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Abstract
Federated learning is a distributed machine learning paradigm that enables multiple
clients to collaboratively train a global model without sharing their local data. How-
ever, federated learning is vulnerable to adversarial attacks, where malicious clients
can manipulate their local updates to degrade the performance or compromise the
privacy of the global model. To mitigate this problem, this paper proposes a novel
method that reduces the influence of malicious clients based on their confidence. We
conducted our experiments on the Retinal OCT dataset. The proposed technique
significantly improves the global model’s precision, recall, F1 score, and area under
the receiver operating characteristic curve (AUC-ROC). Precision rises from 0.869
to 0.906, recall rises from 0.836 to 0.889, F1 score rises from 0.852 to 0.898, and
AUC-ROC rises from 0.836 to 0.889.

Keywords: Computer Vision; Federated learning; Deep Learning; Healthcare;
Data poisoning; Retinal OCT
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Chapter 1

Introduction

Recent years have seen tremendous developments in the fields of machine learning
and artificial intelligence, which have revolutionized a wide range of sectors and
fields. Because of extensive datasets and robust computational resources, these
developments have been possible. The distributed learning paradigm of federated
learning allows for collaborative model training without the need to share raw data
and is one of the most significant advancements in machine learning.

Because of its potential to alleviate privacy issues brought on by centralized data
collection, federated learning has received a lot of interest. Individuals can use
their own data to train machine learning models, while the models’ parameters are
pooled in a central location. By keeping the raw data on individual devices and
only exchanging model updates, this distributed system protects the confidentiality
of user information. But as federated learning grows in popularity, new difficulties
and security holes appear, especially in the form of adversarial attacks.

In a federated learning environment, machine learning models are especially vulner-
able to adversarial attacks. Data poisoning is a sort of attack in which bad actors
insert harmful or corrupted data samples into the local datasets of other actors’
devices. The correctness of the shared model can be jeopardized by the introduc-
tion of bias and misinformation through the use of poisoned samples. As a result,
researchers have had to shift their attention to finding ways to prevent and lessen
the impact of data poisoning assaults on federated learning.

Figure 1.1: Federated Learning Layout.
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The importance of this study rests in its objective to create efficient safeguards
against data poisoning assaults in federated education. This research aims to im-
prove the safety and stability of federated learning systems by illuminating the weak-
nesses and dynamics of such attacks. Following is a brief synopsis of the study’s
most important findings and contributions:

• Since machine learning models are increasingly being used in highly sensitive
areas like healthcare, banking, and personal information, protecting this data
is of the utmost importance. This study aids in protecting sensitive data from
malicious tampering, keeping user privacy intact, and protecting the secrecy
of personal information by preventing data poisoning assaults.

• Protecting the honesty of the models used in machine learning, which, if cor-
rupted or poisoned, could produce disastrous results in safety-critical contexts.
This study seeks to protect the honesty of federated machine learning models
through the creation of safeguards, allowing for more trustworthy predictions
across a variety of domains.

• As AI systems become more pervasive in daily life, it is essential that we build
a foundation of trust in them. By thwarting data poisoning assaults, we can
have more faith in AI systems, knowing that the outcomes of their calculations
will be just and free of prejudice. This study helps us create AI systems that
can be relied on in practical settings.

• To protect federated learning from adversarial attacks, this study contributes
to the development of countermeasures. This research adds to the current
body of knowledge in the field of machine learning security and helps con-
tribute to the development of more robust and resilient defence mechanisms
by introducing unique tactics and strategies to resist data poisoning attacks.

• Adversarial assaults raise ethical questions, especially when they target highly
regulated industries like healthcare and finance. This study is congruent with
ethical concerns about safeguarding the veracity and trustworthiness of AI
systems, safeguarding the privacy of users, and guaranteeing the impartial-
ity of decision-making by concentrating on the prevention of data poisoning
assaults in federated learning.

• The consequences of this study go far beyond the academic community and
into the business and social worlds. Industries, government agencies, and soci-
ety at large all stand to greatly benefit from the prevention of data poisoning
assaults in federated learning. It protects the well-being and interests of indi-
viduals and businesses by preserving the honesty of AI systems employed in
life-or-death applications, including medical diagnosis, financial fraud detec-
tion, and cybersecurity.
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A number of statistics and academic sources support the significance of this study.

Cybercrime is expected to cost the global economy 6 trillion dollar by 20211, accord-
ing to a report by the World Economic Forum. This shows the increasing importance
of implementing stringent security mechanisms in machine learning systems, such
as federated learning, to prevent malicious assaults.

In addition, Tramèr et al.[2] demonstrated how simple it is for data poisoning attacks
to trick machine learning algorithms. They demonstrated that even introducing a
negligible amount of tainted data into the training phase can have a major impact
on the quality of the resulting model. As a result, it is more crucial than ever to
create failsafes that protect the confidentiality of federated educational networks.

Because of the sensitive nature of patient data, the repercussions of a data poisoning
assault in the healthcare sector can be devastating. Misdiagnosis and unnecessary
medical procedures may result from adversarial attacks on medical image classifica-
tion models, according to research by Li et al.[3]. To guarantee patient safety and
keep healthcare providers’ faith in AI systems, it is crucial to prevent data poisoning
assaults on these systems.

In addition, malicious attacks, such as credit card fraud and money laundering, pose
serious threats to the financial sector. According to research by the Association for
Financial Professionals[4], 82 percent of businesses will encounter either attempted
or successful payment fraud in 2020. Safeguards against data poisoning attacks in
federated learning can be developed to lessen their impact and boost the safety of
monetary exchanges.

Although the threat that data poisoning attacks pose is becoming more widely
recognised, there is still room for improvement in the design of prevention systems
that are ideal for federated educational environments. However, previous research
has largely ignored the particular challenges and dynamics of federated learning
systems. In light of the dispersed nature of the learning process and the privacy
constraints imposed by local data ownership, this study seeks to fill this void by
exploring fresh methodologies and tactics to prevent data poisoning attempts in
federated learning.

In this paper, we present a hypothesis that implementing a mechanism to mitigat-
ing the influence of malicious local models according to their confidence score can
significantly enhance the robustness and privacy of the federated learning system.

This thesis can be broken down into the following sections: The research on ad-
versarial assaults, data poisoning, and federated learning is reviewed extensively in
Chapter 2. The methodologies and tools used in this study are detailed in Chapter
3. These tools and methods include anomaly detection algorithms, secure aggre-
gation protocols, and adaptive learning methodologies. In Chapter 4, we detail
the experimental design, data sets, and metrics utilized to test the efficacy of the
proposed safety measures. Chapter 5 discusses the analysis and outcomes of the
experiments. Chapter 6 concludes with a review of the study’s findings, an analysis
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of their significance, and suggestions for further study.

To sum up, protecting federated learning from data poisoning threats is crucial for
protecting individuals’ privacy and the trustworthiness of machine learning models
across industries. This study helps advance secure and resilient federated learning
systems, which have far-reaching ramifications for industry, society, and the ethi-
cal usage of AI, by filling in a knowledge gap and creating effective preventative
mechanisms.

1.1 Problem Statement
In order to train models in a group setting while protecting individual privacy,
federated learning has emerged as a viable option. However, it opens up hitherto
unseen weaknesses, especially to malicious attacks. Data poisoning, a type of attack
in which hostile users insert corrupted or malicious data samples into the local
datasets of participating devices, can jeopardize the integrity and trustworthiness of
machine learning models in federated learning contexts.

Multiple reports have shown that federated learning systems are susceptible to data
poisoning attacks. Machine learning models were shown to be vulnerable to adver-
sarial attacks by Tramèr et al. (2017) [5], highlighting the importance of having
strong defenses. The possible impact of data poisoning assaults on the learning
process was further explored by Bhagoji et al. (2018) [6] in the context of feder-
ated learning. To further emphasize the significance of addressing security concerns,
Bagdasaryan et al. (2020) [7] suggested a threat model for federated learning.

