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Abstract
Ultrasound (US) examination is a widely used important instrument to monitor
mother and fetus health in a cost-effective and non-invasive way. The acquisition
of Ultrasound (US) images to determine vital fetal organs for the screening of fetal
abnormalities requires identifying the exact plane and region of the desired organs.
Even after following guidelines from appropriate committees, a sonologist some-
times may have difficulties in acquiring an excellent fetal plane image or make errors
in judgement for several reasons like inexperienced operators, faulty equipment or
movement of the fetus. Furthermore, sometimes due to the fetus being in critical
positions or due to the increase of adipose tissue inside the mother, it can create
various problems in the imaging like artifacts, acoustic shadows or even low signal
to noise ratio. Also, in an appropriate institute, a specialist of fetal images reviews
the sonographer’s analysis and chooses images that contains structures of interest
which later gets reviewed by a senior maternal-fetal expert or a specialist doctor.
This is a manual process which is expensive, cumbersome and sensitive to mistakes.
So we propose a method that combines Convolutional Neural Network (CNN) and
Dempster-Shafer theory (DST) to create a DST based evidential classifier or eviden-
tial CNN called E-CNN for the classification of common fetal anatomical planes like
brain, abdomen, thorax, femur as well as the maternal cervix from its ultrasound
images.

Keywords: Ultrasound (US) images, Convolutional Neural Network (CNN), Dempster-
Shafer theory (DST), evidential classifier, E-CNN, classification, common fetal anatom-
ical planes
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Chapter 1

Introduction

1.1 Research Motivation
Ultrasound is one of the most common methods for the analysis of fetal abnormali-
ties, weight or doppler blood flow [2]. The US images are obtained after obeying the
international guidelines set by the respective committees for each test [7][9]. For the
proper diagnosis of the fetal health, the biomarkers must be taken from the appro-
priate fetal plane which seldom gets mislabeled for various reasons starting from the
operator’s lack of expertise, faulty equipment, time limitations and fetal movement.
Furthermore, due to missing boundaries, low signal to noise ratio and speckle noise
in ultrasound imaging, identification of the fetal organs have been proved to be very
complicated.

In the underdeveloped regions of the world, these problems are made worse due to
unavailability of good quality equipment, and trained sonologist specialists leading
to mislabeling of the fetal plane as a result of false evaluations of the biomarkers.
As a result of the low cost in comparison to other alternatives such as MRI, CT or
3D ultrasound, 2D US images were used the most. Keeping all these in mind, we
have come up with the proposal to use Dempster-Shafer Theory on top of traditional
neural networking models so that the resultant classifier can be used for the accurate
identification of fetal planes. This will help mitigate the problem of having little
to no proper technical assistance that is crucial to properly annotate such imaging,
ensuring a safe diagnosis for both the mother and the fetus.

1.2 Research Problem
In obstetrics, ultrasound imaging is used for assessing the development of a fe-
tus during pregnancy. The contouring of the areas under study has to be done
by a physician, requiring specialized knowledge and can be time-consuming. Ad-
ditionally, the detection becomes difficult due to speckle noise, low signal-to-noise
ratio, varying intensities of acoustic shadows, motion blurring, missing boundaries,
and inter-operator errors [18]. Despite being prone to some errors, 2D ultrasound
imaging is used to measure biometrics which is likely to hinder early detections of
malformations. In contrast, 3D ultrasound might be preferred over 2D ultrasound
due to its capacity to analyze volumetric features of the fetus and provide other
countermeasures to some of the existing issues with the 2D version. Usually, these
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fetal anatomical planes are identified from ultrasound imaging. Ultrasound images
are not easy to analyze with the traditional neural network detection methods like
perceptron or multilayer perceptron. Also, data availability may vary from place to
place. Misclassifications or misinterpretations may occur with precise classification
models. Further information is thus required regarding a model’s prediction.

Various works has been seen in recent years that use traditional probabilistic clas-
sifiers for classification problems. However, little work has been done in using ev-
idential classifiers to determine the results in cases of highly uncertain datasets.
Work with evidential deep learning using Dempster-Shafer theory is in particular,
comparatively less. The use of belief function classifiers in ConvNets is notewor-
thy. However, in the situation of conflicting features, this classifier is susceptible
to assigning a rejection action [20]. Various classifier fusion models have been used
in previous works but little work has been done with an evidential classifier where
features extracted from one probabilistic model are broken down into elementary
mass functions and combined in a DS layer. We observe that even a high perform-
ing model with a very high accuracy can underperform while categorizing images of
some classes.

1.3 Research Contribution
The purpose of this research was to correctly identify the abdomen, femur, thorax,
brain of a fetus as well as the maternal cervix. Thus we opted to design a DST
based evidential classifier using an existing CNN model and apply the Dempster-
Shafer theory for uncertainty classification. Here we are breaking down our research
contributions into short steps for ease of understanding:

• Analyze the dataset based on the anatomical planes from the ultrasound (US)
images, namely: abdomen, femur, thorax and brain of the fetus as well as
the maternal cervix and propose an evidential classifier using an existing high
performing CNN model, i.e. VGG-19 with DST to predict the different classes
of common fetal anatomical planes mentioned above as there are high possi-
bilities of uncertainty in fetal ultrasound images.

