
An Efficient Approach for Binary Classification in
Brain Tumor Detection Using Convolutional Neural

Network

by

MD. Arman Islam
19101639

Sheikh Araf Noshin
18101471

MD. Robiul Islam
18101272

MD. Farhan Razy
18101480

Samiha Antara
18101129

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
BRAC University
January 2022

© 2022. BRAC University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is our own original work while completing degree at Brac
University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

MD. Arman Islam
19101639

Sheikh Araf Noshin
18101471

MD. Robiul Islam
18101272

MD. Farhan Razy
18101480

Samiha Antara
18101129

i

Approval
The thesis/project titled ‘An In-depth Analysis of Different Convolutional
Neural Network Models for Binary Classification in Brain Tumor Detec-
tion’ submitted by -

1. MD. Arman Islam (19101639)

2. Sheikh Araf Noshin (18101471)

3. MD. Robiul Islam (18101272)

4. MD. Farhan Razy (18101480)

5. Samiha Antara (18101129)

Of January, 2022 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science and Engineering on January,
2022.

Examining Committee:

Primary Supervisor (Member):

Dr. Mohammad Zavid Parvez, PhD
Assistant Professor

Dept. of Computer Science and Engineering
BRAC University

Co Supervisor (Member):

Arif Shakil
Lecturer

Dept. of Computer Science and Engineering
BRAC University

Program Coordinator (Member):

Dr. Md. Golam Rabiul Alam, PhD
Associate Professor

Dept. of Computer Science and Engineering
BRAC University

Head of Department (Chair):

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Dept. of Computer Science and Engineering
BRAC University

ii

Abstract
Brain tumor detection using Convolutional Neural Network (CNN) models with
binary classification has significantly improved the reliability of medical imaging
through Deep Learning. The purpose of this research is to develop a modified CNN
model by altering the different layers and weight values of each node to attain similar
performance statistics to widely accepted CNN models while maintaining runtime
efficiency. The proposed CNN model incorporates binary cross entropy to analyze
the training data and accurately identifies whether or not a certain structured mag-
netic resonance imaging (sMRI) picture contains a tumor. In comparison to existing
pre-trained CNN models, this study aims to contribute to the computer-aided diag-
nostic (CAD) system by implementing the proposed model with a simplified time
complexity. The model achieved an overall classification accuracy of 96.7% after
extensive tweaking of the proprietary CNN architecture. The suggested system’s
performance is also compared with other existing systems, and the study demon-
strates that it performs on par with most of them.

Keywords: CNN, Brain tumor, Data-sets, Deep learning, sMRI, CAD, Binary
crossentropy.

iii

Acknowledgement
To begin with, we express our profound gratitude to Almighty Allah for providing
us with the opportunity to work on this thesis and complete it successfully. We
have tried our utmost best to achieve what we set out to do within the expected
time frame. It’s been a gratifying learning opportunity for us. We also express our
heartfelt gratitude to our supervisor, Mohammad Zavid Parvez sir, for his guidance
and assistance. Without his guidance, we would not have been able to finish our
thesis work. He provided us with the required assistance and motivation at every
stage of our research. Furthermore, we owe a debt of gratitude to our co-supervisor,
Arif Shakil sir, who generously offered his knowledge, experience, and findings to us,
which helped us immensely during our research work. Finally, we are also grateful
to our family, friends, and loved ones who have helped us with our studies. Last
but not least, we are grateful to BRAC University for providing us with a platform
upon which we constructed the foundation of our research.

iv

Table of Contents

Declaration i

Approval ii

Abstract iii

Acknowledgment iv

Table of Contents v

List of Figures vii

List of Tables ix

Nomenclature x

1 Introduction 1
1.1 Brain Tumor . 1
1.2 CNN in Medical Imaging . 1
1.3 Computer Vision and Implementation of CNN 2
1.4 Research Motives . 2

1.4.1 Research Objectives . 2
1.4.2 Problem Statement . 3
1.4.3 Thesis Structure . 4

2 Literature Review 5

3 Background Information 12
3.1 General Architecture of Neural Networks 12

3.1.1 Neuron . 13
3.1.2 Activation Function . 13
3.1.3 Cost function . 17
3.1.4 Gradient Descent . 18
3.1.5 Back Propagation . 19

3.2 Convolutional Neural Networks (CNN) 19
3.2.1 Convolution . 19
3.2.2 Pooling . 25
3.2.3 Flattening . 26
3.2.4 Full Connection . 27
3.2.5 Softmax Function . 28

v

3.2.6 Output Layer . 29
3.3 Transfer Learning . 29
3.4 Batch Normalization . 30
3.5 Regularization . 31

3.5.1 Dropout . 32

4 Dataset Extraction 33
4.1 Dataset Description . 33
4.2 Data Preprocessing . 34

4.2.1 Importing Libraries . 34
4.2.2 Image Processing from Dataset 34
4.2.3 Spliting Train and Test set 36

5 Research Methodology 37
5.1 Model Workflow . 37
5.2 Used Architectures . 38

5.2.1 Proposed Model Implementation 38
5.2.2 VGG16 . 41
5.2.3 MobileNet . 42
5.2.4 ResNet50 . 42
5.2.5 Xception . 44
5.2.6 InceptionV3 . 45
5.2.7 DenseNet121 . 47

5.3 Evaluation Method . 48
5.3.1 Graphical Analysis . 48
5.3.2 Confusion Matrix . 49

6 Experimental Results and Analysis 51
6.1 Result Analysis . 51

6.1.1 Graphical Analysis . 51
6.1.2 Confusion Matrix . 59

6.2 Result Comparison . 63

7 Conclusion and Future Works 64
7.1 Conclusion . 64
7.2 Challenges . 64

7.2.1 Computational power . 64
7.2.2 Excessive training time . 65

7.3 Future Works . 65

Bibliography 70

vi

List of Figures

3.1 Basic ANN. 12
3.2 Artificial Neuron vs Biological Neuron. 13
3.3 Different Types of Activation Functions. 14
3.4 Sigmoid function. 15
3.5 Tangent function. 16
3.6 ReLU function. 17
3.7 One Dimensional Gradient Descent. 18
3.8 Back propagation inside neural network. 19
3.9 4x4 pixel image. 20
3.10 Convolution filters or feature detector. 20
3.11 The first convolution operation. 21
3.12 Second convolution operation. 21
3.13 Third convolution operation. 21
3.14 First convolution operation in second row. 22
3.15 Second convolution operation in second row. 22
3.16 Third convolution operation in second row. 22
3.17 First convolution operation for last row. 22
3.18 Second convolution operation for last row. 23
3.19 The feature map of this particular filter has been completed. 23
3.20 The feature map of second filter. 23
3.21 ReLU example-01 using only +(ve) pixel values. 24
3.22 ReLU example-02 using +(ve) and -(ve) pixel values. 25
3.23 Before and after discarding negative values [68]. 25
3.24 Finding Avg and Max pooling from a given image pixel. 26
3.25 Flattening. 27
3.26 Fully connected layers. 28
3.27 Full Conv Architecture. 29
3.28 Batch Norm [50]. 30
3.29 Dropout Neural Net Model [29]. 32

4.1 Br35H Dataset [50]. 33
4.2 Denoising using Gaussian Filter. 35
4.3 Dataset Pre-processing. 36

5.1 A block diagram of Model Workflow. 37
5.2 Proposed Model Architecture. 38
5.3 The Model Summary. 40
5.4 MobileNet Architecture. 42
5.5 The Residual Block. 43

vii

5.6 Xception Architecture. 45
5.7 After factorization into smaller convolutions. 46
5.8 Asymmetric Convolutions. 46
5.9 After Reducing Grid Size. 47
5.10 Basic 2x2 Confusion Matrix. 49

6.1 VGG16 Model Accuracy. 52
6.2 VGG16 Model Loss. 52
6.3 VGG16 Model Accuracy and Model Loss Curve. 52
6.4 VGG16 ROC Curve. 52
6.5 ResNet50 Model Accuracy. 53
6.6 ResNet50 ROC curve. 53
6.7 InceptionV3 Model Accuracy. 54
6.8 InceptionV3 Model Loss. 54
6.9 InceptionV3 Accuracy and Model Loss Curve. 54
6.10 InceptionV3 ROC Curve. 54
6.11 Xception Model Accuracy. 55
6.12 Xception Model Loss. 55
6.13 Xception Model Accuracy and Model Loss Curve. 55
6.14 Xception ROC Curve. 55
6.15 MobileNet Model Accuracy. 56
6.16 MobileNet Model Loss. 56
6.17 MobileNet Accuracy and Model Loss Curve. 56
6.18 MobileNet ROC Curve. 56
6.19 DenseNet121 Model Accuracy Curve. 57
6.20 DenseNet121 Model Loss Curve. 57
6.21 DenseNet121 Model Accuracy and Model Loss Curve. 57
6.22 DenseNet121 ROC Curve. 57
6.23 Proposed Model Accuracy Curve. 58
6.24 Proposed Model Loss Curve. 58
6.25 Proposed model’s Accuracy and Model Loss Curve. 58
6.26 Proposed model’s ROC Curve. 58
6.27 VGG16 Confusion Matrix. 59
6.28 ResNet50 Confusion Matrix. 60
6.29 InceptionV3 Confusion Matrix. 60
6.30 Xception Confusion Matrix. 61
6.31 MobileNet Confusion Matrix. 61
6.32 DenseNet121 Confusion Matrix. 62
6.33 Proposed model’s Confusion Matrix. 62
6.34 Accuracy Analysis. 63

viii

List of Tables

3.1 Linear activation function. 14
3.2 Sigmoid function. 15
3.3 Tangent function. 16
3.4 ReLU function. 17

5.1 VGG Model Architecture [28]. 41
5.2 ResNet Models Architecture [35]. 44
5.3 DenseNet Models Architecture. 48

6.1 Comparison table among the Proposed Model, ResNet50, MobileNet,
VGG16, Xception, InceptionV3 and DenseNet Models. 63

ix

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

ADAM Adaptive Moment Estimation

ANN Artificial Neural Network

AUC Under The Area ROC

BBB Blood Brain Barrier

BN Batch Normalization

CAD Computer Aided Diagnostic

CE Cross Entropy

CNN Convolutional Neural Network

ConvNet Convolutional Neural Network

DL Deep Learning

GBD Global Burden of Diesease

GPU Graphics Process Unit

LSTM Long Short Term Memory

MSE Mean Squared Error

OpenCV Open Source Computer Vision Library

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

ROC Receiver Operating Characteristics

RSS Residual Sum of Squares

sMRI Structured Magnetic Resonance Imaging

V GG Visual Geometry Group

x

Chapter 1

Introduction

1.1 Brain Tumor
The brain is regarded as one of the most vital biological structures. The functionali-
ties of the brain are significantly impaired if a tumor grows inside the brain. A brain
tumor is a fatal medical disorder that results from the uncontrolled and aberrant
growth of cells within the brain [65]. Brain tumor can be categorized as follows:

• Non-cancerous brain: Non-cancerous brain tumors are called benign. These
are low grade (grade 1 or 2), which indicates they develop slowly and are less
likely to recur the following therapy.

• Cancerous brain: Cancerous brain tumors are called “malignant.” These
are high-grade (grade 3 or 4) tumors that begin in the brain (primary tumors)
or spread to the brain (secondary tumors); they are more likely to recur the
following therapy.

Toxicologically, it is classified as either a primary brain tumor or a malignant brain
tumor that develops in another body location and travels to the brain [56]. A
tumor in the brain is much more difficult to diagnose than a tumor in any other
section of the body. As we know, there is a blood-brain barrier (BBB) in the brain,
and conventional radioactive markers cannot detect tumor cell hyperactivity [55].
Annually, from 7 to 11 people per 100,000 in various age groups develop brain tumors
(2, 3). According to the Global Burden of Diesease (GBD), this disease claims almost
227,000 lives each year. Additionally, nearly 7.7 million survivors are adjusting to life
with disabilities [60]. Early identification of brain tumors saves lives and prevents
disability. Furthermore, early detection decreases the need for brain surgery and
other invasive methods of treating brain tumors. Manual brain tumor diagnosis is
said to have a consensus rate of 90–95 percent among medical specialists. Mixed
tumors, such as medulloblastoma and glioblastoma, had an expert disagreement of
77% and 58%, respectively, according to expert study[41].

1.2 CNN in Medical Imaging
A brain tumor is often identified through an MRI scan with specialized equipment.
This can be identified as some abnormal growth in the brain that can be visible in
the brain MRI image. The growth of computer vision and computer-aided image

1

identification has led to medical science breakthroughs. An improvement in image
categorization and identification has been made possible by using machine learning
and neural networks in image recognition. The implementation of CNN in image
recognition will ensure almost as much accuracy as any existing identification tech-
nology. So if a patient is unable to seek professional help to identify the tumor or the
hospital needs automated assistance, that will help identify the tumor’s existence in
MRI images. The requirement for manually segmenting tumor regions is eliminated
by utilizing CNN-based classification systems, resulting in a fully automatic clas-
sifier. This deep integration of CNN with medical image detection opens another
dimension of opportunities for advancements.

1.3 Computer Vision and Implementation of CNN
The ever-growing scope of technological advancement has produced an uncount-
able scope of computational process-based activities. Computer vision is one of
the leading examples. This particular concept is based on training the machine to
understand images and video. Significantly, the introduction of machine learning,
”deep learning,” to be precise, has revolutionized computer vision applications by
accomplishing large-scale image and video recognition [27]. This surge of popularity
can be attributed to the rise of public image repositories (ImageNet) and progres-
sive performance in computational capabilities in graphics processing units (GPUs)
[17].The application of Convolutional Neural Network (CNN), a machine learning-
based computer vision technology, is quickly becoming the most highly regarded
among other traditional machine learning techniques in image recognition. The
main reason for this is that CNN works faster and has higher detection accuracy
than other competitors, such as Recurrent Neural Networks (RNN), Long Short-
Term Memory (LSTM), and Artificial Neural Networks (ANN) [69]. To emphasize
this more, CNN can detect altered or tampered images with considerable accuracy,
which is the most crucial advantage in real-life scenarios. The recent emergence of
different convolutional neural network models is so accurate that, in extreme condi-
tions, CNN can statistically outperform even humans in terms of a particular breed
or species identification [69]. It is evident that the potential of computational power
and data collection is only going to grow exponentially. Thus, further exploding
the limitless possibilities of improving CNN and deep learning to achieve heights
unimaginable only a few years ago.

1.4 Research Motives

1.4.1 Research Objectives
Our research primarily focuses on implementing an originally constructed CNN
model in the designated brain MRI data set to understand how those particular
models process those values and predict the output. Then to compare the proposed
model with some recognized pre-trained model and compare the accuracy, loss and
other data to demonstrate whether the proposed model is up to the standard or not.
Additionally, the purpose of this research is to familiarize ourselves with the intri-
cacies of each model and analyze those models to compare their results and identify

2

detection errors to exploit the weaknesses. Furthermore, this will help us mitigate
those issues to reach even more accurate and time-efficient version of our proposed
model. To achieve that, we aim to develop a sophisticated algorithm that incorpo-
rates image classification and deep learning to establish an open-source algorithm
that may one day become the new revolution in convolutional Neural Networks with
scopes for future improvements. We intend to create the model with fewer param-
eters and a lower level of complexity so that it can be easily implemented in any
system. The objectives of this research are:

• To conduct extensive research on deep learning, Convolutional Neural Net-
works (CNNs), and other well-established models for implementing deep un-
derstanding in image recognition.

