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Abstract

It is undeniable that in recent years, exceptional progress has been made toward
building the most accurate and efficient object detectors. However, existing low-
light object detectors still require a substantial amount of resources to perform at
their best. Our main goal in this research is to train and evaluate recently developed
deep learning object detection models on low-light images and see if they can show
decent performance without any additional enhancement networks. Furthermore, we
aim to achieve those results with minimum computational cost. In this research, we
have created our own custom dataset from a publicly available insect image dataset
called ‘IP102’. The new dataset now named ‘IP013’ consists of 13 classes of insects
and approximately 8k annotated images. Moreover, we chose recently developed
YOLOv7 and DETR object detectors and compared their performance against now
older state-of-the-art RetinaNet and EfficientDet deep learning models. YOLOv7,
EfficientDet, and RetinaNet are purely CNN-based models whereas DETR uses a
Transformer as both encoder and decoder and a CNN as the backbone. Our research
shows that YOLOv7 outperforms all of the other models with a mAP0.5:.95 of 45.9
while using the lowest training time and the model that used the least computational
resources was EfficientDet which admittedly showed lackluster mAP0.5:.95 of 33.2
with only 3.9M parameters and using 2.5 GFLOPs.

Keywords: Insect; Object Detection; Deep Learning; Enhancement network; Low-
Light Images
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Chapter 1

Introduction

Without agriculture the world can not survive. Agricultural products are the most
important component in our daily life. But, like all other issues we have to face
problems during harvesting. And it can be solvable through technology .Yes ,it is
true that technology is advancing, development is occurring in the agriculture sector
.Many inventions are also there. But it is also sad that during harvesting farmers
are facing difficulties specially keeping insects away from agricultural fields. During
the daytime it is easier to keep the crops safe from insects. However, in dark or in
bad illumination it is one kind of impossible because of absence of light. Besides, in
real life it is not always possible to get a perfect lighting condition for images, thus
an insect detection model should be able to work with all kinds of realistic lighting
conditions. One of the most common challenges of insect detection in a realistic
environment is low illumination. Poor lighting conditions introduce noise and a
lot of other factors such as bad contrast, reflectivity, shadow, etc. which makes it
very difficult to insect pest objects with decent accuracy in such an environment.
In recent years, the CNN(Convolutional Neural Network) based feature networks
have been very promising and efficient for object detection. Their performance
has led to a reduction of image enhancement models before training the datasets.
The models we have used for training our datasets also come with a backbone
which has a CNN feature network. Those have done the work of enhancing the
images. So we have decided to not use any image enhancement algorithms before
training the images through our models. Moreover, for object detection there are
multiple approaches that mainly emphasize two performance metrics: 1) Accuracy
2) Runtime. The most accurate models are two-stage models that require a high
level of computational resources and have a longer runtime. Among the two-stage
models, transformer models are giving promising results and accuracy closer to the
state of the art models. On the other hand, there are one-stage models that are
usually faster than two-stage models but are less accurate and demand significantly
fewer resources. The majority of the research on object detection employs CNN-
based models for example R-CNN, FASTER R-CNN, YOLO, SSD, and EfficientDet.
These models are becoming faster and more precise as more research is being done
each year. We will try to implement CNN and transformer based models for our
dataset.
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1.1 Problem Statement

Object detection, as more and more projects depend on its accuracy and speed, the
necessity of creating a faster and more accurate model is also increasing. More-
over, object detection has to meet certain requirements such as real-time processing
on a large enough scale. The major problems of object detection are bad illumi-
nation, which includes low light, lens flare, high noise, contrast issues, incorrect
color grading, etc. For fixing these errors, multiple algorithms are run which in-
creases more complexity. More complexity makes the process resource-heavy and
time-consuming.

To correctly detect an object from an image, the computer vision needs to compare
the given image with the reference images it has. And the reference images are taken
in good lighting so that the distinguishable attributes of the object can be easily
seen. The images in low illuminated places face a big problem when it is compared
to the reference images, Guo et al [25]

Moreover, noise increases in an image when the lighting conditions of an image are
inadequate. When an image has noises in it, firstly, the noise and the object must
be differentiated. After that, it increases complexity since extra work has to be put
in to remove the noise from the picture and replace the pixels with the original color
grading, Loh et al [11].

Another important aspect for the correction of low light images is correcting the
color grading and saturation. Different objects might look the same if the correct
color and saturation is achieved. For example, to find the last known whereabouts
of a missing person, surveillance footage is generally checked. For this scenario,
correct color and saturation are required to find a certain individual, Yu et al [23].

In the Agriculture field, the most difficult situation is to detect the insects in night
time.Hence , we are attempting to find a solution to this ,like our proposed method
will detect the pests in the dark .we will make a system which will work range basis
and it will be efficient toward the whole field range .Besides It will give alarm when
any insect or pest will try to cross their range. So, we are attempting to find a
solution to this,

Are the newer detection models better or worse, in terms of efficiency,
accuracy, than the older robust models in detecting pests in low light
conditions?
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1.2 Research Objective

Since 2012, almost all of the state-of-the-art object detection models have a CNN-
based backbone. These models have performed well with many types of datasets
and kept on giving promising results with almost all of them. But in the last two
years, a totally new way of object detection has emerged, which is known as the
Transformer based model. And these models have been performing on par with
the robust and established CNN-based models. That is why we have decided to
implement Transformer based models in our dataset. Not only will we train our
dataset by the transformer model but also we will try to put up a comparative
analysis between the new models and the older but still state-of-the-art models.
Moreover, our goal is also to find a better-performing model for our low-light images
of agricultural pests.

