
Performance Analysis of Machine Learning Algorithms
for Malware Classification

by

Raisa Hasan Bushra
18301064

Md Taukir Alam
18301277

Aniruddho Saha
18201117

Nazmus Sakib Fahim
18201166

Nabila Mourium Binty
19101082

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
September 2022

© 2022. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Raisa Hasan Bushra
18301064

Md Taukir Alam
18301277

Aniruddho Saha
18201117

Nazmus Sakib Fahim
18201166

Nabila Mourium Binty
19101082

i

Approval
The thesis titled “Performance Analysis of Machine Learning Algorithms in Malware
Classification” submitted by

1. Raisa Hasan Bushra(18301064)

2. Md Taukir Alam(18301277)

3. Aniruddho Saha(18201117)

4. Nazmus Sakib Fahim(18201166)

5. Nabila Mourium Binty(19101082)

Of Summer, 2022 has been accepted as satisfactory in partial fulfillment of the
requirement for the degree of B.Sc. in Computer Science on September 28, 2022.

Examining Committee:

Supervisor:
(Member)

Dr. Amitabha Chakrabarty
Associate Professor

Department of Computer Science and Engineering
Brac University

Co-Supervisor:
(Member)

Ahanaf Hassan Rodoshi
Lecturer

Department of Computer Science and Engineering
Brac University

Thesis Coordinator:
(Member)

Md. Golam Rabiul Alam, PhD
Professor

Department of Computer Science and Engineering
Brac University

ii

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

iii

Abstract
Malware detection research has been popular over the years as the variations and
complexity of malware attacks are increasing daily. Using variously Supervised and
Unsupervised machine learning algorithms to detect, identify, or classify malware
attacks has been proven a very effective technique for some past years. Some com-
mon and widely concerning malware attacks are Trojan, Adware, Ransomware, and
Zero-day. In this paper, we used ten ML algorithms such as AdaBoost, Stochastic
Gradient Descent (SGD), Naïve Bayes (NB), Decision Tree (DT), Random For-
est (RF), XGBoost, Logistic Regression (LR), Multi-Layer Perceptron (MLP), K-
Nearest Neighbour(KNN), Support Vector Machine (SVM) for classifying software-
based Trojan attacks, Ransomware, Adware and Zero-day attacks. This research
was conducted on a dataset having a total sample of 12863 malware, consisting of
the malware categories mentioned above, to extract features and learn patterns.
Also, we showed a comparison between these ML methods and analysis based on
how they classify these popular malware in this paper after testing each classifier
on the selected dataset. After implementation, RF achieved the highest accuracy of
86.97%, and Gaussian NB achieved the lowest accuracy of 47.84%. MLP, XGBoost,
KNN, DT, AdaBoost, SVM, LR, SGD got 83.60%, 82.59%, 80.68%, 79.63%, 73.30%,
73.22%, 67.08%, 64.40% accuracy respectively. Other than accuracy, our analysis
was based on individual accuracy, precision, and F1-score, TPR, TNR, FPR, and
FNR of malware classes for each ML classifier.

Keywords: Machine Learning; Malware; Trojan; Adware; Ransomware; Zero-
day; Classification; Decision tree; Naive Bayes; Stochastic Gradient Descent; Ran-
dom Forest; AdaBoost; XGBoost; Logistic Regression; Multi-Layer Perceptron; K-
Nearest Neighbour; Support Vector Machine; Analysis

iv

Acknowledgement
Firstly, we would like to thank Almighty for his blessing and guidance which enabled
us to complete our thesis without any major problem.
Secondly, to our Supervisor Dr. Amitabha Chakrabarty sir who helped us and
guided us throughout the work. With his guidance, we were able to do better in our
thesis.
Thirdly, thanks to the Research Assistant, Mr. Shahriar Hossain sir for his constant
guidance and encouragement during our whole work. His assistance helped us to
complete our work in time.
Finally, to our parents who have been showing kind support throughout the whole
journey of our University life.

v

Table of Contents

Declaration i

Approval ii

Abstract iv

Acknowledgment v

Table of Contents vi

List of Figures viii

List of Tables ix

Nomenclature x

1 Introduction 1
1.1 Thoughts behind Malware Classification 1
1.2 Research Problem . 1
1.3 Aims and Objectives . 3
1.4 Application area of ML algorithms 3
1.5 ML in Malware Detection and Classification 4

2 Literature Review 5
2.0.1 Malware . 5
2.0.2 Related Work . 6

3 Working Principles of Algorithms 9
3.1 Gaussian Naive Bayes . 9
3.2 AdaBoost . 9
3.3 Stochastic Gradient Descent . 10
3.4 Multi Layer Perceptron . 10
3.5 Decision Tree . 11
3.6 Random Forest . 11
3.7 K-Nearest Neighbour . 12
3.8 Logistic Regression . 12
3.9 Support Vector Machine . 12
3.10 XGBoost . 13

vi

4 Methodology for Malware Classification 14
4.1 Input Data . 15
4.2 Feature Selection . 15
4.3 Data pre-processing . 18

5 Experimentation 19
5.1 Algorithm Implementation . 19
5.2 Performance Metrics Calculation . 19

6 Result Analysis 21
6.1 Gaussian Naive Bayes . 21
6.2 AdaBoost . 22
6.3 Stochastic Gradient Descent . 23
6.4 Multi Layer Perceptron . 24
6.5 Decision Tree . 24
6.6 Random Forest . 25
6.7 K-Nearest Neighbour . 26
6.8 Logistic Regression . 27
6.9 Support Vector Machine . 28
6.10 XGBoost . 29
6.11 Performance Comparison . 30

7 Conclusion 31

Bibliography 35

Appendix A Dataset 36

vii

List of Figures

4.1 Work Flow . 14
4.2 Heatmap before Feature Selection . 17
4.3 Heatmap after Feature Selection . 18

6.1 Validation Accuracy vs Validation Loss curve of GNB 22
6.2 Validation Accuracy vs Validation Loss curve of AdaBoost 22
6.3 Validation Accuracy curve of SGD 23
6.4 Validation Accuracy vs Validation Loss curve 24
6.5 Validation Accuracy vs Validation Loss curve of DT 25
6.6 Validation Accuracy vs Validation Loss curve of RF 26
6.7 Validation Accuracy vs Validation Loss curve of KNN 26
6.8 Validation Accuracy vs Validation Loss curve of LR 27
6.9 Validation Accuracy curve of SVM 28
6.10 Validation Accuracy vs Validation Loss curve of XGBoost 29
6.11 Comparison of Accuracy . 30

viii

List of Tables

2.1 Accuracy of ML Algorithms for Malware Detection of Previous Works 8

5.1 Confusion Matrix for Ransomware 19

6.1 Experimental Results of GNB . 21
6.2 Experimental Results of AdaBoost 22
6.3 Experimental Results of SGD . 23
6.4 Experimental Results of MLP . 24
6.5 Experimental Results of DT . 25
6.6 Experimental Results of RF . 25
6.7 Experimental Results of KNN . 26
6.8 Experimental Results of LR . 27
6.9 Experimental Results of SVM . 28
6.10 Experimental Results of XGBoost . 29

ix

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

FN False Negative

FNR False Negative Rate

FP False Positive

FPR False Positive Rate

TN True Negative

TNR True Negative Rate

TP True Positive

TPR True Positive Rate

x

Chapter 1

Introduction

1.1 Thoughts behind Malware Classification
Malware is an abbreviation for malicious software, is created with the intention to
harm data or devices. These viruses are either a file or a code which is often supplied
through a network that can infect, steal, examine or even can perform nearly any
activity an attacker wishes. Malware classification is the technique of collecting
all the unknown malware and grouping them based on their selective attributes
or features [49]. Malware is defined as any software that performs unwanted and
suspicious activities on victim computers and devices without his/her authorization.
There are several types of malware variants that can steal confidential data, launch
distributed denial of service (DDoS) attacks, and cause disruption to computer
systems [31]. Malicious attacks surged by 700% between 2012 and 2013, according
to Symantec’s 2014 Annual Security Report. Additionally, in 2013, more than 552
million private identities were made public, a 493% rise from 2012. These attacks
frequently included malware of some kind [9]. According to the McAfee report
[4], of the fourth quarter threat, there were 75 million unique malware samples in
2011. And also, according to the Computer Economics Inc., the total global damage
caused by malware is $13.3 billion. Even though antivirus software is useful for
malware protection, it is not always capable of detecting incoming malware attacks.
Malware attacks can be spread through email attachments (almost 92%), android
ads, different website popups, different types of torrents, or file-sharing software can
also be the cause of malware attacks. The malware attacks are varied in different
types. In this paper, we are focusing on four different types of malware attacks;
Ransomware, Trojan attacks, Zero-Day attacks Adware. Each type of attack is
similar yet can be distinguishable to some extent.

1.2 Research Problem
According to [36], malware is a very concerning threat that invades computer se-
curity and makes it vulnerable. Analyzing it is a challenge both theoretically and
practically in the field of Computer Science, and there could be lots of undecid-
able problems to face during the research. Some problems are unpacking execution,
identifying malware samples by matching against a set of known templates, and end
detection of trigger-based behaviour [13]. In this work, we focused on four types of
malware (Adware, Ransomware, Trojan Zero-day).

