoch 35, there was a slight
decrease in test accuracy. The final recorded test accuracy was 95.33% in epoch 50,
indicating a reasonably good performance on unseen data at the end of training.
The lowest test loss recorded was 0.119841 in epoch 23 and the final test loss was
0.141677.

Figure 7.27: Accuracy of MultiStepLR

50

Confusion Matrix of MultiStepLR:

The total number of testing data is 471 where 234 data is Real videos and 237
Videos are Fake videos. Using MultiStepLR, our model has predicted at an accuracy
of 95.33%. 228 Fake videos have been predicted correctly and 9 Fake videos were
predicted as Real videos by the model. For Real videos, 221 videos have been
predicted correctly whereas 13 videos were anticipated as Fake videos.

Figure 7.28: Confusion Matrix of MultiStepLR:

True positive = 228
False negative = 9
False positive = 13
True negative = 221

51

Precision, Recall, F1-score of MultiStepLR:

Precision Recall f1-Score Support
Fake video 0.95 0.96 0.95 237
Real video 0.96 0.94 0.95 234
accuracy 0.95 471
macro avg 0.95 0.95 0.95 471
weighted avg 0.95 0.95 0.95 471

Table 7.9: Classification Report of MultiStep Learning Rate

The F1-score is 0.95 for False videos and 0.95 for Real videos
F1-score for Fake videos

F1− score = 2 ∗ precision ∗ recall
precision+ recall

= 2 ∗ 0.95 ∗ 0.96
0.95 + 0.96

= 0.95

(7.14)

F1-score for Real videos

F1− score = 2 ∗ precision ∗ recall
precision+ recall

= 2 ∗ 0.96 ∗ 0.94
0.96 + 0.94

= 0.95

(7.15)

52

7.4.6 Accuracy and Classification Report comparison of
Proposed model and LR schedulers

Regarding the learning rate schedulers,we can observe that the MultiStepLR Learn-
ing Rate Scheduler outperformed the other schedulers in terms of F1 score for both
fake and real videos. It indicates that this scheduler was able to find a good balance
between precision and recall, resulting in accurate identification of deepfake videos
while minimizing false positives and false negatives. The MultiStepLR scheduler
achieves the highest F1 score of 0.95 for both fake and real videos. The Cyclic and
ReduceLROnPlateau schedulers have similar F1 scores for both categories, while
the Cosine Annealing scheduler has the lowest F1 scores of 0.91 for both fake and
real videos.
In summary, the proposed model showed strong performance in detecting fake
videos, as indicated by its high F1 score. The learning rate scheduler played a
supporting role in optimizing the model’s performance, and the specific choice of
scheduler could further influence the F1 scores achieved.

Model Accuracy Precision Recall f1-Score
Proposed Model 0.9405 0.94 0.95 0.95
CosineAnnealingLR 0.913 0.87 0.96 0.91
CyclicLR 0.9278 0.94 0.92 0.93
ReduceLRonPlateau 0.9278 0.92 0.93 0.93
MultiStepLR 0.954 0.95 0.96 0.95

Table 7.10: Classification Report of Model and LR scheduler on Fake videos

Model Accuracy Precision Recall f1-Score
Proposed Model 0.9405 0.94 0.95 0.95
CosineAnnealingLR 0.913 0.96 0.87 0.91
CyclicLR 0.9278 0.91 0.94 0.93
ReduceLRonPlateau 0.9278 0.94 0.92 0.93
MultiStepLR 0.954 0.96 0.94 0.95

Table 7.11: Classification Report of Model and LR scheduler on Real videos

53

Chapter 8

Grad-CAM Implementation

8.1 Grad-CAM
Grad-CAM, short for Gradient-weighted Class Activation Mapping, is a technique
used in deep learning and computer vision to visualize the areas of an image that con-
tribute the most to the prediction made by a convolutional neural network (CNN). It
provides insights into the regions that the model focuses on when making a decision,
helping to explain the model’s behavior. Deepfake images or videos are created by
manipulating or replacing certain regions within the original content. Grad-CAM
can help identify these manipulated regions by highlighting the areas where the
model concentrates its attention. By visualizing the activated regions, it becomes
easier to pinpoint the parts of the image that have been tampered with.
Deepfake videos are created by manipulating or replacing specific parts of a person’s
face, and these manipulations can result in discrepancies or inconsistencies that can
be detected by deepfake detection models.
Eye inconsistencies: Eyes are highly expressive and contain various subtle details
that are unique to individuals. Deepfake videos often struggle to accurately replicate
these details, leading to inconsistencies.