1.3 Thesis Outline

The introduction which is chapter 1 provides information about the motivation of
our research, the problem statement, and the objective of our research.
Chapter 2 highlights similar research papers which are related to our works of object
detection in low light conditions.
Chapter 3 explains the architecture of the models used in our research.
Chapter 4 describes how we have implemented, trained, and in the end tested all
the models.
Chapter 5 showcases and comparisons of all test results.
Chapter 6 gives a conclusion of our project followed by the working process of COCO
evaluation metrics.
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Chapter 2

Literature Review

2.1 Related Works

According to the paper [17] , Carion et al. has implemented the DEtection TRans-
former model. It is a new design based on the transformer architecture used for ob-
ject detection and panoptic segmentation. They have trained their model on COCO
dataset and compared results with an optimized Faster R-CNN baseline. They have
created not only one type of model but also a few different variants named DETR-
DC5, DETR-R101 which uses Resnet-50 and Resnet-101 as their backbone. Their
self attention model has performed better in detecting comparatively bigger objects
in the images. The architecture and the model as a whole has a lot of challenges to
overcome since the model is very new. After training different variants of the model
against the COCO dataset, in 50 epoch, DETR model has achieved an average pre-
cision of 62.4% with 28 fps(frame per second), DETR -DC5 model has achieved
an average precision of 63.1% with 12 fps and DETR-R101 model has achieved an
average precision of 63.8% with 20 fps.

On paper [9], a one-stage model was proposed which is called RetinaNet which is
enhanced with the help of a function called FocalLoss. Two-step models are gener-
ally better object models compared to one-step models. But one-step models have
the potential to have the same accuracy while also retaining the same speed and
simplicity they had before. The extreme foreground-background class imbalance
created by dense models during training is the root cause. Reshaping the standard
cross entropy loss so that it can down-weight the loss assigned to well-classified ex-
amples. FocalLoss makes the model focus more on the hard examples and ignore the
huge number of easy examples. And to implement this and evaluate the loss, a new
model is designed which is called RetinaNet. With the help of FocalLoss, RetinaNet
performed with the same speed as a one-step model with the same accuracy as a
two-step model.

In another research paper [27] , Wang et al have presented the latest version of the
YOLO family, the YOLOv7 which excels in both precision and speed and has the
highest precision above all the known state of the art real time object detection mod-
els. They have followed the architecture of the previously released YOLOv4, scaled
YOLOv4 and YOLOR and enhanced it. The authors have introduced E-ELAN
(Extended Efficient Layer Aggregation Network) and also implemented compound
scaling for concatenation based models. E-ELAN is inspired from the ELAN [26]
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architecture, the paper of which has not yet been released. They also got inspiration
from EfficientNet [15] and a paper from Dollar et al [23], to implement the compound
scaling in their concatenation based architecture which helped them to preserve the
characteristics of the model’s original design and its ideal structure. The author
also brought from its predecessor, the bag of freebies which is to enhance the model
precision by changing the training strategy. The strategy they have used to improve
the architectures are , planned reparameterization and multiple head structure that
is deep supervision. In the deep supervision method, they have generated soft la-
bels where the fine soft label is used for the main head and coarse labels for the
assistant heads. All these things will be elaborated in the architecture section of the
YOLOv7. Combining all these techniques they have created the YOLOv7 which
outperforms all the transformer based models and convolutional based models in
the world of real time object detection. YOLOv7 has the accuracy of 56.8% with 36
fps(frame per second) inference speed whereas the best transformer model SWIN-L
at 9.2 fps speed has the precision of 53.9% and previously best convolutional model
ConvNeXt-XL has 55.2% AP at 8.6 fps.

An approach proposed in this paper [18] aims to improve conventional CNN based
on one-stage detector architecture. There exist several popular CNNs for object
detection such as FAST R-CNN, R-CNN and FASTER R-CNN which are two-stage
detectors and have high resource demand and long runtime. For this very reason,
the researchers opted for proposing a one-stage CNN like SSD and YOLO. However,
these one-stage detectors have a poor accuracy rate compared to the two-stage
detectors. The researcher proposed a new CNN scaling method called ‘Compound
Scaling’ that efficiently scales the network and can perform very close to scaled
two-stage detectors. Moreover, they proposed a new Bidirectional Feature Pyramid
network. EfficientNet and BiFPN(Bidirectional Feature Pyramid Network). This
detection model uses EfficientNet as the foundation network and BiFPN as the
feature fusion network. Tan et al [18] tested the network on COCO 2017 detection
datasets [3] with 118K training images and 5k validation images. The test results
were compared against many popular models such as RetinaNet and YOLOv3 which
are both one-stage detectors in addition the results were tested against two-stage
detectors such as MASK R-CNN and AmoebaNet.The model’s baseline network
EfficientDet-D0 performs better than YOLOv3 with an mAP of 34.6 having only
3.9M parameters and the highest scaled model EfficientDet-D7x performed better
than both AmoebaNet and Mask R-CNN with an amazing mAP of 55.1 but only
having 77M parameters.

In [4] They proposed a methodology named residual learning to make it less com-
plex as well as to prepare systems that are much more profound than those already
utilized.The Researcher assessed their strategy using the 1000-class ImageNet 2012
identification sample [5] . Besides that, using that dataset they analyze residual
nets(ResNet) with a depth of up to 152 layers —8× more profound .But neverthe-
less it has less difficulty than VGG nets [6].They have also examined a variety of
plain/residual nets and found repeating patterns. The Plain Net they have used
was primarily propelled by the logic of VGG nets [6] and for ResNet they added
easy route associations to the plainNet which turn the network into its partner re-
maining form. Nonetheless An outfit of these ResNets accomplishes 3.57% error on
the ImageNet training set. Moreover,That output helped the Authors to get first
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position on the ILSVRC 2015 classification errand.Furthermore ,They did additional
research on the CIFAR-10 dataset [1] , which comprises 50k training examples in-
cluding 10k pictures for testing in 10 categories. The astonishing thing is that on the
challenging COCO dataset They achieved a 6.0% increment in COCO’s standard
metric (mAP@[.5, .95]), which could be a 28% relative enhancement.

The researchers of this paper [21] used LIME, Retinex-Robust, and Retinex-Net
to enhance the low-illuminated images and trained a model on the enhanced data
using a lightweight one-stage RFB-Net. To evaluate the performance they used
ExDark [11] and on an edited version of COCO datasets. After the evaluation, they
were disappointed after discovering that the accuracy in unit time of the model which
trained on enhanced data was inferior to that of the model trained on unenhanced
data. Following this discovery, they proposed a new model based on tried and true
RFB-Net model which they aptly named Night Vision Detector or NVD for short.
This model is built with the combination of an FPN(Feature Pyramid Network)
and a Context Fusion Network. The researchers again used the aforementioned
COCO* and ExDARK datasets to train and test their model and the detection
performances were compared using standard COCO evaluation APIs. After the
experiments, they compared their results with a basic RFB-Net and it showed that
NVD was able to outperform basic RFB-Net on low-light detection performance
by 0.5% ∼ 2.8% on all standard COCO evaluation metrics where the FPN alone
improves the performances, particularly on small objects detection by a factor of
2.2%.