1

Android malware is evolving very fast, and these can escape the traditional solutions
[13]. One of the ways it is spreading very fast is through mobile ads. Third-party
apps are also responsible for hosting mobile malware. According to a statistic [9],
mobile malware is on the rise, with the number of new mobile malware varieties
increasing by 54% in 2018. Machine learning-based solutions are quite a popular
tool to detect adware.

Ransomware is another deadly malware that is aimed to restrict targeted victims
from accessing computer data by encrypting it with an indestructible method that
can only be decoded by the attacker [47]. Even if the victim tries to delete the
software, it leads to the victim losing all his/her data permanently. This paper [24]
stated how traditional software’s vulnerable to detecting Ransomware in executable
files. In another paper, the author tried to distinguish Ransomware from other kinds
of malware [23].
The trojan is another well-known malware. Trojans have been upgraded, and a
variety of sophisticated tactics have been merged, making detection much more
complex and time-consuming than in the past. Lack of awareness and information,
as well as effective Trojan analysis techniques, have resulted in financial loss, lower
productivity, and harm to organizations’ reputations [1].

Zero-day is another type of threat that hasn’t been encountered before. It has been
created to exploit or interrupt network communications. Unsupervised algorithms,
which are anomaly-based, may demonstrate low detecting performance. It has been
seen that unsupervised algorithms like KNN and MLP work better than a lot of
supervised algorithms. Another paper also demonstrated a previously mentioned
advantage in detecting zero-day attacks using supervised algorithms; hence, a logical
strategy appears to be to develop a synergy between supervised and unsupervised
ML algorithms in order to design a successful model [3][41].

Therefore, with a large number of datasets that is available to us. In this paper, we
are going to answer the question:

Which ML classifier has the highest accuracy in classifying certain kinds
of malware?

As mentioned earlier, we are going to use ten different ML algorithms.

The research has given an answer to the above question by exploring the different
malware and finding the best accurate algorithm.

2

1.3 Aims and Objectives
This research aimed to understand better different ML classifiers’ effectiveness on
different types of malware. With our large dataset, we used ten popular machine
learning algorithms to evaluate the performance, along with the following objectives
for this research.

1. To evaluate the use of ML Algorithms in cyber security.

2. To deeply understand the different types of malware.

3. To find the effectiveness of different ML algorithms for a vast dataset.

4. To compare the accuracy and other parameters of different ML algorithms on
the classification of different malware.

5. To understand the use of Neural Network to improve the detection of malwares.

1.4 Application area of ML algorithms
Along with cyber security, ML algorithms have been proven an effective tool to solve
many problems in every sector of human life. ML algorithms are vastly used in the
healthcare sector. Detecting many diseases has been much easier with the help
of ML classifiers. In addition to that, people use ML algorithms in other sectors,
such as agriculture, transportation, and financial services. As ML algorithms work
on datasets, this tool benefits data-intensive legal works also. As a result, many
researchers work with ML algorithms in those sectors. Besides, many are working
to bring more novel approaches to solve the same problem more effectively and
efficiently.

In a recent paper [32], authors have improved the NB classifier to reduce traffic risk.
They have used feature weighting and Laplace calibration for the improvement of
this ML algorithm. This modified classifier works better on the large dataset than
on small samples. However, this improved NB classifier has an accuracy of 92% in
predicting and classifying driving risk, whereas the original NB has an accuracy of
49.5%. After that, in another research [35], an SGD-based algorithm was used to
predict cancer genes. Univariate analysis was performed before applying the ML
classifiers in this paper, and a log loss metric was used to evaluate the model. Other
than this, Neural Network has also been used in the prediction of hereditary cancers
in another paper [46]. The researchers have developed NN-based models to predict
breast cancer. Furthermore, AdaBoost has been used to classify soil and, based on
the soil class, recommends appropriate fertilizer to enhance the productivity of a
field [11]. This algorithm identifies the richness rate and supplements of soil to pre-
scribe the fertilizer based on the outcome. Furthermore, as the Decision Tree-based
models have a low prediction accuracy level in data mining, the authors of the paper
[29] aimed to improve the optimization technique of this model. They suggest a way
to discretize continuous characteristics using a probabilistic approach. It vastly im-
proves the categorization rule, eliminating incorrect classification rules to improve
accuracy. Several other papers [34][20] also used DT to predict daily smoking be-
havior and classify the pavement’s roughness. Besides, DT and LR were used to

3

predict the traffic congestion problem of the urban area. LR achieved 95.69%, and
DT achieved 97.65% accuracy from the confusion matrix in another paper [28].

Further, these algorithms and SVM combined were also used to predict heart disease
[5]. The author attempted to identify the key factors and accurately estimate the
total risk by applying homogenous data mining techniques. The author also used
hybrid data mining methods with the amalgamation of these algorithms to find the
best result. RF was used in spam email filtering and house price prediction models
[43][10]. RF utilizes the concept of ensemble learning to address complicated issues
by adding multiple classifiers to boost the model’s accuracy. While testing the
accuracy, it was learned that the house price prediction model almost predicted
the prices perfectly and only with a -/+5% price difference in some cases. The
spam filtering model also performed very accurately, with an accuracy of 99.92%.
Multifactorial genetic disorder diseases like cancer, dementia, and diabetes can be
stopped if it is detected at early stages [45]. ML classifiers like KNN and SVM
are used to predict diseases with multifactorial genetic inheritance history with an
accuracy of 92.8% and 91.2%, respectively. In the paper [44], the author examines
using a mathematical model as a substitute for the software thermal testing using
XG Boost algorithm. XG Boost is a machine learning technique that was used to
develop a mathematical model that utilizes decision trees. The author predicted
the temperature of silicon heaters which are similar to IC chips on a circuit board.
With the maximum error being 13.5% and a minimum error of 8.5%, the xG Boost
can be seen as a valuable method for predicting IC chip temperature and reducing
electronic failures caused by insufficient heat dissipation. From the above discussion,
we can say that ML has a vast application area that covers almost every aspect of
our life.

1.5 ML in Malware Detection and Classification
In cyber security, many researchers use a static or dynamic approach to analysis to
determine whether software code is malicious or benign. Static analysis methods do
not run code and instead rely on the code structure and other data features which
are binary. On the contrary, dynamic analysis methods run the code to examine
its execution characteristics via the network or endpoint devices [16]. In addition
to that, using Machine Learning (ML) techniques enables automatic identification
of malware based on their dynamic behavior and improves security [26]. In this
paper, we used ten different ML algorithms. They are NB, RF, DT, MLP, Ad-
aBoost, XGBoost, KNN, LR, SVM, and SGD. After applying the algorithms, we
analyzed which classifier has the best malware classification and detection efficiency.
For the dataset, we merged four datasets from ”[CIC-AndMal-2020] Static-Dynamic
Malware Analysis” [42] containing different datasets on different malware, and we
worked with the merged dataset. After merging, we applied Feature Selection to
extract features and then applied ML algorithms for further analysis. The exper-
iment result showed the effectiveness of different classifiers in classifying different
malware.

4

Chapter 2

Literature Review

In the world of technology, malware attack is a prevalent cyber-attacks that is ex-
panding all over the world at a threatening rate. Malware can cause many problems
on a computer, mobile, or any other smart device. Some malware can occupy a great
space in a device, causing a storage shortage, whereas some malware can freeze the
system or crash it. Moreover, some malware can access important information and
manipulate it in various ways, which dramatically threatens cyber security. For this
reason, various ML algorithms are a handy tool to detect and prevent such malware.
Besides, many researchers are working to ensure data security by using advanced
techniques like Neural Network, Deep Learning, Data Mining, etc., which can also
detect unknown malwares. As a result, using ML algorithms and other advanced
techniques for detecting and classifying different malwares has become a viral work
in the last many years.

2.0.1 Malware
Any file or program that is intended to cause harm to a user is classified as malware.
A virus is one of the types of malware which works on its own and spreads to other
programs. Another such type of malware is worms, that self replicates and spread
autonomously; spyware, which discreetly collects user information and activity; a
Zero-day attack is something that uses a zero-day exploit to steal or damage data
from a computer or any other system; Ransomware encrypts a user’s data and
demands payment. Some other forms of malware are Adware, Keyloggers, Rootkits,
and Backdoor viruses.

Usually, the intentions of the owners of malware are to steal personal, financial,
or corporate information either to target advertisements or to have control over a
particular device within a botnet.

5

2.0.2 Related Work
Adware

Adware is advertising-supported software that usually displays unwanted advertise-
ments. In the research paper[30], a detection model was proposed which would
protect the smart devices from adware attacks. Different data pre-processing ap-
proaches, feature selection algorithms, and ML techniques are used to detect Adware
using any dataset. In this research[30], (CICAndMal2017) dataset is used, which
consists of samples of benign and other malwares.

The researchers of the paper [18] used a machine learning approach based on a
scheme to detect Android Adware based on static and dynamic features. Classifying
each adware sample into a specific family of machine learning techniques, Adware
was detected. The machine learning approach combining static and dynamic features
was preferable to using static and dynamic features alone. From the Drebin dataset,
APK files were obtained for adware families Hamob and Copycat.