• We aimed to find a model that will be able to give us better accuracy and also
evaluate the parameters, optimizers and prototype number needed to achieve
that. A DST based evidential classifier with VGG-19 gave a significantly
satisfactory result for this case.

• We noted the changes in accuracy and uncertainty in the data and model
when VGG-19 was applied only and when a DS layer was applied over the
CNN layer.

• We opted to construct a utility layer after the DS layer which gives us more
information about the prediction of the model in cases of high uncertainty
and presence of outliers. But in cases when there is precise classification,
the evidential model still performed very well while classifying the images
belonging to a single class.
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• Scenarios where the model underperformed while categorizing images of cer-
tain classes were predicted to belong to a few classes with similar probabilities
instead of a single class.
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Chapter 2

Literature Review

While planning our workflow to achieve the desired outcome, we have come across
some research workings on DST, CNN, DCNN and hybrid models consisting of DST
and CNN. In this section, we will briefly present some background studies on the
models and algorithms that we plan on using in our research, along with a brief
overview of the related works we have gone through.

2.1 Background Study
Here we have included some theoretical knowledge about the models and algorithms
that we plan on using, along with what other researchers have also tried in their
respective research works. This section first recalls some research studies on the Con-
voluted Neural Network (Section 2.1.1) model followed by Dempster-Shafer Theory
(Section 2.1.2) and Evidential Classifier (Section 2.1.3).

2.1.1 Convolutional Neural Network
Convolutional neural networks (CNN) are deep learning algorithms that are fre-
quently used for the segmentation and classification of images to be used in pattern
recognition and object identification. CNN is currently regarded as the best algo-
rithm for the automated processing of images and identifying the objects in those
images [25]. Various models of CNN are used for different types of applications. It
has had remarkable success in the medical sector as it is extensively used to analyze
X-Ray images, MRI results, Ultrasound images and in brain tumor segmentation.
CNN consists of three layers which are the convolutional layers, pooling layers, and
fully connected layers and has been able to extract local features and use them to
determine global features. [20]. For example, if the lower layers of CNN can identify
edges, the higher layers can identify more abstract objects like human faces and
body parts [24]. Another major reason for using CNN in our model is its robustness
and automation. While training a model with deep representation, there may be
translation or distortion issues. Ultrasound images are especially prone to motion
blurring and noise. CNN has a high tolerance to such factors and can also execute
data driven object representation in an automated method [20].
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2.1.2 Dempster-Shafer Theory
Despite using CNN and other deep learning models which gives a precise classifica-
tion, there still lies possibilities of leaving out potential evidence to the end result.
To be cautious of such possibilities, the probabilities of events can be assigned as
highly uncertain samples to sets of classes using the Dempster-Shafer theory [24].
Dempster-Shafer (DS) theory is a generic form of probability theory in a finite
discrete space where probabilities of events are allocated to sets instead of being
mutually exclusive [5]. In DST, we can combine evidence from multiple sources, i.e.
multiple possible events. One of the essential aspects of DST is that it can deal with
various levels of precision about any particular information. It also directly portrays
the uncertainty of system responses where a set or interval can demonstrate an in-
distinct input and even the output that we get from our results is a set or interval.
This is why the Dempster-Shafer theory has been perpetually used over the last two
decades, especially in pattern recognition and supervised classification of objects
[24]. One such method that integrates the CNN model and the DST theory is to
design classifiers that will give a decision output based on evidence of all possible
inputs.

2.1.3 Evidential Classifier
One form of classifier used for decision making based on DST and deep CNN that
has gained popularity in recent works is the evidential classifier, popularly known
as Evidential CNN (E-CNN) or Evidential Deep Learning. This type of DST based
evidential classifier segments the evidence of our input features into simple mass
functions and then clusters them using the Dempster-Shafer rule. Unlike traditional
probability approaches which provide outputs based on single evidence, this classi-
fier can generate outcomes that are much more broad and helpful in estimating a
result [24]. Thus, the collection of multiple evidence allows the quantification of un-
certainty of data and rejects the incorrectly classified data. Despite the emergence
of studies regarding DST and deep learning, research works that use evidential clas-
sifiers are comparatively scanty. Many of the previous works are based on deep
learning classifier fusion. Regardless, no such work has been found that performs
the classification of common fetal anatomical planes using evidential classifiers.