In federated learning, the effects of data poisoning assaults can be devastating. Pa-
tient outcomes in healthcare, for example, could be jeopardized if a corrupted model
led to inaccurate predictions (Li et al., 2019). [8]. Losses in the financial sector could
rise as a result of data poisoning assaults that compromise fraud detection systems
(Association of Financial Professionals, 2020) [9].

There is a knowledge gap when it comes to building effective preventive methods
for this distributed learning paradigm, despite the increased awareness of data poi-
soning assaults in federated learning. Data poisoning threats in federated learning
situations are not adequately addressed in the existing research, which is largely
concerned with centralized learning settings.

This study addresses a double-sided issue. To begin, effective safeguards against
data poisoning threats in federated learning must be created. These safeguards
should protect the confidentiality and trustworthiness of machine learning models
without compromising their security or integrity. Second, there is a void in the lit-
erature regarding how to deal with data poisoning assaults in a federated learning
environment, as most studies have been conducted in a centralized learning envi-
ronment.

When it comes to the first, we’ll be looking into the susceptibilities and dynamics
of data poisoning attacks in federated learning to see how they might be countered.
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Effective preventative systems can be created by learning about assault mechanisms
and how they disrupt learning. In order to detect and cope with poisoned data,
we will investigate methods including anomaly detection, resilient aggregation, and
model verification. The project intends to improve the safety and reliability of
federated educational systems by creating these methods.

Second, this study intends to fill a vacuum in the literature by suggesting innova-
tive preventative methods tailored to federated learning. The existing literature on
data poisoning assaults in centralized learning environments lays the groundwork for
knowing the fundamentals of countermeasures. However, due to federated learning’s
decentralized character, techniques must be adapted to take into consideration the
specific difficulties and limitations of this kind of collaborative setting. By filling
this void, the study hopes to promote federated learning and make it more accessible
in areas where privacy is a concern.

Existing literature on topics including adversarial attacks, data poisoning, federated
learning, and defense mechanisms will be thoroughly analyzed as part of the pro-
posed study. This study will identify research gaps and the potential for building
efficient preventative strategies against data poisoning assaults by synthesizing and
critically analyzing the current level of knowledge in these domains. The study will
also include the development and execution of tests to assess the efficiency and ef-
fectiveness of the suggested preventative measures. Commonly used in federated
learning literature datasets and evaluation metrics will be implemented in the ex-
perimental setting.

In conclusion, this study intends to fill a vacuum in the literature by creating effective
procedures for preventing data poisoning assaults in federated learning. Contribut-
ing to the widespread adoption of privacy-preserving AI technologies, this study
improves the safety, honesty, and dependability of machine learning models in fed-
erated learning environments.

1.2 Research Objectives
The research objectives of this study are as follows:

• The goal of this study is to identify weak spots in federated learning and to
comprehend the dynamics of data poisoning assaults. This goal seeks knowl-
edge about the methods of attack, the effects on training, and the features of
poisoned data. Understanding the characteristics of data poisoning assaults
in the federated learning setting [6] is the goal of this investigation.

• The goal of this research is to create reliable safeguards against data poisoning
assaults in federated education. This goal centers on developing cutting-edge
methods for detecting and avoiding poisoned data, such as anomaly detection,
resilient aggregation, and model verification. The goal is to improve the safety,
honesty, and trustworthiness of machine learning models in federated learning
environments [5][7].

5



• For the purpose of measuring how well the planned safeguards work. To
achieve this goal, we will devise experiments to test how well the safeguards
we’ve created protect against and respond to data poisoning. To guarantee a
thorough evaluation, we will use representative datasets and evaluation mea-
sures typically used in federated learning research [8].

• The goal of this study is to fill in the gaps in our understanding of data
poisoning assaults on federated learning by adding to the existing literature
on this topic. This goal is to address the lack of methods in the literature
that are comprehensive enough to deal with data poisoning assaults in the
context of federated learning, which is distributed and protects user privacy.
This study will help enhance federated learning and its use in privacy-sensitive
settings [6][7] by synthesizing and critically evaluating the available knowledge.

If these studies are successful, we’ll have a much better idea of how data poisoning
attacks in federated learning work and can create safeguards against them. The
improved security and dependability of federated learning systems made possible by
this work will aid in this study’s goal of increasing acceptance and implementation
of privacy-preserving machine learning technologies.
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Chapter 2

Literature Review

In this research, we will discuss medical data security concerns in the federated
way of learning. We already know data breach has become a considerable concern
for our digital life and medical data is no exception. Every year, thousands of
privately owned medical data get stolen by hackers. To prevent this, federated
learning has been used for a while. As we know in a federated way, local devices don’t
share their local data with the global central model. These local clients just share
their parameters and thus federated learning gives an effective way of preventing
data breaches in a vast network. But this doesn’t mean federated networks aren’t
vulnerable to attacks. It has already been proven many times that federated systems
can be attacked with various kinds of methods and makes the classifiers predict false
predictions. Many crucial experiments have already been carried out on this issue.
We are going to show literature reviews of some of those research below.

Significant improvements in healthcare data analysis in recent years have resulted
from the fusion of the Internet of Things (IoT) with deep learning methods. As
healthcare data continuously grows at a rapid pace in both amount and complexity,
safeguarding data analysis systems has become more vital than ever. For the pur-
pose of this study, we will be looking at this publication [10] to learn more about
the methods that have been suggested for long-term use in healthcare data anal-
ysis. This research paper [10], describes an IoT-based system for monitoring and
analyzing healthcare data using DFL. Deep learning (DL) helps businesses and re-
searchers. Computer vision can spot fraud and produce self-driving cars. FL trains
an algorithm on many decentralized edge devices or servers that don’t exchange
data. New technologies that ensure data privacy, preserve data correctness, and
guarantee long-term usage are necessary in light of recent privacy trends and an
increase in data breaches across multiple industries. Health data is so sensitive and
widespread that it’s likely to be hacked or stolen. The research established a frame-
work and method for collecting local training data. IoT devices gather, acquire,
and analyze data in this framework. After the global model is presented, healthcare
data will be analyzed for problems. Next, IoT device data will be used to develop a
local model. When local training is complete, model changes will be sent to a cloud
server without personal data. Because the user’s data is saved on his device, his pri-
vacy is assured. Shared updates contain no relevant information, thus it’s useless to
target them. Attacks will be weaker. All updates will be averaged for global model
training. As it’s taught, additional user instances will increase the global model’s
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performance. Participants’ IoT devices will obtain updated software after the global
model is trained. Repeating this procedure ensures the model’s correctness. FL is
the most important component of this system. A cloud server equipped for AI is
essential for DFL’s worldwide model training. Connected medical devices collect
patient information for local model training. In conclusion, the article presents a
paradigm for sustainable healthcare data analysis by bringing together deep fed-
erated learning and IoT technology. The proposed approach thoroughly addresses
challenges such as scalability, energy efficiency, and data privacy by leveraging deep
federated learning which can be further researched for more efficient and sustainable
healthcare data analysis systems. The experimental results of this paper also provide
evidence of the effectiveness of the approach in real-world healthcare datasets.