This [19] paper used a pre trained EfficientDet model (uses Efficient Net as backbone
and BiFPN as the feature fusion network) and compared it against the YOLOv3
model. The results of EfficientDet are significantly better than that of YOLOv3.
The 2 models were trained on COCO dataset consisting of 1.65m training images,
80k validation images, and 80k test images. YOLO-v3 combined with their pyramid
image enhancement network was able to achieve 24.3(pedestrian) and 36.7(car) pre-
cision on the COCO dataset whereas EfficientDet and the same image-enhancement
network was able to achieve a great precision of 53.8(pedestrian) and 71.4(car).
Further experiments showed that their image enhancement network model is better
than U-Net and other similar networks for low light enhancement and EfficientDet’s
object detection accuracy is better than YOLO-v3.
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Chapter 3

Background Analysis

For our research, we have chosen four state-of-the-art models to train on our dataset.
The EffcientDet and RetinaNet are both older CNN-based models whereas YOLOv7
and DETR are newer models with both CNN and CNN-Transformer architecture
respectively. In this research, we studied the architectures of each model and learned
about their unique characteristics. In this section, we provide an in-depth explana-
tion of each model’s architecture.

3.1 EfficientDet Architecture

First introduced in this [18] paper by the Google Brain Research team, EfficientDet
became a very robust and accurate object detector SOTA model. The researcher
built the model using their previous work EfficientNet[32]CNN as the backbone.
Moreover, they used a Bidirectional Feature Pyramid Network that acts as the
feature network and helps to integrate high and low-level features together. Then
they used two feed-forward convolution networks that serve as the shared class/box
prediction network. the figure 3.1 below shows the whole network architecture.

Figure 3.1: EfficientDet Network Architecture. [18]
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3.1.1 EfficientNet: The Backbone

Conventionally, a CNN’s performance was increased by depth scaling, meaning only
increasing the number of layers of convolution. Increasing the number of layers used
to be a problem because of the vanishing gradient problem. Since, the deeper the
layers, the more a model was prone to face the ‘vanishing gradient problem’ be-
fore reaching convergence. However, after the introduction of ResNets[4] (residual
networks) increasing the depth to achieve better results was no longer the problem.
When residual networks came along, creating bigger and better networks by increas-
ing depth became the new convention. At the time, networks such as ResNext [10]
and AmoebaNet[14] used depth scaling and used bigger image sizes to achieve signif-
icantly better results than earlier models. However, further research on scaling later
revealed that width and resolution scaling where width is the number of channels and
resolution is the resolution of the input image respectively could further improve the
network’s performance. Even though scaling was needed to improve performance,
there were no good methods that can be used to scale a network efficiently. To solve
that issue, Tan et al. in their previous work, created a new network scaling method
called ‘Compound Scaling. This is the core concept behind EfficientNet. Compound
scaling helps to calculate how much a network’s depth, width and resolution need
to be scaled with respect to one another to achieve the best performance efficiently.
The following equation 3.1 is used to determine the compound scaling factor:
Here,
α = depth,β = width, γ = resolution

f = α · βϕ · γϕ (3.1)

The value of the alpha, beta, gamma, and phi each represents depth, width, resolu-
tion and compound coefficient respectively. In the paper, the researchers calculated
the values of the variables using a grid search algorithm on a baseline model they
named ‘EfficientNet-B0’. The values for the baseline model they came up with are
the following: α = 1.2, β = 1.1, γ = 1.15, ϕ = 0 The baseline model itself was de-
signed using a multi-objective NAS(Neural Architecture Algorithm). The following
diagram 3.2 shows the design of the baseline model:

Figure 3.2: EfficientNet-B0 architecture. [18]

By increasing the compound coefficient ϕ by 1 each time, the baseline model was
scaled and the researchers produced 7 different EfficientNet models named ‘EfficientNet-
B1’ to ‘EfficientNet-B7’. The ‘EfficientNet-B7’ was the largest and had by far the
best performance with significantly fewer parameters than most CNNs at the time.
That is why It is still considered a state-of-the-art backbone even after 3 years.

8



3.1.2 Bidirectional Feature Pyramid Network: The Neck

A feature pyramid network or FPN in short is widely used to combine low and high-
level features together. In a CNN, each convolution operation gets rid of smaller
information and only retains larger ones. That means, the deeper layers contain
only the largest or most abundant pieces of information and lose all the finer details
and become abstract. Moreover, the produced feature maps scale down significantly
the deeper the layers go. In order to represent these multi-scale features, FPN was
introduced in this paper [8] which proposed a top-down process that can combine
multi-scale features. Further improvements were added to the architecture by other
researchers in later years. However, these improvements were not very efficient and
sometimes required thousands of GPU hours to get good results. By analyzing
these architectures and making further optimizations, Tan et al. in their paper
[18] proposed a new type of Bidirectional FPN with weighted Feature Fusion. This
new FPN has both top-down and bottom-up information flow so that low-scale
and high-scale features can combine either way. Moreover, The weighted feature
fusion algorithm gives a weight to each input that signifies how important the input
feature is. The researchers came to a realization during their research that all of
the feature fusion methods when fusing features together usually resize the images
to a single resolution and treat each of the inputs equally. However, this slows
down learning because all of the features are not equally important. Therefore,
giving weight and prioritizing some features over the rest can greatly lower the
computation cost and achieve better performance. The researchers conducted an
ablation study to measure the impact of EffcientNet and BiFPN on the accuracy,
parameters, and FLOPs(FLoating point OPerations) compared against ResNet50 a
popular lightweight backbone paired with a traditional FPN. The table 3.1 below
shows the results:

Models AP Parameters FLOPs

ResNet50 + FPN 37.0 34M 97B
EfficientNet-B3 + FPN 40.3 21M 75B
EfficientNet-B3 + BiFPN 44.4 12M 24B

Table 3.1: EfficientNet and BiFPN performance comparison [18]

As shown in the table 3.1 BiFPN is proven to be really effective in increasing accu-
racy while reducing the parameters thereby lowering computation cost.