• Blinking artifacts: Deepfake models may have difficulty accurately replicat-
ing the natural blinking patterns of a person, leading to unusual or unnatural
blinking in the generated video.

• Eye shape and alignment: Deepfake manipulation can result in slight mis-
alignment or distortion of eye shapes. This can manifest as irregular eye
proportions or misplacement relative to other facial features.

• Eye movements: In some cases, deepfake videos may fail to replicate nat-
ural eye movements and gaze shifts, resulting in unrealistic or unnatural eye
motion.

Nose inconsistencies: The nose is another facial feature that deepfake models
often struggle to manipulate convincingly.

• Shape distortion: Deepfake manipulations may cause the nose to appear
unnaturally stretched, squashed, or warped.

• Shadows and lighting: Lighting conditions in the original video can cast
shadows on the nose, which might not be accurately reproduced in the deepfake
video, leading to inconsistencies in shadow patterns.

54

• Nasal tip alignment: Misalignment or irregularities in the position or shape
of the nasal tip compared to the rest of the face can indicate manipulation.

(a) Inconsistency in both eyes (b) Inconsistency in both eyes and nose

Figure 8.1: Grad-CAM has identifying strong activation in the specific region

(a) Inconsistency in an eye (b) Inconsistency in nose and mouth

Figure 8.2: Grad-CAM showing minimal activation in the particular region

55

Chapter 9

Conclusion

In this study, we tried to find a more accurate solution to the issue of detecting Deep-
Fake videos. Further advances in face swapping technology, however, will result in
more complex Deepfake videos that are harder for current algorithms to detect. As
a result, new databases and broader strategies will need to be created in the future.
The overall running effectiveness, detection precision, and—most crucially—false
positive rate must all be increased for wider practical application. Additionally,
detection techniques need to be more resistant against counter-forensic technol-
ogy, social media washing, and real-world post-processing techniques. In terms of
technology, knowledge, and expertise, digital media forensic analysts and forgery
producers are always battling. Future consideration will be given to the projection
we examine in this study.

56

Bibliography

[1] S. Lyu, “Deepfake detection: Current challenges and next steps,” in 2020 IEEE
International Conference on Multimedia Expo Workshops (ICMEW), 2020,
pp. 1–6. doi: 10.1109/ICMEW46912.2020.9105991.

[2] M. Westerlund, “The emergence of deepfake technology: A review,” Technology
Innovation Management Review, vol. 9, pp. 39–52, Nov. 2019. doi: 10.22215/
timreview/1282.

[3] P. Korshunov and S. Marcel, “Deepfakes: A new threat to face recognition?
assessment and detection,” CoRR, vol. abs/1812.08685, 2018. arXiv: 1812 .
08685. [Online]. Available: http://arxiv.org/abs/1812.08685.

[4] X. Xuan, B. Peng, J. Dong, and W. Wang, “On the generalization of GAN im-
age forensics,” CoRR, vol. abs/1902.11153, 2019. arXiv: 1902.11153. [Online].
Available: http://arxiv.org/abs/1902.11153.

[5] I. Korshunova, W. Shi, J. Dambre, and L. Theis, “Fast face-swap using con-
volutional neural networks,” CoRR, vol. abs/1611.09577, 2016. arXiv: 1611.
09577. [Online]. Available: http://arxiv.org/abs/1611.09577.

[6] K. Olszewski, Z. Li, C. Yang, et al., “Realistic dynamic facial textures from a
single image using gans,” in 2017 IEEE International Conference on Computer
Vision (ICCV), 2017, pp. 5439–5448. doi: 10.1109/ICCV.2017.580.

[7] I. Perov, D. Gao, N. Chervoniy, et al., “Deepfacelab: A simple, flexible and
extensible face swapping framework,” CoRR, vol. abs/2005.05535, 2020. arXiv:
2005.05535. [Online]. Available: https://arxiv.org/abs/2005.05535.

[8] K. Dale, K. Sunkavalli, M. Johnson, D. Vlasic, W. Matusik, and H. Pfister,
“Video face replacement,” ACM Transactions on Graphics, vol. 30, pp. 1–10,
Dec. 2011. doi: 10.1145/2024156.2024164.

[9] J. Thies, M. Zollhöfer, M. Stamminger, C. Theobalt, and M. Nießner, “Face2face:
Real-time face capture and reenactment of RGB videos,” CoRR, vol. abs/2007.14808,
2020. arXiv: 2007.14808. [Online]. Available: https://arxiv.org/abs/2007.
14808.