2.2 Related Works
An approach to segment the skull of a fetus was written in 2018 [14]. Cerrolaza et
al. designed a new framework with ultrasound physics by using 66 fetal 3D ultra-
sound images for accurate segmentation of the whole skull of a fetus. The automatic
framework consisted of a two stage CNN and incorporated extra structural and con-
textual data into the segmentation process. To test the precision of the segmentation
process, Shadow Casting MAP (SCM) and Incidence Angle Map (IAM) were used.
The complete evaluation was seen in the case of combining both SCM and IAM
which gave a DC of 0.83 ± 0.06. The results were also compared to that of a single
channel which did not show much variation to the error test result obtained using
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SCM.

Later in 2019, [18] Sobhaninia et al. used a multitask deep neural network developed
on Link-net to segment fetal head and its head circumference. Close to thousand
2D US images of the fetal head were used to analyze the performance difference be-
tween a multitask and an already existing single task network by Heuvel et al. [15].
The performance was analyzed using a Dice Similarity Coefficient (DSC), Differ-
ence (DF), Hausdorff Distance (HD) and Absolute Difference (AD). After training
the dataset with a multitask learning network (MTLN), it was found that the DSC
score of the proposed model by Heuvel et al. was slightly higher than the multitask
network model by Sobhaninia et al. But the ADF score was 2.12 + 1.87 while the
HD score was 1.72 + 1.39 which was marginally higher than the ADF and HD score
of the single task network model.

In 2020, Qu et al. [17] made another approach where they proposed two methods
DCNN and CNN-based transfer learning to recognize the six standard planes that
fetal brains have automatically. The CNN model used down-sampling for a fast
and efficient training process, whereas the transfer learning, accompanied by data
augmentation, served as a countermeasure to the overfitting problem. All the layers
in Dataset 2 were trained using the proposed DCNN model that had been previ-
ously trained on Dataset 1, even though the images were alike in both datasets.
The proposed transfer learning-based method proved to have an accuracy of 89.1%.
However, network out-fitting is likely to occur on a small dataset due to misuse of
DCNN which might lead to a degradation in performance, despite it resulting in the
best performance out of all the other methods.

In this [22] paper, Skeika and the other authors have tried to amalgamate a variety
of strategies and come up with a new version of the existing V-net models where the
networks were modified to receive 2D inputs named VNet-c. Additionally, the net-
work was deepened to improve its learning capacity and inferred analysis, resulting
in overfitting due to the increasing number of trainable parameters.To avoid that,
the Data Augmentation along with Dropout techniques were introduced where a col-
lection of neurons were deactivated from the interconnected layer at each traversal of
the adjusting stage and newly generated artificial images were produced to increase
the training dataset. Furthermore, Batch-normalization was also brought into use
which sped up the learning and training processes. For research, the dataset was
acquired by Heuvel and collaborators from the HC18 challenge with the proposed
method coming up with an accuracy of 97.92%.

Then in 2018, Yu et al. [13] have tried to automatically detect the fetal facial
standard plane using deep convolutional neural networks (DCNN). Their proposed
structure has 16 convolutional layers with small kernels and three fully connected
layers. They have also used a Global Average Pooling (GAP) with the final layer,
improving the result and fixing the overfitting problems. Here they have named
their model CNN-19-GAP. They have also used batch normalization (BN) to deal
with any convergence issues. For their research, they have collected in house data
of 20 to 36 weeks old fetuses. According to their results, their models have achieved
96.32% accuracy which is 7-8% higher than the non-GAP models. The CNN-19-GAP
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is also more memory efficient than its non-GAP counterparts.

In this [10] paper published in 2017, the researchers have considered the error factor
of the 2D imaging due to the operator and the process of finding and marking from
that 2D image in general. Therefore they have proposed a segmentation method
based on Random Forest and using 3D ultrasound images of the fetus to incor-
porate volumetric data which helps with the plane selection and provides a better
understanding of fetal cranial structure. They have used a new model, SGeo-RF
and compared it with the more traditional CNN and plain Random Forest (RF).
The proposed SGeo-RF model achieved an accuracy of 98% whereas CNN got 94%
and RF got 93%. According to the authors, this accuracy that 3DUS can achieve
can also transfer the pressure off the manual identification of the fetal planes.

Since 2D ultrasound images are hard to identify visually, sometimes in many cases,
resized smaller images can misclassify specific shapes like kidney. So to prevent this,
here in this [19] research, Sridar et al. used a method of mixing the prediction from
resized or reshaped regions of fetal structures to get a more accurate value and iden-
tification of the fetal organs by using CNN. This method ensures regions of organs
that have more bones do not get misclassified by using contextual information.

In 2018, Chen et al. [3] gave a deep learning model, U-Net, for the automated seg-
mentation and measurement of the fetal lungs. The model was trained by over three
thousand datasets augmented from 250 US images and the manual annotations were
done by an ultrasound physician, that represented the ground truth for assessing
the performance of the automated segmentation method proposed by this paper. A
max-pooling in the down-sampling layer halves a feature map, accompanied by two
3 x 3 convolution layers with padding which aids for a more accurate depiction of
the images. ReLU function and a batch normalization layer were also used with
each convolution layer to attain a good convergence, reaching an accuracy of 98%.