The field of healthcare has recently shown great potential in Federated Learning
(FL) as an effective and fruitful method for collaborative machine learning. This
literature review analyzes this study [11] to learn more about the research’s findings
and architecture plan for FL in the healthcare industry. The authors of this paper
[11] conducted a literature review on FL with respect to the application of EHR
data in healthcare settings. Solutions, case studies, and ML techniques were pro-
vided, and the study uncovered the most important areas of inquiry. The article also
covered tips for applying FL to healthcare records. The guidelines of a literature
review served as inspiration for this format. Because of this architecture, medical
facilities and research institutes can safely use protected health information data in
distributed data analysis and machine learning studies. Photographs, lab results,
and prescriptions are just a few examples of the kinds of data that ”data owners”
may keep. It is assumed that data owners understand that joining FL necessitates
the use of analysis and learning models that safeguard user privacy. In exchange,
the four businesses might potentially hire other private firms to study medical data
for insights. Local datasets are never shared directly between their owners due to
their confidential nature. Participants in the education process might save electronic
health records in a variety of formats and guidelines. In order to train a model, each
data owner uses their own unique collection of data. In some cases, this model may
make use of data from other forms of FL management. Then, the dataset processing
component provides access to and interpretation of local datasets to learning algo-
rithms from outside the system. The module for verifying learning algorithms looks
for malicious disclosure of information while using an external algorithm. With the
use of local datasets, training models are developed and put into action. Anyone
with access to a system that allows for the encrypted transfer of learning models and
analysis results via unsecure channels of communication. The manager aggregates
all private and public models into one global learning model via Model Aggregation.
The manager keeps tabs on the sum of all available public models. It is possible
that the model will be given to the student depending on its purpose. In the end,
the paper concludes by summarizing the literature on FL in healthcare data and
introducing an all-encompassing architecture, both of which add to our knowledge
of the topic. Researchers in the healthcare arena can benefit enormously from the
findings and proposed architecture, which advocates for FL as a collaborative and
privacy-preserving method for analyzing healthcare data.

Since healthcare data is so personal and confidential, its protection is of the utmost
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significance. In this literature review, the research paper ”Application of Robust
Zero-Watermarking Scheme Based on Federated Learning for Securing Healthcare
Data.” [12] combines robust zero-watermarking with federated learning as a novel
approach to healthcare data security and privacy. In [12], the authors discussed
how to safeguard healthcare data via federated zero watermarking. Concerns have
been expressed concerning IoMT privacy and data security in healthcare. The main
idea of this research is to use the Internet of Medical Things (IoMT) in dermatology
diagnosis and add a watermark so the patient’s information and dataset can’t be
accessed or shared without permission. In teledermatology, a smartphone picture is
utilized to make a remote diagnosis. The dermatological picture might be hacked
while being transmitted. This might disseminate patient data. This article showed
how federated learning can train a sparse autoencoder network. A trained sparse au-
toencoder network pulls features from a dermatological picture. Zero-watermarking
involves a 2-D Discrete Cosine Transform (2D-DCT). Distributed machine learning
system with robust encryption and privacy protection was employed. It aims to
allow individuals to train machine learning models without exposing personal data.
FL teaches sparse autoencoders how to function together. Second, a trained sparse
autoencoder network decodes a smartphone dermatological picture. Last, 2D-DCT
is utilized to modify the image’s characteristics using low-frequency transform coeffi-
cients. Then, a binary feature vector is constructed by comparing the low-frequency
coefficients’ gray levels to their averages. The watermarking extraction key is cre-
ated by combining the binary vector and scrambled image. They go in and depart
the same way. Dermatology has a bad reputation. Dermatological images can have
features extracted from them by the same trained sparse autoencoder network. It
can be thought of as adding a watermark while creating a binary feature vector.
This robust binary feature vector is cleverly associated with the extraction key used
for watermarking. In conclusion, the study makes a substantial contribution to
the field of healthcare data security by proposing a robust zero-watermarking sys-
tem based on federated learning. The framework provides a workable strategy for
preserving the confidentiality of individuals’ health records. The confidentiality of
patients’ medical records can be improved with further research and development
in this field.

In the healthcare industry, using federated learning (FL) could be a way to get
information from disparate sources without compromising privacy. This literature
review goes into the study ”Federated Learning for Smart Healthcare: A Survey” [13]
to examine the in-depth survey of FL’s use in futuristic healthcare systems. In [13],
the author discussed research issues and future FL research in smart health care. In
the past, smart healthcare systems examined health data using AI functions in the
cloud or data centers. Due to the rising number of IoMT devices and health data in
current healthcare networks, this centralized approach is not successful in terms of
communication latency and network scalability. Risks to users’ privacy, such as data
leakage and breaches, are associated with using a centralized server or third party for
data learning. The consumer base is diverse, thus people’s blood types, heart rates,
facial appearances, and core temperatures will vary. The majority of FL algorithms
are tested on a small, generic dataset. Several users of FL-based smart healthcare
systems may act maliciously, causing model aggregation to be compromised through
the dissemination of harmful model updates or fabricated data. While a model is
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being trained locally or shared between clients and the central server, an attacker
may tamper with data features. An attacker may assault the server to steal global
model data. This is a server-side exploit that leaks private information. FL-based
smart healthcare systems have tough security issues. Differential privacy may avert
data leaks in training datasets. Secure aggregation methods may be used to encrypt
local updates and perform key sharing between clients and the central server. This
prevents client assaults and data alterations. The paper’s thorough analysis of
FL’s role in smart healthcare is a significant contribution to the field as a whole.
Researchers, practitioners, and policymakers can use the survey’s findings to inform
their use of FL to safely and securely reap the benefits of dispersed healthcare data.
Smart healthcare systems driven by FL will benefit from further research in this
area.

Federated Learning (FL), a form of machine learning that puts the privacy of pa-
tients first, has lately gained attention in the healthcare sector. This article analyzes
the paper [14] which delves deeper into the report’s examination of FL’s potential
applications, barriers, and benefits in the medical field. IoMT devices never disclose
personal health information outside of the site or device where it was obtained [14].
In a data-driven society, private data is vital. In medicine, setting up multi-center
research is complex since clinicians must decide where to keep data. Minimizing data
and limiting its usage are the keys to preventing privacy abuses. Federated learning
(FL) is a mechanism for several computers to train an ML model. FL doesn’t share
data with untrustworthy persons but does share model parameters. Clients may
contribute data to be rated and utilize social media to encourage model training. In
healthcare, trained ML models should be utilized as trusted guidance. FL security
is crucial. This analysis examines how FL for digital health handles privacy and
security. The FL articles discuss several strategies, making them hard to appraise.
This area lacks FL system norms, which research should alter. This data may be
utilized to improve risk models and make healthcare choices. It may also be used
to discover trial patients. We believe FL will become the mainstream approach to
managing medical data. Privacy and encryption are research concerns. To sum up,
this paper [14] is an informative look at the uses, difficulties, and gains of FL in the
medical field. The results of this study shed light on how FL can improve healthcare
by fostering teamwork in education without compromising patient confidentiality.
Healthcare results can be enhanced by improvements in privacy-preserving machine
learning, which will be the result of continued research and development in this area.

Research into Federated Learning (FL), a form of collaborative deep learning that
enables the training of models by several parties without sharing any raw data,
has increased in recent years. However, the safety of FL systems is of paramount
importance because of the many threats they face. This article provides a literature
review of the study [15] which analyzes the use of GANs to study poisoning assaults
in FL.