3.1.3 Feed-Forward Class/Box Prediction Network: The Head

The head of the network consists of 2 feed-forward convolution networks that share
layers with the aforementioned BiFPN. The width of the class/box prediction net-
work, therefore, is fixed and the same as the BiFPN width. Moreover, scaling the
network only requires depth to be increased and it is increased using the following
equation [18]:

Dbox = Dclass = 3 + [ϕ/3] (3.2)

Overall, EfficientDet is one of the pioneering models and it is still considered a
robust state-of-the-art object detector. During our research, we have found that
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although it has been surpassed by others specially transformer-based models in
accuracy in recent years, only a handful of other models show promise in delivering
good accuracy with minimal computation cost.

3.2 YOLOv7 Architecture

In the world of object detection YOLO(You Only Look Once) models have been
one of the greatest due its outstanding performance. YOLO models are based on
Fully Connected Neural Network. YOLOv7, the latest addition to the YOLO family,
follows the architectures of the previous YOLO models. Bounding boxes and class
probabilities are predicted by YOLO using a sole convolution neural network. YOLO
predicts multiple bounding boxes and class probabilities for each box as well as for
all bounding boxes across the classes in a single evaluation in one step and for one
unit, making it a one stage detection model. YOLOv7 is derived and has brought
reformation to the architecture of YOLOv4 [16] , scaled YOLOv4 [20] and YOLO-R
[24]. Also, since the authors of YOLOv4 and YOLOv7 are the same, YOLOv7 is
trained on only the COCO dataset rather than using any other datasets’ pretrained
backbones.

YOLO predicts the bounding boxes, the classes of the bounding box, and the object
of the bounding boxes after featuring input photos through a backbone, combining
and mixing them in the neck, and passing them on. The input image is at first
preprocessed then aligning it into a 640*640 RGB image, input it into the backbone
network, and pass the backbone network at the head layer according to the three-
layer output in the backbone network. YOLOv7 is using ELAN [26] and E-ELAN
as the backbone of the network. As of today, the ELAN[26] paper has not yet been
released.

3.2.1 Extended Efficient Layer Aggregation Networks

E-ELAN is used as the computational block in the backbone as shown in the figure
3.3. In the paper the authors have introduced Extended-ELAN which is based on
the ELAN computational block. In ELAN they have shown that a deeper network
may successfully learn and converge by managing the shortest longest gradient path.
It is used as the computational block in the backbone. The Extended-ELAN is using
expand,shuffle and merge cardinality to continually improve the network’s capability
for learning while maintaining the initial gradient path. So rather than changing
the transition layer it only changes the computational block. The backbone layer of
YOLOv7 consists of multiple E-ELAN layers, BConv layers(composed of convolution
layer, batch normalization layer and an activation function) and MPConv layers at
times doubling the channels, halving the length and width and extracting features.
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Figure 3.3: Extended Efficient Layer Aggregation Networks (Extended-ELAN) [27]

While redesigning this backbone, the authors considered the memory cost of all the
layers and model parameters, ratio of the I/O channels, the amount of element wise
operation, efficient gradient path calculation and back propagation. As a result the
convergence is faster since the weights are updated efficiently and also improving
the accuracy.

3.2.2 Model Scaling for concatenation based models

Model scaling is mostly used to modify specific model properties and produce models
at various scales to accommodate various inference rates. Compound model scaling
was first introduced by the authors of EfficientNet [15], which takes into account
resolution, depth and width as a factor for scaling. However YOLOv7 is concatena-
tion based architecture which means width and depth are interrelated. Unlike model
scaling in usual CNN models, in compound scaling of concatenation based architec-
ture it does not allow to assess various scaling variables individually, they must be
taken into account together. The model’s original design qualities could well be pre-
served by using the compound scaling approach, keeping the ideal structure intact
i.e. scaling any of the factors of the computational block will change that channel’s
output channel. So scaling the depth (number of layers) will also coherently scale
the width (number of channels) as shown in the figure 3.4. So, when the compound
model scaling that are used in traditional CNN is used in the concatenation based
model, it is seen that the width is changed when scaling is performed on depth.
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Figure 3.4: Concatenation based model with compound scaling [27]

3.2.3 Trainable Bag of Freebies

In YOLOv4 a method was introduced that could enhance the performance and
inference speed by changing the training strategy. YOLOv7 introduced two new
strategies in the form of trainable bag of freebies which includes planned model
reparameterization and making the head coarse to fine.

Planned Reparameterized Convolution

Model parameterization is closely similar to model ensembling. It is used after
training to improve the inference results, which also leads to increase in training
time. The idea is to develop a model that is more resilient to the general patterns
by adding up a set of model weights and averaging them. YOLOv7 is using module
level reparameterization.In this method shown in the figure 3.5, the model is split
into a number of modules during training and then during inference the modules are
ensemble into one single model. RepConv [22] performs excellently on the VGG[6]
, but in ResNet [4] or DenseNet [7] the accuracy becomes poorer which happens
because of the identity connection. For this reason, they used the RepConv without
the identity connection calling it the RepConvN because identity connection makes
RepConv perform poorly when reparameterized convolution is used.

Figure 3.5: Model Reparameterization for YOLOv7 [27]
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Coarse for auxiliary and fine for lead loss

YOLOv7 uses the technique of multiple auxiliary heads in the network. The final
output is contained by the lead head. The auxiliary heads help to train in the
middle layers. This mechanism is called Deep Supervision [2] . On the top of
this, they also introduced the label assigner method which assigns soft labels after
taking into account ground truth and network prediction outcomes. So the auxiliary
head and lead head are guided by the lead head prediction in the label assignment
procedure. To develop a coarse-to-fine hierarchical labels for the head learning for
both auxiliary and lead, YOLOv7 employs the lead head prediction as an assistance.
For this, YOLOv7 is following two strategies e.g, lead guided assigner and coarse to
fine lead guided assigner. The explanation is show in the figure 3.6

Figure 3.6: Coarse label for auxiliary and fine label for lead head [27]

Lead head guided label assigner: It is primarily determined using the lead
head’s prediction outcome and the ground truth, and soft labels are generated via
the optimization process. Both the heads will train using this set of soft labels. This
is necessary since lead head has a somewhat robust learning potential, which means
the soft label that results from it should be more accurate in capturing the dispersion
and connection between the source and target data. Lead head will be better able to
concentrate on learning residual information which has not been learned, by enabling
the shallower auxiliary head to grasp the data that the lead head has learned.