Ransomware

According to [47], one of the problems with preventing Ransomware totally that
new types of Ransomware are getting created every day, and old traditional anti-
Ransomware systems are struggling against them. So the authors included Neural
Network in the traditional system that can be used extensively in the creation of
novel Ransomware solutions. The authors used a dataset from Github named Ran-
somware (Malware) Detection Using ML. The authors implemented a 10-fold cross-
validation technique to generalize the model. They used accuracy, F-beta score,
precision, recall and area under the ROC curve to evaluate the performance of the
models. In [24], the author also stated how traditional antivirus softwares are vul-
nerable to detecting Ransomware in executable files. In both of these models, we
can see the highest accuracy in Random Forest (RF) algorithm.

In this experiment, the author tried to distinguish Ransomware from other kinds
of malwares [23]. The proposed Class Frequency and a Non-Class Frequency model
is generated using the generator vector with weights. They also used six ML Al-
gorithms RF, NB, SGD, KNN, SVM and LR, of which the detection accuracy was
up to 98.65%. In this solo author paper [19], the author aimed to expose the Ran-
somware attacks on android phones using machine learning. This study also used
the popular Machine Learning Algorithms like DT, RF, Gradient Boosting Decision
Trees and also AdaBoost. The author used datasets from HelDroid and merged
selected datasets to a total sample of 1923 records. Using the dataset with five
attributes, the author found a high average of 98.05% accuracy rate, but the author
also found decreasing in the accuracy in the Gaussian and Bernoulli on 97.6% while
the Multinomial is on 81.6%.

6

To identify Ransomware, in paper [12], the researchers created a reverse engineer-
ing framework that incorporated feature engineering and machine learning. Their
methodology is utilized for multi-level analysis to inspect in a better way and com-
prehend the intent of malware code parts. In this model, the author proposed two
major attributes, which are Feature Generation Engine along with ML model. Also,
they have used eight ML classifiers, and all of them could reach an accuracy level
of more than 90%. Among them, BN obtained the highest accuracy of 97.076% and
LR had the lowest accuracy of 89.183%.

Trojan

Sequential Minimal Optimization (SMO) was designed to identify Trojan Horse ac-
cording to [6]. The researchers worked with datasets from VX Heaven and Offensive
Computing, and they implemented Data Mining (KDD) and Knowledge Discovery
to extract the patterns. While comparing the findings with other classifiers like
MLP, J48, IBK, and Naive Bayes in [6], SMO got the highest TP rate which is
98.2% accuracy.

A recent work [15] shows the importance of detecting the Trojan attacks on runtime.
STRIP was conducted on MNIST, CIFAR 10, GTSRB to check if it could identify
Trojaned inputs. Besides, other Trojan detection works like AC, NC and SentiNet,
along with STRIP, were performed to compare with each other. In this comparison,
STRIP could evaluate on MNIST and CIFAR 10 datasets along with SentiNet and
its computation cost and time overhead were less than that. In another research
[40], Meta Neural Trojan Detection (MNTD) was introduced, which was also trained
on the MNIST dataset. This model was also compared with the other algorithms
used in the paper [15] and achieved the highest accuracy with less time complexity.

Further, many Supervised and Unsupervised Machine Learning algorithms are used
in the detection of Trojan in hardware. According to [7], Online Learning Algorithm,
which is MBW (Modified Balanced Winnow), is used for detecting hardware Trojans
in real-time. In another paper [33], Random Forest Model was designed to detect
hardware Trojans. However, our focus will be on software-based Trojan rather than
hardware-based Trojan.

Zero-day

Zero-day attack is known as the threat of an unknown security issue. It can be
either software or an application for a computer or other smart devices. The patch
has not been released, or the application developers were unaware of or did not have
sufficient time to address it. Zero-day is created using code obfuscation techniques
that can modify the authentic code to produce multiple copies which have similar
functions in different signatures.

According to [38], a methodology has been introduced to evaluate the performance
of ML techniques in the detection of zero-day attacks. Zero-shot Learning (ZLS) is
a new technique which is used to evaluate and improve the ML models for new or
unseen data classes [39]. In this research, two NIDS datasets are used to evaluate
the performance of the ML models, i.e., NF-UNSW-NB15-v2 [46] and UNSW-NB15

7

[35]. In work [25], an autoencoder implementation is proposed for the detection
of zero-day attacks. Two well-known IDS data sets are used for evaluation—CI-
CIDS2017 dataset and NSL-KDD. The results demonstrate a zero-day detection
accuracy of 89%-99% for the NSL-KDD dataset and 75%-98% for the CICIDS2017
dataset [39]; a detailed analysis is provided on three datasets, the CIC-IDS2018,
which is a better approach than other open-source data sets, which are very popular
but old, KDD99 and NSL-KDD. Dataset Wednesday-21-02-2018 reached the highest
accuracy of 99.999%.

Reference Number Algorithm Ransomware Adware Zero-day Trojan

[12], [37], [7] Naive Bayes
Classifier (NB)

90.33% [12],
35% [37],
97.6% [7]

- - -

[8], [38], [37], [7] Decision Tree
(DT)

97.46% [38],
98% [37],
97.6% [7]

98.66% [8] - -

[12], [38], [37], [32], [35] Random Forest
(RF)

98.51% [12],
97.86% [38],
99% [37]

- 80.67% [32],
98.27% [35]

[7] Ada Boost 97.5% [7] - - -

[8], [12], [38], [37] Logistic Regression
(LR)

90.27% [12],
78.54% [38],
98% [37]

83% [8]

[8], [12], [38] K-Nearest
Neighbor (KNN)

98.06% [12],
97.46% [38] 98.05% [8] - -

[8], [35] XG Boost (XGB) - 98.10% [8] 98.513% [35] -

[12], [35] Support Vector
Machine (SVM) 79.82% [12] - 98.058% [35] -

[8], [37], [32] Multi-Layer
Perceptron (MLP) 97% [37] 96.4% [8] 85.5% [32],

95.90% [32] -

[46] Meta Neural Trojan
Detection (MNTD) - - -

Average over 97%
and over 90% for
jumbo MNTD [46]

[14] STRIP - - -
Over 93% for

several datasets
[14]

Table 2.1: Accuracy of ML Algorithms for Malware Detection of Previous Works

8

Chapter 3

Working Principles of Algorithms

3.1 Gaussian Naive Bayes
Naive Bayes is a robust algorithm used for classification [2]. It calculates conditional
class probabilities based on Bayes Theorem, which can be denoted as equation 3.1.

P (X|Y) =
P (X).P (Y |X)

P (Y)
(3.1)

Here, P(X) = Probability of X
P(Y) = Probability of Y
P(Y|X) = Probability of Y given X
P(X|Y) = Probability of X given Y

Then, it computes the most probable class from a vector of training data X and
sample data D. Gaussian NB approach uses Gaussian distribution X, computing its
parameters from the sample data, covariance matrix, and mean vector. A particular
feature is chosen from the dataset, and an assumption is made that this picked
feature is strongly independent of any other features. In a supervised learning
method, GNB can be very efficient and implemented in real-life situations.

3.2 AdaBoost
AdaBoost starts working by making stumps from each feature of the dataset. Here,
a stump is a node with two leaves. At the initial stage, weights are calculated for
each record and assigned sample weights following w = 1/N , where N is denoted
as the number of records [48]. After that, from each stump, this algorithm will
generate a decision tree and calculate its Gini and Entropy.

Gini = 1−
∑
i

p2i (3.2)

Entropy = −
∑
i

pi ∗ log2 ∗ pi (3.3)

In formulas 3.1 and 3.2, pi is the probability of the corresponding class i.

Then, the first base learner will be selected from the stumps with the least Gini

9

and Entropy. After that, TE (Total Error) will be calculated to further calculate
the performance of the stump by following the formula 3.4. TE is calculated as the
summation of errors in the classified records in terms of the sample weights.

Performance =
1

2
ln

[
1− TE

TE

]
(3.4)

For a correctly classified sample, the performance value will be negative, and for
the wrong output, it will be positive. After calculating performance, all the weights
need to be updated following formula 3.5.

New weight = Previous weight ∗ eperformance (3.5)

Then, normalization might be applied to bring the sum equal to 1 if it is less than
1. Thus, iterations will be run through stumps to find the lowest training error, and
a prediction will be made when it is achieved.

3.3 Stochastic Gradient Descent
SGD starts from a random point, and in each iteration, it goes down its slope
in steps on a function until it gains the lowest point [17]. At first, a gradient
of the function is calculated. Then, a random initial point is chosen, and the
gradient is updated for the parameter values. After that, the step size is calcu-
lated where step size = gradient ∗ learning rate, and the parameter is updated as
new parameter = old parameter − step size. Here, the learning rate is set to be a
small value so that the step size does not jump down too much. Thus, iteration will
take place for every point until the algorithm finds the gradient close to 0.