• To comprehend the workings of a neural network, including the layers and
mathematical functions that go into it.

• Research about different image-based datasets such as ImageNet, BR35h and
the properties of those datasets, i.e., how many entries are there, labelling,
missing values.

• Study different models (ResNet50, VGG16, MobileNet, InceptionV3, Xcep-
tion, DenseNet121) and implement those models in our selected datasets through
transfer learning.

• Pre-process the data to fit the model and divide and divide it into test and
training data.

• To construct classification reports for those datasets which the CNN models
process.

• To create a confusion matrix that evaluates the performance of those classifi-
cation models.

• Develop our own model and run it on the selected dataset, tweaking the pa-
rameters and weight distribution to make the model more accurate.

• To measure the accuracy of those models to identify the best model for rela-
tionships and patterns between dependent variables identification.

• Calculate the model loss from the loss function to understand if the model is
predicting correctly as it should.

1.4.2 Problem Statement
Image identification in medical imaging has been a developing process for a long
time. Computer vision and the introduction of neural networks have increased
the accuracy of image identification by a significant margin. This research intends
to demonstrate the image processing and identification of brain tumor images to
identify whether they have a tumor or not by observing the abnormality. This
research presented a convolutional neural network model with precisely placed layers
for determining whether or not a brain MRI image has a tumor. But still, this
problem must be validated by other standard models to judge whether this proposed

3

model is on par with the others. In order to accomplish that, an in-depth analysis
of the proposed model and other models was conducted so that the brain tumor
identification through MRI imaging could be justified and assert its reliability.

1.4.3 Thesis Structure
In Chapter 1, we provided an overview and introduction to what a brain tumor is and
how it is detected using CNN. We’ve also discussed our study goals and how we use
MRI pictures to detect brain tumors. In Chapter 2, we discussed earlier research and
related work on this topic. In Chapter 3, we reviewed the design of ANN and CNN
and their functions. We addressed our suggested model, dataset, and pre-processing
technique in Chapter 4. Then we went over our model and how it functions. In
Chapter 4, we showed how we extract the dataset and its description, as well as
how to preprocess the dataset to fit the models. In Chapter 5, we demonstrated
research methodology and the workflow of our suggested model. We’ve also gone
over the architecture of CNN models, which we applied in our thesis. We discussed
the results in Chapter 6 and then analyzed them. Finally, in Chapter 7, we discussed
the challenges we experienced throughout the thesis while compiling the models, as
well as our plans for future work.

4

Chapter 2

Literature Review

Brain tumor is one of the most widely discussed diseases all around the world be-
cause of their uniqueness in nature and form from person to person. Brain tumor
and it’s diagnosis using CNN is extensively discussed by Asma Naseer, Tahreem
Yasir, Arifah Azhar, Tanzeela Shakeel, and Kashif Zafar [65].It’s known, the human
brain is the most vital part of our body as it is essential for an infinite number of
functions. Globally, brain tumor is considered to be a life-threatening disease, as
without early detection, they can even claim a person’s life. To mitigate this issue,
the authors have proposed a CNN-based computer-aided diagnosis model that was
performed over the BR35H dataset, which is the intended dataset for our research.
The BR35H dataset has divided MRI’s into two groups of over a thousand images,
where one is considered to be a positive sample labeled as “Yes” and the other is
a negative sample labeled as “No”. Moreover, they also performed their proposed
model over other datasets like BTI, BTS, and others and gained a noteworthy result.
The primary focus of this paper is to indicate how manual brain tumor detection is
less successful (90 to 95 percent) [41] than the proposed CNN model as the author’s
CNN models perform a more in-depth diagnosis with higher success rate.

A brain tumor can be classified as cancerous or non-cancerous. The rate of growth of
a tumor formed in the brain might vary substantially. The nervous system’s ability
to operate appropriately is influenced by the rate at which a tumor grows and locates
inside the brain. According to the article written by A. Rehman et al.(2021) [66] one
can incorporate a convolutional neural network with detection and categorization of
brain tumors. Three BraTS datasets from 2015, 2017, and 2018 were used for exper-
iments and validation, achieving 98.32%, 96.97%, and 92.67% accuracy respectively.
Comparing the suggested design with existing methodologies demonstrates that it
achieves equal accuracy. Here in the proposed method, a new CNN architecture is
used to extract brain tumors, pre-trained VGG19 is used to educe deep attributes,
and Pearson correlation and FNN features are used to classify tumors at the end.
The only shortcoming of this paper is that it could not show their results with other
pre-trained architectures like ResNet50, Xception, and others.

In contrast, authors S. Deepak and P. Ameer [54] have managed to differentiated
among glioma, meningioma, and pituitary tumors using a hybrid model. This hybrid
model implements the pre-existing GoogleNet architecture and transfers learning to
obtain MRI traits. The acquired traits are classified using established classifica-

5

tion methods. This experiment was conducted using Figshare’s MRI dataset and a
unique technique of 5-fold cross-validation at the patient level. It is estimated that
the suggested approach has a recognition accuracy of 98%,which is better than any
existing approaches. The other performance metrics employed in the study are the
AUC, precision, recall, F1-score, and specificity. The paper evaluates the system
with less training data for practicality. Observations from the study suggest that
transfer learning can be effective when medical images are scarce. An examina-
tion of classification errors is also provided. Some aspects can be improved as the
transfer learned model performs poorly as an independent classifier. In addition, a
significant number of samples from the meningioma class were incorrectly classified.
Thirdly, they faced an overfitting issue as their dataset was small.

MRI pictures are used to detect brain tumors. The MRI scan generates so much
data that manual classification of tumor vs non-tumor is almost impossible. How-
ever, it only provides reliable quantitative measurements for a restricted number of
photos. An automatic and dependable classification technique is required for early
brain tumor detection. This work has proven to be difficult because of the brain
tumor’s surrounding region’s high geographical and structural heterogeneity. In this
paper J. Seetha and S. S. Raj [48] propose automatic brain tumor detection using
CNN classification; the conventional categorization of brain tumors is carried out by
utilizing Fuzzy C Means (FCM) [47] segmentation, texture and shape feature extrac-
tion, and SVM and DNN-based classification [48].The fundamental objective of this
research is to collect data in order to construct an automated brain tumor diagnosis
system with high efficiency, high performance, and simpler fabrication [48]. The re-
searchers used an “ImageNet” dataset for the overall classification, where they used
pre-trained dataset. Lastly, completing the training for the last layer is required.
Additionally, CNN provides the raw pixel value, as well as the depth, width, and
height feature values [48]. To attain high accuracy, they used a gradient descent-
based loss function; they also calculated training accuracy, validation accuracy, and
validation loss; and lastly, they discovered that training accuracy is 97.5%, and the
probability of a false positive during validation is extremely low [48].

To elaborate, brain tumor classification is necessary for classifying tumors and de-
ciding on treatment options. Brain tumors can be visualized in a variety of ways.
However, the increased picture quality and lack of exposure to ionizing radiation
make MRI a popular choice [61]. Deep learning (DL) has recently demonstrated
exceptional performance, particularly in classification and segmentation challenges.
Hossam H. Sultan et al.(2019) conducted study using a vast number of patients and
images [61]. In one experiment, they exhibited a CAD system for categorizing brain
tumor MR images divided into three categories which are meningioma, glioma, and
pituitary, also classifying gliomas into distinct grades using a bespoke deep neural
network structure. The suggested network has sixteen levels, the first layer being
the input layer which holds pre-processed images while passing it to convolutional
layers and implementing specific activation fuctions. There are two dropout layers
which prevents the model from overfitting [61]. Their proposed design attained the
highest levels of accuracy for the two datasets studied in this work, 96.13% and
98.7%, respectively. However, the dataset is relatively small (because of the range
of imaging angles), data augmentation enabled the presentation of more accurate

6

results.

Since the rise of machine learning, the Convolutional Neural Network (CNN) has
become the most extensively used neural network model for classifying images. Back
propagation is used to identify features in CNN models utilizing a variety of layers.
In their work, S. Das, et al.(2019) concentrated on creating a CNNmodel for diagnos-
ing brain cancers in T1-weighted contrast-enhanced MRI images [53].The suggested
system is comprised of two critical stages. First, pre-process the photos using var-
ious image processing techniques, and then use CNN to classify the pre-processed
images. To achieve that, the experiment utilizes a collection of 3064 photos con-
taining three distinct forms of brain tumors (glioma, meningioma, pituitary). The
suggested system begins by preprocessing the image data. Preprocessing entails
filtering photos with a Gaussian filter and equalizing the histograms of the filtered
images. The machine then uses the CNN model to classify the photos. Dropout,
regularization is used to prevent overfitting in the system [53]. During the training
phase, it assists the model in focusing on the most apparent patterns and therefore
improving performance. As a result, the model has a larger possibility of general-
ization, which keeps it stable. Their proposed model got the model’s accuracy of
94.39%, with an average precision of 93.33%.

In recent times, neural networks have been gaining massive recognition for classi-
fying visual inputs arising from documents. Neural networks have different types
of algorithms for literature and document analysis, which creates greater confusion
from time to time. Among many types of research that has been conducted on
visual document analysis using convolutional neural network, one considerable re-
search was conducted by P.Y.Simard, et al.(2003) [13]. The data set used in this
paper to show the result is an MNIST set of English digit images. This article pro-
poses a straightforward “do-it-yourself” application of convolution with a dynamic
layout for a variety of visual document issues. When utilizing a simple convolu-
tional neural network, sophisticated approaches such as momentum, weight decay,
structure-dependent learning rates, average layers, tangent props, or even tuning the
layout are not required to produce the best results. Here, the peak results from the
MNIST set are obtained by training a new set of elastic distortion and CNN.More
importantly, this research paper proposes novel ways of building such networks that
are significantly easier to construct than earlier methods and allow for easy trou-
bleshooting. The techniques used here are simple loops for convolution and modular
debugging. This paper has tremendously noteworthy results of having only 0.4 per-
cent error using the simple conv (CE) algorithm, which is the lowest error in an
MNIST dataset. Research has shown that only two error functions, cross-entropy
(CE) and mean squared error (MSE), were tested in the study. Aside from that,
they didn’t use momentum, weight decay, structure-dependent learning rates, or use
additional padding around the inputs, which eventually turned out to be ineffective.
In conclusion, though CNN’s research is tough to process, they claim to propose an
easy way for visual document analysis using convolutional neural networks.

The Pooling operation is an inseparable part of the convolutional architecture. In
the paper, D. Scherer, et al.(2010) [19] talked about pooling methods and their
results. For the purpose of this study, they compare aggression functions for a

7

number of common item recognition tasks on a fixed architecture to acquire insight
into unique functions. According to empirical evidence, maximum pooling outper-
forms subsampling strategies greatly. Occupying pooling windows are no better
than non-overlapping pooling windows, despite their shift-invariant features. Using
this information, they were able to achieve error rates of 4.57 percent [19] on the
NORB normalized-uniform dataset and 5.6% [19] on the NORB jittered-cluttered
dataset. They used a Convolutional Neural Network (CNN) framework to perform
their research in this study Zhang et al.(2020). They described the tasks of the
convolutional layer, pooling layer, and backpropagation. The lag here is that they
have not discussed the flattening layer. They tested various pooling operations on
the Caltech-101 [15] and NORB [16] datasets. By comparing the result between
subsampling and max-pooling, they have distinguished their datasets accordingly.
They were able to identify their datasets by comparing the results of subsampling
and max-pooling. They showed that a max-pooling procedure outperformed a sub-
sampling strategy for capturing invariances in image-like data. Using an otherwise
comparable architecture, recognition performance outperformed subsampling tech-
niques for several datasets. The total recognition rate is unaffected by pooling
windows that are more smoothly overlapping.

In order to understand representational data in abstractions of different levels, deep
learning can be used with several processing layers. Speech recognition, object
detection, pharmaceutical research, and genetics have benefited from these enor-
mous advancements. Deep learning makes use of the back propagation technique
to demonstrate how a machine’s internal parameters should be adjusted in order
to compute each layer’s representation from the preceding layer’s representation,
therefore uncovering intricate structures in enormous data sets. The journal “Deep
Learning”, published by Yann LeCun, Yoshua Bengio and Geoffrey Hinton [31] ex-
plained the essential aspects of deep learning and its necessity. It’s been decades
since typical machine-learning approaches could manage vast quantities of real-world
data. Using non-linear but specific modules, deep-learning approaches move the rep-
resentation from a lower, more concrete level to a higher, more abstract one. They
are representation-learning procedures. Very complex aggression functions can be
learnt using deep learning methods. Moreover, the topics discussed in these papers
are CNN, image understanding with a deep convolutional network, Recurrent Neu-
ral Networks (RNN), and their respective algorithms like CovNet and LSTM (Long
Short Term Memory) [26], unsupervised learning [8] sparked renewed interest in
deep learning, but the triumphs of strictly supervised learning have since eclipsed
it. Nevertheless, it is not discussed in this paper. Finally, systems that merge rep-
resentation learning and complex reasoning will make a substantial contribution to
artificial intelligence advancements. To replace rule-based symbolic expression ma-
nipulation with operations on huge vectors, new paradigms must be utilized instead
of deep learning and fundamental reasoning, which have long been used to identify
speech and handwriting [22].

Furthermore, CNN is a popular approach for contextual categorization. It has the
ability to understand contextual signals and, as a result, overcome the difficulties
associated with pixel-wise categorization. It significantly reduces the number of pa-
rameters that must be considered. For example, CNN is widely utilized in remote

8

sensing [36], oceanfront identification [42], high-resolution data [24], audio scene
[43], and MR brain image segmentation [37]. In this context, we discussed a study
conducted by Indolia, Goswami, Mishrab, and Asopa (Indolia et al., 2018) [45] on
the conceptual knowledge of CNN as well as its three most frequent architectures
and learning methods. To impart knowledge and comprehension of CNN’s various
elements, such as models, convolutional layers, pooling layers, fully connected layers,
and activation functions, as well as to discuss the various CNN architectures, such
as LeNet [11], AlexNet [20], GoogleNet [32] lastly two critical CNN learning algo-
rithms which are Gradient Descent [11] and Adaptive Moment Estimation (ADAM)
[25] Optimization has been detailed in this paper.

One of the most well-known research projects has been conducted by A. Krizhevsky,
I. Sutskever, and G. E. Hinton, [20] over image classification with Deep Convolu-
tional Neural Networks. ImageNet, which is notoriously difficult to work with, had a
test error rate of 15.3 % in their study, which shows that an enormous convolutional
neural network (AlexNet) can deliver record-breaking performance by utilizing solely
supervised learning techniques and reaching that result. Five convolutional layers,
three max-pooling layers, and three fully connected layers were used, with a final
1000-way softmax layer at the network’s finish. The network had almost 60 million
parameters and 650,000 neurons. The nonlinearity functions were computed using
ReLU [18]. In addition, we supplemented the data with methods including picture
translation, horizontal reflection, and patch extractions. The model was trained
on two GTX 580 GPUs for five to six days, utilizing dropout layers to battle the
problem of overfitting to the training data and batch stochastic gradient descent
with specified settings for momentum and weight decay to combat overfitting to the
training data. This specially constructed network was utilized to classify data into
up to 1000 different classes. When a single convolutional layer is removed from their
network, performance suffers. The removal of any middle layers results in around
2% of the network’s top-1 performance when the middle layers are removed.