Coarse to fine head guided label assigner: Here everything is the same but
instead of producing one soft label it is generating two soft labels e.g, one coarse
and one fine. The fine soft label is the same as the soft label generated in the
previous assigner. However, by loosening the restrictions on how many grids may
be considered as positive targets during the positive sample assignment procedure,
the coarse label is produced. It is because an auxiliary head’s capacity for learning
is less than that of a lead head, thus in the object detection task, we will concentrate
on maximizing the recall of the auxiliary head so as to avoid losing the information
that has to be learnt. Due to this mechanism, the upper limit of the optimizable

13



fine label is always greater than the upper bound of the optimizable coarse label
throughout the learning process by allowing to dynamically adjusting the labels.
Because if the added weight of the coarse label is almost equal to that of the fine
label, it might lead to inaccurate final predictions.

3.3 DETR Architecture

Developed by the Facebook AI team, DEtection TRansformer detects objects in
a very unique way. This model uses a feedforward convolution network which is
connected to the transformer encoder decoder architecture. To explain the model
in simple terms, it uses the transformer architecture to predict the objects and their
location in the image. DETR has come up with accuracies and runtime performances
almost as equal as the Faster R-CNN when they are trained on the COCO dataset.
The figure 3.7 gives a brief idea about the architecture.

Figure 3.7: DETR architecture [17]

3.3.1 Architecture Breakdown

DETR comprises 3 parts, such as: a CNN backbone for getting a set of image
features, a transformer and a feed forward network which uses a bipartite matching
system to detect the loss and accuracy of the model.

The CNN backbone takes an input image with 3 color channels (RGB). CNN batches
all the images together using adequate 0-padding to make sure that all the images
have the same dimensions. The resolution of the image is also toned down and is
given a number. A typical activation map is generated,

f ∈ R(C×H×W) (3.3)

Here, c is 2048 and H,W is the height/32 and width/32 of the largest image in the
batch.

The encoder creates a height times width squared matrix which is also called the
attention matrix to predict the bounding box of the object. A transformer model
has a unique feature that lets it communicate and exchange data between any part
of the sequence. Suppose, a part of the sequence is detecting the beak of a bird
and another part is detecting the tail of the bird. And this model can connect these
two pieces of information and predict that the beak and the tail are both the parts
of the same bird. The encoder also uses a height times width squared matrix as
an attention matrix in every feature channel. Any point in this attention matrix
represents two diagonally located vertices of a bounding box. For the positional
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encodings, they have used fixed positional encodings according to Parmar et al. [12]
and Bello et al. [13]. When the model detects an object in the image, it refers to a
point in this matrix, and aggregating all the respective points found in the matrix
it becomes more accurate with the prediction of the bounding box of the image

Afterward, this is passed on to the transformer decoder and the decoder does a
specific number of object queries in the image.. A certain query always tries to
detect an object in a specific location in the image regardless of the position of the
object in the image. For example, a query named K will always look for objects on
the top left for all the images, and another quert D will always try to detect objects
in the middle part of the image. While training the COCO dataset, they did 100
queries for every image. A visualization of the object queries is given below

Figure 3.8: Object query [17]

In the figure 3.8, the green parts are places where the object query is trying to
detect objects in the image. Each box denotes different queries done in the same
image.

A 3-layer perceptron is used with ReLU activation function to do the final prediction
which also has a hidden dimension, d. A feed-forward network deduces the normal-
ized center coordinate and height, width of the bounding box. It also uses a softmax
function to predict the class label of the input image. Since, this model predicts a
fixed number, N, of objects in every image, N is much larger than the number of
objects in the image. So the extra objects must be labeled as no object (∅). This
is similar to the “background” class that is used for standard object detection. A
visual representation of the encoder self attention can be seen in figure 3.9.

Figure 3.9: Encoder self attention [17]

15



3.4 RetinaNet Architecture

RetinaNet is a one-stage object detection network that states class imbalance dur-
ing training by adding a modulating term to the Cross-Entropy(CE) loss. This puts
more of an emphasis on learning hard negative examples. RetinaNet is a single,
integrated network made up of two task-specific subnetworks plus a backbone net-
work. A convolutional feature map over the input image is found using the backbone,
which is a convolutional network in and of itself. On the output of the backbone, the
first subnet applies object classification, while the second subnet applies bounding
box regression. For one-stage, dense detection, using these two basic networks are
recommended. The Below given figure gives a demonstration of RetinaNet Model
Architecture.

Figure 3.10: RetinaNet Model Architecture [9]

3.4.1 FocalLoss

Before discussing FocalLoss, we should know the concept of Calcification Entropy
first.

CE(p, y) =

{
− log(p) if y = 1

− log(1− p) otherwise
(3.4)

Calcification Entropy(CE) loss for binary calcification example is given in Above
equation y ∈ {±1} indicates the ground-truth class and p ∈ [0, 1] is the model’s
estimated probability for the class with the label y = 1.

pt =

{
p if y = 1

1− p otherwise,
CE(p, y) = CE (pt) = − log (pt) . (3.5)

For convenience, CE is defined as pt
The CE loss can be seen as the blue curve in the figure. In this figure, we can see
that the hard examples with even the smallest increase can drastically increase the
amount of loss. Combining all the easy examples can easily overwhelm the rare
classes with its sheer amount alone.

CE (pt) = −αt log (pt) (3.6)

α : offset class balance Introducing a weighting factor α ϵ [0, 1] in the equation
above for class 1 and 1 − α for class 1 can solve this issue. α can be used as a
hyper-parameter to be set by cross-validation or set by inverse class frequency.

FL (pt) = − (1− pt)
γ log (pt) (3.7)
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Figure 3.11: Probability of ground truth class [9]

γ : Focus more on hard examples: alpha balances the importance of posi-
tive/negative examples. And the purpose of using FL is to ignore easy examples
and focus more on hard examples. By importing a modulating factor (1 − pnt)

∧Y
to the CE loss, with tunable focusing parameterγ ≥ 0, we get FL mentioned in the
equation above. There are two factors of FL:

1. When an example is misclassified and pt is small, the modulating factor is
near 1 and the loss is unaffected. As pt →1, the factor goes to 0 and the loss
for well-classified examples is down-weighted.