In the paper [15], a GAN(generative adversarial network) based data poisoning
attack is introduced where multiple clients participate in federated learning. Here,
the goal was to keep the poisoning task accuracy around 90 percent on average
as it will determine how much data the classifier predicted falsely. In this GAN
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attack structure, one or multiple attackers can be deployed to create stealth attacks
on the global model. The attacker here uses a GAN attack to generate a huge
amount of similar samples about different classes of data of different participants.
After generating samples from various data classes, the attacker maps them into
the locally trained model. The attacker can do the same thing by training his local
model on the poison data he has generated and then, when the time is appropriate,
uploading the modified parameters to the central server where the global model
resides. Because of this, the global model will become tainted, and other locally
trained data will be contaminated as a result. In this research, we introduce two
neural networks, Discriminator D and Generator G, and describe how GAN operates
as an adversarial game between them. In the first, the discriminator is taught to
distinguish between the features of the provided data and the features of the created
data. The generator is then often taught to sound like the samples utilized by the
discriminative networks during training. In this study, we used two different data
sets. Both MNIST and ATT(Olivetti dataset) are commonly used. Each image
in MNIST is roughly 28x28 pixels in size, while ATT data is 92x112. Both the
classifier and discriminator utilized in this image processing project were built using
a convolutional neural network-based architecture. The kernel size for the first three
convo layers in this CNN model must be 4x4 and for the last convo layer it must be
3x3. Additionally, several advancements have been achieved for these four layers,
which are 2, 2, 4, and 1 in order. ReLU and LReLU activation functions have been
employed to generate output, and both can be utilized in the discriminator. In one
hypothetical attack scenario, performance on the poisoning job first improves to
near perfect levels. However, this growth rate will soon decline as more apolitical
users submit standard status updates. The average accuracy of the poisoning task
can be kept at roughly 90 percent even if this occurs.

To conclude, this paper [15], certainly gives all-encompassing details about how
GAN really works and how we can use it for highly effective data poisonous attacks.
A malicious attacker can take advantage of the GAN network’s Generator and Dis-
criminator functionalities in order to produce poisonous data samples and alter the
model.. We can say this paper shows the enormous consequences of adversarial at-
tacks on federated learning as the poisoning task accuracy remains at 90 percent on
average during this GAN-based poisonous attack. So, further research in this field
is crucial for preserving the security and effectiveness of FL systems.

Adversarial attacks and their defenses have become increasingly vital in the field of
deep learning. In order to analyze and create effective defenses against adversarial
attacks, researchers need access to varied and difficult datasets. A novel dataset cre-
ated for assessing the resilience of deep learning models against adversarial attacks
is introduced in the research paper ”DAmageNet: A Universal Adversarial Dataset,”
[16] which is the focus of this literature review. An effective way of generating ad-
versarial samples with high transferability has been introduced in this paper [16]
where the images can be generated independently and the author named it a zero-
query adversarial attack. Here, the original images are called ImageNet, and 96020
of these transferable images or samples are generated by authors that can cheat
or mislead many properly-trained DNN networks. Since these adversarial samples
have performed really well on black-box attacks and use zero-query procedure, thus
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the resulting DNNs perform up to 90 percent error rate which means this attack
can make neural network models successfully misclassify 90 images out of 100. The
authors called this dataset DAmageNet. For training purposes, varieties of different
DNN models have been used on both ImageNet and DAmageNet samples and the
results are quite extraordinary. In almost all models, the DAmageNet has over a 90
percent error rate. This shows the true nature of how powerful and deadly adversar-
ial attacks can be for our different deep learning networks. In conclusion, this paper
”DAmageNet: A Universal Adversarial Dataset” strengthens the study of adversar-
ial assaults and responses by offering a large-scale, difficult-to-master benchmark
dataset. To enhance trustworthiness and security of deep learning models in the
real world, as the authors of this study point out, stronger and more robust protec-
tion mechanisms are needed. Further study in this field is needed to help improve
adversarial defense methods and build more reliable machine learning systems.

Deep Federated Learning (DFL) has recently emerged as a viable method for en-
suring data privacy during collaborative machine learning. However, the safety and
reliability of FL systems can be jeopardized by malicious attacks on the trained
models. This article is a literature review of the study ”Analyzing Federated Learn-
ing Through an Adversarial Lens,” [6] which looks into the dangers that FL systems
face from adversaries.

In this paper [6], the authors explored model-poisoning tactics instead of data poi-
soning. Model poisoning is a poisoning strategy where the poisoning is carried out
by an adversary who controls some amount of malicious agents and the number
of malicious agents is usually 1. These agents have the ability to make the global
model (which is in a central server) misclassify data or inputs with very high confi-
dence. The authors proposed two kinds of model poisoning. One is targeted model
poisoning and the other one is stealthy model poisoning. In targeted poisoning,
malicious agents typically generate their updates with a simple optimization tech-
nique designed to cause a high amount of targeted misclassification. But as there
are already large amounts of agents providing updates makes this is even more chal-
lenging. Thus, the authors used explicit boosting of the malicious agent’s updated
parameters. This is done in such a way that it will decrease the combined effects
of the other benign agents. On the other hand in stealthy model poisoning, stealth
tactics are deployed in malicious weight updates to avoid detection. Although we
are aware of the use of explicit boosting in targeted model poisoning, it is possible to
detect this boosting across all rounds by employing stealth measurements. So, there
is a problem in that our malicious agent can get caught by the global model. For
this, stealth model poisoning is carried out where the authors just modify the mali-
cious agents to an extent that they can update their own malicious weights properly
without getting detected for most of the rounds. For this experiment, two different
datasets were used. The first one is Fashion-MNIST and the second one is the UCI
Adult Census dataset. After training the datasets with CNN, the targeted data poi-
soning attack was quite successful at making the global model give false predictions.
After 3 iterations, the global model gave high-confidence predictions and converged
with better performance on the validation set. For the stealthy attack, after two
iterations, the authors were certain that they had met the adversarial aim for the
entire model. This paper also talks about Byzantine resident aggregations [17] that
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are not entirely robust to our attack and proved that targeted model poisoning with
high confidence was still possible even if the deep neural network uses this aggre-
gation mechanism. Byzantine resident aggregation’s primary goal is to guarantee
convergence to inefficient models, such as those with poor input data classification.
Instead of picking one update at random and applying it to the global model, a
coordinate-wise median uses all of the relevant data from all of the agents to deter-
mine the new update. Therefore, we can say model poisoning attacks are effective
against two completely different Byzantine-resilient aggregation mechanisms.

Overall, we can say that this paper quite successfully provides an in-depth analysis of
the vulnerabilities and potential adversarial threats faced by federated systems. This
paper also emphasizes the urgent need for protection mechanisms such as robust ag-
gregation, and Byzantine fault tolerance. Besides, this paper also describes various
model poisoning techniques quite well such as targeted poisoning and stealth poi-
soning, and shows the downside of explicit boosting which can be bypassed through
stealth poisoning methods to avoid detection. Hence, More studies in this area will
improve the safety and dependability of FL systems in practical scenarios.

In recent years, the distributed machine learning paradigm known as Federated
Learning (FL) has emerged, allowing several users to jointly train models without
having to share their raw data. However, the integrity and efficacy of the trained
models can be compromised by data poisoning attacks, which target FL systems
and include hostile participants injecting poisoned data. Attacks against federated
learning systems via data poisoning: an investigation of vulnerabilities and responses
is the subject of the research article [18], which is the focus of this literature review.