Another approach can be seen in this [6] paper where the authors have proposed the
usage of DS theory to combine values of R (red), G (green), and B (blue) components
of the same cell from an image. The main goal of using Dempster Shafer’s theory is
to partition the image into homogeneous regions by fusing the pixels coming from
the three images. Initially, with the help of the DS combination rule, the mass func-
tions for all pixels of each of the three images are combined using the orthogonal
sum after the mass function values have been determined. Next, the DS decision
strategy aids in acquiring the final image segmentation. This decision strategy is
selecting the hypothesis deemed the best fit after considering the maximum belief
value calculated from the previously fused mass functions from the three images.
Even though this model works well with using only some pieces of information such
as details concerning the grey levels covering each of the three component images,
it still requires a priori knowledge.

This research paper [12] proposed an architecture to detect the heartbeat from a
linear ultrasound video. They used a dense feature extraction then they encoded
SIFT, SURF and rootSIFT features using BoVW, VLAD, and FV encoding. In
their case, rather than using CNN they used SVM to classify the regions of fe-
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tal heart since their data set was small and gave a mean accuracy of 93.1%.
In 2019, Tong et al. [20] used a classifier that is based on Convolutional Neu-
ral Network (CNN) and Dempster-Shafer theory to detect object with inconclusive
pattern recognition. By combining ConvNet and a belief function classifier known
as ConvNet-BF classifier, ConvNet was used as a feature producer, the BF classifier
as a mass function generator and a decision rule to detect objects like birds, cats or
trucks in three different datasets. One of the datasets, the CIFAR-10, consisted of
10 classes while the CIFAR-100 had a similar size and formatting as the CIFAR-10
but with 100 classes. The results from the ConvNet-BF classifier was compared
to a NIN classifier and it was found that the ConvNet classifier performed on the
CIFAR-10 dataset has a lower test set error rate than a NIN classifier when the
rejection rate of erroneous classified patterns was higher than 7.5%. A similar re-
sult was obtained using the CIFAR-100 dataset where the test set error rate was
slightly higher while using ConvNet classifier without rejection (40.62%) than using
a NIN classifier without rejection (39.42%). However, again the test set error rate
significantly decreased when ConvNet classifier was used by rejecting some incorrect
classifications.

In 2019, Denœux [16] talks about how the high level features can be converted into
DS (Dempster Shefer) mass functions and then adding them up by the combina-
tion rule of Dempster. The high degrees of freedom of the mass function carries
a lot more information which helps to identify the lack of evidence and conflicting
evidence separately. This also allows for the implementation of decision rules like
the interval dominance rule, which selects a collection of classes when the available
evidence does not unequivocally lead to a single class, lowering the error rate. Ac-
cording to their findings, DS theory can be used to design new classifiers, including
deep neural networks as opposed to using belief functions in everything.

In 2021, Tong et al. [24] proposed a classifier consisting of CNN and DS(Dempster-
Shefer) theory, called the evidential classifier for set based classification. After get-
ting the high dimensional features from the input data they convert those into mass
functions using Dempster’s Rule in the DS layer. Then they have trained evidential
deep-learning classifiers with a stochastic gradient descent algorithm. According to
their findings, implementing DS theory with deep CNN and evidential classifiers
improves the overall accuracy by assigning ambiguous patterns to the sets.

Shoyaib et al. in this [8] research paper aimed to solve the inaccuracy issue seen
while working on skin detection due to fewer data, more extended training period
and often the tedious process of fine tuning which is sometimes not even possible
due to the state of the dataset. To solve these issues they are proposing a hybrid
model using Dempster Shafer theory. They are using this theory in particular due
to its powerful and flexible nature with ambiguous datasets, making it more suitable
for the other object detection methods. Their final result shows that their proposed
hybrid model works well when the training data is deficient, taking the accuracy to
87.47%from 68.81%.

Here in this paper, [26] Yin et al. proposed a blackboard-oriented system that
will use the Dempster Shefer theory and particularly the compatible frames and
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multivariate belief functions. The suggested Medical Image Understanding System
(MIUS) comprises three phases of which the acceptance of the hypothesis brought
about in phase two will use the guidance of the proposed system into creating
anatomic structures in the said image after extracting the entities as a form of re-
gions or curves. The multivariate belief function model has the evidence parameter
that is evaluated to obtain the belief of the hypothesis. [26] The beliefs of the inter-
nal hypothesis, which are based on the evidential space, are assessed by estimating
the beliefs associated with the multivariate belief functions to the respective margin.
Belief intervals evaluate the probability of the hypothesis and strengths of evidence
as opposed to the point values.