E. Walach and L. Wolf [38] look into the problem of item counting in pictures from
several perspectives. They use CNNs and integrate two key advancements over ex-
isting methods: gradient boosting and selective sampling, which estimates a density
map straight from the input picture. They do this by simultaneously increasing
counting accuracy and decreasing processing time. This study shows that the sug-
gested approach is successful even when labelling mistakes exist. Extensive tests
on five distinct datasets illustrate our approach’s effectiveness and resilience. The
mean absolute error was lowered from 40% to 35% as a result of this process. Si-
multaneously, the training time for each CNN has been cut by 50 %. Additionally,
the recommended technique is straightforward. They outperform trailblazing sys-
tems developed for each application while using the same basic architecture for three
separate counting applications (microscopy, interior crowd, and exterior crowd). Fi-
nally, they want to expand the scope of the suggested approaches to include other
CNN regression applications. Problems like these emerge in a wide range of do-
mains, from age estimation in facial images to human posture estimates, which are
fundamentally different from counting.

In this paper, N. Srivastava, et al. (2014) [29] conducted some of the most signifi-

9

cant research in terms of preventing overfitting, As overfitting slows the network and
makes it impossible to combine predictions from multiple huge neural nets at test
time, which is a significant issue with extensive networks. To avoid this sort of diffi-
culty, they employ the dropout method. The basic idea is to randomly remove units
(and the connections they have to other units) from the neural network as you train
it. Dropout prevents units from collaborating too extensively. During testing, a sin-
gle unthinned network with lighter weights can replicate the impact of averaging the
predictions from all of these thinned networks. Additionally, it considerably reduces
overfitting and gives significant benefits over conventional regularization strategies.
Using back propagation learning alone yields rigid co-adaptations that benefit train-
ing data but are useless for new data. In the presence of a hidden unit, these co-
adaptations are rendered less efficient due to their unpredictable nature. When this
approach is applied, neural nets outperform other classifiers in various application
domains, including object classification, digit identification, speech recognition, and
document categorization in computational biology. It also shows that dropping out
is a generic method not tied to any industry or field. Dropout adds a lot of noise
to gradients compared to “Standard Stochastic Gradient Descent”. Thus, a large
number of gradients tend to cancel one another out. In terms of SVHN, ImageNet,
CIFAR-100 and MNIST performance, dropout techniques are at the cutting edge of
the field. Furthermore, Dropout considerably improved the performance of conven-
tional neural networks on extra data sets when used in conjunction with Dropout.
This study offers practical suggestions for employing dropout that is easy to put
into practice. Not only does it provide solid data in support of dropout, but it also
explores an intriguing and enlightening idea from a completely different field.

In contrast, moving object identification algorithms suffer from poor performance
in complicated situations because of the dynamic background, light fluctuation, and
shadows. Using ResNet-18 and an encoder-decoder structure, a method for segment-
ing moving objects in complicated scenarios has been suggested by X.Ou, P.Yan,
Y. Zhang et al. (2019) [59] to address this issue. The encoder-decoder structure of
ResNet-18 enables it to categorize pixels on a pixel-by-pixel basis, splitting them into
foreground and background. It excels at feature extraction due to the shallowness
of its layers, which retain a greater number of small-scale properties. The proposed
technique is applicable to scenarios with a dynamic backdrop, fluctuating lighting,
and shadows, as evidenced by qualitative and quantitative findings on the open-
source CDnet2014 and I2R datasets. In quantitative comparisons, the proposed
approach significantly has better performance than other algorithms, boosting the
mean F-measure from 1.99 to 29.17%. The proposed technique is supervised train-
ing, and the recommended network structure is encoder-decoder. The network is
fed the object frame and the artwork labels associated with it. The decoder then
turns the encoder’s feature vectors into segmentation maps. Additionally, using the
Euclidean distance, the foreground mask is accurately located.Experiments on the
I2R and CDnet2014 datasets show that our proposed solution is superior to estab-
lished methods.

The paper “The CNN Paradigm” by L. O. Chua and T. Roska (1993) demonstrated
the inherent richness of the CNN paradigm with the help of some examples [5].With
time, the CNN paradigm grew to include a wide range of topics and contexts while

10

maintaining the two fundamental principles of local connection and analog circuit
dynamics. An instructive overview of CNN’s major class types is included in this
book, in addition to a full taxonomy. The cellular neural network (CNN) innova-
tion, which is a dynamic processor array made of analogue processing units that
interact directly within a finite local area, demonstrates this capability [2]. In this
paper, CNN is classified into four types, 1) In artificial systems [4] when performing
detection tasks and several grid sizes [3] (e.g., coarse and fine grid) may be benefi-
cial, the CNN architecture may be more cost-effective because of the variable grid
size in terms of area complexity. 2) There are basically diverse kinds of processing
activity that take place in the linear region. Several nonlinear sigmoid and non-
sigmoid functions are depicted in this example. It is best to use processor types
[6]that are slowly and regularly altered when utilizing less precise components for
extremely accurate detection tasks. The small-signal operations in the linear section
of the processor constitute a fundamentally new kind of processing. It shows a large
number of nonlinear sigmoid and nonsigmoid functions. When using less accurate
components for high-accuracy detection jobs, it is preferable to use processor types
that are slightly and regularly altered. 3) As an alternative to the typical fixed-
point operation, transient, oscillating and chaotic modes are becoming increasingly
relevant. 4) Interaction (connection) kinds: There are many different forms of in-
teraction.The use of cloning templates to represent interactions is a critical concept
in CNN. In today’s world, templates are no longer limited to translation-invariant
ones. Adaptive time-varying templates and associative memory both use templates
that fluctuate on a regular basis. The downside of this paper is that it does not
contain a clear conclusion.

11

Chapter 3

Background Information

3.1 General Architecture of Neural Networks
Neural Networks often regarded as ANN which is short for Artificial Neural Networks
is a network of artificial neurons known as nodes developed in the early 1940s to solve
Artificial Intelligence (AI) problems by predictions based on some pre-processed
data. The network takes input from its environment trough neurons and pass the
data in form of weights to the next layers and ending up in the output layer by some
functions. The layers can be broken down into three categories such as input layer,
hidden layer, and output layer. Here, neuron serves as a transfer function, meaning
it takes the input values x1+x2+x3++xm and weights w1+w2+w3++wm

and activation function, φ receives the output. Thus, the output y we get is,

y = φ

(
m∑
i=1

wixi

)
(3.1)

The output can be continuous, binary and categorical etc. depending on the type
of input.

Figure 3.1: Basic ANN.

12

3.1.1 Neuron
The concept of the neural network is adapted from the neurons of our brain cells.
Thus neuron function gave birth to the neural network system. Similar to brain cells,
the neurons act as each node for some layers, and they are interconnected with each
other that can transfer value and parameters for an optimum solution. The neurons
turn on or fire when some information is passed.A specific condition must be reached
in a neural network system to fire the neuron. This thresh-hold value is known as
bias. A set of neurons are situated and distributed in each layer. Usually, the
first layer which takes input has a wide range of neurons. The last layer, or called
the “black box”, contains considerably fewer neurons. This connection throughout
the neurons helps the deep learning process by altering and recognizing patterns to
predict the expected output. Each neuron behaves like a node, and the connection
between each node is considered as edges. The edges here are the weighted value
that contributes to different functions embedded into the system. It helps determine
the accuracy and effectiveness of the machine

Figure 3.2: Artificial Neuron vs Biological Neuron.

3.1.2 Activation Function
A neural network’s activation function represents how the nodes in a layer’s weighted
sum input is converted into output. It is also referred to as a transfer Function’ [57].
Activation functions can be differentiated based on linearity and non-linearity. The
Activation Function selection is vital as the performance and accuracy depend on it.
The activation function is the same for all hidden layers, but the function may differ
in the output layer depending on the output. For each node, the activation function
denotes the output of that node given that set of inputs were given. This concept was
introduced to direct the “black box” layers in a deterministic way. There are many
activation functions in neural networks. Due to constant research and mathematical
modifications done to the system, many activation functions are discarded, and some
produce higher accuracy [57]. All activation function is calibrated according to the
value the specific task needs by implementing Bias value to the function to make a

13

particular threshold value that will be regarded as the pivot point of a positive and
a negative outcome. Generally, the activity function is denoted by φ(x).

Figure 3.3: Different Types of Activation Functions.

Linear

This particular type of activation function considers the output as a straight line
equation. This essential function always produces linear output to the input func-
tion. This function’s differential result will always be constant. Due to that, the
differential of this Linear function has no relation with the input. So, each layer’s
weight and input value may change, but the upgrading factor or gradient will re-
main the same. This creates a function that will not help the next operation be
more accurate while traversing through each neural network layer. This means that
no matter how many layers are added to the network, the output from the first one
will be the same as the output from the last one. Thus, collapsing all the layers into
a single layer.

y = mx+ c (3.2)
y = Wx+ b (3.3)

Here, the slope m is represented as weight in each node (W). Also the C or constant
in the linear equation is replaced with the bias value (b) in the neural network
structure.

Function Equation Range Derivative 87 equation

Linear f(x) = x −∞,+∞ f ′(x) = 1

Table 3.1: Linear activation function.

Non-Linear

The integration of non-linear functions has significantly improved the accuracy of
deep learning. Moreover, some form of non-linear function is used very frequently in
iteration of neural networks. Additionally, it allows the model to generate a complex

14

mapping between the node’s input and output [9]. This helps the model determine
and learn to accurately decide the output for complex data set inputs such as image,
video, and audio files that are usually high in dimension counts. The most effective
advantage of using these functions is that differential helps determine the upgrading
factor or gradient-based on unique inputs.A neural network’s layering of layers is
advantageous because of this. That’s why it’s so important to have an accurate
model.

Sigmoid

It is an S-shaped activation function. The characteristic of this function is that
it is continuously differential and smooth. This function is widely used in neural
networks at the early stage. This function congests the value of the input in such a
way that output will always range between 0 and 1. This helps the neural network
immensely as the range is minimal [21].

f(x) =
1

1 + e−x
(3.4)

The derivation of this function will range from 0 to 0.25. The prime benefit of
using this type of function is that judging by the slope of the particular point in
the function; we can decide if the value should move to its right or left region. As a
result, this dramatically helps to improve the accuracy of the successive layers. This
function has a problem named vanishing gradient and exploding gradient problem. It
happens when the function’s derivatives saturate around the x=0 mark and become
very small farther from the x=0 point. This is a very computation-heavy function
as it calculates exponential values.

Figure 3.4: Sigmoid function.

Function Equation Range Derivative equation

Sigmoid f(x) = 1
1+e−x 0,1 f ′(x) = f(x)(1− f(x))

Table 3.2: Sigmoid function.

15

Hyperbolic tangent

The hyperbolic tangent is a special case of the sigmoid function, which has been
modified for this purpose. It uses the hyperbolic tan function to generate output.
The output here is zero “centric”. All the point converges toward the centre or
x = 0 points in x-axes. The derivative of this function ranges between 0 and 1.
This function is more easily optimizable than the sigmoid function. Although the
adversities that come with the sigmoid function still resides here as it still faces
“vanishing gradient and exploding gradient problem” as the derivative. Also, the
computational strength needs to perform the task is heavy. This suffers the same
saturation problem. the value suddenly shifts from one point to another after a
slight change [20].

f(x) =
1− e−2x

1− e−2x
(3.5)

As denoted, the equation is defined where after inputting the value, the outcome
can differ from -1 to 1. The graph also shows that the value shifts rapidly when the
value converges to the centre or midpoint case around 0.

Figure 3.5: Tangent function.

Function Equation Range Derivative equation

Tanh (Hyperbolic tangent) f(x) = 2
1+e−2x − 1 -1,1 f ′(x) = 1− f(x)2

Table 3.3: Tangent function.

ReLU

Rectified linear units or ReLU is the most advanced and commonly used functions
among the ones discussed. ReLU is a non-linear function that acts as a linear func-
tion. This dramatically helps the computational process time [57]. Generally, ReLU
can be classified as a piecewise linear function. This is different from the other two
functions as those are continuously differential. One of the critical features for the
ReLU function is that it mitigates one of the main issues, which is dealing with the

16

negative weighted numbers [18]. The function that denotes ReLU is :

f(x) = φ(x) = max(x, 0) (3.6)

Figure 3.6: ReLU function.

Function Equation Range Derivative equation

ReLU f(x) =


0; x < 0

x; x ≥ 0

0,+∞ f ′(x) =


0; x < 0

1; x ≥ 0

Table 3.4: ReLU function.

From the figure: 3.6 and equation above, it is evident that the output will be zero(0),
if the input is any negative number (x < 0). Nevertheless, for the positive inputs,
the output will produce a linear output proportional to the input. Which is given
as “x” in this equation. Effectively making the slope/gradient = 1. For half of the
input domain, this function is linear; for the other half, it is non-linear. This results
in a far more efficient computation. The negative values are neglected in the process,
which makes the process a bit easier, and at the same time, it stays a non-linear
function for the positive values. If the system has enough positive values, then this
function is the most preferable. Furthermore, ReLU is the only function that can
output a true zero (0) value out of all three functions. The hidden layer benefits
from this function because of its simplistic approach.

3.1.3 Cost function
In deep learning, there are hidden layers named as “black box”, which processes the
data given in neurons and act accordingly to predict the output [14] finally. In each
layer, different nodes process different segments of the data and give outputs. How-
ever, the whole neural network cluster, which contains numerous inputs, will have

17

a singular output in terms of the cost function. This cost function is the value that
determines whether the machine is working as expected or not. The cost function
is generated by accumulating all the machine’s steps and how the error is produced.
In a sense, it is a feedback system for the computer. As we do not know what is
happening on the hidden layer, the cost function is the most efficient way to know
what variables to alter to make the system more accurate and precise. However,
this cost function can only show the system’s errors but cannot determine how to
improve them. So, we need correctional functions or algorithms of such to improve
the system’s accuracy based on the cost function [14]. The equation of cost function,

C =
1

n

n∑
i=0

(yi − (mxi + b))2 (3.7)

Costs are calculated by adding the expected value and subtracting the actual value
of a node’s forecast. The more accurate the neural model is, the lesser becomes the
cost function. Here y denotes the expected value, and (mx+b) means the value that
a particular node produces. The summation of those values is calculated for each
node to generate the function.

3.1.4 Gradient Descent
In the previous topic, one can only evaluate the cost function to measure whether the
machine works poorly or accurately. Later, to improve the layers by tweaking the
parameters such as the slope (m), which is also denoted by w in the neural network,
and constant (c) also represented as bias(b) to make the machine more accurate for
the next iteration. The gradient function [11] aims to make the cost function as low
as possible. In each iteration, the gradient function is the differentiate term of the
constant function. The function either moves to its right or left by examining the
value, depending on the slope values sign.

Figure 3.7: One Dimensional Gradient Descent.