Many more viable strategies exist for developing poisoning attacks from an an-
tagonistic perspective. The paper [18], demonstrated a powerful strategy for data
poisoning in federated learning as well as an effective countermeasure. The authors
used what is known as a label-flipping technique to develop an adversarial attack.
This attack is particularly effective against FL systems in which a small number of
deliberately corrupted participants have been recruited to update the global model
with derived mislabeled data in order to poison or corrupt it. Assume a scenario in
which an adversarial device controls a portion of the participants in a FL experi-
ment; for simplicity, we’ll state that m percent of the players are malevolent out of
a total of P participants. The remaining m percent of good actors will be bribed
into poisoning the global model by the m percent of bad actors. A set number of
FL rounds will be used to complete this. The author set out to increase the error
rate for select subset classes by manipulating the learnt parameters for the global
model designated M. This method of assault is distinct from those that are not
specifically directed. The capacity of these focused attacks to lessen the influence
of non-targeted classes of data and hence minimize the likelihood of the poisoned
attack being detected is a major benefit of this approach. The authors used two
widely-used picture categorization datasets in their study. CIFAR-10 [19] and Fash-
ionMNIST [20] are two examples. Each of the 10 categories in CIFAR-10 has 6,000
unique color images, for a total of 60,000. Similarly, Fashion-MNIST is made up of
60,000 photos, with 10,000 images making up each class group. The label-flipping
strategy was briefly discussed in this paper. Let’s pretend there’s a C(source) class
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and a C(target) class. Each malicious actor will change the classification of a subset
of the dataset (Di), for example, Di data from the C(source) class will be reclas-
sified as C(target). The authors of this work referred to this assault as C(source)
——> C(target). In scenarios with 2–50 percent malicious individuals, the authors
analyzed malevolent accuracy, global model accuracy, and source class recall. When
m, the fraction of hostile agents, hits 40 percent, the recall source classes steadily
fall to 0 percent, and the global model accuracy similarly decreases to 74.4 per-
cent from 78.3 percent in dataset CIFAR-10, therefore the attack does fairly well.
While the assault fares well on the CIFAR-10 dataset, it is not quite as effective on
Fashion-MNIST. Here, the source class recall for the Fashion-MNIST dataset is 58.2
percent with a 30 percent malicious scenario, which is significantly better than the
performance of the CIFAR-10 dataset, which is about 19.7 percent. Therefore, the
CIFAR-10 dataset is significantly more vulnerable than the Fashion-MNIST.

In conclusion, this paper implemented a different approach when creating an adver-
sarial attack and that is a label-flipping attack. The authors successfully utilized
the effectiveness of this attack as the average global model accuracy decreases sub-
stantially after attacking both of those used datasets. The results of this study can
help researchers and practitioners design better defenses for protecting FL systems
from data poisoning attacks.

Recent years have seen an uptick in research on how susceptible machine learning
models are to malicious attacks. By manipulating the input data, adversarial as-
saults aim to deceive machine learning algorithms into classifying data incorrectly.
The use of driverless vehicles, image identification, and natural language processing
are just a few fields where these attacks could have a disastrous effect. Scientists
have suggested a variety of defenses against this hazard. This paper “Efficient De-
fenses Against Adversarial Attacks” [21], aims to provide an overview of the research
on an effective defense against an adversarial attack.

The authors of this paper [21], showed different kinds of adversarial attacks and im-
plemented defenses against them.To begin, several different kinds of assaults have
been created, such as Projected Gradient Descent, the Basic Iterative Method, and
the Fast Gradient Sign Method. These attack strategies introduce noise into the in-
put data to exploit the model’s flaw. Second, academics have advocated a wide range
of protection measures. These consist of gradient regularization, input transforma-
tion, and adversarial training. In order to create a more reliable model, adversarial
training augments the training dataset with adversarial examples. The purpose of
input transformation techniques is to preprocess the input data in order to either
completely remove or drastically reduce adversarial perturbations. The decision
boundary of the model must be as smooth as possible for gradient regularization
techniques to protect against adversarial attacks. Among many other defense tac-
tics, adversarial training paired with input transformation is a successful one. The
resilience of the model is enhanced by training it with adversarial examples and
simultaneously changing input during inference. The model is strengthened against
upcoming attacks by being trained with actual samples of hostile data. Addition-
ally, prior to feeding the input to the model, adjustments like denoising or spatial
smoothing can help remove adversarial disruptions. The effectiveness of this in-
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tegrated approach in minimizing the harm done by adversarial attacks on various
datasets and models has been encouraging. Although adversarial attack defenses
have improved, several issues and knowledge gaps still exist. First of all, many of
the defense mechanisms currently in use have transferability issues, which means
that an adversarial example made for one model can successfully deceive another
model. Future research should focus on developing defenses that can be used with
a range of models and architectures. The enormous computational cost of current
defense strategies must be decreased. For real-time applications, several defenses
have excessively large computing costs. We must close this gap and develop strong
defenses if we wish to see trustworthy machine learning systems utilized in the real
world.

This literature review’s summary of effective defenses against hostile attacks serves
as its conclusion. The findings indicate that there are numerous offensive and defen-
sive strategies. Model strengthening techniques that include input transformation
and adversarial training have shown potential. However, there are still a lot of
issues with transferability and computing overhead that need to be resolved. By
filling in these gaps, it will be possible to build defenses that are more effective
and practical. In light of the constantly changing adversarial assault scenario, it
is more crucial than ever that researchers and practitioners collaborate to develop
cutting-edge defenses against machine learning system damage.

Adversarial assaults put the security and dependability of deep learning models
in danger. These kinds of attacks involve subtle input sample modifications to
produce incorrect categorization or unexpected behavior by taking advantage of
model faults. Although various defense strategies have been created in recent years,
many of them are either impractically difficult to use or prohibitively expensive.
Because it proposes a fresh tactic for repelling hostile attacks, the article [22] is the
primary focus of this survey of the relevant literature.

The authors of this paper [22], suggested an effective defense mechanism against
adversarial attacks that combines high-level feature representations with denoising
methods and increases the robustness of the deep learning models. The authors
claim that high-level representations capture the semantic information of the in-
put data, making them more resistant to adversarial perturbations. The proposed
method uses these representations as a guide for the denoising process to remove ad-
versarial perturbations and preserve important information. On standard datasets
like MNIST and CIFAR-10, the authors evaluate the efficacy of their proposed de-
fense mechanism in comparison to state-of-the-art adversarial attack approaches like
the Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD). It
has been shown experimentally that the proposed method improves the resistance of
deep learning models against adversarial attacks, leading to more accuracy and less
potential for harm than previous methods. The author’s proposal for a two-stage de-
fense strategy. They begin by utilizing a deep learning model that has been tailored
to elicit detailed feature representations. These representations capture important
information about the input samples. Second, a denoising module is used to elim-
inate adversarial perturbations from the high-level representations. The denoising
module, which makes use of a trainable denoiser network that learns to differentiate
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between the two, eliminates the adversarial perturbations. This research combines a
reconstruction loss with a feature loss to create a special loss function for training the
denoiser network. While the reconstruction loss evaluates the discrepancy between
the denoised and original high-level representations, the feature loss ensures that
critical semantic qualities are preserved during the denoising process. The entire
denoiser network is trained using adversarial data generated by real-world attack
methods. The authors’ proposed defense mechanism appears to be making deep
learning models more durable to adversarial attacks, while there are still several
research gaps that need to be filled. White-box attacks, in which the attacker has
full knowledge of the defense mechanism, are the authors’ primary concern. When
the attacker has no knowledge of the defense, as in a black-box attack, the efficacy
of the proposed technique needs more research. The effectiveness of the suggested
defense mechanism with larger and more complex datasets should also be looked
into.

In conclusion, in order to defend against adversarial attacks, this paper [22] gives
a defense mechanism that combines high-level representation extraction with a de-
noising module. Experimental results show that the proposed approach improves
deep learning models’ resistance to a wide range of adversarial attacks. However,
more research is needed to determine how well the defense mechanism performs in
black-box assault scenarios and whether it can scale to larger datasets. Therefore,
our study adds to the body of research that attempts to make deep learning models
more reliable and safe.

In deep learning, especially when it’s used for computer vision, the risk of hostile
attacks is rising. Maliciously engineered adversarial perturbations can mislead and
undermine the performance of deep learning models, particularly image classifiers.
Scientists have looked into a number of different precautions to strengthen the ro-
bustness of deep learning models against adversarial attacks. In our analysis of the
relevant literature, we focus on this article [23], which investigates the usefulness of
using image super-resolution techniques as a defense mechanism against adversarial
attacks.