When discussing medical image segmentation it is of utmost concern to create trust
between sonologist and deep learning models. To do that, [23] this research uses Al-
buNet which diagnoses pneumothorax in x-ray images. After that they used a three
block trial where in the first block the expert’s prediction of the AI diagnoses and
in the second block participants evaluated the explanations created through XAI
by certifying the AI for different cases. In the research, the radiologists accurately
assumed the AI’s judgement on average 6 out of 8 trials. Despite the limitations
of small datasets and few participants this research demonstrated that explanations
generated by Bayesian Teaching help medical experts inform certification decisions,
thus creating trust between AI and radiologists.
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Chapter 3

Methodology

The motive of this research is to introduce a Dempster-Shafer based evidential clas-
sifier for classification of common fetal anatomical planes, mainly the abdomen,
femur, thorax, brain and the maternal cervix. To do that, we gathered a proper
dataset containing ultrasound images of the mentioned fetal body parts for our
model as depicted in Figure 3.1. The data obtained from the dataset was given as
an input and necessary preprocessing was performed on the data. After that, the
appropriate features to detect the fetal anatomical planes were selected. Necessary
feature encoding was done, and the dataset was split into train and test data. Then
the model was trained with the training data fitting it to the E-CNN model and the
resultant model was evaluated with test data.

The architecture of an E-CNN model typically consists of three main stages as stated
below:

1. The input data at first goes through a multi-stage deep CNN consisting of
convolution and pooling layers to represent the necessary features [24].

2. The data then passes through a Dempster-Shafer (DS) layer in order to ag-
gregate the input evidence into mass functions.

3. The final stage is the utility layer which makes a decision on the basis of
the outcomes of the previous layers to classify the fetal anatomical planes by
partially assigning multi class acts to a set or interval.

The accuracy was evaluated after implementing the CNN layer and then with the
DS layer to observe the percentage of matches with the labels. If the accuracy was
satisfactory enough, the results were stored and obtained, else necessary changes in
parameters were applied and the model was re-trained. Upon achieving the desired
results, a complete evidential classifier was then designed by implementing the utility
layer.
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Figure 3.1: Top level overview of the proposed methodology

3.1 Data Collection
We have found a relatively large dataset consisting of maternal and fetal screening
US images. This dataset has been collected by numerous operators of two differ-
ent hospitals using different machines. Later, the US images were divided into six
classes: Maternal Cervix, Fetal Abdomen, Fetal Brain, Fetal Femur and Fetal Tho-
rax and a general category named ‘Other’ for the less common fetal planes. The
Fetal Brain was also divided into three classes: Trans-thalamic, Trans-cerebellum
and Trans-ventricular. So in total, taking the three brain classes into account, there
are 8 classes that we used for our analysis from this dataset. This dataset was also
declared public by the authors so we were able to use it for our research [21]. The
images in the dataset were collected by the following machines: Voluson E6, Voluson
S10, Aloka and a group of other machines.
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Anatomical Planes used for detection Number of Images
Fetal abdomen 711
Trans-thalamic 1,638

Trans-cerebellum 714
Trans-ventricular 597

Fetal femur 1,040
Fetal thorax 1,718

Maternal cervix 1626
Other 4,213
Total 12,257

Table 3.1: Classes of fetal anatomical planes used for our analysis

3.2 Pre-Processing

3.2.1 Image Pre-Processing
For the analysis of images, we have converted our png images to jpg file format.
While converting to jpg, we have also resized the images into 224x224 pixels and
kept the ratio equal to the original image. After that, we read the image data using
imshow() function. Then, we converted those images to numpy arrays with data
type of float32 and divided them by 255 in order to normalize them. Then, we have
stored those images in an array named imgdata.

3.2.2 Data Pre-Processing
In our csv file, we listed all the labels for each of our fetal anatomical planes. At first,
the labels were distributed between two columns namely ‘Plane’ and ‘Brain Plane’.
‘Plane’ column had the following values: Other, Fetal abdomen, Fetal brain, Fetal
femur, Fetal thorax and Maternal cervix. ‘Brain Plane’ had the values: Not a brain,
Trans-thalamic, Trans-cerebellum and Trans-ventricular. For the ease of our work,
we have merged these two columns into one single column named ‘Merged_plane’.
The new column had the following values: Fetal abdomen, Fetal femur, Fetal thorax,
Maternal cervix, Other, Trans-cerebellum, Trans-thalamic and Trans-ventricular.
We checked if the ‘Plane’ value is ‘Fetal brain’, if it is a brain then we stored the
specific class of the brain (Trans-cerebellum, Trans-thalamic and Trans-ventricular),
else we stored the ‘Plane’ class of that image like Other, Fetal abdomen, Fetal femur,
Fetal thorax and Maternal cervix. In this way, we had to deal with lesser number of
classes for our classification work and the model also performed better with lesser
classes. In addition, out of 12,400 images, some images belonged to the ‘Fetal brain’
class but were being classified as ‘Other’. There were 143 images of such sort. Those
were excluded before being given as input to the model as those images were being
misclassified to a huge extent. So, for better performance, we proceeded to work
with 12,257 images.
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3.3 Model Selection
In our case, we used a DST based evidential convolutional neural network (E-CNN)
classifier following the work of Tong et al [24]. But, we decided to use VGG-19 to
import the features obtained from the input data and convert those into elementary
mass functions and further aggregate them using Dempster’s rule. Since this is a
distance based classifier, the closeness of an input vector to the prototypes in the
model is taken as the evidence for class assignment of test samples in the E-CNN
classifier [24]. The model can be visualized in the following figure:

Figure 3.2: Dempster-Shafer Based Evidential Deep Learning Classifier

3.3.1 VGG-19
VGG-19 model was mainly used as it is said to have improved accuracy from its pre-
decessors. VGG-19 is one of the variants of the VGG model where VGG-19 consists
of 16 Convolution layers, along with 5 MaxPool layers. In addition, it has 3 Fully
Connected layers, and 1 Softmax layer, where the softmax activation function is ap-
plied.

A Convolution layer runs a filter through the input image in order to retrieve infor-
mation to it, resulting in a reduction of the input image’s dimensionality. Usually,
the kernel, better known as the filter, has a size smaller than the supposed input
image. Rectified Linear Unit (ReLU) is applied to the output of the convolution
layer where it compensates for any sort of signal parsing errors, guiding the signal
back to where it is supposed to proceed. ReLU is usually used for the hidden layers.
To summarize, the Convolution layer takes in input, having a volume of size W1 x
H1 x D1, and needs four variables :

• Amount of filters/kernels, K

• Area or size of the filters, F

• Stride, S

• How much zero padding, P, is applied

With these parameters and input, we get an output of volume size W2 x H2 x D2,
where [11] :
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W2 =

(
W1 − F + 2P

S

)
+ 1 (3.1)

H2 =

(
H1 − F + 2P

S

)
+ 1 (3.2)

Since the Convolution networks are known to possess the parameter sharing prop-
erty, (F.F.D1) weights are introduced per filter where the total number stands at
(F.F.D1)xK weights and K biases.

MaxPooling takes into account the largest information through the help of the filter
that is examining the image in a given stride. This discards the smaller features and
only keeps the largest representative of a given square space, reducing the dimension
of the image even further. For instance, in order to reduce the dimension of the given
image’s height and width by 2, a pooling layer of size 2x2 is used with a stride, S=2.
To further reiterate, given the pooling layer accepts input of volume size W1 x H1 x
D1 and needs two parameters :

• Area or size of the filters, F

• Stride, S

With the above variables and input, an output of volume size W2 x H2 x D2 is
produced as follows [11]:

W2 =

(
W1 − F

S

)
+ 1 (3.3)

H2 =

(
H1 − F

S

)
+ 1 (3.4)

D2 = D1 (3.5)

Furthermore, this pooling layer does not introduce any new parameters other than
the spatial extent and stride and it is rare to see any pooling layer applying zero
padding to its input.

A Fully Connected layer transforms the two dimensional matrix into a one dimen-
sional one, and this is then fed into a Softmax layer, an activation function, in the
output layer which is responsible for multiclass object classification.

The execution of all of the stages of VGG-19 gives a final output which is the feature
representation of our input data.
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3.3.2 Dempster-Shafer Model
After extracting the high dimensional features using the convolutional layer, a
Dempster-Shafer (DS) layer was then applied to our model to be able to predict
probability distributions and not just purely deterministic point outputs. This is
possible when the extracted features are converted to mass functions and clustered
in the Dempster-Shafer layer. Here, the mass functions are considered as indepen-
dent components of evidence [24]. Let, two such mass functions be m1 and m2.
Using Dempster’s rule ⊕ [1], they can be combined as:

(m1 ⊕m2)(A) =
(m1 ∩m2)(A)

1− (m1 ∩m2)(φ)
(3.6)

Here, Ω = {ω1, ...., ωM} is a set of classes representing the data. And, A is a focal
component of the mass function, m, if m(A) > 0 where A belongs to Ω [24].

The output of this layer will give an (M+1) mass vector [24] as the following :

m = (m({ω1}), ....,m({ωM}),m(Ω))T (3.7)

The mass m({ω1}) is a measure of belief of this sample belonging to the ωi class
[24]. This helps to give a better measure of the uncertainty in the model and how
well it is trained.

On the basis of these mass functions, a utility layer is then to be applied to imple-
ment set-valued classification on the mass functions [24]. The output obtained from
the DS layer, i.e. the mass vector, m, is the input to the utility layer which then
computes the expected utilities of the acts. Here, act is considered as the allocation
of a test sample to a non empty subset A of Ω where Ω is the set of classes [24].
In this way, a new sample can be assigned to a set of classes instead of a single
class to help predict the uncertainty in the model better. Using the DS and utility
layer not only helps to improve the accuracy of data and model, but also improves
the detection capabilities of the model itself especially when it comes to outliers or
samples of data that are extremely uncertain to predict.