18

3.1.5 Back Propagation
Through the process of back propagation, the network’s connections are reweighted
to reduce the cost function’s smallest possible value while also maximizing the net-
work’s actual output. That is, it will adjust the weight after an iteration [1]. It is a
standard method of training the artificial neural network. After back-propagating
multiple times, finding the set of weights will make sure that, the output vector is
identical with the preferred output for each of the input vectors [1]. The goal of
back propagation is to calculate the partial derivative ∂C

∂w
and ∂C

∂b
of the cost function

concerning any weight ‘w’ or bias ‘b’. Therefore, after getting a predicted result,
the error is back propagated, and the weights are updated according to how much
they are responsible for the error. This tuning of weights of a neural network will
improve the model’s accuracy. The concept of ’Learning Rate’ can show how much
we should update the weights. One thing to note is that back propagation’s actual
performance is data-dependent. The back propagation algorithm implements the
chain rule to determine the gradient of a weight’s loss function. It of two types
which are ‘Static Back-propagation’ and ‘Recurrent Back-propagation’.

Figure 3.8: Back propagation inside neural network.

Here, we are figuring out the hidden units based on the actual output and the input
value that we’re given. Each of the corners carries its own weight.

3.2 Convolutional Neural Networks (CNN)

3.2.1 Convolution
ConvNet, abbreviated as CNN, is a deep neural network designed for grid-like topol-
ogy identification, more precisely 2D matrix-like image recognition. [51]. ConvNet
is more than just a deep neural network with a bunch of layers disguised under-
neath the surface. It’s a large network that resembles the visual cortex of the brain
in terms of how it analyzes and discerns images. This technique demonstrates the
importance of profound layer improvements for information; basically, images pro-
cessing [34].The images are composed of a two-dimensional matrix of pixels on which

19

the CNN algorithm is conducted. [52]. CNN uses the brain as a motivation for de-
tecting and classifying images.As previously stated, the human brain is divided into
two cell types: simple cells that perform feature detection and complex cells that
incorporate local features from small geographical regions. Spatial information is
information that has a location-based link to other information. The human brain
recognizes images by merging all of the local elements that their eyes can detect;
this is how people see images. The equation of the convolution operation is:

s[t] = (x ∗ w)[t] =
a=∞∑
a=−∞

x[a]w[a+ t] (3.8)

Here, s= feature map, x= input image, w= feature detector or kernel.
Convolution is a mathematical term that refers to a function that is obtained through
the integration of two other functions. It explains how another function can alter
a function’s structure. For example: say am image that is denoted by “x” here.
The image is a two-dimensional array of pixels with distinct colour channels. Here,
we use kernel “w”, which is essentially our feature detector, to extract the output
following the application of the feature map. A feature map is a technique that
determines how similar two signals are, and this is a result of the convolution layer.
A feature detector or filter is used to identify the edges of a picture. The whole
convolution operation is responsible for calculating the image’s edges.

How CNN works

Let’s consider a 4x4 pixel image that is illustrated in figure 3.5. The convolution
filter operation on this image will be used to create a feature map.

Figure 3.9: 4x4 pixel image.

Here we use two convolution filters.

Figure 3.10: Convolution filters or feature detector.

20

The actual ConvNet’s filters are selected by the training process rather than by a
manual decision.
Let’s start with the process. The convolution operation starts at the upper-left
corner, here we use sub-matrix as the same size as the convolution filter and in
every step it moves forward by one grid.

Figure 3.11: The first convolution operation.

The convolution operation is the sum of the products of the elements in the two
matrices that are in the same location. Here the result 12 is on feature map is
calculated as: (1x1)+(2x0)+(25x0)+(11*1)=12.

Figure 3.12: Second convolution operation.

Figure 3.13: Third convolution operation.

21

Figure 3.14: First convolution operation in second row.

Figure 3.15: Second convolution operation in second row.

Figure 3.16: Third convolution operation in second row.

Figure 3.17: First convolution operation for last row.

22

Figure 3.18: Second convolution operation for last row.

Figure 3.19: The feature map of this particular filter has been completed.

This is how we can produce the feature map using convolution filer from a given
image pixels. In the same manner, we can calculate the feature map for the another
convolution filter.

Figure 3.20: The feature map of second filter.

The values present in the elements of the above feature map, like the first convolu-
tion operation, are determined by whether the image matrix cross-matches with the
convolution filter.

The convolution layer, in summary, applies convolution filters to desired the in-
put image to generate the feature maps. The trained convolution filters determine
which features are extracted in the convolution layer. As a result, the features ex-
tracted by the convolution layer differ based on the specific convolution filter used
in the model. The feature map that creates is processed through specified activa-
tion function prior to the layer yields the output.The convolution layer’s activation
function is identical to that of a regular neural network. Despite the fact that the
ReLU function is employed in the majority of recent applications.

23

Significance of ReLU in Convolution

ReLU function [18] behaves as a non-linear function. Here as the equation given
before, its stated that all the negative number in that function will be converted
into zero(0). And the rest of the domain (x >= 0), the value will remain the same
as input x. So thus creating a linear and non linear relation at the same time due
to it’s nature being piece wise function. If we take a look at the graphs representing
the function sigmoid [21], tanh and ReLU in figure: 3.4, 3.5, 3.6 we can see in range
around -1 to 1 in tanh graph, the gradient value will be non zero as there is slope
which is not equals to 0. But after passing that range the slope decreases rapidly
and the gradient gets close to zero. If the gradient value becomes zero then the
whole point of using hidden layers are wasted. This mathematical notation is the
key to improve the accuracy to the system by telling which values to alter in the
future layers. Same goes for the sigmoid function [21] as well. But, if we look at the
ReLU function, if the weighted value ever reaches negative, the value is immediately
converted to zero which discards those negative values. This can cause the system
to be less accurate. However, It’s observed that all the positive values are creating
a positive slope linear line which will produce the gradient values as non-zeroes.
On the top of that discarding those negative values means the system will perform
even faster than the other. Moreover, computation power will be kept at minimum
as it won’t have to deal with exponential functions rather ReLU just uses a max
function which is considerably simpler. This function can output a true zero(0).
ReLU function has the unique feature where it works as linear function. This makes
the calculations in the neural network cluster significantly easier. Also, optimizing
these models are more accurate and easier to implement. The linear nature of the
function effectively mitigates the “vanishing gradient problem” because the gradient
remains the same for all positive numbers. For multiple hidden layer architecture,
this is easily the most preferable function that will produce an accurate output
within shorter time. That’s the primary reason for using ReLU in convolution neu-
ral network system.

Figure 3.21: ReLU example-01 using only +(ve) pixel values.

Here, in two different cases operations of ReLU in a 4x4 pixel grid matrix structure
is demonstrated. In the first matrix, all the values of each entry is either zero or
greater than zero. which means all the values are positive numbers so as the node
gets the input such as that, the output stays the same as seen in the output matrix
given in figure: 3.21.

24

Figure 3.22: ReLU example-02 using +(ve) and -(ve) pixel values.

But when some negative numbers are given as input in the matrix, the function con-
verts them to zero. In this case, 4 entries were found (highlighted with blue marks)
to be negative and in the output the values are converted to zero and the previous
values are discarded. That’s the illustration of how a basic ReLU operation works.

(a) Before Discarding (b) After Discarding

Figure 3.23: Before and after discarding negative values [68].

In these two pictures, the ReLU function’s work is visible. When the neural net-
works, the first layer takes a massive matrix with large dimensions as input. This
causes a massive calculation hurdle. By implementing the ReLU function, all the
non-negative numbers are kept while the negative numbers are discarded and re-
placed with 0. That makes the dimension of the matrix of the next iteration signifi-
cantly smaller. In the first pictures, while the object detection neural network cluster
is running, the black pixels are unfavourable, and whites are of positive value. After
the function, the value of the black pixels is converted to zeroes, thus leaving only
the white pixels to work with further. This process speeds up the computational
time of the whole model. Because the system now has a smaller matrix with fewer
values to calculate. This helps the neural network to train efficiently and detect the
object more accurately.

3.2.2 Pooling
CNNs use two different types of layers: convolutional (which resembles primary
cells) and pooling (which models complicated cell behavior). Each convolutional

25

layer applies a non-linear transfer function to the source picture and executes a dis-
crete 2D convolution operation with an altered kernel. By aggregating neurons from
a local spatial vicinity, the pooling layers lower the size of the input. Primary reason
for using CNN is the action performed by pooling layers is easily interchangeable
without modifying the core architecture [19].

Due to its ability to reduce the dimensionality of feature maps, pooling is an es-
sential step in convolutional systems. A group of values is combined into a smaller
number of values, decreasing the dimensionality of the feature. By retaining relevant
information, It turns the joint feature representation into useful information. By re-
moving certain connections between convolutional layers, pooling operators provide
a spatial transformation invariance while lowering the computational cost for upper
layers. The pooling layer is mainly used for two beneficial purposes. The first is
to minimize the number of parameters or weights, lowering computing costs, and
the second is to prevent over-fitting. Only useful information should be extracted
from a pooling method, and irrelevant details should be discarded. Though there
are also other forms of pooling operation, it is mainly divided into 1) Max Pooling
and 2) Average Pooling. There also exists another form of Pooling which is known
as subsampling.

Figure 3.24: Finding Avg and Max pooling from a given image pixel.

Average Pooling: Down-sampling is performed via an intermediate pooling layer,
with which rectangular pooling regions are divided and the average values of each
zone are computed [62].

aj = tanh(β
∑
N∗N

an∗ni + b) (3.9)

Max Pooling: The maximum value inside a group of R activations is passed forward
by the max-pooling operator.

aj = max
N∗N

(an∗ni u(n, n)) (3.10)

3.2.3 Flattening
It is another crucial layer in the Convolutional Neural Network (CNN). It is a very
crucial layer for feeding the data. Some artificial neural networks have dense layers

26

as the last layer, which expects data in a one-dimensional system. In a CNN model,
the final stage is a classifier, which is a dense layer. The output of the pooling
layer must be converted into a one-dimensional feature vector before it can be used
by the ANN. This process is called flattening.This feature is a must to flatten the
output side of the convolutional or pooling layer and create a 1 dimensional feature
vector that the dense layer can utilize to do conduct the final classification. The
long vector that we obtain after flattening will be the input layer for an artificial
neural network [23].

Figure 3.25: Flattening.

In this figure, The pooled feature map is a 3x3 matrix which is converted into a one
dimensional matrix.

3.2.4 Full Connection
Fully-Connected is now learning a potentially nonlinear function in that space.Due
to the fact that our matrix had been converted to a vector and fed into a fully -
connected layers akin to a neural network, we chose to call this the FC layer.Here,
the qualities gleaned from the prior layers are transformed into the final product.
Equation 3.11 establishes the relationship between consecutive levels [44].

vji = δ(
∑
k

vj−1
k wj−1

k,i) (3.11)

Here in equation 3.11, V j
i denotes the value of neuron i at layer j, δ is the activation

function and weight of connection between neuron k from layer j − 1 and neuron i
from layer j are shown by wj−1

k,i [44].

27

Figure 3.26: Fully connected layers.
.

The feature map matrix will be transformed to a vector (x1, x2, ...xm) which is shown
in the figure: 3.26. These characteristics are integrated into a model using the fully
linked layers. Finally, the findings are divided into groups using an activation func-
tion like softmax or sigmoid [21].

3.2.5 Softmax Function
The softmax function [49] normalizes a vector of K absolute values into a probability
distribution of K probabilities.Each element will have a value between 0 and 1, and
they will add up to 1, making them a probability value. Additionally, a greater
number of input components indicates a higher chance. With the softmax layer, we
may convert a network’s non-normalized output to a probability distribution across
anticipated output classes. The softmax function is:

P (cr|x, θ) = g(a(x, θ))r
ear(x,θ)∑k
j=1 e

aj(x,θ)
=

P (x, θ|cr)P (cr)∑k
j=1 P (x, θ|cj)P (cj)

(3.12)

The softmax layer computes the standard exponential function for each component
zj in the input vector and normalizes the outcome by dividing it by the sum of
all these exponentials. This normalization guarantees that the output vector σz

component sums to one [58].
Consider a CNN that can distinguish between a cat and a dog. Because a picture
may only be a cat or a dog, the two classes are mutually exclusive. Typically, the
network’s last fully connected layer produces numbers like [-9.65, 3.14], which may
not be scaled and cannot be understood as probabilities. With a softmax layer, we
can convert the integers into a probability distribution. The output may be shown
to the user; for example, the software believes this is a cat 95% of the time. It also

28

means that the result may be passed into other machine learning algorithms without
being normalized since it will always be between 0 and 1 [49].

3.2.6 Output Layer
The output layer of a CNN is the final layer. This layer estimates the classes based
on the supplied image. The output layer contains a neuron for each conceivable
class, i.e., one for unaltered images and another for each possible alteration. This
layer implements the activation function “softmax”, which maps the previous dense
layer and generates vector output that is then summed [33]. It will indicate whether
or not each element belongs to a specific class.

Figure 3.27: Full Conv Architecture.
.

3.3 Transfer Learning
Pre-trained networks are a well-known and widely used method for dealing with
sparse datasets. The pre-trained network’s architecture and weights are retained
once trained on a large dataset, such as an image classification dataset. In addition
to that, pre-trained neural networks can be used as a visual model if the starting
dataset is large enough and general enough. Although the new jobs may have
completely different categories from the original work, these traits can aid in a
variety of computer vision tasks.There are two approaches to make use of the transfer
learning from a previously trained network:

• Feature extraction: It is performed by pulling the features of the dataset
using the convolutional base which was previously trained in different network
and then training a new classifier with the outputs.

• Fine-tuning: The fine-tuning procedure is complementary to the feature
extraction method, as it entails unfreezing the final layers of the frozen con-
volutional base used for feature extraction.

To begin, we take a pre-trained network and remove its classifier foundation. Sec-
ondly, the pre-trained model’s convolutional base is frozen. Additionally, a new
classifier is introduced and trained on the pre-trained network’s convolutional base.

29

Additionally, we unfreeze some layers of the pre-trained network’s convolutional
foundation. Finally, these unfrozen layers and the newly created classifier are trained
together [64].

3.4 Batch Normalization
Occasionally, data span a large range and do not belong on the same scale; also,
each of our characteristics for each of our samples can vary significantly. The larger
inputs in non-normalized data sets can cascade across the layers of neural networks,
causing an unbalanced gradient and an inflating gradient problem. This can lead
to neural networks being unstable. This can affect our training speed by reducing
the speed drastically. So, the solution for these issues is the normalization of the
data set where we put the data on the same scale. During training, the data set one
of the weights can become drastically more extensive than the other weights. This
problem will keep on cascading on the other layer, which will cause instability in the
neural network. This is resolved using batch normalization. Here in batch normal-
ization, we can choose the layer on which we want to normalize. To begin, batch
normalization makes the activation function’s output more uniform,the equation is
given below:

z =
x−m

s
(3.13)

Then it multiplies this normalized output by an arbitrary parameter, g, the equation
is given below:

z ∗ g (3.14)

There is an additional parameter, b, added to the final product after the multipli-
cation.

(z ∗ g) + b (3.15)

Figure 3.28: Batch Norm [50].