This paper [23] describes how readily deep learning algorithms can be fooled and
suggests employing image super-resolution as a countermeasure. The authors con-
duct a battery of experiments to determine if super-resolution improves adversarial
image classification tasks. The results show that the classification accuracy can be
improved by using super-resolution techniques to retrieve the original image infor-
mation and lessen the impact of adversarial perturbations. Here, the authors pro-
pose a two-step defense mechanism, with the first stage utilizing a super-resolution
network to generate super-resolved images from adversarially altered inputs. The
purpose of this procedure is to enhance the resolution of damaged images and re-
store high-frequency data. Second, the super-resolved images are fed into the image
classifier, which improves the predictive power of the model. The proposed method
makes efficient use of image super-resolution in order to restore the original image’s
characteristics and lessens the effect of disruptive interference from enemies. This
study fills a huge knowledge vacuum by exploring the potential of image super-
resolution as a defense mechanism against adversarial attacks. While the majority

16



of antecedent research has focused on developing network-level adversarial attack
methods and defense strategies, the proposed method offers a novel perspective by
employing super-resolution approaches. This knowledge deficit is significant because
it emphasizes the need to consider image-level defenses in addition to network-level
defenses when attempting to reduce the effects of adversarial attacks. This study
explores methods for protecting images from malicious actors, thereby filling a gap
in the literature. The proposed method stimulates more study of image-level tech-
niques within the larger subject of adversarial machine learning, and broadens the
range of defenses available.

Finally, this analysis of this paper [23], offers useful insights and a potential strategy
for protecting against adversarial attacks in classification of Images. The results of
this study and the proposed approach pave the way for the creation of more secure
deep learning models that can withstand more complex adversarial attacks.
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Chapter 3

Background Study

In this background study, we examine the dangers associated with federated learning
systems. Specifically, we investigate data poisoning attacks and adversarial attacks,
both of which can compromise the dependability and effectiveness of trained models.
To ensure the safety and efficacy of the proposed system, it is essential to comprehend
these attacks and design appropriate defenses. This study lays the groundwork for
future research and development of a secured federated learning system for retinal
disease identification by investigating the state-of-the-art techniques in federated
learning, inception V3, adversarial attacks, and data poisoning attacks, as well as
utilizing Retinal OCT datasets.

3.1 Federated learning
The use of federated learning has increased in recent years as a response to growing
concerns over data privacy and the need for decentralized machine learning. With
the advent of federated learning, training machine learning models on dispersed data
is facilitated by the proliferation of Internet-connected devices.

One of the primary advantages of federated learning is that it enables businesses to
utilize data that would otherwise be restricted due to privacy or regulatory concerns.
Federated learning in healthcare allows researchers to train models using data from
multiple hospitals to safeguard patient privacy [24]. Similarly, federated learning can
be utilized in the financial sector to train models using data from multiple financial
institutions without disclosing sensitive data.
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Figure 3.1: Federated Learning Architecture for Hospital Systems

Using federated learning, the time and resources required to train a model can be
significantly reduced. Federated learning enables devices to train models locally,
eliminating the need to transport massive quantities of data to a centralized server
[24], thereby saving time and money. In addition, decentralizing training through
the use of locally-hosted models can reduce wasteful time and boost productivity.

Federated learning is a distributed machine learning method in which models are
trained locally on endpoints without the transmission of data. The procedure com-
mences with the distribution of an initial model to devices, followed by the execu-
tion of local training, the accumulation of updates on a centralised server, and the
subsequent iterative refinement of the model. It safeguards user privacy, utilises
distributed data, and reinforces models.

wavg ←
1∑K

k=1 nk

K∑
k=1

nk ·wk

However, federated learning is also associated with a number of obstacles. When
devices collect data in different methods, for instance, it may be difficult to ensure
that the models converge to a consistent global model [24]. Due to the increased
device-to-device communication that may be required for federated learning, there
is a potential for increased bandwidth requirements and energy consumption.

In conclusion, federated learning is an innovative new direction in machine learning
that has the potential to significantly alter the current state of model training and
deployment. As research in this area progresses, it is anticipated that new methods
and algorithms will arise to improve the efficacy of federated learning.
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3.2 InceptionV3
In 2015, Google researchers designed the InceptionV3 convolutional neural network
(CNN) architecture [25]. This model builds on InceptionV1 and InceptionV2 to
enhance image classification accuracy and efficiency. Object and face recognition,
as well as image segmentation, are just a few of the numerous computer vision
applications that InceptionV3 has facilitated.

Figure 3.2: Inception V3 Model Architecture Diagram

3.2.1 Architecture
The architecture of InceptionV3 is defined by ”Inception” modules [25], which are
groupings of layers that can simultaneously execute multiple convolution types. In
order for the network to learn more complex patterns, these modules integrate
features of various sizes and dimensions extracted from the input image. The
”Inception-A” block, consisting of four independent routes [25], is the basic ele-
ment of an Inception module. The first path employs a 1x1 convolution to reduce
the number of input channels. In the second method, scale-dependent features are
extracted using a 1x1 convolution followed by a 3x3 convolution. The third route
utilises a 1x1 convolution followed by a 5x5 convolution to derive features from a
larger receptive field. A 3x3 max-pooling operation followed by a 1x1 convolution
along the fourth path are used to reduce the output’s dimensionality. Each of these
branches [25] leads to the subsequent level, where its outputs are combined and uti-
lized as inputs. InceptionV3 contains not only these simpler Inception-A modules,
but also the more complex Inception-B and Inception-C modules.

The overall architecture of InceptionV3 is comprised of convolutional layers, Incep-
tion modules, a completely linked layer, and a softmax classifier. The output of the
softmax layer is a probability distribution over the classes of the dataset.

Along the channel dimension, the Concatenate function concatenates the outputs of
these layers.

The InceptionV3 CNN architecture achieves cutting-edge performance in a variety of
image classification tasks. Its use of Inception modules enables it to extract features
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of varying sizes and dimensions from input images, and its architecture strikes a
balance between accuracy and efficiency. As a result, InceptionV3 has become a
popular option for a variety of computer vision [25] applications and is likely to
continue to be an indispensable tool in this field for the foreseeable future.

3.3 Label Poisoning
The objective of adversarial attacks involving label flipping, also known as targeted
misclassification attacks [26], is to force a model to make a prediction outside of its
intended domain of application. An adversary conducts a label flipping attack by
modifying the input data so that the model inaccurately identifies it as belonging
to the target class.

There are three stages to a label-flipping attack

• Crafting adversarial examples: By making subtle changes to the input data,
the attacker generates adversarial samples. These changes, which are too small
for human perception, can have a major impact on the model’s predictions [26].
Using an optimisation approach, the attacker determines which input pertur-
bations will result in the model incorrectly labeling the input as belonging to
the target class.

• Adding the target label: Once the hostile examples have been crafted, the
attacker modifies the labels of the examples to match the target label. As a
result, the model is coerced into incorrectly predicting the target class.

• Evaluating the attack: The success of the attack is determined by the at-
tacker’s assessment of the model’s performance on hostile instances. The as-
sault is successful if the hostile instances have accuracy much lower than the
clean examples.

Label flipping assaults can undermine a variety of security features, including anti-
spam filters, fraud detectors, and biometric identification systems. Using a label
flipping attack, an adversary could deceive a facial recognition system [26] into in-
correctly designating him or her as a trusted user by generating a malicious example.
Label-flipping attacks are difficult to defend against because they exploit weaknesses
in the model’s decision-making process. To make the model more resistant to la-
bel flipping assaults, however, techniques such as adversarial training and input
preprocessing can be utilized.

In conclusion, label-flipping attacks are a form of adversarial attack that attempts to
coerce a model into making a prediction for a particular target class. In applications
such as biometric authentication systems, these attacks can be used to circumvent
security safeguards with catastrophic results. To defend against label-flipping at-
tacks, researchers must develop innovative defense mechanisms and strategies to
make the model more resistant to manipulation.
Data poisoning attack is one of the renewed adversarial attacks. The objective of
adversarial data poisoning attacks is to modify the inputs to a machine learning
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Figure 3.3: Data Poisoning Architecture Diagram

model during its training phase. The objective of data poisoning [27] assaults is to
contaminate the training set so that the model generates inaccurate predictions.