3.4 Multi Layer Perceptron
A multi-layer perceptron is a type of fully connected feedforward artificial neural
network. For training, the dataset MLP applies the supervised backpropagation
learning method. Consisting of an input layer, hidden layer, and output layer, MLP
has at least three levels of nodes [11]. Each node has an activation function, and each
node is connected to every other node in the layer below. An MLP is distinguished
by multiple layers of input nodes connected as a directed graph between the input
and output layers. The (hidden layer sizes) attribute is essential for defining the
number of hidden levels and the nodes within each layer. The performance of the
model is enhanced by adding layers to the hidden layers and nodes. A sigmoid
activation function is used by each node in the multi-layer perception. The sigmoid
activation function takes actual values as input and uses the sigmoid formula to
transform them into numbers ranging from 0 and 1 [51].

f(x) =
1

(1 + e−x)
(3.6)

Before beginning training, the network’s weights are randomly assigned. The model
is validated after completing the learning step with the training data. In the training

10

set, data are inputs (x1, x2), and y is the expected output of the input data with
weight, w, and bias, b [21]. The output is determined by neurons and the neural
network’s weight. It is represented by

y = wx+ b (3.7)

3.5 Decision Tree
The decision tree is a supervised learning model applied in regression and classifi-
cation problems. Mostly used as a classifier, it is a tree-based structure where the
internal nodes denote dataset features, branches for the decision-making process,
and each leaf node for the classification result [50]. A decision tree is created us-
ing an algorithmic method that finds different circumstances under which to divide
a data collection. The CART algorithm (Classification and Regression Tree algo-
rithm) is used to construct a decision tree. The tree does simple binary Yes/No
questions, and based on that, it splits into subtrees. The fundamental problem that
emerges while developing a decision tree is chosing the best attribute for the root
node and for sub-nodes. So, a method known as attribute selection measure, or
ASM, can be used to tackle these issues. By using this measurement, we can choose
the ideal attribute for the tree nodes with ease.
To have the best possible outcome decision tree uses a metric measurement called
entropy. Entropy is a measurement used to assess the impurity of a particular
characteristic. It describes the randomness of data [50]. Using the training dataset,
it can be calculated as E(T) using the following equation 3.8 where Pi is distribution
of each attribute [15].

E(T) =
∑
−PilogPi (3.8)

3.6 Random Forest
Random forests are a collection of tree predictors where each tree is reliant on the
values of a random vector sampled randomly and with the same distribution for
all trees in the forest [8]. Each tree is trained with replacement using a single
subset of the training data. It is an unsupervised algorithm that uses the bootstrap
aggregation ensemble technique. Using the random forest classification model first
takes input data(assuming the dataset has k sets), which takes n sets of data. Then
from the given attributes, it selects some random number of attributes. Then it
uses these attributes to generate output using multiple decision trees through the
training method. As the name suggests, it builds a forest of decision trees from
our given set of attributes, with each giving an output, and finally, it gives the
result based on the majority of votes given by each tree [15]. This step is known
as aggregation. Random forest is a very diverse algorithm as it does not consider
all attributes/features while building a tree, as each tree is unique. Also, it reduces
the risk of having dimensionality problems. We also do not need to separate the
data into train and test because the decision tree generated using bootstrap would
always ignore 30% of the data. Even with some limitations, it is a very robust,and

11

reliable model to use for maximum performance and efficiency. It is a tree-structured
algorithm and can be represented as a formula 3.9 [37].

h(x, ik), k = 1, 2, 3, 4,N (3.9)

Here, N is the number of input vector x and ik is the causative factors.

3.7 K-Nearest Neighbour
KNN is a supervised algorithm that classifies data based on proximity or distance.
At first, parameter k is set to equal the number of the nearest neighbor. Then
the distance is measured. Mostly, Euclidean distance is used to measure the dis-
tance between neighbors.If coordinates of two points are (x1, y1) and (x2, y2), then
it can measured as

√
(x2 − x1)2 + (y2 − y1)2. Based on the distance, the K nearest

neighbor is determined. Then among the K neighbors, the number of data points is
counted. Finally, new data points will be assigned in the category where the neigh-
bor is maximum. The advantage of this algorithm is its simplicity and accuracy.

3.8 Logistic Regression
Logistic Regression is used to predict the output of the categorical dependent vari-
able. This algorithm gives output as discrete values: 0 or 1. Here a threshold
value limit is set, which will round up the input values into 0s and 1s. Initially,
the input values would be set to X. Then, by using Linear Model, the probabilities
of the inputs would be found. Now, a threshold is to be set to 0.5. Based on the
threshold value, all the values would be rounded up. The values which are above
the threshold are 1, and the below values are 0. The final result would be produced
as either 0 or 1 based on probabilities. The probability, P, can be computed from
the following equation 3.10 where a and b are the parameters of the model and X
is the independent variable.

P =
ea+bX

1 + ea+bx
(3.10)

3.9 Support Vector Machine
SVM or Support Vector Machine is the most well-established supervised ML tech-
nique that generates a nanoprobabilistic classification model to determine new data
categories. It is universally used for data analysis or pattern recognition. Generally,
SVM is used to determine a hyperplane that separates the two classes in the training
set. These classes are put into different categories. Then, the decision boundary
is generated on the base of the support vectors from the two closest points. For
multiple classes, the decision boundary is a hyperplane instead of a straight line.
Thus, data points are classified using SVM. Although it is sometimes hard to find
such a hyperplane, SVM uses kernels that include linear, non-linear, polynomial,
Gaussian, and Radial Bass functions.

12

3.10 XGBoost
XGBoost is known as a distributed gradient boosting library that has been devel-
oped to be very effective, adaptable, and portable. It uses the Gradient Boosting
framework to implement machine learning algorithms. It reduces the error rate in
sequential models boosting and optimizing decision trees. Further, XG Boost op-
erates well for discrete, unstructured, and medium-sized datasets [33]. By dealing
with missing values and tree pruning, XGBoost reduces the training duration. The
capacity to cross-validate data and parallel processing.The algorithm starts with the
root node. Then it traverses all over the nodes using a depth-first search. The loss
reduction follows as equation 3.11.

G = loss(F)− (loss(LB) + loss(RB)) (3.11)

Here, G stands for gain in the branch while F represents parent node, and RB, LB
denotes right node, left node respectively. This algorithm develops the efficiency of
computational time.

13

Chapter 4

Methodology for Malware
Classification

Our overall work focused on classifying different types of malware using machine
learning. We used a dataset where four types of malware were available. This
chapter explains the methodologies we used to complete our work. Everything
was done following several steps, from merging the dataset to data pre-processing.
After that, ML classifiers were implemented, and classification reports and confusion
matrices were generated to calculate the performance metrics. The flowchart of our
work is shown in Figure 3.1.

Figure 4.1: Work Flow

The classification process is to classify different malware. There are three significant
steps we considered to achieve our goal. Firstly, Input data: we merged four datasets
with similar labeling, categories, and characterization. Then, applied Feature Se-
lection to reduce the dimensionality of the dataset. Data pre-processing: here, we
applied several techniques like label encoding and scaling to prepare the data for
applying classifiers. Then, we split the dataset into train and test sets for training
classifiers on the test set and testing datasets on the test set. Prediction: In this
stage, we used ten ML algorithms to classify and predict the algorithm’s accuracy
for this dataset.

14

4.1 Input Data
There are plenty of detection-based data available in the research field. However,
most of the data we found detected certain malware. Our goal is to classify different
types of malware, so we needed data where at least 5-6 types of malware were
available in an extensive dataset. Furthermore, we had another option to merge
the different malware datasets and work on the merged dataset. In that case, we
also had to merge the datasets based on the features, which was tricky to achieve.
We also wanted to work on a comparatively new dataset. The dataset we used [42]
here meets our goals. There are 14 prominent datasets available with 191 malware
families. The datasets are labeled and characterized into the corresponding family.
This dataset is acquired from Androzoo dataset. This dataset is also perfect for
us as all the categories and features are the same, characterized and broken down
into 6 After running the malware in an emulated environment, several features are
extracted. The main six categories include memory, Api, network, battery, logcat,
and process. The categorized malware families are collected and divided into eight
areas which also include sensitive data from media, hardware, internet, storage, etc.
There are 14 different malware types of data available in this dataset; among them,
we chose four based on the most available number of samples as it would give us
the scope of working on a large dataset to acquire the best possible outcome of this
research.
This dataset is freely available at Kaggle with proper labeling and categories. And
according to our research goal, we merged the dataset to classify different malware
using different ML algorithms.

4.2 Feature Selection
Feature selection denotes reducing data dimensionality to increase the algorithm’s
performance [22]. It is a part of data preprocessing in which unnecessary, less
essential, or redundant data are removed from the dataset.

The Pearson correlation method for feature selection explains a linear relationship
between two variables [27]. This method finds the relationship between class features
and continuous features. High correlative variables are more linearly dependent, so
similar effects on dependent variables can be observed.

A value between -1 and 1, known as a Pearson correlation, quantifies the degree
to which two variables are linearly connected. Our dataset consisting of numerical
values is very suitable for finding the correlation between the categories. The goal
of this is to drop the features which are slightly correlated. Here the correlation
values can be described as,

• When the value is 0, it means the features share no relation with each other.

• Value around 0 means the weak correlation.

• A value approaching 1 indicates a stronger positive correlation, and a value
approaching –1 indicates a stronger negative correlation.