2. The focusing parameter γ smoothly adjusts the rate at which easy examples
are down-weighted. When γ = 0, FL is equivalent to CE. When γ is increased,
the effect of the modulating factor is likewise increased. (γ = 2 works best in
the experiment.)

FL (pt) = −αt (1− pt)
γ log (pt) (3.8)

Adding alpha into the equation will further increase the accuracy.

In the model initialization stage, the initial value π is added to p which in turn will
reduce the value of model estimated p of the rare class by a significant amount. Not
using a predetermined value of ϕcan lead to training failure while using RetinaNet.

3.4.2 Backbone

Figure 3.12: ResNet skip connection [4]
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ResNet [4] is used for deep feature extraction and a rich multi-scale feature pyramid
is built from a single resolution input image using the Feature Pyramid Network
(FPN) [8], which is applied on top of it. In ResNet[8], the Residual Blocks concept
was developed by this design to address the issue of the vanishing/exploding gra-
dient. We employ a method called skip connections in this network. Figure[3.12]
showcases the working procedure of skip connection. FPN [8] applied here is differ-
ent compared to normal FPN [8]. A P3-P7 pyramid is generated here. Here P2 is
excluded, strided convolution is used to calculate P6 rather than downsampling, and
P7 is included to improve accuracy. Different anchors of different sizes and aspect ra-
tios are added at different levels of the pyramid. Anchors are added to ground-truth
object boxes using IOU threshold of 0.5 and to the background if IOU is in [0, 0.4).
A maximum of one object box is allocated to each anchor, and the corresponding
class entry in the K one-hot vector is set to one while all other elements are set to
0. The anchor is unassigned and ignored during training if IOU is between [0.4,0.5).
When there is no assignment, the difference between the anchor and assigned object
box is used to compute the box regression. The possibility that each of the K object
classes and A anchors will be present at a specific spatial position is determined by
the Classification Subnet. This subnet is a small FCN attached to every FPN[8]
level. It starts with an input feature map with C channels from a specific pyramid
level. The subnet applies four 3×3 Conv layers, each with C filters and each followed
by ReLU activations, followed by a 3×3 Conv layer with KA filters. Inference in-
cludes forwarding images through the network. Decoding box predictions from max
1k top-scoring predictions per FPN [8] level after thresholding detector confidence
at 0.05 increases the speed significantly. Merging top predictions from every level
and applying non-maximum suppression with a threshold of 0.5 produces the final
result.
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Chapter 4

Methodology

In this section of our research, we have tried to show how we have processed our
dataset and augmented them, so that it becomes easy for our models to train on
them. We have also shown the hardware we are using and how we are training the
model in our dataset. Furthermore, the hyperparameters we have changed and the
evaluation of each model is also shown in this section.

4.1 Data Preprocessing

Before training the data need to be prepared and have to be suitable in order to
experiment. We tried to process the dataset and augment the whole dataset so as
to eradicate discrimination from the classes of the dataset. Before training the data
need to be prepared and have to be suitable for the model to experiment.

4.1.1 Data Preparation

We started our research with the open-source dataset IP102 [31]. The dataset has
approximately 19k annotated images with 102 classes of insects. However, after
analyzing the data, we soon found out that the dataset was severely imbalanced
and unsuitable for going forward with our experiments. In order to create a fairly
balanced dataset, we discarded most classes and images and only kept the classes
that had similar and fairly large sample sizes. The new dataset now had 13 classes
of insects and around 8k images. We named the new dataset ‘IP013’. The below
table shows the sample size of IP013 for each class:
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Class Sample Size

Blister beetle 935
Cicadellidae 930
Aphids 876
Miridae 865
Mole cricket 863
Locustoidea 533
Legume blister beetle 435
Grub 434
Wireworm 425
Corn borer 424
Prodenia litura 413
Beet army worm 413
Flax budworm 410

Table 4.1: Sample Distribution of IP013 dataset

4.1.2 Data Augmentation

The IP013 dataset has images of insects taken in regular lighting conditions. To
serve our research purpose and train the neural networks on low-light images, we
augmented the images in a number of ways. We applied a random brightness aug-
mentation ranging from 0% to 67% of the original image. Moreover, we performed
random 90 degrees rotations on both the images and the annotations to add more
variety to the dataset. After the augmentations, the dataset now has approximately
13.4k images.

4.2 Hardware and Software

To conduct our experiment we used the Google Colab research environment with an
Nvidia Tesla T4 GPU that is capable of 65 FP16 TeraFLOPS. Even though it’s not
the latest machine learning hardware, it performs similarly to the latest consumer
hardware available nowadays. Moreover, Google Colab provided us with a stable and
easy-to-use environment to train and validate our chosen models. For the machine
learning framework, we used Pytorch and more specifically Torchvision package.
However, for the RetinaNet implementation, the Keras Tensorflow framework was
required. All of the frameworks worked flawlessly with Python 3.9. Additionally,
we used Nvidia CUDA API to perform the majority of the computation on GPUs.
Furthermore, the ‘pycocotools’ package was utilized which is the official python API
for the MS-COCO dataset to perform COCO evaluation.

4.3 Training and validation

The dataset was roughly split into 80% for training and 20% for validation. Since the
IP013 dataset is smaller in size compared to IP102 we decided to put most images
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on the training set to provide adequate data to train all of the models. The models
we used in this research have many implementations due to their state-of-the-art
status. However, we mostly tried to use the ones that are considered ‘official’ because
they were implemented by the researchers who invented the respective models. We
trained each of the models on our custom dataset IP013 for 50 epochs and manually
fine-tuned some of the many hyperparameters to get better results and reduce the
chance of overfitting and used default parameter values for the rest. Below the
details of training for each model are further explained.