As shown, N is the batch axis, C is the channel axis, and W is the spatial height.
All of these variables will be optimized throughout training. For decades [10], it
has been known that normalizing neural network input data to zero means and the

30

constant standard deviation is helpful in neural network training. With the emer-
gence of deep networks for efficiency reasons, batch normalization is done by dividing
into mini-batches than taking the whole training set at a time. We primarily ex-
plore batch normalization for convolutional neural networks. A batch normalization
layer’s input and output are both four-dimensional tensors known as Ib,c,x,y and
Ob,c,x,y respectively. The RGB channels are represented by the channels in the input
images. Batch normalization applies the same normalizing to all activation in a
given channel [30].

Ob,c,x,y ← γc
Ib,c,x,y − µc√

σ2
c + ε

+ βc ∀b, c, x, y (3.16)

BN subtracts all input activations in channel c from the mean activation c = 1,
µc =

1
|B|
∑

b,x,y Ib,c,x,y where B comprises all activations in channel c across all fea-
tures b in the whole mini-batch and all spatial x; y locations. The centered activation
is then divided by the standard deviation c (plus for numerical stability).

3.5 Regularization
Regularization is a critical topic in machine learning. It is an approach to preventing
the model from overfitting by supplementing it with additional data also reduces the
coefficients towards zero [7]. When using training data, the machine learning model
may do well, but it may not do so well when using test data. If the model cannot
anticipate the result while dealing with unknown data, it is overfitted because of
the excess noise it produces in the output. A regularization approach would help
resolve this problem [12].
Regularization works by supplementing the complicated model with a penalty or
complexity term. Consider the following equation for linear regression:

y = β0 + β1x1 + β2x2 + β3x3 + ...+ βnxn+ b (3.17)

y denotes the value to be predicted in the preceding equation. y has the attributes
x1, x2, ..., xn. The values β1, ..., βn represent the weights or magnitudes assigned to
the characteristics. The bias of the model is denoted by β0, while the intercept is
denoted by b. Linear regression models attempt to minimize the cost function by
optimizing β0 and b.
To construct a model that properly predicts the value of y, we’ll need a loss function
and optimal parameters, such as bias and weights.The term “residual sum of squares”
refers to the loss function that is frequently employed in linear regression (RSS).

RSS =
M∑
i=1

(yi − y′i)
2 =

M∑
i=1

(yi −
n∑

j=0

βj ∗Xij)2 (3.18)

RSS may also be referred to as the linear regression goal that is not regularized.
Now, the model will learn using the loss function. It will modify the weights based
on our training data (coefficients). Uncertainty in our data set causes overfitting,

31

and the calculated coefficients will not generalize.
There are two primary approaches for regularization: Ridge Regression and Lasso
Regression. They are both different in penalizing coefficients. L2 regularization
is used in the Ridge regularization approach. It changes the RSS by adding a
penalty (diminishing quantity) equal to the square of the coefficient magnitude.
however, Lasso regularization accomplishes L1 regularization, which changes the
RSS by adding a penalty (amount of shrinkage) equal to the sum of the coefficients
absolute value [12].

3.5.1 Dropout
In machine learning, the term “Dropout” [29] refers to the process of randomly
omitting some nodes from a layer during training. Deep neural networks with many
parameters are robust machine learning systems. The difficulty is that these net-
works are overcrowded. Large networks are highly sluggish to utilize, making it
challenging to combine numerous forecasts—massive neural networks for testing.
Dropout is a solution to this issue.

Figure 3.29: Dropout Neural Net Model [29].

On the left hand side of the figure: 3.29 is a representation of a conventional neural
network with two hidden layers, while the right shows a reduced network formed
by nullifying some neurons of the left network. Thus, the crossed units have been
turned off or nullified.

A typical neural network with all units active is shown on the upper-left side. Fewer
weights and biases are considered during training for the crossed teams led on the
right side. Dropout prevents overfitting and enables the efficient combination of an
exponentially large number of distinct neural network designs.Dropping a unit from
the network involves disconnecting it from all incoming and outgoing connections.
Dropping troops is chosen at random. In the most basic instance, each unit is kept
with a fixed probability ‘P’ independent of other units, where ‘P’ may be selected
using a validation set or set at 0:5, which appears to be near to optimum for a most
of the networks and tasks. In contrast, the ideal probability for the input units is
usually closer to 1 than to 0.5 [29].

32

Chapter 4

Dataset Extraction

4.1 Dataset Description
The research is targeted towards the solution of an image classification problem.
The data set chosen for this research is an MRI data set. It is known as Br35H.

Figure 4.1: Br35H Dataset [50].

33

It is an abbreviation of “Br35H: Brain Tumor Detection 2020 dataset”. This data
set consists of 3000 jpg files of brain tumor MRIs. Moreover, these 3000 images
are again divided into two categories of 1500 MRIs each. They are categorized as
“Yes” and “No”, where “Yes” means there is the existence of a brain tumor and
“No” means there is no existence of a brain tumor. These are denoted with 0’s (no)
and 1’s (yes). The collection contains sequences of weighted images. It has a 7.5
usability rating. The data usability score is calculated using the following criteria:
license, tagging, data overview and description, simplicity of use, maintainability
assurance, machine-readable file formats, metadata, and the presence of a public
kernel. According to this rating, licensing, tagging, data overview, and description
are considered [65].

The proposed CNN models are divided into two halves. Here, Br35H data was
chosen because it has a large amount of brain MRI, which is beneficial for the
research problem. It helps to train the model and accurately detect whether there
is a brain tumor. This data set is publicly available on Kaggle. The data set was
extracted from that online site and then mounted on the programming platform to
alter the data and train the model.

4.2 Data Preprocessing

4.2.1 Importing Libraries
Firstly, we imported all the libraries and modules needed to run our code. These
libraries include CV2, OS, NumPy, TensorFlow, Keras, Sklearn, Matplotlib, and
Pyplot. For data preprocessing, the libraries CV2, OS, and NumPy are used. The
OS library is used to check the dataset directory, the CV2 library is used to read
images from different folders in the dataset and convert these images to an array,
and the NumPy library is used to convert the array into an np array, which is a
matrix conversion. The Br35H dataset is made up of brain tumor images which
are grayscaled by usingcmap functions built into Python. Lastly, we uploaded these
images separately into two classes, where one class contains images of a brain tumor
and the other one does not.

4.2.2 Image Processing from Dataset
Image processing is a critical step to getting the best results from CNN models.
Each dataset has its own complexity and layout, which we must preprocess to en-
hance accuracy while minimizing loss. In general, image processing can be divided
into two categories: analog and digital image processing. Analog image processing
is used on hard copies such as scanned or printed images, whereas digital image pro-
cessing is used to alter digital images such as their properties, attributes, bounding
boxes, or masks using a computer. The Br35H dataset comprises 3,000 digital MRI
pictures, which we should denoise and resize to feed the model appropriately.

34

Image Denoising

MRI images are frequently subjected to “Gaussian noise”, “Salt and Pepper noise”,
and “Speckle noise”. As a result, obtaining an accurate brain image is a very chal-
lenging job. A precise brain picture is critical to obtain for future diagnosing process.
There are numerous sorts of filtering methods for image denoising, such as Gaussian
Filtering Method, Median Filtering Method etc.

G(x,y) =
1

2πσ2
e−

x2+y2

2σ2 (4.1)

After gathering the data, “Gaussian Filtering” is applied to the images in dataset
Br35H to reduce the random noise in each image, as MRI images only contain
random noise. Firstly, Gaussian filters are added to make the images smoother and
denoise the grainy and noisy images. In the code, the skimage library was used to
denoise the image where a sigma value was assigned to it.

(a) Before Denoising.

(b) After Denoising.

Figure 4.2: Denoising using Gaussian Filter.

Image Resizing

To get optimal performance, each type of CNN architecture necessitates a different
image size, which is to resize or distort our image from one pixel grid to another.Im-
age resizing is applied based on the model architecture. For example, in the VGG16
architecture, the input size of the image is resized to 224x224. For ResNet50, the
input size is resized to 224x224 whereas for Xception and InceptionV3, it is resized
to 299x299. In our proposed model the input shape is set as (224,224)

35

4.2.3 Spliting Train and Test set
This data set is divided into two sections: a training set and a testing set. Our CNN
models will be trained using batch size and epochs on the training set and, after that,
evaluated on the test set to determine their accuracy. Precision, recall, f1-score, and
accuracy will be used to compare models. The model’s accuracy was tested on a
subset of the 3000 MRI images in our Br35H dataset, which was separated into two
sets: one for training and the other for testing.The train set consists of 80% of the
total MRI images, and the test set consistS of 20% of the total MRI images. For
our model to learn the pattern, we have shuffled the data, which implies that we
have mixed up the number of 1’s and 0’s in each batch. We do this to avoid making
the trained model biased. Because in some cases, if we continuously show the same
labelled picture for a continuous period of time, the model starts to memorize it and
does not train properly. Thus, the shuffle is important.

Input Image

Image Resize Image Denoising Image Normalize

Train on the
Dataset

Dataset

Data Spliting

Train Data Test Data

80% 20%

Figure 4.3: Dataset Pre-processing.

36

Chapter 5

Research Methodology

5.1 Model Workflow

Dataset Acquisition

Dataset Pre-processing

Image Normalization Image Denoising Image Resizing

Training Data Testing Data

Dataset Labelling

Test DataTrain Data

Model
Implementation

Proposed CNN model

Model TrainingDesigning proposed
CNN Architecture

Pre-trained CNN models

VGG16 ResNet50

InceptionV3 Xception

MobileNet DesnseNet121

Testing and Validation

Evaluate Accuracy

Comparison and Analysis

Figure 5.1: A block diagram of Model Workflow.

37

5.2 Used Architectures

5.2.1 Proposed Model Implementation

conv2d_input InputLayer
input:

output:

[(None, 224, 224, 1)]

[(None, 224, 224, 1)]

conv2d Conv2D
input:

output:

(None, 224, 224, 1)

(None, 222, 222, 64)

activation Activation
input:

output:

(None, 222, 222, 64)

(None, 222, 222, 64)

max_pooling2d MaxPooling2D
input:

output:

(None, 222, 222, 64)

(None, 111, 111, 64)

conv2d_1 Conv2D
input:

output:

(None, 111, 111, 64)

(None, 109, 109, 64)

activation_1 Activation
input:

output:

(None, 109, 109, 64)

(None, 109, 109, 64)

max_pooling2d_1 MaxPooling2D
input:

output:

(None, 109, 109, 64)

(None, 54, 54, 64)

conv2d_2 Conv2D
input:

output:

(None, 54, 54, 64)

(None, 52, 52, 32)

activation_2 Activation
input:

output:

(None, 52, 52, 32)

(None, 52, 52, 32)

max_pooling2d_2 MaxPoolin2D
input:

output:

(None, 52, 52, 32)

(None, 26, 26, 32)

conv2d_3 Conv2D
input:

output:

[(None, 26, 26, 32)]

[(None, 24, 24, 32)]

activation_3 Activation
input:

output:

(None, 24, 24, 32)

(None, 24, 24, 32)

max_pooling2d_3 MaxPoolin2D
input:

output:

[(None, 24, 24, 32)]

[(None, 12, 12, 32)]

flatten Flatten
input:

output:

(None, 12, 12, 32)

(None, 4608)

dense Dense
input:

output:

(None, 4608)

(None, 64)

activation_4 Activation
input:

output:

(None, 64

(None, 64)

dropout Dropout
input:

output:

(None, 64)

(None, 64)

dense_1 Dense
input:

output:

(None, 64)

(None, 1)

activation_5 Activation
input:

output:

(None, 1)

(None, 1)

Figure 5.2: Proposed Model Architecture.

After pre-processing our data, we decided to use Keras as our initial Application
Performance Interface (API). This was imported from Google’s own open source
framework, which is used for machine learning and primarily in image processing
data called TensorFlow. TensorFlow made it really accessible for developers like us
to implement their in built libraries. We can easily import the Keras API from Ten-
sorFlow and implement its various attributes. To name a few, we used the utility
named “Normalize” which helped us normalize our dataset in pre-processing. As
our model is a sequential model, we used the Keras model library and imported it
sequentially. Basically, a sequential model is used when the architecture is built in a
multiple-layer stacked way. This is a more simplistic version that works very fast and
efficiently for data inputs like our dataset. A sequential model is usually used when
the input is given as sequential data. Furthermore, we added different hidden layers
with each specified filter for each layer. For that, we have imported conv2D from

38

the built-in layers in the Keras library. This layer creates a “Convolution Kernel”
which is convolved with the specified layer input and generates a tensor of outputs.
This attribute also has a bias function, which is initially set to false for unbiased
output.

For the pooling function, we imported maxpooling2D from the keras.layers library.
It basically down samples the input format along its dimensions. It takes the highest
value over an input window, which is predefined by the user by declaring ‘pullsize’
which is used for each channel of inputs. We can observe the maxpooling2D in
action in our model architecture, which downsizes the input frame by half, i.e., if
the input is taken as (224,224) dimension, the output will be (112,112) dimension
after the maxpooling2D is done. This eases the computational power requirements
and can also be a great solution for reducing over-fitting for a neural network.

We used an activation function that helps neural networks deeply understand ‘com-
plex patterns’ in the data usually after a neuron layer has completed its operation,
there is an activation function built-in at the end that decides the next neuron to
be fired. In binary classification, the output layer generates binary output (0 or 1).
So, in the last layer, we used ‘sigmoid’ as our activation function to ensure binary
classification. In between the input and output layers, all the hidden layers have
‘ReLU’ as the activation function because it is more complex and advanced at neural
firing within the hidden layers. ReLU ensures that the computational power doesn’t
increase exponentially within each layer, thus making it more efficient. We decided
to use ReLU as our preferred activation function to avoid a major problem called
‘Vanishing Gradient” that occurs while using the sigmoid function.

Another crucial part of the neural network is ‘dropout’ which is also imported from
the same library implemented in our model. It takes an input in percentage and
randomly shuts down the same percentage of neurons in each layer to ensure that all
neurons are learning. It’s basically a nullifying agent for some neurons towards the
upcoming layers while leaving the other neurons unchanged. Dropout is the main
reason that a CNN model is prevented from over-fitting on the training data. In our
case, we used a dropout of 0.7 or 70% right before the output layer.

Moreover, we used the “Flattening” layer imported from the same Keras library,
which is used to convert data from multiple dimensions to a one-dimensional array,
which is used as the input for the next layer. It is a crucial part of the process
because it is used as a medium for inputs to go from one layer to another. It is
generally connected to the output layer, also known as the final classification layer,
to make it a fully connected layer that is used for generating output.

Finally, we used ‘dense’ layers, which are used to feed all the outputs gathered
from the previous layer to all the neurons, where each neuron provides one single
output to the last layer. In the final layer, it is necessary to use a dense value set of
1 because we need binary classification. So, in our proposed model, the layer takes
an input of 64, and because of this dense, the output is only 1, representing binary
outputs.

39

Figure 5.3: The Model Summary.

The proposed model consists of 4 hidden convolutional layers where the first takes
(222, 222) size as input, and then, after max pooling, the next conv2d layer takes
(109, 109) as input. The last layers take half of the previous layers using the same
process. In addition to the convolutional layers, there are 4 max-pooling 2d layers
and two dense layers, making the proposed model of 11 layers excluding the output
layer. The proposed model has a total of 360,321 parameters, all of which are
trainable.

40

5.2.2 VGG16
VGG is short for “Visual Geometry Group”. This model emphasizes the depth of
CNN, which was not plausible in the earlier CNN models. VGG specializes in im-
age classification, usually working with an extensive image dataset also known as
ImageNet [28].