15

So, to understand the correlation between features, we generated a heatmap, shown
in Figure 4.2. From it, we can see that some unnecessary features have 0 correlation
with each other and some weakly correlated features. For generating a heatmap and
implementing FS, we followed some steps, which can be written as follows,

Step 1: After importing all the essential modules and the dataset, we pass the data
with Corr() method to generate a heatmap.
Step 2: Then we label the X/Y axis of the dataset where we have independent and
dependent features.
Step 3: Then we split the data to train and test so that we will be able to overcome
the overfitting issue.
Step 4: As we are working on a large dataset, we generated a 200/200 while plotting
the figure of the dataset. As we generate the Corr() of x_train, our heatmap gets
generated in the figure.
Step 5: It is essential to give appropriate colors to understand the correlation from
looking at the picture. It gives us a better scope to visualize the relation than just
looking at numbers.
Step 6: Then we used Algorithm 1 where we passed three parameters named dataset,
thresholdUp, and thresholdLow as –0.003 to 0.003 as we wanted to drop our corre-
lated features between these range.
Step 7: Inside the correlation matrix, we traversed through all the correlation matrix
columns. Then the algorithm will compare each column with every other column
and give us a value between –1 to 1.
Step 8: From each column’s correlation value, we dropped the features where the
correlation value was between –0.003 to 0.003 and created a dataset of 74 columns.

Algorithm 1 Feature Drop Algorithm
1: Generate a correlation matrix from the dataset
2: i← 1, j ← 1
3: thresholUP ← 0.003, thresholdLow ← −0.003
4: while i ≤ len(matrix.columns) do
5: while j ≤ i do
6: if matrix[i][j] ≥ thresholdLow and matrix[i][j] ≤ thresholdUp then
7: delete matrix.columns[i] from the dataset
8: end if
9: end while

10: end while

16

Figure 4.2: Heatmap before Feature Selection

17

Figure 4.3: Heatmap after Feature Selection

4.3 Data pre-processing
After Feature Selection, we proceeded to pre-process our dataset to make it con-
venient for classifiers. Firstly, we found the categorical feature of our dataset and
encoded it using the Label Encoding technique. Then, we separated this feature
from our dataset and applied MinMax scaler to rescale the range of the features
between 0 and 1. It helps the classifiers to learn efficiently and understand the
problem in a better way. After scaling, we used train-test-split to split the dataset
by an 80% - 20% ratio so that we could fit the classifiers on the train sets and make
predictions on the test sets.

18

Chapter 5

Experimentation

5.1 Algorithm Implementation
We used python libraries and packages like Numpy, Pandas, Matplotlib, and Seaborn
for our coding. After pre-processing the data, we applied ten classifiers one by one
to generate classification reports and confusion matrices and test the accuracy of the
algorithms. For that, we imported classifiers from the Sklearn library and created
an object for each classifier. Then the objects were fitted on the train sets, and
predictions were made on the test set. By comparing the test prediction and actual
value, accuracy was achieved.

5.2 Performance Metrics Calculation
We generated a Confusion Matrix (CM) for each classifier to identify each class’s
TP, TN, FP, and FN. The dimension of each CM is 4*4 as we have four classes.
Here, for a particular class in a confusion matrix, TP is the true positive value,
TN is the summation of true negative values, FP is the summation of false positive
values, and FN is the summation of all the false negative values.

Prediction
Parameter Ransomware Zero-day Trojan Adware

Ransomware TP FN FN FN
Zero-day FP TN TN TN
Trojan FP TN TN TN

Actual Adware FP TN TN TN

Table 5.1: Confusion Matrix for Ransomware

In Table 5.1, the determination of parameters for Ransomware CM is shown. TP
is the value where actual and predicted values intersect with each other. FN is the
summation of values of that corresponding row, excluding the TP value. Similarly,

19

FP is the summation of the corresponding column values without the TP value.
Furthermore, TN is the summation of all the other values of the CM, excluding the
corresponding row and column values. Thus, we calculated TP, FP, TN, and FN
for each class from CM for every ML classifier. Lastly, We calculated TPR, TNR,
FNR, FPR, and accuracy by following the formulas.

TPR =
TP

TP + FN
(5.1)

FNR = 1− TPR (5.2)

TNR =
TN

TN + FP
(5.3)

FPR = 1− TNR (5.4)

Accuracy =
TP + TN

TP + TN + FP + FN
(5.5)

20

Chapter 6

Result Analysis

In this chapter, we showed the performance metrics of each classifier with the pa-
rameters of accuracy, recall, precision, F1-score, TPR, TNR, FPR, and FNR, along
with the analysis. Apart from it, we also generated a validation accuracy curve and
validation loss curve to evaluate each model.

6.1 Gaussian Naive Bayes

GaussianNB
Accuracy Precision Recall F1-score TNR FPR FNR TPR

Adware 0.7248 0.84 0.38 0.53 0.9521 0.0479 0.6167 0.3833

Trojan 0.6867 0.26 0.93 0.41 0.6555 0.3445 0.0741 0.9259

Ransomware 0.7349 0.57 0.63 0.60 0.7824 0.2176 0.3694 0.6306

Zero-day 0.8103 0.36 0.12 0.18 0.9535 0.0465 0.8761 0.1239

Table 6.1: Experimental Results of GNB

In Table 6.1, it can be seen from the accuracy column that GNB could not perform
well in classification. GNB achieved a good precision in classifying Adware, whereas
others’ precision was very low compared to it. Precision and recall are essential
parameters for classifying malware to understand its effectiveness. Like precision,
GNB’s recall values (TPR) were also low for most cases; exceptions could be seen
for Trojan. Additionally, F-1 scores of GNB classification were low as it depends
on precision and recall values. On the other hand, the miss rates (FNR) were
higher for Adware and Zero-day, meaning these malware could not be classified well
by GNB. Additionally, GNB underfitted the dataset in both the validation accuracy
and validation loss curves in Figure 6.1, this algorithm performed poorly in malware
classification based on the performance metrics, and its overall accuracy was 47.84%.

21

Figure 6.1: Validation Accuracy vs Validation Loss curve of GNB

6.2 AdaBoost

AdaBoost
Accuracy Precision Recall F1-score TNR FPR FNR TPR

Adware 0.8247 0.75 0.85 0.79 0.8091 0.1909 0.1518 0.8482

Trojan 0.9728 0.85 0.93 0.89 0.978 0.022 0.0673 0.9327

Ransomware 0.8321 0.72 0.76 0.74 0.8655 0.1345 0.2413 0.7587

Zero-day 0.8364 0.55 0.29 0.38 0.9512 0.0488 0.714 0.286

Table 6.2: Experimental Results of AdaBoost

Table 6.2 shows that the accuracy column performed pretty well in classification.
Analyzing the precision column, we get the idea of how many predicted cases are
positive. We see the precision of Trojan is comparatively higher than the others.
Similarly, Adaboost’s recall value is lower except for Zero-day. F1 score depends on
precision and recall values. So, its value is low compared to precision and recall.
On the contrary, the miss rate (FNR) is high for zero-day, which means zero-day
is not classified well by Adaboost. Besides, with AdaBoost, there is no overfitting
or underfitting issue, which can be seen in Figure 6.2. Finally, we see that this
algorithm has an accuracy of 73.30%.

Figure 6.2: Validation Accuracy vs Validation Loss curve of AdaBoost

22

6.3 Stochastic Gradient Descent

SGD
Accuracy Precision Recall F1-score TNR FPR FNR TPR

Adware 0.6988 0.57 0.93 0.71 0.8091 0.4539 0.0653 0.9347

Trojan 0.9273 0.72 0.72 0.72 0.978 0.0419 0.2818 0.7182

Ransomware 0.8127 0.82 0.52 0.64 0.8655 0.0535 0.4761 0.5239

Zero-day 0.8492 0.72 0.12 0.2. 0.9512 0.0088 0.8849 0.1151

Table 6.3: Experimental Results of SGD

Table 6.3 shows that the accuracy column performed better in classifying malware,
except for Adware. The precision column gives us the ratio of correctly classified
positive samples to the total number of classified positive samples. The precision of
Ransomware was comparatively higher. The recall measures the model’s ability to
detect positive samples, and here Adware’s recall value was higher than others. As
the F1 score was the weighted average of precision and recall, its value was lower
than precision and recall. However, the miss rate (FNR) was higher in Zero-day and
Ransomware, and from its overall performance, we can say that it could not classify
the dataset satisfactorily. Eventually, we get an accuracy of 64.40% from SGD. In
Figure 6.3, there was no underfitting, but there was a slightly overfitting issue. In
SGD, a validation loss curve can not be generated because the vanishing gradient
problem causes NAN values in validation loss calculation.

Figure 6.3: Validation Accuracy curve of SGD

23

6.4 Multi Layer Perceptron

MLP
Accuracy Precision Recall F1-score TNR FPR FNR TPR

Adware 0.8997 0.87 0.88 0.88 0.912 0.088 0.1187 0.8813

Trojan 0.9782 0.89 0.93 0.91 0.9851 0.0149 0.0741 0.9259

Ransomware 0.9192 0.89 0.85 0.87 0.952 0.048 0.153 0.847

Zero-day 0.8749 0.63 0.65 0.64 0.9216 0.0784 0.3491 0.6509

Table 6.4: Experimental Results of MLP

Observing Table 6.4, we can say that Trojan and Ransomware’s accuracies are pretty
good. The accuracies of the other two malware were high also. MLP classified
Adware, Trojan, and Ransomware with good Precision and Recall(TPR), except for
Zero-day. The same was for F1-score, since its value relies on precision and recall
values. The miss rates(FNR) for all four malware were low, indicating these classes
were well classified using MLP with an accuracy of 83.60%. Also, in the case of the
MLP validation accuracy curve, both the training and testing accuracy lines in Fig
6.4 are closely aligned. Thus the overfitting issue, in this case, can be negligible.
However, MLP was noticed to be slightly overfitted in the validation loss curve.