EfficientDet: The training was completed using this [32] implementation based
on the Pytorch framework. This particular implementation uses COCO annotation
format. So the original PASCAL VOC annotations needed to be converted into
COCO format in order to be used in this implementation. The ‘EfficientDet-D0’
pretrained weight was loaded into the model for transfer learning. The weight was
pretrained with COCO 2017 dataset and had EfficientNet backbone. Since the
weight is trained from scratch, we can fine-tune the model on our custom dataset
much faster as most of the time of the training won’t have to be spent on training the
backbone to extract features better. As for the hyperparameters that were changed
during the training process were learning rate, batch size, and optimizer function.
The learning rate was set to 1e-3, batch size to 16 and “AdamW” optimizer was
used for all epochs except for the last one where ‘SGD’ optimizer was used.

RetinaNet: This [29] is used to complete the training. The implementation is
based on the Tensorflow framework and it supports COCO annotation format. Again
a pretrained weight ‘resnet50 coco best v2.1.0.h5’ was used for transfer learning. As
the name suggests it was trained on COCO 2017 dataset with a resnet50 backbone.
The hyperparameters that were changed are the following: learning rate was set to
1e-5, batch size set to 2, steps to 5557 and ‘Adam’ optimizer was used.

DETR: The implementation [28] is based on PyTorch framework and supports
COCO annotation format. The pretrained weight ‘DETR-R50’ was used which
was trained with COCO 2017 dataset and had a resnet50 backbone. The changed
hyperparameters are the following: learning rate was set to 1e-4, batch size set to
4, object query to 10, weights decay to 1e-4, and ‘AdamW’ optimizer was used.

YOLOv7: The training was done on this [30] which is based on the PyTorch
framework. The implementation used its own YOLOv7 annotation format. The
pretrained weight ‘YOLOv7’ was used and it trained on the COCO 2017 dataset.
As for the hyperparameters: initial learning rate was set to 0.01, final learning rate
was set to 0.1, batch size was set to 8 and ‘AdamW’ optimizer was used.
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Chapter 5

Results

In order to evaluate the results of the different object detection models that we have
used for this research, we have chosen the coco metrics. It is very popular among
the object detection models to compare themselves with this evaluation metrics.
We have trained our models on our custom dataset for 50 epochs to evaluate and
compare the results. The models we have trained are mentioned above. From the
table below we can see the performance of the trained models.’

Model Dataset Backbone AP50:95 AP50 AP75
Params
(M)

FLOPs
(G)

Training Time Per Epoch (min)

YOLOv7
COCO

ELAN
51.4 69.7 55.9

36.9 104.7 12
Ours 45.9 79.8 -

EfficientDet
COCO

EfficientNet
33.1 51.2 34.8

3.9 2.5 22
Ours 33.2 61.8 31.3

RetinaNet
COCO

ResNet-50
35 53.7 37.4

34 97 90
Ours 35.9 66 34.4

DETR
COCO

ResNet-50
42 62.4 44.2

41 86 30
Ours 35.2 60.9 36.5

Table 5.1: Comparison between models trained on our dataset and COCO

In the table 5.1,we can clearly see that YOLOv7 is crushing other models in terms of
Average Precision and Training Time. Particularly, model performance is influenced
by both training environments and architecture of the model. We have tried to
achieve the best result from each model by hypertuning and configuring. In the
main, even though EfficientDet is meant to be efficient with its smaller number of
parameters and less FLOPs, it takes more time to train the dataset than YOLOv7.
YOLOv7 is using a new technique which they named as planned reparameterization
which helps them to enhance precision without actually incrementing training time.
In the lowest time, the most recent model YOLOv7 is outperforming the other
models by a lot. On the other hand the oldest model in the comparison is doing
better in terms of precision than other models. RetinaNet which came two year
earlier than EfficientDet is getting a slightly better result but at the cost of training
time which is very inefficient. During the time Retinanet could complete one epoch,
EfficientDet could have completed more than 4 epochs in that time. Considering
the training time, EfficientDet could have performed way better than RetinaNet.
The same can also be said for DETR which is a transformer based model. The full
potential of the transformer based model is locked with epoch training, which is
why the result is not that impressive yet very close to RetinaNet. Due to lack of
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our computational capability, it was not possible to show the true potential of the
DETR and EfficientNet. We only trained the base model of EfficientNet which is D0
which has lower AP, but instead if we had the computational power to implement
the EfficientDet-D7x the result would have been a lot better. Yet the results that
we got from only 50 epochs is pretty impressive given the state of the dataset. One
of the reasons for this to happen is because we have used the pretrained weights
which means we have taken the help of transfer learning. Since we did not have the
computational power to train the model from scratch and also the custom dataset
we had was pretty small for learning from scratch, we had no other way but to
choose this path.

After comparing the models on our own dataset, we will now compare the results
we got from the test on IP013 with the results the authors got from training on
the COCO dataset from scratch. It is necessary to mention that we have used the
approach of transfer learning for training the models on our own dataset since it was
quite impossible for us to train from scratch with the processing capacity we have,
which is why we used pretrained weights. Now if we notice the table 5.1 we can see
that the models are performing quite well on our dataset in contrast to the COCO
dataset. The results on COCO are taken from [16],[18],[9] and [17]. EfficientDet got
a mAP@0.5:0.95 of 33.2% on our dataset contrary to 33.1% on the COCO dataset.
RetinaNet is also performing very close on COCO in contrast to our dataset where
the average precision on COCO is 35%, it is 35.9% in case of our dataset. However
the recent models aren’t as close as these older models were. The YOLOv7 is 45.9%
on our dataset whereas it is getting 51.4% mAP on COCO. The same can be said
for DETR. This may be because the models may not be properly hypertuned and
need more training to fit the dataset in the model. Even though YOLOv7 wasn’t
performing as it should be, the results are much better than the other models.
From our understanding, if we had the computational capacity we could show the
full potential of YOLOv7 in training a low illuminated dataset without using any
image enhancement network.

Figure 5.1: PR curve of RetinaNet on our dataset
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Figure 5.2: PR curve of YOLOv7 on our dataset

Figure 5.3: PR curve of DETR on our dataset
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Figure 5.4: PR curve of EfficientDet on our dataset

In the above figure, we can see the Precision-Recall curve and result of YOLOv7,
EfficientDet, DETR and RetinaNet in a pictorial form. We are emphasizing on the
YOLOv7 as a representative of the recent models and the EfficientDet as a repre-
sentative of the old models since the results from the YOLOv7 are very impressive
and the EfficientDet was supposed to be efficient and used the least computational
power of all. From the above figures we can see that YOLOv7 is performing decently
and performance of EfficientDet is not as good. The YOLOv7 and EfficientDet have
very accurately detected Cicadellidae, aphids, grubs, mole cricket and wireworm.