One of the main disadvantages of using a distance based classifier is the computa-
tional complexity and to mitigate this problem, we arrange the learning set in a way
so as to cap the representative features or prototypes. Every prototype, i, has been
assumed to possess a degree of membership to a class, wq which is represented by
ui
q and complete membership to a class is constricted. The distance di between a

sample, x and each prototype pi is computed by:

di = ||x− pi|| (3.8)
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Chapter 4

Implementation

4.1 Environment Setup
We used Anaconda Distribution for our virtual environment setup. Then, we created
a python version 3.9 based virtual environment and installed the necessary libraries
and softwares.
These libraries include:

• cuda toolkit (version 11.2)

• cudnn (version 8.1.0)

• Tensorflow

• Matplotlib

• Pandas

• Opencv-python

• Sckit learn

• Sckit image

• Seaborn

As we are working with an image dataset, we opted to use the tensorflow-gpu for
importing our deep learning libraries. For that reason, we have used the nvidia cuda
libraries along with the tensorflow installation. We have also used the seaborn library
to graphically present the results found in our research model.
Here is the system configuration of our test bench:

• CPU: AMD Ryzen 9 5950X

• GPU: NVDIA RTX 3080 Super

• RAM: 64 GB

• OS: Windows 10 Pro
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4.2 Implementation of layers

4.2.1 Convolutional 2D Layer
To create our VGG-19 network, a fixed size of 224x224 jpg images were fed into the
VGG network as input and the size was 224x224x3 where ‘3’ represents the number
of channels. A filter of size 3x3 was used with stride equal to 3 so that the entire
image is covered. Padding was used as a means to keep the essence of the image
intact and to make sure information is not lost when a pooling layer is applied to it.
MaxPooling of size 2x2 and stride equal to 2 was used which halves the convolution
layer output image.

Since it is not possible to identify non-linear functions with just a single line, ReLU
activation function was introduced to detect non-linearity in the network. ReLU
is commonly used in the hidden layers given that it is a light-weight function in
comparison to the other activation functions like sigmoid or tanh.

ReLU formula is given by:
f(z) = max(0, z) (4.1)

where, z is the input.

The ReLU activation and its derivative are both monotonic, that is, it is neither
increasing or decreasing. If the ReLU function receives any negative input value, it
transforms the output to 0, otherwise, it returns the input value meaning that the
range of this activation function is from 0 to the input itself.

The first two Fully Connected layers had size 4096 with the last Fully Connected
layer consisting of 8 units with a Softmax activation function being used for the
classification of 8 classes. Unlike other activation functions, Softmax calculates the
relative probabilities meaning that the probabilities of each class are not indepen-
dent of each other. The formula is as follows [11]:

σ(zi) =
ezi∑n
j=1 e

zj
(4.2)

where,
σ(zi) = softmax
z = input vector
ezi = exponential function for input vector
ezj = exponential function for output vector
n = number of classes
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Figure 4.1: VGG-19 Architecture

4.2.2 Dempster-Shafer Layer
To implement this step, the classes required for the DS layer was imported from a
custom made library by Tong et al [24]. Here, the output we get after passing data
into the Flatten layer of our convolutional network is passed along with the number
of prototypes and another parameter- the shape of the Flatten layer output to the
DS1 class of the DS layer. After plotting the model, the shape of the output from
the Flatten layer gave us (None, 25088), hence 25088 was given as a parameter and
the number of prototypes was taken as 30. The model was also run using 20, 50 and
100 prototypes to evaluate and compare the performance of the model in each case.
The distance based support between a test sample, x and each prototype vector
in the prototype set, p was calculated [24]. The magnitude of membership of each
prototype to a class was also found. After this step, the mass function related to
each prototype vector was constructed by combining the magnitude of membership
for each prototype and the distance based support. The mass functions computed
in the previous step were then clustered using Dempster’s rule. The output vector
was then finally obtained by the end of the execution of the DS layer to be put as
an input to the utility layer.

The DS layer was then trained using 10 epochs. Categorical crossentropy was used
to formulate the loss function and ‘acc’ as the metrics. Previously, the weights ob-
tained from VGG-19 were saved and those were used to train the parameters of the
evidential model. 20 epochs were run in this case to train the evidential model with
the same metrics and formula for loss function as it was used for training the DS
layer.

The DS layer had the following trainable parameters for different prototypes. In all
cases, there were no non-trainable parameters.
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Prototype Number Total Parameters Trainable
20 501,960 501,960
30 752,940 752,940
50 1,254,900 1,254,900
100 2,509,800 2,509,800

Table 4.1: Trainable parameters of the DS Layer

Using different prototypes, we got the following trainable parameters for the evi-
dential model. With 50 and 100 prototypes, even though the trainable parameters
are more, it does not necessarily give the best result as it has been seen to depend
on the size of the dataset and processing of the model as well.