Figure 6.4: Validation Accuracy vs Validation Loss curve

6.5 Decision Tree
The accuracy column of Table 6.5 shows that all the malware achieved high accuracy.
However, precision and recall for Zero-day were low but high for all the other three
malware. Similarly, F1-score for that three malware were also high but low for Zero-
day. Miss rates(FNR) for all four malware were lower, letting us know that DT well
classified the malware with an accuracy of 79.63%. From Figure 6.5, we can see
that, in the case of DT, the training accuracy was higher for both the validation
accuracy and validation loss curves, indicating overfitting.

24

DecisionTree
Accuracy Precision Recall F1-score TNR FPR FNR TPR

Adware 0.8686 0.86 0.81 0.83 0.91 0.09 0.1936 0.8064

Trojan 0.9759 0.87 0.93 0.90 0.9824 0.0176 0.0741 0.9259

Ransomware 0.8865 0.80 0.84 0.82 0.9062 0.0938 0.1567 0.8433

Zero-day 0.8616 0.60 0.60 0.60 0.9159 0.0841 0.3986 0.6014

Table 6.5: Experimental Results of DT

Figure 6.5: Validation Accuracy vs Validation Loss curve of DT

6.6 Random Forest

RandomForest
Accuracy Precision Recall F1-score TNR FPR FNR TPR

Adware 0.9129 0.85 0.96 0.90 0.8835 0.1165 0.0428 0.9572

Trojan 0.9864 0.93 0.95 0.94 0.9908 0.0092 0.0471 0.9529

Ransomware 0.9355 0.90 0.89 0.90 0.9559 0.0441 0.1095 0.8905

Zero-day 0.9048 0.82 0.57 0.68 0.9737 0.0263 0.4257 0.5743

Table 6.6: Experimental Results of RF

Table 6.6 shows that Adware, Trojan, Ransomware, and Zero-day accuracy were
all above 90%. Other performance matrices, such as Precision, Recall, F1-score,
were high for Adware, Trojan, and Ransomware but low in the case of Zero-day.
Miss rates(FNR) were also low for all the malware. Thus we can say these malware
are well classified using the RF classifier with an accuracy of 86.98%, which is the
highest among all the other ML classifiers. Since the training accuracy in Figure 6.6
was higher in both curves, the RF is overfitting our dataset.

25

Figure 6.6: Validation Accuracy vs Validation Loss curve of RF

6.7 K-Nearest Neighbour

KNeighbors
Accuracy Precision Recall F1-score TNR FPR FNR TPR

Adware 0.8772 0.83 0.87 0.85 0.8841 0.1159 0.1333 0.8667

Trojan 0.967 0.83 0.90 0.86 0.9754 0.0246 0.0976 0.9024

Ransomware 0.8947 0.82 0.85 0.83 0.9158 0.0842 0.1517 0.8483

Zero-day 0.8749 0.68 0.53 0.59 0.9469 0.0531 0.4707 0.5293

Table 6.7: Experimental Results of KNN

Accuracy for all the malware were high, according to Table 6.7. Other performance
metrics like Precision, Recall, and F1-score were high for other malware except for
Zero-day. FNR or miss rates were low for all the malware, so it is safe to say that
KNN classified these malware well enough with an accuracy of 80.68%. Finally,
according to Figure 6.7, we can conclude that the KNN classifier is overfitting our
dataset since both curves’ training accuracy and loss were higher than validation
accuracy and loss.

Figure 6.7: Validation Accuracy vs Validation Loss curve of KNN

26

6.8 Logistic Regression

LogisticRegression
Accuracy Precision Recall F1-score TNR FPR FNR TPR

Adware 0.7742 0.67 0.86 0.75 0.7184 0.2816 0.142 0.858

Trojan 0.9398 0.71 0.82 0.76 0.9552 0.0448 0.1785 0.8215

Ransomware 0.7995 0.67 0.70 0.69 0.8451 0.1549 0.301 0.699

Zero-day 0.8282 0.51 0.09 0.15 0.9831 0.0169 0.9144 0.0856

Table 6.8: Experimental Results of LR

The LR did not perform very well for this dataset while classifying malware, as it
only had 67.08% accuracy. According to Table 6.8, the accuracy of Adware, Trojan,
Ransomware, and Zero-day are all above 90%. Other performance matrices, such as
Precision, Recall, and F1-score, are high for Adware, Trojan, and Ransomware but
low in the case of Zero-day. Miss rates(FNR) are also low for all the malware. Thus
we can say, these malware are well classified using RF classifier. It had excellent
accuracy in Trojan. Precision and recall had similar results in three malware, but it
performed very poorly in Zero-day. We had similar results in the F1-score, like the
precision and recall. The FNR in Zero-day is much higher, indicating that Logistic
regression did not classify the malware correctly. Also, in the LR validation accuracy
curve, the training and testing accuracy lines shown in Figure 6.8 are closely aligned.
The validation vs. training loss curve also showed that this algorithm did not face
any overfitting or underfitting issues, similar to the validation accuracy curves.

Figure 6.8: Validation Accuracy vs Validation Loss curve of LR

27

6.9 Support Vector Machine

SVM
Accuracy Precision Recall F1-score TNR FPR FNR TPR

Adware 0.8212 0.73 0.88 0.80 0.7832 0.2168 0.1216 0.8784

Trojan 0.9518 0.74 0.91 0.81 0.9578 0.0422 0.0943 0.9075

Ransomware 0.8492 0.75 0.77 0.76 0.8841 0.1159 0.2276 0.7724

Zero-day 0.8422 0.63 0.20 0.31 0.9751 0.0249 0.795 0.205

Table 6.9: Experimental Results of SVM

In Table 6.9, we got average results in all classifiers using SVM, with Trojan having
the highest accuracy. Overall, this algorithm achieved 73.2% accuracy. However, it
failed to hold out the precision and recall in the zero-day result. It got much worse
in Zero-day, with values dropping way below the other three. The FNR values were
also much lower for all algorithms apart from Zero-day, which indicates that the
algorithm performed very poorly for Zero-day. TNR values are also relatively high,
demonstrating that this algorithm could correctly categorize the false values in most
cases. Unlike most other algorithms we used in this research, we could not generate
a validation loss curve for SVM as the training loss and testing loss values became
NAN. However, this algorithm did not face any overfitting or underfitting issues in
the validation accuracy curve.

Figure 6.9: Validation Accuracy curve of SVM

28

6.10 XGBoost

XGBoost
Accuracy Precision Recall F1-score TNR FPR FNR TPR

Adware 0.8931 0.83 0.92 0.87 0.8751 0.1249 0.0798 0.9202

Trojan 0.9771 0.87 0.95 0.90 0.9811 0.0189 0.0539 0.9461

Ransomware 0.9024 0.82 0.88 0.85 0.9135 0.0865 0.1219 0.8781

Zero-day 0.8791 0.76 0.43 0.55 0.9723 0.0277 0.5676 0.4324

Table 6.10: Experimental Results of XGBoost

XGBoost achieved 82.59% accuracy for the classification. It has a noticeably good
individual accuracy, and the precision was over 80% on average for all four classes.
Apart from these two parameters, we can see in Table 6.10 that the miss rate (FNR)
is very low for Adware, Ransomware, and Trojan, which indicates that this algorithm
performed pretty well. Additionally, TNR values are also very high, indicating that
this algorithm could mostly classify the false values in a correct way. However,
XGBoost faced an overfitting issue which can be seen in Figure 6.10. From the
validation accuracy curve, we can see that training accuracy was more than the
testing accuracy. Similarly, from the loss validation curve, the testing loss was more
than the training loss, making the algorithm overfitting the dataset.

Figure 6.10: Validation Accuracy vs Validation Loss curve of XGBoost

29

6.11 Performance Comparison
Analyzing the performance of the algorithms, we can see that our three best fitting
algorithms are RF, MLP, and XGBoost, with an accuracy of 86.98%, 83.60%, and
82.59%, respectively. Based on the performance matrices, RF performed best in all
categories of malware, with an accuracy of over 90% for each class. Although RF
requires more computations and takes longer to train the model because of its multi-
tree structure, it obtained the highest accuracy as it takes the majority vote in the
decision tree while calculating the accuracy. As we found in some previous research
that unsupervised algorithms perform better than supervised ones, we have found
quite a similar case. The Neural Network based multilayer architecture named the
Multilayer Perceptron algorithm performed way better than most supervised mod-
els. Because of hidden layers and nodes and increased accuracy in each iteration, it
provides better results. Like RF, MLP also obtained good accuracy in all four cate-
gories along with good Precision and Recall(TPR). With noticeably good individual
accuracy, and the precision was over 80% on average for all four classes XGBoost is
the third best performing algorithm in our experiment.