Figure 5.5: Test batch prediction

This happened because those classes have higher numbers in terms of object count.
So, the model has precisely detected the objects from those classes. The true neg-
ative for those classes are lower in number. There are some classes which were
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underprivileged because the number of objects was less in those classes. So, those
classes did not perform as well as the classes like mole cricket and cicada.

From the results image, we can see that mAP(mean Average Precision) for IoU
(Intersection over Union) of 0.5 is almost 0.8. This means that for each class the
model has on average predicted the object 80% at IoU 0.5. These metrics are
described in the appendix portion. The mAP for each and every class at 0.5:0.95 is
on average as high as 45.9%. From the Precision-Recall curve, we can see that mAP
for Cicadellidae is 98.9% which is the highest from all the classes and the lowest
is 45.5% for class flax budworm. For EfficientDet the mAP for all the classes at
0.IoU 0.5 is 61.8% as shown from the above table 4.2. For DETR it is 60.9% and
RetinaNet is 66% at IoU of 0.5.
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Chapter 6

Conclusion

Even though research on object detection has come so far efficient low-light object
detection more specifically remains a challenging task. Throughout our research,
we studied the works of other researchers and came to an understanding that soon
there will be not much of a need for an additional image enhancement network to
detect objects in low light images and it will be possible to implement on low-end
systems. To recap, we collected and created a low-light dataset of insect images
called IP013. We chose old and new state-of-the-art models to train and validate
on our dataset. Moreover, we collected the original research data that showed each
model’s performance on a regular image dataset called COCO. We compared each
of the models with one another by measuring their performance using MS COCO
evaluation metrics while taking into consideration their performance on regular im-
ages. Through our work in this project, we have come to an understanding that the
current scene of deep learning models is improving rapidly in a very short period of
time. The models we used (both old and new) are capable of giving inferences in
real-time with correct lighting conditions. On the other hand, we have focused on
detecting objects in low lighting conditions. Still, our models had given us results
that are similar to those results achieved through training well-lit images. Even
though we had faced challenges like an imbalanced dataset, hardware constraints,
and limited time frame, we have achieved good results which led us to hope that we
can implement our work in embedded systems and test it in real-life situations.
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Chapter 7

Appendix

7.1 COCO Evaluation Metrics

Coco detection challenge uses 12 different metrics to evaluate the accuracy of object
detection of different algorithms. The main goal is to compute the Mean Aver-
age Precision(mAP) to evaluate the algorithms. Google Open Images Dataset V4
Competition also uses mAP on 500 different classes to discover the most efficient
algorithm. We have used these evaluation metrics on our custom dataset to evalu-
ate the models that were used on our custom dataset. Before discussing mAP, The
concept of IOU and several concepts have to be discussed first.

IOU =
area (Bp ∩Bgt)

area (Bp ∪Bgt)
(7.1)

While creating bounding boxes around an object in an image and predicting the class
of the object in that bounding box, a metric is used called Intersection Over Union
(IOU) shown in equation(7.1). IOU is used to evaluate the overlap between two
bounding boxes. By using a Ground truth bounding box and a Predicted bounding
box, the validity of the detection is confirmed by calculating the overlapping area
between the Predicted bounding box and the Ground truth bounding box by the
area between them.

True Positive(TP) : A correct detection. Detection with IOU ≥ threshold

False Positive (FP): A wrong detection. Detection with IOU < threshold

False Negative(FN): A ground truth not detected

True Negative(TN): corrected misdetection. During object detection, there
are a lot of bounding boxes that are supposed to be not detected. TN indicates the
correctly not detected bounding boxes. An example of all detection types is given
below in figure(6.1).

Precision =
TP

TP + FP
=

TP

all detections
(7.2)

The ratio of correctly identified Positive samples to all Positive samples overall is
known as precision. To put it simply, Precision answers the question of how accurate
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Figure 7.1: Confusion Matrix

the model’s assumptions were. Precision would be high if the model correctly clas-
sified the majority of the Positive samples as Positive or classified fewer (incorrect)
Negative samples as Positive, while precision would be low if the model classified
many (incorrect) Negative samples as Positive or correctly classified fewer Positive
samples. The equation of precision is given in equation (7.2)

Recall =
TP

TP + FN
=

TP

all ground truths
(7.3)

The proportion of accurately categorized Positive samples to all actual Positive
samples is known as Recall. Recall determines whether your model made a guess
each time one was expected of it. More positive samples are detected with higher
recall. The equation of recall is given in equation(7.3).

The Precision x Recall curve is a good way to evaluate the performance of an object
detector as the confidence changes. As each object class has a curve, an object
detector with high prediction and increasing recall of each class is considered good
which will stay the same even if the confidence threshold changes. In the above
equations of Precision and Recall, TP+FN= all ground truth = constant. Here if TP
increases, FN decreases and the precision will remain high. Usually, the Precision x
Recall curve starts with high precision values, decreasing as recall increases. Average
Precision(AP) is calculated using the area under the curve (AUC) of the Precision x
Recall curve. Normally AP is the precision averaged across all recall values between
0 and 1.

mAP =
1

| classes |
∑

c∈ classes

|TPc|
|FPc|+ |FPc|

(7.4)

Mean Average Precision(mAP) is calculated by taking the mean AP over all classes
and/or overall IOU thresholds. For the evaluation of the models used on our dataset,
the mAP was calculated by averaging the AP over all 13 object categories and all 10
IOU thresholds from 0.5 to 0.95 with a step size of 0.05. The IOU average helps the
models with improved localization. In short, at first, AP is calculated for an IOU
threshold of 0.5 for every single class. In this case, Compute the precision at every
single recall value(0-1 with a step size of 0.01). Repeat this step for 0.55, 0.60, 0.65,
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0.70,....., 0.95. After that, take the average over all 13 classes and 10 thresholds
and compute the primary metric. The equation of Mean Average Precision(mAP)
is given in figure(7.4).
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