[10] J. Thies, M. Zollhöfer, M. Stamminger, C. Theobalt, and M. Nießner, “Facevr:
Real-time facial reenactment and eye gaze control in virtual reality,” CoRR,
vol. abs/1610.03151, 2016. arXiv: 1610 . 03151. [Online]. Available: http : //
arxiv.org/abs/1610.03151.

[11] J. Thies, M. Zollhöfer, C. Theobalt, M. Stamminger, and M. Nießner, “Headon:
Real-time reenactment of human portrait videos,” CoRR, vol. abs/1805.11729,
2018. arXiv: 1805.11729. [Online]. Available: http://arxiv.org/abs/1805.11729.

57

https://doi.org/10.1109/ICMEW46912.2020.9105991
https://doi.org/10.22215/timreview/1282
https://doi.org/10.22215/timreview/1282
https://arxiv.org/abs/1812.08685
https://arxiv.org/abs/1812.08685
http://arxiv.org/abs/1812.08685
https://arxiv.org/abs/1902.11153
http://arxiv.org/abs/1902.11153
https://arxiv.org/abs/1611.09577
https://arxiv.org/abs/1611.09577
http://arxiv.org/abs/1611.09577
https://doi.org/10.1109/ICCV.2017.580
https://arxiv.org/abs/2005.05535
https://arxiv.org/abs/2005.05535
https://doi.org/10.1145/2024156.2024164
https://arxiv.org/abs/2007.14808
https://arxiv.org/abs/2007.14808
https://arxiv.org/abs/2007.14808
https://arxiv.org/abs/1610.03151
http://arxiv.org/abs/1610.03151
http://arxiv.org/abs/1610.03151
https://arxiv.org/abs/1805.11729
http://arxiv.org/abs/1805.11729

[12] A. Deshmukh and S. B. Wankhade, “Deepfake detection approaches using deep
learning: A systematic review,” in Intelligent Computing and Networking, V. E.
Balas, V. B. Semwal, A. Khandare, and M. Patil, Eds., Singapore: Springer
Singapore, 2021, pp. 293–302, isbn: 978-981-15-7421-4.

[13] A. Kohli and A. Gupta, “Detecting deepfake, faceswap and face2face facial
forgeries using frequency cnn,” Multimedia Tools and Applications, pp. 1–20,
May 2021. doi: 10.1007/s11042-020-10420-8.

[14] D. Güera, Y. Wang, L. Bondi, P. Bestagini, S. Tubaro, and E. J. Delp, “A
counter-forensic method for cnn-based camera model identification,” in 2017
IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), 2017, pp. 1840–1847. doi: 10.1109/CVPRW.2017.230.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 1, ser. NIPS’12,
Lake Tahoe, Nevada: Curran Associates Inc., 2012, pp. 1097–1105.

[16] A. Rössler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Niessner,
“Faceforensics++: Learning to detect manipulated facial images,” in 2019
IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 1–
11. doi: 10.1109/ICCV.2019.00009.

[17] S. Tariq, S. Lee, and S. S. Woo, “A convolutional LSTM based residual network
for deepfake video detection,” CoRR, vol. abs/2009.07480, 2020. arXiv: 2009.
07480. [Online]. Available: https://arxiv.org/abs/2009.07480.

[18] E. Sabir, J. Cheng, A. Jaiswal, W. AbdAlmageed, I. Masi, and P. Natarajan,
“Recurrent convolutional strategies for face manipulation detection in videos,”
CoRR, vol. abs/1905.00582, 2019. arXiv: 1905.00582. [Online]. Available: http:
//arxiv.org/abs/1905.00582.

[19] A. Sherstinsky, “Fundamentals of recurrent neural network (RNN) and long
short-term memory (LSTM) network,” CoRR, vol. abs/1808.03314, 2018. arXiv:
1808.03314. [Online]. Available: http://arxiv.org/abs/1808.03314.

[20] A. A. Maksutov, V. O. Morozov, A. A. Lavrenov, and A. S. Smirnov, “Methods
of deepfake detection based on machine learning,” 2020 IEEE Conference of
Russian Young Researchers in Electrical and Electronic Engineering (EICon-
Rus), pp. 408–411, 2020.

[21] P. Saikia, D. Dholaria, P. Yadav, V. Patel, and M. Roy, A hybrid cnn-lstm
model for video deepfake detection by leveraging optical flow features, 2022.
arXiv: 2208.00788 [cs.CV].