Average performing algorithms like K-NN, Decision Tree, Adaboost, and Support
Vector Machine have gained 80.68%,79.63%,73.30%, and 73.20% accuracy, respec-
tively. DT is a tree-based algorithm, but it does not take the majority voting like
RF, thus having lesser accuracy. Even though AdaBoost is in the same family as
XGBoost, it takes more computation time than XGBoost as it takes some irrelevant
data into account while performing. KNN and SVM performed quite similarly, as
shown in the table. Both obtained more than 90% accuracy in one category and an
average of 80% in the other three categories. LR, SGD, and Gaussian Naive Bayes
are the worst performing algorithm in our with an accuracy of 67.08%,64.40%, and
47.84%, respectively. From the experiment, it can be stated that these algorithms
(RF, MLP, XGBoost) performed well in classifying the malware.

Figure 6.11: Comparison of Accuracy

30

Chapter 7

Conclusion

With an increased number of malware attacks on an everyday basis around the
world, a new malware classification system is needed to protect our information
from falling into the wrong hands. Lots of malware share some aspects, but it is
essential to classify them to their respective families. Our research focused on using
different tools and techniques to identify the best model we can use to classify their
variants. Thus, our research used ten different algorithms: NB, AdaBoost, SGD,
MLP, DT, RF, KNN, LR, SVM, and XGBoost.

The experiment showed that our proposed method could classify malware with up
to 86.98% accuracy using RF. In addition, its accuracy and precision for each class
were also very high compared to other algorithms. So, RF performed the best for
our dataset. Figure 6.11 shows the accuracy comparison of ten algorithms. From
this experiment, we can distinguish which algorithm can be used to find the possible
outcome of classifying malware. The dataset we used, which is comparatively new,
can be used for future reference for malware classification. Our comparison model
can give fellow researchers an idea of which algorithms are best suited for classifying
malware.

Our contributions can be summarized as follows:

• We have worked on a comparatively new dataset containing different malware.
We have pre-processed this dataset to find the best possible result.

• We have used ten different algorithms to classify different malware.

• We compared them to find the best possible algorithm to classify malware.

• We have also shown validation accuracy and validation loss curves to determine
if the algorithms face any overfitting or underfitting issues.

• The highest accuracy of 86.7%, and the average malware classification was
more than 70% while considering the combined dataset.

In the future, we want to develop a model based on RF to detect and classify different
types of malware more efficiently in real-time.

31

Bibliography

[1] S. Mitropoulos, D. Patsos, and C. Douligeris, “On incident handling and re-
sponse: A state-of-the-art approach,” Computers & Security, vol. 25, no. 5,
pp. 351–370, 2006.

[2] R. M. Moraes and L. S. Machado, “Gaussian naive bayes for online training
assessment in virtual reality-based simulators,” Mathware & Soft Computing,
vol. 16, no. 2, pp. 123–132, 2009.

[3] P. M. Comar, L. Liu, S. Saha, P.-N. Tan, and A. Nucci, “Combining supervised
and unsupervised learning for zero-day malware detection,” in 2013 Proceed-
ings IEEE INFOCOM, IEEE, 2013, pp. 2022–2030.

[4] C. Lim and L. Lukito, “Malware attacks intelligence in higher education net-
works,” ISICO 2013, vol. 2013, 2013.

[5] T. Mythili, D. Mukherji, N. Padalia, and A. Naidu, “A heart disease prediction
model using svm-decision trees-logistic regression (sdl),” International Journal
of Computer Applications, vol. 68, no. 16, 2013.

[6] M. Mohd Saudi, A. M. Abuzaid, B. M. Taib, and Z. H. Abdullah, “Designing a
new model for trojan horse detection using sequential minimal optimization,”
in Advanced Computer and Communication Engineering Technology, Springer,
2015, pp. 739–746.

[7] A. Kulkarni, Y. Pino, and T. Mohsenin, “Adaptive real-time trojan detection
framework through machine learning,” in 2016 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), IEEE, 2016, pp. 120–123.

[8] K. Prabha and S. S. Sree, “A survey on ips methods and techniques,” Inter-
national Journal of Computer Science Issues (IJCSI), vol. 13, no. 2, p. 38,
2016.

[9] S. Pai, F. D. Troia, C. A. Visaggio, T. H. Austin, and M. Stamp, “Cluster-
ing for malware classification,” Journal of Computer Virology and Hacking
Techniques, vol. 13, no. 2, pp. 95–107, 2017.

[10] E. Dada and S. Joseph, “Random forests machine learning technique for email
spam filtering,” Semin Ser, vol. 9, no. 1, pp. 29–36, 2018.

[11] P. K. GT, J. Sabeena, et al., “Agriculture soil classification and fertilizer rec-
ommendation using adaboost and bagging approaches,” in 2018 IADS In-
ternational Conference on Computing, Communications & Data Engineering
(CCODE), 2018, pp. 7–8.

[12] S. Poudyal, K. P. Subedi, and D. Dasgupta, “A framework for analyzing ran-
somware using machine learning,” in 2018 IEEE symposium series on compu-
tational intelligence (SSCI), IEEE, 2018, pp. 1692–1699.

32

[13] A. A. Selçuk, F. Orhan, and B. Batur, “Intractable problems in malware anal-
ysis and practical solutions,” 2018.

[14] D. C. Dobhal, P. Das, and K. Aswal, “Detection of android adwares by using
machine learning algorithms,” Detection of Android Adwares by using Machine
Learning Algorithms, vol. 8, no. 4S, pp. 17–21, Apr. 2019. doi: 10.35940/ijeat.
d1005 . 0484s19. [Online]. Available: https : / /www . ijeat . org /wp - content /
uploads/papers/v8i4s/D10050484S19.pdf (visited on 09/21/2022).

[15] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and S. Nepal, “Strip: A
defence against trojan attacks on deep neural networks,” in Proceedings of the
35th Annual Computer Security Applications Conference, 2019, pp. 113–125.

[16] S. Saad, W. Briguglio, and H. Elmiligi, “The curious case of machine learning
in malware detection,” arXiv preprint arXiv:1905.07573, 2019.

[17] A. V. Srinivasan, Stochastic gradient descent�-�clearly explainednbsp;!! Sep.
2019. [Online]. Available: https://towardsdatascience.com/stochastic-gradient-
descent-clearly-explained-53d239905d31 (visited on 09/21/2022).

[18] S. Suresh, F. Di Troia, K. Potika, and M. Stamp, “An analysis of android
adware,” Journal of Computer Virology and Hacking Techniques, vol. 15, no. 3,
pp. 147–160, 2019.

[19] O. B. Victoriano, “Exposing android ransomware using machine learning,” in
Proceedings of the 2019 International Conference on Information System and
System Management, 2019, pp. 32–37.

[20] Y. Zhang, J. Liu, Z. Zhang, and J. Huang, “Prediction of daily smoking be-
havior based on decision tree machine learning algorithm,” in 2019 IEEE 9th
International Conference on Electronics Information and Emergency Commu-
nication (ICEIEC), IEEE, 2019, pp. 330–333.

[21] S. Abirami and P. Chitra, Multilayer perceptron, 2020. [Online]. Available:
https://www.sciencedirect.com/topics/computer-science/multilayer-perceptron
(visited on 09/21/2022).

[22] S. Asim, A. Shah, H. Shabbir, S. u. Rehman, and M. Waqas, “A comparative
study of feature selection approaches: 2016-2020,” International Journal of
Scientific and Engineering Research, vol. 11, p. 469, Feb. 2020.

[23] S. I. Bae, G. B. Lee, and E. G. Im, “Ransomware detection using machine
learning algorithms,” Concurrency and Computation: Practice and Experience,
vol. 32, no. 18, e5422, 2020.

[24] V. G. Ganta, G. V. Harish, V. P. Kumar, and G. R. K. Rao, “Ransomware
detection in executable files using machine learning,” in 2020 International
Conference on Recent Trends on Electronics, Information, Communication &
Technology (RTEICT), IEEE, 2020, pp. 282–286.

[25] H. Hindy, R. Atkinson, C. Tachtatzis, J.-N. Colin, E. Bayne, and X. Bellekens,
“Utilising deep learning techniques for effective zero-day attack detection,”
Electronics, vol. 9, no. 10, p. 1684, 2020.

[26] F. Noorbehbahani and M. Saberi, “Ransomware detection with semi-supervised
learning,” in 2020 10th International Conference on Computer and Knowledge
Engineering (ICCKE), IEEE, 2020, pp. 024–029.

33

https://doi.org/10.35940/ijeat.d1005.0484s19
https://doi.org/10.35940/ijeat.d1005.0484s19
https://www.ijeat.org/wp-content/uploads/papers/v8i4s/D10050484S19.pdf
https://www.ijeat.org/wp-content/uploads/papers/v8i4s/D10050484S19.pdf
https://towardsdatascience.com/stochastic-gradient-descent-clearly-explained-53d239905d31
https://towardsdatascience.com/stochastic-gradient-descent-clearly-explained-53d239905d31
https://www.sciencedirect.com/topics/computer-science/multilayer-perceptron

[27] F. Z. Okwonu, B. L. Asaju, and F. I. Arunaye, “Breakdown analysis of pearson
correlation coefficient and robust correlation methods,” in IOP Conference
Series: Materials Science and Engineering, IOP Publishing, vol. 917, 2020,
p. 012 065.