The following are the stages of a data poisoning attack:

• Injecting malicious data: The attacker introduces a sample of compromised
data into the training set. In order to trick the model into making erroneous
predictions, the malicious samples are made to look like authentic data.

• Training the model: Poisonous data [27] is used to train the model. As the
model learns from the malicious instances, it will continue to generate inaccu-
rate predictions even when presented with correct data.

• Evaluating the attack: The success of the assault is determined by the accuracy
of the model on subsequent data, which is measured by the attacker. The
assault is successful if the accuracy of the forecasted data is much lower than
that of the clean data.

Spam filters, recommendation systems, and autonomous vehicles are just a few in-
stances in which data poisoning attacks can be used to distort machine learning
model results. For instance, a data poisoning attack could be used to trick a rec-
ommendation system into advertising harmful products or to cause an autonomous
vehicle to make unsafe decisions.

Data poisoning assaults are difficult to defend against because they corrupt the
training data for the model. Data cleansing and rigorous training are two methods
for making models more resistant to data poisoning attacks. To make a model
more resistant to attacks, ”robust training” involves training it on a collection of so-
called ”adversarial examples” and ”data sanitization” involves [27] identifying and
removing potentially detrimental data from the training set.

Overall, data poisoning assaults are an adversarial attack vector that targets the data
used to train machine learning models. Models of machine learning are susceptible
to manipulation by these techniques, necessitating the development of novel defense
mechanisms and strategies to increase the model’s resistance to adversarial attacks.
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3.4 Data Set
The ”Retinal OCT Images” dataset available on Kaggle [28] is a collection of Optical
Coherence Tomography (OCT) images of the retina, which is the light-sensitive layer
at the back of the eye. The dataset contains a total of 84,495 images, each of size
496 x 768 pixels [28]. They are divided into four categories:

• Normal: OCT scans showing a normal, disease-free retina fall into this cate-
gory.

• DME (Diabetic Macular Edema): DME, a diabetic condition that leads to
fluid accumulation in the macula (the center region of the retina), is depicted
in OCT pictures here.

• Drusen: OCT images of a retina with drusen, yellow deposits that can collect
under the retina and lead to vision loss, can be found here.

• CNV (Choroidal Neovascularization): CNV (choroidal neovascularization) [28]
is a condition in which aberrant blood vessels form beneath the retina, result-
ing in visual loss, and the corresponding OCT images may be found here.

Figure 3.4: Retinal OCT Dataset Samples.

The dataset is useful for creating CAD systems that aid ophthalmologists in the
rapid and accurate detection of retinal illnesses using OCT images, and it was col-
lected from retrospective cohorts of adult patients from multiple medical institu-
tions. The images are split into the train, test, and val folders and organized into
subfolders for each image category. This organization allows for easy access and use
of the data during the training and evaluation processes.

3.5 Softmax Function
Activation functions play a crucial role in machine learning and artificial neural
networks due to the nonlinearity they impart to the model and the computational
complexity they enable. For instance, the softmax activation function is frequently
used in applications involving multi-class classification. The outputs of a neural
network are transformed into a probability distribution [29] encompassing multi-
ple classes, with weights assigned to each class. The softmax function normalizes
the outputs so that their sum equals one, which facilitates their interpretation as
probabilities.

Mathematical Formulation: The softmax activation function produces a correspond-
ing vector of probabilities when applied to a vector of real-valued inputs [29]. The
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softmax function computes the probability that every element in an n-dimensional
input vector, z belongs to a particular class. Here is a description of the softmax
function:

σ(z)i =
ezi∑n
j=1 e

zj
, for i = 1, 2, . . . , n

where σ(zi) is the output of softmax applied to the i-th item in z. The exponential of
the i-th element in z can be calculated using ezi , and the sum of all the exponentials of
the elements in z can be calculated using

∑n
j=1 e

zj . The softmax function normalizes
the data so that the sum of the output probabilities is 1.

Benefits and Properties: The proposed federated learning system deploys the soft-
max activation method for the detection in the retina due to its many advantageous
qualities:

• Gradient-Friendly: Softmax is differentiable, gradient-based optimisation tech-
niques like backpropagation [29] can be used effectively. Incorporating a wide
variety of optimisation techniques into the training of neural networks is made
possible by this trait.

• Probabilistic Interpretation: With the probabilities of each class’s output that
Softmax generates, the model’s predictions can be understood as assurance
levels. Assigning a probability to each class provides a level of certainty, which
is very helpful in multi-class classification problems.

• Non-Negative Outputs: The softmax function is useful in situations where
decisions need to be made based on probabilities since it guarantees that the
output probabilities are positive [29].

Examining the advantages and disadvantages of softmax activation, such as prob-
abilistic interpretation, non-negative outputs, normalization, sensitivity to input
differences, and gradient-friendliness, is essential. Softmax may produce less dis-
criminatory results [29] due to its susceptibility to outliers and inability to explicitly
reflect class margins. If softmax has difficulty capturing the patterns of minority
classes due to a data imbalance, confidence levels may decrease.

This study concludes by demonstrating the potential of a secure federated learning
for detecting retinal maladies using OCT images. The paper discusses the disadvan-
tages of centralized deep learning and emphasizes the importance of safeguarding
sensitive data. The objective is to increase the robustness and accuracy of the fed-
erated learning system through the utilization of confidence scores. The report also
acknowledges the dangers associated with federated learning, such as adversarial
and data poisoning attacks, and emphasizes the need for robust defenses. The find-
ings of this study establish the groundwork for future work on a secure federated
learning system for detecting retinal diseases.
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Chapter 4

Work Plan

The objective of our study is to use the confidence score as a diagnostic instrument
for retinal diseases. Here is the strategy we have in place to achieve this:

4.1 Data curation
In this phase, relevant datasets for training and evaluating models for retinal disease
are collected. It is essential that the data is sufficiently diverse, representative, and
of high quality.

4.2 Curation of local data from total data subset
In a federated learning system, data is shared between multiple organisations and/or
devices. Here, we will select and curate a subset of the complete dataset for each
participant entity. We will use this locally collected data to train models.

4.3 Data preprocessing
Data preparation is the initial step in preparing data for training purposes. Data
cleansing, missing value management, feature engineering, and normalisation are all
conceivable steps. This process prepares the data for model training and ensures
that it is in the proper format.

4.4 Apply data poisoning
Data poisoning is a technique employed by cyber-criminals to introduce false or
skewed data into a training dataset. Data poisoning aims to simulate potential
assault scenarios against a federated learning system. This checkpoint enables you
to evaluate the safety and stability of your proposed system.
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4.5 Simulate a regular federated learning system
and a secure federated learning system

We utilize the locally selected data by training models on them. Then, we will
compare the outcomes of two training scenarios: one in which confidence ratings
are used to diagnose retinal disorders without the proposed method (the baseline),
and another in which confidence ratings are used to train. The proposed solution is
believed to enhance the dependability and security of the federated learning system.

4.6 Model evaluation
After training the models, we will evaluate their performance using the appropriate
metrics. This was accomplished by employing the softmax activation method. At
this juncture, we can evaluate the effectiveness of the proposed technique in detecting
retinal disorders.

4.7 Compare results
Finally, we will compare the results of the training situation (where the proposed
method was not implemented) and the scenario where it was implemented. By
comparing the two systems, we can determine the impact that confidence scores
have on the federated learning system. We will dissect and investigate how the
suggested technique improved precision, safety, and overall performance.