ConvNet Configuration
A A-LRN B C D E
11 11 13 16 16 19

weight layers weight layers weight layers weight layers weight layers weight layers
input (224 x 224 RGB image)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool
conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128

conv3-128 conv3-128 conv3-128 conv3-128
maxpool

conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256

conv1-256 conv3-256 conv3-256
conv3-256

maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool
FC-4096
FC-4096
FC-1000
soft-max

Table 5.1: VGG Model Architecture [28].

The proposed model used here is VGG16, which has 16 layers of the convolutional
network. This model is more efficient and capable than AlexNet. The VGG-16
network has good accuracy even when prolonged training has minimal image data
sets. The VGG model inputs a 224x224 fixed-size image in the training phase. The
input taken is an RGB image. The photo is divided into pixels upon input, and each
pixel is passed through a stack of CNN layers. The convolution filter size of each
CNN layer is fixed at (3x3) with the same padding as the first two layers. Then,
following a stride (2, 2) max pool layer, two layers with 256-layer convolution filters
and filters are applied (3, 3). There is a max-pooling layer of stride (2, 2). Two
hundred fifty-six filters are used in the second convolution layer (3, 3). Two sets
of three convolution layers and a maximum pool layer follow. The final layer is a

41

softmax classifier. All hidden layers are activated with ReLU [63].

5.2.3 MobileNet
Convolutional neural networks, such as MobileNet, are ideal for mobile and embed-
ded application domains because of their portability. In order to develop lightweight
deep neural networks, MobileNets employ a simplified architecture that leverages
depth-wise separable convolutions. The latency-accuracy tradeoff is simplified to
just two simple global hyper-parameters. Model developers can use several differ-
ent hyper-parameters to select the appropriate model size for every given problem.
MobileNets can be used for item detection, fine-grain categorization, facial charac-
teristics, and large-scale geo-localization [40].

Figure 5.4: MobileNet Architecture.

This network can reduce the number of parameters without sacrificing precision.
MobileNet requires only 1/33 of the visual geometry group -16 (VGG-16) parame-
ters to achieve the same classification accuracy as ImageNet-1000. It is structured
both depth-wise (Dw) and point-wise (Pw). The Dw represents convolutional layers
with 3x3 kernels, whereas the Pw represents convolutional layers with 1x1 kernels.
Each convolution output is normalized using the batch normalization approach and
the rectified linear unit activation function (ReLU)(Li et al., 2018) [46].

5.2.4 ResNet50
In a conventional neural network structure, after processing the input through var-
ious layers of neurons, a singular output is generated, and along with it, the loss
function is calculated. This loss function is then observed, and some internal changes
are made via modifying variables. A backpropagation algorithm is a must in order
to do that. The algorithm starts from the end node in backpropagation and goes
back to the beginning node. In this backtracking process, the function is the deriva-
tive of that particular loss function multiplied with its predecessor function. In that
way, the more backward propagation goes, the lesser the gradient values become.

In the process illustrated above, it is observed that if there are more layers, even-
tually traversing backwards will produce an increasingly smaller value of gradient.
Each iteration will be the derivative of that function multiplied by the previous
function. At some point, the gradient value becomes so tiny that it almost counts

42

as 0. That creates the phenomenon named the “Vanishing Gradient Problem”. This
process hinders the optimization of the neural network layers. So, the accuracy
decreases significantly. In order to mitigate this problem, a model called “ResNet”
which is short for residual network, was created. This takes advantage of a unique
feature known as the “skip function,” which effectively connects the inputs to the
convolution block’s output while skipping intermediate layers for more remarkable
performance. In other words, the input will be connected to both the convolution
layer for processing the function and the output of the convolution block.

Figure 5.5: The Residual Block.

The ResNet50 model is a 50-layer convolutional neural network (CNN). While the
ResNet50 architecture is based on the ResNet34 architecture, one significant change
exists. That is, the construction block was redesigned as a bottleneck because of
issues about the training time necessary for the layers. This time, a three-layer
stack was used rather than the prior two[63]. As a result, ResNet34’s two-layer
blocks were replaced with a three-layer bottleneck block, resulting in the ResNet50
architecture. This model is far more accurate than the 34-layer ResNet model. The
50-layer ResNet delivers 3.8 billion FLOPS of performance.
As depicted in the figure, the output function for ResNet y is the sum of the func-
tions generated from the convolution layers and the input itself. The neural network
aims to provide the most accurate output as close as feasible to the input. In order
to make the model as accurate as possible, the goal of this structure is to make the
F(x) value 0. That is how the output (y) will be equal to the input (x). Thus,
making the model predict correctly.

This ResNet architecture is implemented by various neural network models for image
classification. Due to the nature of different problems and accuracy expectations,
there are different iterations of ResNet, which are defined by the number of layers

43

each model has. Such as ResNet-18, ResNet-34, ResNet-50, ResNet-101, and so on.
Each of them is designed with different layers and designed with different dimensions
of matrices to process the data and generate output.

Additionally, there are more versions of Residual Networks which are given with
their layer distribution in the figure below:

Layer
Name

Output
Size 18-layer 34-layer 50-layer 101-layer

conv1 112x112 7x7, 64, stride 2
conv2_x 56x56 3x3 max pool, stride 2

conv2_x 56x56
[
3 ∗ 3, 64
3 ∗ 3, 64

]
x2

[
3 ∗ 3, 64
3 ∗ 3, 64

]
x3

 1 ∗ 1, 64
3 ∗ 3, 64
1 ∗ 1, 256

 x

 1 ∗ 1, 64
3 ∗ 3, 64
1 ∗ 1, 256

 x3

conv3_x 28x28
[
3 ∗ 3, 128
3 ∗ 3, 128

]
x2

[
3 ∗ 3, 128
3 ∗ 3, 128

]
x4

1 ∗ 1, 1283 ∗ 3, 128
1 ∗ 1, 512

 x4

1 ∗ 1, 1283 ∗ 3, 128
1 ∗ 1, 512

 x4

conv4_x 14x14
[
3 ∗ 3, 256
3 ∗ 3, 256

]
x2

[
3 ∗ 3, 256
3 ∗ 3, 256

]
x6

 1 ∗ 1, 256
3 ∗ 3, 256
1 ∗ 1, 1024

 x6

 1 ∗ 1, 256
3 ∗ 3, 256
1 ∗ 1, 1024

 x23

conv5_x 7x7
[
3 ∗ 3, 512
3 ∗ 3, 512

]
x2

[
3 ∗ 3, 512
3 ∗ 3, 512

]
x3

 1 ∗ 1, 512
3 ∗ 3, 512
1 ∗ 1, 2048

 x3

 1 ∗ 1, 512
3 ∗ 3, 512
1 ∗ 1, 2048

 x3

1x1 average pool, 1000-d fc, softmax
FLOPs 1.8x109 3.6x109 3.8x109 7.6x109

Table 5.2: ResNet Models Architecture [35].

In the proposed research, the chosen dataset was Br35h. This image classification
problem is implemented in ResNet50.

5.2.5 Xception
Xception is an abbreviation for “Extreme Inception”. It is an architecture for convo-
lutional neural networks that is solely composed of depthwise separable convolution
layers. The network’s feature extraction is based on thirty-six convolutional layers
of the Xception architecture. A convolutional base will be followed by a logistic
regression layer in this case, which is focused on image categorization. The logistic
regression layer can be preceded by completely linked layers. In total, there are 36
convolutional layers, with the exception of the first and last layers, organized into 14
modules by linear residual connections [39]. The picture for Xception architecture

44

is provided here.

Figure 5.6: Xception Architecture.

For the most part, the Xception architecture comprises a vertically stacked linear
stack of depth-separable convolution layers linked together by residuals. This con-
cept makes the definition and modification of the architecture much simpler; when
a high-level library such as Keras is used, it only requires 30 to 40 lines of code to
accomplish this.

5.2.6 InceptionV3
InceptionV3 is a widely renowned convolutional neural network architecture acquired
from the Inception architecture that includes label smoothing, factorized 7 x 7 con-
volutions, and an auxiliary classifier to carry label information more profoundly
into the network as batch normalization for sidehead layers. For more significant
model adaption, the Inception V3 model (with 42 layers) uses several approaches to
optimize the task, resulting in higher efficiency and less computationally expensive
than InceptionV1 and InceptionV2. There are some major modifications made to
Inception V3:

• Factorization into Smaller Convolutions: Assume we have a 5x5 convolu-
tional layer with a high computational cost. As a result, the 5x5 convolutional
layer was replaced with 3x3 convolutional layers to lower the computational
cost.

45

Figure 5.7: After factorization into smaller convolutions.

• Spatial Factorization into Asymmetric Convolutions: Asymmetric con-
volutions are a superior alternative to factorization into smaller groups for
making the model more efficient. As a result, we use a 1x3 convolution fol-
lowed by a 3x1 convolution to substitute the 3x3 convolutions.

Figure 5.8: Asymmetric Convolutions.

• Utility of Auxiliary Classifiers: Using an Auxiliary classifier to enhance
the convergence of very deep learning models is the goal. In very deep net-
works, the auxiliary classifier is primarily used to overcome the vanishing gra-
dient problem. In the initial stages of the training, the auxiliary classifiers
made no difference. However, in the end, the system with auxiliary classifiers
outperformed the network without them in terms of accuracy. As a result,
the auxiliary classifiers in the Inception V3 model architecture operate as a
regularizer.

• Efficient Grid Size Reduction: The activation parameter of the networking
filters is enhanced in the inception V3 model in order to lower the grid size

46

efficiently. Suppose, if we have a (d · d) grid with k filters, after reduction, we
get a (d

2
· d
2
) grid with 2k filters. This is accomplished by concatenating two

concurrent blocks of convolution and pooling.

Figure 5.9: After Reducing Grid Size.

The inception V3 model has 42 layers in total, which is slightly more than the
preceding inception V1 and V2 models. However, this model’s efficiency is truly
remarkable.

5.2.7 DenseNet121
DenseNet is a relatively recent development in visual object recognition using neural
networks. DenseNet is comparatively similar to ResNet, with a few key distinc-
tions.ResNet uses an additive technique (+) to combine the previous layer’s output
with the output of the subsequent layer, whereas DenseNet uses a concatenative ap-
proach to combine the output of the previous layer with the output of the subsequent
layer. DenseNet was initially developed to solve the vanishing gradient phenomenon
in high-level neural networks. In the simplest terms, the path between the input
and output layers is longer, resulting in data loss along the way. DenseNet is a
classic network type. When the composite function operation is used, the previ-
ous layer’s output becomes an input for the second layer. This composite process
comprises the convolution layer, the pooling layer, the batch normalization layer,
and the non-linear activation layer. According to this approach, the network has
L(L+1)/2 direct connections. L represents the number of layers in the architecture.
DenseNet is offered in a number of configurations, including the DenseNet-121, the
DenseNet-160, and the DenseNet-201. The numbers denote the number of layers
in the neural network. DenseNet121 comprises 121 layers, 120 of which are convo-
lutional and four of which are AvgPool. Since DenseNets require fewer parameters
and allow for feature reuse, they result in more compact models and have exhibited
greater performance and results when compared to their classic CNN or ResNet
counterparts.

47

Layers
Out-
put
Size

DenseNet-
121

DenseNet-
169

DenseNet-
201

DenseNet-
264

Convolu-
tion 112x112 7x7 conv, stride 2

Pooling 56x56 3x3 max pool, stride 2

Dense
Block (1) 56x56

[
1 ∗ 1conv
3 ∗ 3, conv

]
x6

[
1 ∗ 1conv
3 ∗ 3, conv

]
x6

[
1 ∗ 1conv
3 ∗ 3, conv

]
x6

[
1 ∗ 1conv
3 ∗ 3, conv

]
x6

Transition
Layer (1) 56x56 1x1 conv

28x28 1x1 conv

Dense
Block (2) 14x14

[
1 ∗ 1conv
3 ∗ 3conv

]
x12

[
1 ∗ 1conv
3 ∗ 3conv

]
x12

[
1 ∗ 1conv
3 ∗ 3conv

]
x12

[
1 ∗ 1conv
3 ∗ 3conv

]
x12

Transition
Layer (2) 28x28 1x1 conv

14x14 1x1 conv

Dense
Block (3) 14x14

[
1 ∗ 1conv
3 ∗ 3conv

]
x24

[
1 ∗ 1conv
3 ∗ 3conv

]
x32

[
1 ∗ 1conv
3 ∗ 3conv

]
x48

[
1 ∗ 1conv
3 ∗ 3conv

]
x64

Transition
Layer (3) 14x14 1x1 conv

7x7 1x1 conv

Dense
Block (3) 14x14

[
1 ∗ 1conv
3 ∗ 3conv

]
x16

[
1 ∗ 1conv
3 ∗ 3conv

]
x32

[
1 ∗ 1conv
3 ∗ 3conv

]
x32

[
1 ∗ 1conv
3 ∗ 3conv

]
x48

Classifica-
tion Layer average pool, 1000-d fc, softmax

1.8x109 3.6x109 3.8x109 7.6x109

Table 5.3: DenseNet Models Architecture.

5.3 Evaluation Method

5.3.1 Graphical Analysis
To compare the accuracy and Receiver Operating Characteristics (ROC) curve of
these seven models, including the proposed model, we will use the model accuracy by
representing “Train accuracy vs. Validation accuracy curve” to better understand
how accurately the models are training and predicting. This curve is based on the
rate of change with increasing epochs. On a graph, we will plot the accuracy and
loss for each epoch we set during training and testing the model, with the number
of epochs on the x-axis and accuracy on the y-axis. The model accuracy graph will
analyze ‘Train Accuracy’ and ‘Test Accuracy.’ Moreover, 10 epochs were set for our
proposed ones, MobileNet, VGG16, Xception, InceptionV3, DenseNet121, and 20

48

epochs for ResNet50 models in our model implementation.

5.3.2 Confusion Matrix
In order to evaluate a classifier, several metrics can be used to visualize it. In
that case, accuracy is used most widely. However, it only works if the test dataset
contains an equal number of samples from each class of individuals. However, while
working with a dataset where the distribution is uneven, more precise performance
metrics can be used, such as ‘Confusion Matrices’ [67]. In our case, we will try to
distinguish all the true and false predicted results through a confusion matrix to get
a better visual understanding of how the machine is responding to certain classes.

Figure 5.10: Basic 2x2 Confusion Matrix.

VGG16

Here,

• TP (True Positive): The predicted value matches with the actual value
where the actual value was positive (P) and the predicted value was also
positive (P).

• TN (True Negative): The predicted value matches with the actual value
where the actual value was negative (N) and the predicted value was also
negative (N).

• FP (False Positive): The predicted value does not match with the actual
value where the actual value was negative (N) and the predicted value was
positive (P).

• FN (False Negative): The predicted value does not match with the actual
value where the actual value was positive (P) and the predicted value was
negative (N).

Using this confusion matrix, we will get our classification report which is a great
way to compare several models. In the Br35h dataset, there are two classes, yes and

49

no, with 3,000 images. In that, we will use a 2x2 confusion matrix to classify the
images into 2 classes and find their classification report. The classification report
will have the following attributes:

• Classification Accuracy: It is a ratio of number of correctly classified data
samples to the total amount of data.

Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

• Recall or Sensitivity: It shows how many of the actual positive cases the
models were able to predict. It is useful when the cases of false negative (FN)
is high than false positive (FP). It is the ratio of true positive values to the
actual result.

Recall =
TP

TP + FN
(5.2)

• Precision: It shows how many of the correctly predicted results are positive.
It is useful when the cases of false positive (FP) is high than false negative
(FN). It is the ratio of true positive values to the predicted results.

Precision =
TP

TP + FP
(5.3)

• F1-Score: It’s the harmonic mean of precision and recall, which gives a com-
posite picture of the two measures. When precision equals recall, the F1-score
reaches its maximum value.

F1− Score =
2 ∗ precision ∗ recall
precision+ recall

(5.4)

50

Chapter 6

Experimental Results and Analysis

For performance evaluation, we have taken model accuracy, model loss, recall and
precision under consideration along with the confusion matrix. We have used 10
epochs for VGG16, InceptionV3, MobileNet; 20 epochs for ResNet50, Xception and
DenseNet121 model. An epoch here denotes one complete pass for the training data
in context of machine learning. And finally, for the proposed model after thoroughly
tweaking and observing, we have decided to run the model for 20 epochs.

6.1 Result Analysis

6.1.1 Graphical Analysis
This paper conducted total of three different graphical analysis in each CNN model.
Here, the first graph represents two distinctive curves where one indicates ‘Valida-
tion accuracy’ and the other one is ‘Training Accuracy’. Training accuracy means
when a model is trained through a partial part of the dataset. After the model start
training, the percentage of training data can be identified. This number is relatively
close to 100 percent because the model has already seen those data whilst training.
On the other hand, validation accuracy is purely generated from the test dataset
which has not been used while training. After the training is completed the test
dataset is then fed into the model to identify and classify properly. Furthermore,
the percentage of the corrected prediction is represented in validation accuracy.

In the same way the second graphical analysis shows two lines differentiated by
two colors. ‘Training Loss’ is indicated by the red curve and ‘Validation Loss’ is
represented by the blue curve. A loss is a representation of how badly model is pre-
dicting individual data. With gradual epochs the model loss systematically comes
down as the model becomes more accurate.

ROC (Receiver Operating Characteristic) curve is the graphical representation of a
CNN model which indicates the performance of individual classification model at
all possible classification thresholds. The X-axis represents false positive (FP) rate
and Y-axis represents true positive (TP) rate. The slope of TP vs FP represents
how accurately the model is classifying every individual samples as positive where
the result is actually positive vs when the model is predicting positive when the
actual value is negative. The ROC curve must be upwards meaning slope should be

51

greater than 1 to indicate that the model is predicting accurately throughout the
whole process. In most of the models, we can see a sharp rise within the initial val-
ues closing in almost 1.0 and becoming stagnant from there to the end of the graph.
The dotted line represents how much area is under the curve which is the deciding
value that’s used to measure whether the model is producing effective result or not.

VGG16

0 2 4 6 8
epoch

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

Model Accuracy
Validation Accuracy
Training Accuracy

Figure 6.1: VGG16 Model Accuracy.

0 2 4 6 8
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

Model Loss
Validation Loss
Training Loss

Figure 6.2: VGG16 Model Loss.

Figure 6.3: VGG16 Model Accuracy and Model Loss Curve.

With 10 epochs the VGG16 model’s accuracy rose from 50% training accuracy at
epoch 1 to 97% training accuracy at epoch 10. Although, the validation accuracy
started a bit higher from 58% and rose up to almost the same as training accuracy.
The loss curve of both training and validation starts at around 70% and drops down
to almost 5% after.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Receiver Operating Characteristics curve

area under the curve =0.97033499336366

Figure 6.4: VGG16 ROC Curve.

The ROC curve of VGG16 starts with a sharp rise because of the high TP vs FP
value and the TP value steadily increases to almost 1.0 at the end thus creating
the area under the curve to 0.97 which means 97% of the total surface available
indicating the model is very accurate.

52

ResNet50

Figure 6.5: ResNet50 Model Accuracy.

With 20 epochs the ResNet50 model’s accuracy rose from 77% training accuracy at
epoch 1 to almost 98.1% training accuracy at epoch 10. Although, the validation
accuracy started a bit higher from 43% and rose up to almost the same as training
accuracy that is 94.5%.

Figure 6.6: ResNet50 ROC curve.

The ROC curve of ResNet50 starts with a sharp rise because of the high TP vs FP
value and the TP value steadily increases to almost 1.0 at the end thus creating
the area under the curve to 0.96 which means 96% of the total surface available
indicating the model is very accurate.

53

InceptionV3

0 2 4 6 8
Epoch

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Model Accuracy

Validation Accuracy
Training Accuracy

Figure 6.7: InceptionV3 Model Accuracy.

0 2 4 6 8
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

Model Loss
Validation Loss
Training Loss

Figure 6.8: InceptionV3 Model Loss.

Figure 6.9: InceptionV3 Accuracy and Model Loss Curve.

With 10 epochs and 38 steps per epoch, the InceptionV3 model’s accuracy rose from
88% training accuracy at epoch 1 to 99% training accuracy at epoch 10. Although,
the validation accuracy started a bit higher from 65% and rose up to almost 98%.
The loss curve of training starts at around 25% and drops down to almost 1%. The
loss validation curve starts at almost 200% and rapidly drops down to 11%.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Receiver Operating Characteristics curve

area under the curve =0.980550419167111

Figure 6.10: InceptionV3 ROC Curve.

The ROC curve of InceptionV3 starts with a sharp rise because of the high TP vs
FP value and the TP value steadily increases to almost 1.0 at the end thus creating
the area under the curve to 0.98 which means 98% of the total surface available
indicating the model is very accurate.

54

Xception

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Model Accuracy

Validation Accuracy
Training Accuracy

Figure 6.11: Xception Model Accuracy.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

0.00

0.05

0.10

0.15

0.20

Lo
ss

Model Loss
Validation Loss
Training Loss

Figure 6.12: Xception Model Loss.

Figure 6.13: Xception Model Accuracy and Model Loss Curve.

With 20 epochs and 75 steps per epoch, the Xception model’s accuracy rose from
90% training accuracy at epoch 1 to 99% training accuracy at epoch 20. Although,
the validation accuracy started a bit higher from 95.7% and rose up to almost the
same as training accuracy that is 99%. The loss curve of training starts at around
25% and drops down to almost 2% after 20 epochs. The loss validation curve starts
at almost 14% and drops down to 5%.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Receiver Operating Characteristics curve

area under the curve =0.9893024469376411

Figure 6.14: Xception ROC Curve.

The ROC curve of Xception starts with a sharp rise because of the high TP vs FP
value and the TP value steadily increases to almost 1.0 at the end thus creating the
area under the curve to 0.9893 which means 98.93% of the total surface available
indicating the model is very accurate.

55

MobileNet

0 2 4 6 8
Epoch

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Model Accuracy

Validation Accuracy
Training Accuracy

Figure 6.15: MobileNet Model Accuracy.

0 2 4 6 8
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Lo
ss

Model Loss
Validation Loss
Training Loss

Figure 6.16: MobileNet Model Loss.

Figure 6.17: MobileNet Accuracy and Model Loss Curve.

With 10 epochs and 75 steps per epoch, the MobileNet model’s accuracy rose from
83% training accuracy at epoch 1 to 99% training accuracy at epoch 10. Although,
the validation accuracy started a bit higher from 88% and rose up to almost the
same as training accuracy that is 99%. The loss curve of training starts at around
36% and drops down to almost 1%. The loss validation curve starts at almost 31%
and drops down to 4.5%.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Receiver Operating Characteristics curve

area under the curve =0.9917357715737769

Figure 6.18: MobileNet ROC Curve.

The ROC curve of MobileNet starts with a sharp rise because of the high TP vs FP
value and the TP value steadily increases to almost 1.0 at the end thus creating the
area under the curve to 0.9917 which means 99.17% of the total surface available
indicating the model is very accurate.

56

DenseNet121

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Model Accuracy

Validation Accuracy
Training Accuracy

Figure 6.19: DenseNet121
Model Accuracy Curve.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Lo
ss

Model Loss
Validation Loss
Training Loss

Figure 6.20: DenseNet121
Model Loss Curve.

Figure 6.21: DenseNet121 Model Accuracy and Model Loss Curve.

With 20 epochs and 75 steps per epoch, the DenseNet121 model’s accuracy rose from
93% training accuracy at epoch 1 to 99% training accuracy at epoch 20. Although,
the validation accuracy started a bit higher from 63% and rose up to almost 97.5%.
The loss curve of training starts at around 20% and drops down to almost 1% after
20 epochs. The loss validation curve starts at almost 15% and drops down to 1%.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Receiver Operating Characteristics curve

area under the curve =0.9854170684393824

Figure 6.22: DenseNet121 ROC Curve.

The ROC curve of DenseNet121 starts with a sharp rise because of the high TP
vs FP value and the TP value steadily increases to almost 1.0 TP at the end thus
creating the area under the curve to 0.9854 which means 98.54% of the total surface
available indicating the model is very accurate.

57

Proposed Model

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

Model Accuracy

Validation Accuracy
Training Accuracy

Figure 6.23: Proposed Model Accuracy
Curve.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

Lo
ss

Model Loss
Validation Loss
Training Loss

Figure 6.24: Proposed Model Loss
Curve.

Figure 6.25: Proposed model’s Accuracy and Model Loss Curve.

With 20 epochs and 150 steps per epoch, the proposed model’s accuracy rose from
65% training accuracy at epoch 1 to 97.5% training accuracy at epoch 20. The batch
size was set to 16. Although, the validation accuracy started a bit higher from 78%
and rose up to almost 96%. The loss curve of training starts at around 65% and
drops down to almost 0.5%. The loss validation curve starts at almost 50% and
drops down to 21%.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Receiver Operating Characteristics curve

area under the curve =0.9581967306099761

Figure 6.26: Proposed model’s ROC Curve.

The ROC curve of proposed model starts with a sharp rise because of the high TP vs
FP value and the TP value steadily increases to almost 1.0 at the end thus creating
the area under the curve to 0.9581 which means 95.81% of the total surface available
indicating the model is very accurate.

58

6.1.2 Confusion Matrix
The performance of CNN models among our proposed ones, ResNet50, MobileNet,
VGG16, Xception, InceptionV3, and DenseNet121 is compared in details using con-
fusion matrices for two binary classes 0 and 1 where 0 means no and 1 means yes.
The diagonal elements reflect the correctly categorized classes, whereas anything off
the diagonal indicates an erroneous classification. The confusion matrix is divided
into three axes: (i)Prediction label (class) (ii)True label and (iii)The value of the
heat map (color). The prediction label and true label indicate the prediction class
with which we are working. The diagonal of the matrix denotes areas in the matrix
where the forecast and the truth are identical; this is where we want to darken the
heat map.

VGG16

0 1

0
1

3.4e+02 3

13 2.4e+02

50

100

150

200

250

300

Figure 6.27: VGG16 Confusion Matrix.

Here, it is observed that the true positive (TP) value is almost 340 and true negative
(TN) value is almost 240 and some slight errors counted as total 16.

59

ResNet50

Figure 6.28: ResNet50 Confusion Matrix.

Here, it is observed that the true positive (TP) value is almost 320 and true negative
(TN) value is almost 250 and some slight errors counted as total 25.

Inception V3

0 1

0
1

3.4e+02 4

7 2.5e+02

50

100

150

200

250

300

Figure 6.29: InceptionV3 Confusion Matrix.

Here, it is observed that the true positive (TP) value is almost 340 and true negative
(TN) value is almost 250 and some slight errors counted as total 11.

60

Xception

0 1

0
1

3.4e+02 2

4 2.5e+02

50

100

150

200

250

300

Figure 6.30: Xception Confusion Matrix.

Here, its observed that the true positive (TP) value is almost 340 and true negative
(TN) value is almost 250 and some slight errors counted as total 6.

MobileNet

0 1

0
1

3.4e+02 3

2 2.6e+02

50

100

150

200

250

300

Figure 6.31: MobileNet Confusion Matrix.

Here, its observed that the true positive (TP) value is almost 340 and true negative
(TN) value is almost 260 and some slight errors counted as total 5.

61

DenseNet121

0 1

0
1

3.4e+02 6

3 2.5e+02

50

100

150

200

250

300

Figure 6.32: DenseNet121 Confusion Matrix.

Here, its observed that the true positive (TP) value is almost 340 and true negative
(TN) value is almost 250 and some slight errors counted as total 9.

Proposed CNN Model

0 1

0
1

3.2e+02 18

8 2.5e+02

50

100

150

200

250

300

Figure 6.33: Proposed model’s Confusion Matrix.

Here, its observed that the true positive (TP) value is almost 320 and true negative
(TN) value is almost 250 and some slight errors counted as total 26.

62

6.2 Result Comparison

Architectures Precision Recall F1-score

Support

(0/1 out

of 600)

Accuracy

Proposed

Model
95% 96% 95% 343/257 96%

ResNet50 98% 97% 98% 343/257 94.5%

MobileNet 99% 99% 99% 343/257 99%

VGG16 97% 97% 98% 343/257 97%

Xception 99% 98% 99% 343/257 99%

InceptionV3 98% 97% 98% 343/257 98%

DenseNet121 98% 99% 98% 343/257 98%

Table 6.1: Comparison table among the Proposed Model, ResNet50, MobileNet,
VGG16, Xception, InceptionV3 and DenseNet Models.

Figure 6.34: Accuracy Analysis.

As the table shows, we compared the performance of the proposed model against
the six renowned pre-trained models. The dataset used for each model is Br35H
[65]. It is observed that our proposed model has achieved accuracy of 96% which
is comparable with other models. Our precision and recall percentage is also on
par with other models. During the testing and tweaking phase, the proposed model
peaked at 97.6% in some epochs. Thus, it is solidifying our proposed model as a
standard model. To be noted, our constructed model took almost half the time to
train and test compared to the other models. This proves that our intention to make
a simplistic yet accurate model is paving the path for future improvements.

63

Chapter 7

Conclusion and Future Works

7.1 Conclusion
Among medical professionals, brain tumors are a constant topic of conversation.
The sooner a patient is diagnosed, the better their prognosis. The Br35H has been
successfully used in this paper to build a CNN model to address this issue. Im-
plementing this technique, we built computer vision without spending much time
or money on computational resources. In order to make data training as simple as
possible for systems with less than optimal processing capability, this is a smaller
depth model with fewer parameters. We filtered the images dataset using Gaus-
sian filtering to make it more accessible in our model, then trained our model on
the dataset. To ensure the suggested model’s integrity and accuracy, a total of six
different CNN models, including VGG16, ResNet50, MobileNet, DenseNet121, In-
ceptionV3 Xception, were trained via transfer learning. After the training period is
done, it is found that the proposed model has achieved more than 96.7%, which was
almost on par with the other pre-trained models. Furthermore, with some extensive
modification, the model reached over 97.6% accuracy in between 15 to 20 epochs.
The model’s run time was considerably faster than the other model, which was our
initial goal. Thus, by altering some weight distribution and adding different layers,
we hope to achieve an even more accurate and reliable model which can be widely
used in different datasets further to broaden the scope of implementations of our
proposed model.