[28] T. S. Tamir, G. Xiong, Z. Li, H. Tao, Z. Shen, B. Hu, and H. M. Menkir,
“Traffic congestion prediction using decision tree, logistic regression and neural
networks,” IFAC-PapersOnLine, vol. 53, no. 5, pp. 512–517, 2020.

[29] S. Zhifang and L. Yi, “Optimization of decision tree machine learning strategy
in data analysis,” in Journal of Physics: Conference Series, IOP Publishing,
vol. 1693, 2020, p. 012 219.

[30] O. S. A. Aboosh and O. A. I. Aldabbagh, “Android adware detection model
based on machine learning techniques,” in 2021 International Conference on
Computing and Communications Applications and Technologies (I3CAT), IEEE,
2021, pp. 98–104.

[31] Ö. Aslan and A. A. Yilmaz, “A new malware classification framework based
on deep learning algorithms,” Ieee Access, vol. 9, pp. 87 936–87 951, 2021.

[32] H. Chen, S. Hu, R. Hua, and X. Zhao, “Improved naive bayes classification
algorithm for traffic risk management,” EURASIP Journal on Advances in
Signal Processing, vol. 2021, no. 1, pp. 1–12, 2021.

[33] N. S. Chockaiah, S. Kayal, J. K. Malar, P. Kirithika, and M. N. Devi, “Hard-
ware trojan detection using machine learning technique,” in Proceedings of
International Conference on Recent Trends in Machine Learning, IoT, Smart
Cities and Applications, Springer, 2021, pp. 415–423.

[34] H. Han, T. Zhang, Q. Dong, X. Chen, and Y. Wang, “Pavement roughness level
classification based on logistic and decision tree machine learnings,” in Green
and Intelligent Technologies for Sustainable and Smart Asphalt Pavements,
CRC Press, 2021, pp. 400–405.

[35] A. Kandula, “R, s., & s, n., performing uni-variate analysis on cancer gene
mutation data using sgd optimized logistic regression,” International Journal
of Engineering Trends and Technology, vol. 69, no. 2, pp. 59–67, 2021.

[36] M. Naseer, J. F. Rusdi, N. M. Shanono, S. Salam, Z. B. Muslim, N. A. Abu, and
I. Abadi, “Malware detection: Issues and challenges,” in Journal of Physics:
Conference Series, IOP Publishing, vol. 1807, 2021, p. 012 011.

[37] Q. B. Pham, S. Chandra Pal, R. Chakrabortty, A. Saha, S. Janizadeh, K.
Ahmadi, K. M. Khedher, D. T. Anh, J. P. Tiefenbacher, and A. Bannari,
“Predicting landslide susceptibility based on decision tree machine learning
models under climate and land use changes,” Geocarto International, pp. 1–
27, 2021.

[38] M. Sarhan, S. Layeghy, M. Gallagher, and M. Portmann, “From zero-shot ma-
chine learning to zero-day attack detection,” arXiv preprint arXiv:2109.14868,
2021.

[39] B. M. Serinelli, A. Collen, and N. A. Nijdam, “On the analysis of open source
datasets: Validating ids implementation for well-known and zero day attack
detection,” Procedia Computer Science, vol. 191, pp. 192–199, 2021.

34

[40] X. Xu, Q. Wang, H. Li, N. Borisov, C. A. Gunter, and B. Li, “Detecting ai
trojans using meta neural analysis,” in 2021 IEEE Symposium on Security and
Privacy (SP), IEEE, 2021, pp. 103–120.

[41] T. Zoppi and A. Ceccarelli, “Prepare for trouble and make it double! supervised–
unsupervised stacking for anomaly-based intrusion detection,” Journal of Net-
work and Computer Applications, vol. 189, p. 103 106, 2021.

[42] A. Zorzetto, [cic-andmal-2020] static-dynamic malware analysis, Dec. 2021.
[Online]. Available: https://www.kaggle.com/datasets/albertozorzetto/cic-
andmal-2020-dynamic-static-analysis (visited on 09/21/2022).

[43] A. B. Adetunji, O. N. Akande, F. A. Ajala, O. Oyewo, Y. F. Akande, and
G. Oluwadara, “House price prediction using random forest machine learn-
ing technique,” Procedia Computer Science, vol. 199, pp. 806–813, 2022, issn:
1877-0509. doi: https://doi.org/10.1016/j.procs.2022.01.100. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/pii/S1877050922001016
(visited on 09/21/2022).

[44] S. Durgam, A. Bhosale, V. Bhosale, R. Deshpande, P. Sutar, and S. Kamble,
“Effective computational approach for optimization of temperature on printed
circuit board,” Journal of The Institution of Engineers (India): Series C, pp. 1–
14, 2022.

[45] T. M. Ghazal, H. Al Hamadi, M. Umar Nasir, M. Gollapalli, M. Zubair, M.
Adnan Khan, C. Yeob Yeun, et al., “Supervised machine learning empowered
multifactorial genetic inheritance disorder prediction,” Computational Intelli-
gence and Neuroscience, vol. 2022, 2022.

[46] Z. Guan, G. Parmigiani, D. Braun, and L. Trippa, “Prediction of hereditary
cancers using neural networks,” The Annals of Applied Statistics, vol. 16, no. 1,
pp. 495–520, 2022.

[47] M. Masum, M. J. H. Faruk, H. Shahriar, K. Qian, D. Lo, and M. I. Adnan,
“Ransomware classification and detection with machine learning algorithms,”
in 2022 IEEE 12th Annual Computing and Communication Workshop and
Conference (CCWC), IEEE, 2022, pp. 0316–0322.

[48] G. L. Team, The ultimate guide to adaboost algorithm: What is adaboost al-
gorithm? Jan. 2022. [Online]. Available: https://www.mygreatlearning.com/
blog/adaboost-algorithm/?fbclid=IwAR07l3_7oz6yBuELelVidPgnT6S7uJPK%
201X5mwRy9rXVOc6Enad4pKdp3rqQ# (visited on 09/21/2022).

[49] F. Zhong, Z. Chen, M. Xu, G. Zhang, D. Yu, and X. Cheng, “Malware-on-
the-brain: Illuminating malware byte codes with images for malware classifi-
cation,” IEEE Transactions on Computers, 2022.

[50] Machine learning decision tree classification algorithm - javatpoint. [Online].
Available: https : / /www. javatpoint . com/machine - learning -decision - tree -
classification-algorithm (visited on 09/21/2022).

[51] Multi-layer perceptron in tensorflow - javatpoint. [Online]. Available: https:
//www. javatpoint . com/multi - layer -perceptron - in - tensorflow (visited on
09/21/2022).

35

https://www.kaggle.com/datasets/albertozorzetto/cic-andmal-2020-dynamic-static-analysis
https://www.kaggle.com/datasets/albertozorzetto/cic-andmal-2020-dynamic-static-analysis
https://doi.org/https://doi.org/10.1016/j.procs.2022.01.100
https://www.sciencedirect.com/science/article/pii/S1877050922001016
https://www.mygreatlearning.com/blog/adaboost-algorithm/?fbclid=IwAR07l3_7oz6yBuELelVidPgnT6S7uJPK%201X5mwRy9rXVOc6Enad4pKdp3rqQ#
https://www.mygreatlearning.com/blog/adaboost-algorithm/?fbclid=IwAR07l3_7oz6yBuELelVidPgnT6S7uJPK%201X5mwRy9rXVOc6Enad4pKdp3rqQ#
https://www.mygreatlearning.com/blog/adaboost-algorithm/?fbclid=IwAR07l3_7oz6yBuELelVidPgnT6S7uJPK%201X5mwRy9rXVOc6Enad4pKdp3rqQ#
https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm
https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm
https://www.javatpoint.com/multi-layer-perceptron-in-tensorflow
https://www.javatpoint.com/multi-layer-perceptron-in-tensorflow

Dataset

[1] The dataset consisting of four types of malware is publicly available at https:
//drive.google.com/file/d/1MnFy2M0IXuMAOmruPSGiRNfEt8O09vjC/view?
usp=sharing.

36

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Thoughts behind Malware Classification
	Research Problem
	Aims and Objectives
	Application area of ML algorithms
	ML in Malware Detection and Classification

	Literature Review
	Malware
	Related Work

	Working Principles of Algorithms
	Gaussian Naive Bayes
	AdaBoost
	Stochastic Gradient Descent
	Multi Layer Perceptron
	Decision Tree
	Random Forest
	K-Nearest Neighbour
	Logistic Regression
	Support Vector Machine
	XGBoost

	Methodology for Malware Classification
	Input Data
	Feature Selection
	Data pre-processing

	Experimentation
	Algorithm Implementation
	Performance Metrics Calculation

	Result Analysis
	Gaussian Naive Bayes
	AdaBoost
	Stochastic Gradient Descent
	Multi Layer Perceptron
	Decision Tree
	Random Forest
	K-Nearest Neighbour
	Logistic Regression
	Support Vector Machine
	XGBoost
	Performance Comparison

	Conclusion
	Bibliography
	Appendix A Dataset