At the end, we intend to develop a secure federated learning system for diagnosing
retinal disorders. By utilizing confidence scores and testing the system’s resistance
to data poisoning attempts, we expect to improve the system’s accuracy and safety,
thereby advancing research into the identification of retinal diseases.
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Figure 4.1: Working plan
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Chapter 5

Proposed Method and
Implementation

This section first presents the proposed method in detail, then describes the imple-
mentation of our work for its evaluation.

5.1 Confidence Score Based Aggregation
The proposed method aggregates local models’ gradient updates into the global
model by scaling them according to their confidence, which enhances the sophisti-
cation of the approach.

To measure the model’s confidence score Ci, we use the average of the SoftMax
probabilities [sigma] for the expected category index i of each input vector z.

Ci = σ(z)i

After calculating the confidence score Ci of each local model and normalizing it, we
use the normalized score to scale its respective local model’s gradient wi. Finally,
the global model receives the scaled gradient updates from all the local models.

wg =
N∑
i=0

(
Ci∑
Ci

∗ wi

)

5.2 Implementation

5.2.1 Data Organization
For the experiment, we used a subset of the “Retinal OCT” dataset that contained
9 local datasets. Each local dataset had 2000 images with balanced categories. We
intentionally mislabelled a portion of the images in 3 of the local datasets.
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Correct data Mislabelled data
Malicious dataset 1 1000 1000
Malicious dataset 2 800 1200
Malicious dataset 3 0 2000

Table 5.1: Malicious local datasets

Figure 5.1: Visualization of Local datasets

Table 5.1 shows how much of the local datasets are mislabelled. It is can be observed
that a substantial proportion of mislabelled data has been used, which provides us
with more clear and presentable evaluation results.

Each local dataset was then split into train and validation sets, validation sets
containing 10% of the local dataset. Two datasets were created as test sets. One
test set containing 400 images is used to measure the confidence score of the local
models. The other test set containing 968 images is used to evaluate the global
model’s performance.

5.2.2 Data Pre-processing
The images are resized into 150x150 pixels and normalized before using them on the
model.

5.2.3 InceptionV3
InceptionV3 is used as the base model of the federated learning system. We took a
topless inception model and added a fully connected layer consisting of 4 neurons,
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one for each category. We applied the SoftMax activation function to the output
layer. We only trained the top layer, keeping the rest of the model fixed. We chose
Adam as the optimizer for our model.

5.2.4 Secure Federated Learning System
We initialized the global model with InceptionV3 and created nine instances of it
as local models. Each local model was trained and validated on its own dataset for
seven epochs. After that, the confidence score of each model is evaluated. Then, the
gradients of the models are aggregated according to their confidence scores before
the global model receives them as updates. This concludes one cycle of the Federated
Learning System. We repeated this process for 25 cycles.

For comparison, we also built another federated learning system that did not use
confidence scores. It simply averaged the gradients of the local models and updated
the global model directly.

5.2.5 Evaluation
After running the FL cycles, we evaluated both global models to demonstrate an
in-depth comparison between them. We used several evaluation metrics such as Ac-
curacy, loss, precision, recall, F1 score, and AUC-ROC to highlight the effectiveness
of the proposed method.
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Chapter 6

Result Analysis

In this section of the paper, we illustrate various evaluation charts and scores.

6.1 Confidence Scores

Figure 6.1: Confidence score rates of the Insecure FLS.
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Figure 6.2: Confidence score rates of the Secure FLS.

Figures 6.1 and 6.2 compares the confidence scores of the local models for secure and
insecure federated learning systems (FLS) over 25 cycles. It shows two graphs, one
for each type of FLS. The local models are either benevolent or malicious, depend-
ing on whether they cooperate or interfere with the global model. The difference in
confidence scores between the malicious and benevolent models are quite apparent.
The confidence score rates of the benevolent local models are closely clustered to-
gether. Moreover, the benevolent local models have more stable confidence scores
in the secure FLS than in the insecure FLS. In contrast, the malicious local models
have lower and more fluctuating confidence scores in the secure FLS than in the
insecure FLS. This is because the malicious local models try to fit the global model
with different types of datasets, which are more effective in the insecure FLS and
less effective in the secure FLS.
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6.2 Accuracy and Loss

Figure 6.3: Accuracy rates of the Insecure FLS.

Figure 6.4: Loss rates of the Secure FLS.

Figure 6.3 shows a line chart comparing the accuracy of the global model for secure
and insecure federated learning systems (FLS) over 25 cycles. The secure FLS starts
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with an accuracy of about 89%, while the insecure FLS starts with about 85%.
The insecure FLS reaches a peak accuracy of slightly above 90% before declining,
while the secure FLS maintains an accuracy of around 92%. The chart clearly
demonstrates that the secure FLS has a higher and more stable accuracy than the
insecure FLS. Similarly, Figure 6.4 illustrates that the secure FLS has a lower and
more stable loss rate than the insecure FLS.

6.3 Confusion Matrix

Figure 6.5: Confusion matrix of the Insecure FLS.
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Figure 6.6: Confusion matrix of the Secure FLS.

The confusion matrix of the two systems in figure 6.5 and figure 6.6 provides less
clarity to the comparison. However, the secure FLS seems to have better overall
results than the insecure FLS. CNV, DME and NORMAL categories has more true
positives in the secure FLS, while only DRUSEN category has slightly more true
positives in the insecure FLS. To evaluate the confusion matrices better, we can use
the following metrics.

Table 6.1 contains the precision, recall, F1 score, and AUC-ROC of insecure FLS
and secure FLS. Secure FLS achieves noticeably better score in every metrics.

Insecure FLS Secure FLS
Precision 0.8689581 0.9063158
Recall 0.8357438 0.8894628
F1 0.852027359854591 0.8978102417518544
AUC-ROC 0.8357438 0. 8894628

Table 6.1: Comparison of performance metrics between Insecure FLS and secure
FLS
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Chapter 7

Conclusion and Future Works

7.1 Conclusion
In conclusion, this thesis paper concludes by resolving an urgent issue: how to con-
struct a reliable federated learning system that uses confidence ratings to diagnose
retinal disorders. The primary objective of the study was to discover a way to im-
prove the speed and accuracy of diagnosing retinal diseases without compromising
data privacy or security. We analyzed the disadvantages of conventional, top-down
methods of education and recognised the potential of federated learning in the health
sciences. In this study, the Retinal optical coherence tomography (OCT) dataset
was subjected to data poisoning, a machine learning adversarial attack technique.
During a data poisoning attack, the accuracy of the primary server is lowered. To
diagnose retinal disorders, we will therefore employ a technique based on a pro-
tected federated learning system that utilises a confidence score. The use of this
will not compromise accuracy and will help mitigate damage caused by malicious
users. SoftMax values are employed to assess the dependability of local updates and
serve as the foundation for the confidence score. Using a Retinal (OCT) dataset
and a data poisoning attack, we evaluate our approach. In our federated learning
network, there are nine local models, and three of them are poor. The proposed
method significantly improves the precision, recall, F1 score, and AUC-ROC of the
global model. Specifically, it elevates the precision from 0.869 to 0.906, the recall
from 0.836 to 0.889, the F1 score from 0.852 to 0.898, and the AUC-ROC from 0.889
to 0.889 percent, respectively.

7.2 Future Works
Our model performed exceptionally well with the provided data. Nonetheless, we are
eager to observe how well our model performs when provided additional data, such as
a massive number of datasets. If a client possesses only a small amount of potentially
detrimental information, it will not cause significant harm. In the case of numerous
clients, however, we must investigate the effects of a large volume of detrimental
data. If we could conduct a simulated attack against a realistic target, such as a
hospital, it would be simpler to determine its effectiveness. Furthermore, we can
utilise AI that can be explained. This study paves the way for future developments
in federated learning, which will increase trust and collaboration among healthcare
professionals and ultimately result in improved patient care and outcomes.
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