[22] M. Cornia, L. Baraldi, G. Serra, and R. Cucchiara, “Predicting human eye
fixations via an lstm-based saliency attentive model,” IEEE Transactions on
Image Processing, vol. 27, no. 10, pp. 86–90, 2018. doi: 10.1109/tip.2018.
2851672.

[23] S. Aneja and M. Nießner, Generalized zero and few-shot transfer for facial
forgery detection, 2020. arXiv: 2006.11863 [cs.CV].

58

https://doi.org/10.1007/s11042-020-10420-8
https://doi.org/10.1109/CVPRW.2017.230
https://doi.org/10.1109/ICCV.2019.00009
https://arxiv.org/abs/2009.07480
https://arxiv.org/abs/2009.07480
https://arxiv.org/abs/2009.07480
https://arxiv.org/abs/1905.00582
http://arxiv.org/abs/1905.00582
http://arxiv.org/abs/1905.00582
https://arxiv.org/abs/1808.03314
http://arxiv.org/abs/1808.03314
https://arxiv.org/abs/2208.00788
https://doi.org/10.1109/tip.2018.2851672
https://doi.org/10.1109/tip.2018.2851672
https://arxiv.org/abs/2006.11863

[24] P. Ranjan, S. Patil, and F. Kazi, “Improved generalizability of deep-fakes
detection using transfer learning based cnn framework,” 2020 3rd International
Conference on Information and Computer Technologies (ICICT), pp. 86–90,
2020.

[25] P. Chen, J. Liu, T. Liang, et al., “Fsspotter: Spotting face-swapped video by
spatial and temporal clues,” 2020 IEEE International Conference on Multi-
media and Expo (ICME), pp. 1–6, 2020.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” CoRR, vol. abs/1512.03385, 2015. arXiv: 1512.03385. [Online]. Avail-
able: http://arxiv.org/abs/1512.03385.

[27] L. Nguyen, D. Lin, Z. Lin, and J. Cao, “Deep cnns for microscopic image
classification by exploiting transfer learning and feature concatenation,” May
2018, pp. 1–5. doi: 10.1109/ISCAS.2018.8351550.

[28] S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” CoRR, vol. abs/1611.05431, 2016.
arXiv: 1611.05431. [Online]. Available: http://arxiv.org/abs/1611.05431.

59

https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.1109/ISCAS.2018.8351550
https://arxiv.org/abs/1611.05431
http://arxiv.org/abs/1611.05431

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Research
	Research Problem
	Research Objective

	Literature Review
	Deepfake video creation
	DeepFake video detection using CNN
	DeepFake video detection using Hybrid CNN and LSTM

	Workplan
	Description of the data
	Dataset and Data analysis:
	Video Data:
	MetaData:
	Data Preprocessing
	Data Augmentation
	Splitting the data:

	Implementation of Proposed model
	Model Architecture
	ResNeXt101 _32*8d:
	CNN model:
	Convolution Layer:

	Linear Layer(linear1):
	Leaky Rectified Linear Unit Activation:
	Batch Normalization(BatchNorm1d):
	Adaptive Average Pooling 2D Layer (avgpool):
	LSTM model:
	LSTM Layer

	Dropout layer:
	MaxPooling layer:
	Flatten layer:

	Result and Analysis
	Accuracy and Loss of Proposed model
	Accuracy of Proposed Model
	Loss of Proposed Model
	Confusion Matrix
	Precision, Recall, F1-score

	Accuracy and Loss of other Models
	ResNet152
	Dataset Description for ResNet152
	Accuracy of ResNet152
	Loss of ResNet152
	Confusion Matrix of ResNet152
	Precision, Recall, F1-score of ResNet152
	ResNeXt101_64x8d
	Dataset Description for ResNeXt101_64x8d
	Accuracy of ResNeXt101_64x8d
	Loss of ResNeXt101_64x8d
	Confusion Matrix of ResNeXt101_64x8d
	Precision, Recall, F1-score of ResNeXt101_64x8d

	Accuracy and Classification comparison of Models
	Model Training and Optimization Techniques
	Learning Rate Scheduler
	CosineAnnealingLR
	CyclicLR
	ReduceLROnPlateau
	MultiStepLR
	Accuracy and Classification Report comparison of Proposed model and LR schedulers

	Grad-CAM Implementation
	Grad-CAM

	Conclusion
	Bibliography