7.2 Challenges

7.2.1 Computational power
Due to the lack of power and being closer to the on-campus computer laboratory, the
available computational power to process this big data set with 3000 images was very
challenging. Available graphics computational power was not enough to run specific
algorithms such as VGG19, ResNet101, and other models. While executing the
VGG16 model, right after the training phase was done, the model crashed. So, the
prediction run was not successful. Then we used Google’s provided computational
server using “Google Colab”, and then the expected results were finally retrieved

64

7.2.2 Excessive training time
It is a consequential effect from the computational power issues. As the computa-
tional power available for us was not up to the mark, the run time was very long
for each model to train and test. In some cases, each epoch took over an hour to
complete. Due to this slow training time, the research progress for the team was
hindered. We hope to resolve these two issues for running other CNN models for
future comparisons and analysis.

7.3 Future Works
Currently, we are able to fabricate a CNN model by implementing convolutional
layers, activation function, max pooling, dense, and various other methods to make
our model more accurate and make sure that the training time is very short. Our
future goal is to add more layers with different parameters tweaking to make the
model’s accuracy even higher. Another future implementation of this model will be
to test its accuracy by fitting it into a more challenging dataset such as OASIS and
modifying it accordingly. Furthermore, this model is based on binary classification.
In the near future, this research intends to implement categorical classifications to
make it accessible to different categories of the dataset and also make a user interface
that general people can use to help predict their image classification after training
the model.

65

Bibliography

[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[2] L. O. Chua and T. Roska, “Stability of a class of nonreciprocal cellular neu-
ral networks,” IEEE Transactions on Circuits and Systems, vol. 37, no. 12,
pp. 1520–1527, 1990.

[3] L. Chua and T. Roska, “Cellular neural networks with nonlinear and delay-
type template elements,” in Proc. 1990 IEEE int. workshop on cellular neural
networks and their applications, 1990, pp. 12–25.

[4] E. R. Kandel, J. H. Schwartz, and T. M. Jessell, “Principles of neural science
(3d edition),” Appleton & Lange Norwalk, CT, 1991.

[5] L. O. Chua and T. Roska, “The cnn paradigm,” IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications, vol. 40, no. 3, pp. 147–
156, 1993.

[6] W. Heiligenberg and T. Roska, “On biological sensory information process-
ing principles relevant to cellular neural networks,” Cellular neural networks,
pp. 201–210, 1993.

[7] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural net-
works architectures,” Neural computation, vol. 7, no. 2, pp. 219–269, 1995.

[8] G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal, “The” wake-sleep” algo-
rithm for unsupervised neural networks,” Science, vol. 268, no. 5214, pp. 1158–
1161, 1995.

[9] G.-B. Huang and H. A. Babri, “Upper bounds on the number of hidden neurons
in feedforward networks with arbitrary bounded nonlinear activation func-
tions,” IEEE transactions on neural networks, vol. 9, no. 1, pp. 224–229, 1998.

[10] Y. Le, L. Bottou, G. Orr, and K. Muller, “Lecun y. efficient backprop in neural
networks: Tricks of the trade,” 1998.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[12] B. Schölkopf, A. J. Smola, F. Bach, et al., Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2002.

[13] P. Y. Simard, D. Steinkraus, J. C. Platt, et al., “Best practices for convolu-
tional neural networks applied to visual document analysis.,” in Icdar, vol. 3,
2003.

66

[14] S.-C. Wang, “Artificial neural network,” in Interdisciplinary computing in java
programming, Springer, 2003, pp. 81–100.

[15] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models from
few training examples: An incremental bayesian approach tested on 101 object
categories,” in 2004 conference on computer vision and pattern recognition
workshop, IEEE, 2004, pp. 178–178.

[16] Y. LeCun, F. J. Huang, and L. Bottou, “Learning methods for generic ob-
ject recognition with invariance to pose and lighting,” in Proceedings of the
2004 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2004. CVPR 2004., IEEE, vol. 2, 2004, pp. II–104.

[17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in 2009 IEEE conference on computer
vision and pattern recognition, Ieee, 2009, pp. 248–255.

[18] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in Icml, 2010.

[19] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling operations in
convolutional architectures for object recognition,” in International conference
on artificial neural networks, Springer, 2010, pp. 92–101.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Advances in neural information process-
ing systems, vol. 25, pp. 1097–1105, 2012.

[21] D. Costarelli and R. Spigler, “Multivariate neural network operators with sig-
moidal activation functions,” Neural Networks, vol. 48, pp. 72–77, 2013.

[22] L. Bottou, “From machine learning to machine reasoning,” Machine learning,
vol. 94, no. 2, pp. 133–149, 2014.

[23] J. Jin, A. Dundar, and E. Culurciello, “Flattened convolutional neural net-
works for feedforward acceleration,” arXiv preprint arXiv:1412.5474, 2014.

[24] J. Jin, K. Fu, and C. Zhang, “Traffic sign recognition with hinge loss trained
convolutional neural networks,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 15, no. 5, pp. 1991–2000, 2014.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[26] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semi-supervised
learning with deep generative models,” in Advances in neural information
processing systems, 2014, pp. 3581–3589.

[27] A. Krizhevsky, “One weird trick for parallelizing convolutional neural net-
works,” arXiv preprint arXiv:1404.5997, 2014.

[28] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[29] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” The
journal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

67

[30] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in International conference on
machine learning, PMLR, 2015, pp. 448–456.

[31] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[32] C. Szegedy, W. Liu, Y. Jia, et al., “Going deeper with convolutions,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1–9.

[33] B. Bayar and M. C. Stamm, “A deep learning approach to universal image
manipulation detection using a new convolutional layer,” in Proceedings of
the 4th ACM workshop on information hiding and multimedia security, 2016,
pp. 5–10.

[34] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.
[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[36] E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, “Convolutional neural
networks for large-scale remote-sensing image classification,” IEEE Transac-
tions on geoscience and remote sensing, vol. 55, no. 2, pp. 645–657, 2016.

[37] P. Moeskops, M. A. Viergever, A. M. Mendrik, L. S. De Vries, M. J. Benders,
and I. Išgum, “Automatic segmentation of mr brain images with a convolu-
tional neural network,” IEEE transactions on medical imaging, vol. 35, no. 5,
pp. 1252–1261, 2016.

[38] E. Walach and L. Wolf, “Learning to count with cnn boosting,” in European
conference on computer vision, Springer, 2016, pp. 660–676.

[39] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern recog-
nition, 2017, pp. 1251–1258.

[40] A. G. Howard, M. Zhu, B. Chen, et al., “Mobilenets: Efficient convolutional
neural networks for mobile vision applications,” arXiv preprint arXiv:1704.04861,
2017.

[41] K. J. Johnson, J. Schwartzbaum, C. Kruchko, et al., “Brain tumor epidemi-
ology in the era of precision medicine: The 2017 brain tumor epidemiology
consortium meeting report,” Clinical neuropathology, vol. 36, no. 6, p. 255,
2017.

[42] E. Lima, X. Sun, J. Dong, H. Wang, Y. Yang, and L. Liu, “Learning and trans-
ferring convolutional neural network knowledge to ocean front recognition,”
IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 3, pp. 354–358,
2017.

[43] H. Phan, L. Hertel, M. Maass, P. Koch, R. Mazur, and A. Mertins, “Improved
audio scene classification based on label-tree embeddings and convolutional
neural networks,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 25, no. 6, pp. 1278–1290, 2017.

68

[44] E. Hoseinzade and S. Haratizadeh, “Cnnpred: Cnn-based stock market pre-
diction using several data sources,” arXiv preprint arXiv:1810.08923, 2018.

[45] S. Indolia, A. K. Goswami, S. P. Mishra, and P. Asopa, “Conceptual under-
standing of convolutional neural network-a deep learning approach,” Procedia
computer science, vol. 132, pp. 679–688, 2018.

[46] Y. Li, H. Huang, Q. Xie, L. Yao, and Q. Chen, “Research on a surface defect
detection algorithm based on mobilenet-ssd,” Applied Sciences, vol. 8, no. 9,
p. 1678, 2018.

[47] H. Mohsen, E.-S. A. El-Dahshan, E.-S. M. El-Horbaty, and A.-B. M. Salem,
“Classification using deep learning neural networks for brain tumors,” Future
Computing and Informatics Journal, vol. 3, no. 1, pp. 68–71, 2018, issn: 2314-
7288. doi: https://doi.org/10.1016/j.fcij.2017.12.001. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2314728817300636.

[48] J. Seetha and S. S. Raja, “Brain tumor classification using convolutional neural
networks,” Biomedical & Pharmacology Journal, vol. 11, no. 3, p. 1457, 2018.

[49] M. Wang, S. Lu, D. Zhu, J. Lin, and Z. Wang, “A high-speed and low-
complexity architecture for softmax function in deep learning,” in 2018 IEEE
Asia Pacific Conference on Circuits and Systems (APCCAS), IEEE, 2018,
pp. 223–226.

[50] Y. Wu and K. He, “Group normalization,” in Proceedings of the European
conference on computer vision (ECCV), 2018, pp. 3–19.

[51] M. T. Abed, S. A. Nabil, U. Fatema, et al., “Early prediction of alzheimer’s
disease using convolutional neural network,” Ph.D. dissertation, Brac Univer-
sity, 2019.

[52] A. B. Amir, U. H. Nisa, A. A. Shafi, M. Reza, et al., “Traffic sign recognition
using deep learning,” Ph.D. dissertation, Brac University, 2019.

[53] S. Das, O. F. M. R. R. Aranya, and N. N. Labiba, “Brain tumor classification
using convolutional neural network,” in 2019 1st International Conference on
Advances in Science, Engineering and Robotics Technology (ICASERT), 2019,
pp. 1–5. doi: 10.1109/ICASERT.2019.8934603.

[54] S. Deepak and P. Ameer, “Brain tumor classification using deep cnn features
via transfer learning,” Computers in biology and medicine, vol. 111, p. 103 345,
2019.

[55] J. J. Graber, C. S. Cobbs, and J. J. Olson, “Congress of neurological surgeons
systematic review and evidence-based guidelines on the use of stereotactic
radiosurgery in the treatment of adults with metastatic brain tumors,” Neu-
rosurgery, vol. 84, no. 3, E168–E170, 2019.

[56] A. Khanna, D. Gupta, S. Bhattacharyya, V. Snasel, J. Platos, and A. E.
Hassanien, “International conference on innovative computing and communi-
cations,” Proceedings of ICICC, vol. 2, 2019.

[57] Y. Liu, J. Zhang, C. Gao, J. Qu, and L. Ji, “Natural-logarithm-rectified ac-
tivation function in convolutional neural networks,” in 2019 IEEE 5th Inter-
national Conference on Computer and Communications (ICCC), IEEE, 2019,
pp. 2000–2008.

69

https://doi.org/https://doi.org/10.1016/j.fcij.2017.12.001
https://www.sciencedirect.com/science/article/pii/S2314728817300636
https://doi.org/10.1109/ICASERT.2019.8934603

[58] S. Ma, T. Huang, S. Li, J. Huang, T. Ma, and J. Liu, Mcsm-wri: A small-
scale motion recognition method using wifi based on multi-scale convolutional
neural network, Sep. 2019. [Online]. Available: https://www.mdpi.com/1424-
8220/19/19/4162/htm.

[59] X. Ou, P. Yan, Y. Zhang, et al., “Moving object detection method via resnet-
18 with encoder–decoder structure in complex scenes,” IEEE Access, vol. 7,
pp. 108 152–108 160, 2019.

[60] A. P. Patel, J. L. Fisher, E. Nichols, et al., “Global, regional, and national
burden of brain and other cns cancer, 1990–2016: A systematic analysis for
the global burden of disease study 2016,” The Lancet Neurology, vol. 18, no. 4,
pp. 376–393, 2019.

[61] H. H. Sultan, N. M. Salem, and W. Al-Atabany, “Multi-classification of brain
tumor images using deep neural network,” IEEE Access, vol. 7, pp. 69 215–
69 225, 2019. doi: 10.1109/ACCESS.2019.2919122.

[62] H. Gholamalinezhad and H. Khosravi, “Pooling methods in deep neural net-
works, a review,” arXiv preprint arXiv:2009.07485, 2020.

[63] D. Theckedath and R. Sedamkar, “Detecting affect states using vgg16, resnet50
and se-resnet50 networks,” SN Computer Science, vol. 1, no. 2, pp. 1–7, 2020.

[64] D. Ezzat, A. E. Hassanien, and H. A. Ella, “An optimized deep learning ar-
chitecture for the diagnosis of covid-19 disease based on gravitational search
optimization,” Applied Soft Computing, vol. 98, p. 106 742, 2021.

[65] A. Naseer, T. Yasir, A. Azhar, T. Shakeel, and K. Zafar, “Computer-aided
brain tumor diagnosis: Performance evaluation of deep learner cnn using aug-
mented brain mri,” International Journal of Biomedical Imaging, vol. 2021,
2021.

[66] A. Rehman, M. A. Khan, T. Saba, Z. Mehmood, U. Tariq, and N. Ayesha,
“Microscopic brain tumor detection and classification using 3d cnn and feature
selection architecture,” Microscopy Research and Technique, vol. 84, no. 1,
pp. 133–149, 2021.

[67] O. Sevli, “Performance comparison of different pre-trained deep learning mod-
els in classifying brain mri images,” Acta Infologica, vol. 5, no. 1, pp. 141–154,
2021.

[68] [Online]. Available: https://www.superdatascience.com/blogs/convolutional-
neural-networks-cnn-step-1b-relu-layer/.

[69] Cnn image classification | image classification using cnn, https://tinyurl.com/
27x8rxwd.

70

https://www.mdpi.com/1424-8220/19/19/4162/htm
https://www.mdpi.com/1424-8220/19/19/4162/htm
https://doi.org/10.1109/ACCESS.2019.2919122
https://www.superdatascience.com/blogs/convolutional-neural-networks-cnn-step-1b-relu-layer/
https://www.superdatascience.com/blogs/convolutional-neural-networks-cnn-step-1b-relu-layer/
https://tinyurl.com/27x8rxwd
https://tinyurl.com/27x8rxwd

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Brain Tumor
	CNN in Medical Imaging
	Computer Vision and Implementation of CNN
	Research Motives
	Research Objectives
	Problem Statement
	Thesis Structure

	Literature Review
	Background Information
	General Architecture of Neural Networks
	Neuron
	Activation Function
	Cost function
	Gradient Descent
	Back Propagation

	Convolutional Neural Networks (CNN)
	Convolution
	Pooling
	Flattening
	Full Connection
	Softmax Function
	Output Layer

	Transfer Learning
	Batch Normalization
	Regularization
	Dropout

	Dataset Extraction
	Dataset Description
	Data Preprocessing
	Importing Libraries
	Image Processing from Dataset
	Spliting Train and Test set

	Research Methodology
	Model Workflow
	Used Architectures
	Proposed Model Implementation
	VGG16
	MobileNet
	ResNet50
	Xception
	InceptionV3
	DenseNet121

	Evaluation Method
	Graphical Analysis
	Confusion Matrix

	Experimental Results and Analysis
	Result Analysis
	Graphical Analysis
	Confusion Matrix

	Result Comparison

	Conclusion and Future Works
	Conclusion
	Challenges
	Computational power
	Excessive training time

	Future Works

	Bibliography