Prototype Number Total Parameters Trainable
20 20,525,192 20,525,192
30 20,776,172 20,776,172
50 21,278,132 21,278,132
100 22,533,032 22,533,032

Table 4.2: Trainable parameters of the Evidential Model

The output obtained from the DS layer is a mass vector which is actually a measure
of belief for the model that a certain sample image belongs to a certain class. If there
is an uncertainty, that is also categorized in this mass vector by allocating masses
consistently across all available classes [24]. The ultimate reality of the result is
better depicted after implementing the utility layer.

4.2.3 Utility Layer
To implement the utility layer, the necessary classes were imported from a custom
made library by Tong et al [24]. The mass vector [24] obtained from the Dempster-
Shafer layer was passed to the utility layer to compute the expected utilities. Based
on the computed expected utilities of acts, i.e. assignment of a sample to a class,
partially a sample was assigned to multiple classes in case the sample is imprecise
or confusing. In this case, classes with no evidence pertaining to the sample were
rejected using the rejection option. But classes containing evidence found from ex-
tracted feature vectors of previous layers, possibly being assignable for the sample
image, were assigned to a set for the sample.
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Chapter 5

Result and Analysis

5.1 Performance Metrics
The performance of the model was assessed with parameters like accuracy, recall, f1
score, precision, macro avg and weighted avg. The formulas for some of the metrics
are given as:

precision =
TP

TP + FP
(5.1)

recall =
TP

TP + FN
(5.2)

F1 =
2× precision× recall

precision+ recall
(5.3)

accuracy =
TP + TN

TP + FN + TN + FP
(5.4)

Here,
TP = True Positive
TN = True Negative
FP = False Positive
FN = False Negative

• Precision indicates the fraction of identifications that were correct for a par-
ticular class. If all images of a class were identified as True Positives, then the
precision value will give 1.0. In case of any false positives, the value will be
less than 1.0.

• Recall denotes the fraction of correctly identified samples by the model [27].
When there are no incorrectly identified samples, recall will give a value of 1.0
for a particular class. If less than 1.0, it is an indicator for the samples that
were mislabeled.

• F1 score combines both the precision and recall to give a new evaluation metric.
Achieving an f1 score of 1.0 would mean there were no misclassifications while
labeling the particular class and that it is giving a perfect result.
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• Accuracy is the accuracy percentage of the model. If the model is accurately
predicting for all test cases at all times, accuracy will be 1.0. Accuracy graphs
have also thus been shown as a performance indicator.

• Macro avg or macro average is the average precision, recall and f1 score be-
tween the classes. It is an indicator for which class disparities are present.

• Weighted avg or weighted average is the weighted average precision, recall and
f1 score between the classes. This is calculated with respect to the number
of samples in each class and hence, class imbalance is a factor for differences
between the macro and weighted average.

5.2 Performance Study of VGG-19
Since the very first layer of our proposed model is the Convolutional 2D Layer for
which we have used VGG-19 architecture to identify the fetal planes into 8 classes,
we at first obtained the accuracy for using this architecture only. After training the
model with 8579 train images, 1839 test images and 1839 validation images for 20
epochs, we see a comparison between training and validation accuracy. From here,
we can interpret that the training accuracy is higher than the validation accuracy.

Figure 5.1: Accuracy Graph obtained from applying only VGG-19
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precision recall f1-score support
0 0.85 0.81 0.83 108
1 0.85 0.80 0.83 158
2 0.89 0.91 0.90 229
3 0.99 0.99 0.99 267
4 0.90 0.90 0.90 661
5 0.74 0.77 0.76 96
6 0.84 0.72 0.78 271
7 0.42 0.78 0.54 49

accuracy 0.87 1839
macro avg 0.81 0.84 0.82 1839

weighted avg 0.88 0.87 0.87 1839

Table 5.1: Classification Report obtained from applying only VGG-19

In the above classification report, we get; ’Fetal abdomen’ : class 0, ’Fetal femur’
: class 1, ’Fetal thorax’ : class 2, ’Maternal cervix’ : class 3, ’Other’ : class 4,
’Trans-cerebellum’ : class 5, ’Trans-thalamic’ : class 6, ’Trans-ventricular’ : class 7.

These accuracies point out that the model with no pre-training most accurately
labels maternal cervix class. But then, the model struggled while identifying the
three brain plane classes. There were also some class imbalances as fewer samples
were assigned to the Trans-cerebellum and Trans-ventricular classes. Hence, there
is a difference in the macro average and weighted average values. This report also
shows that the model has an accuracy of 87 percent.

Figure 5.2: Confusion Matrix obtained from applying only VGG-19
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From the above confusion matrix, we observe the amount of classes the model clas-
sified correctly and which class it mislabeled as the true positive class. We can reach
a conclusion from here that, while identifying the Fetal abdomen, Fetal femur, Fetal
thorax, Maternal cervix, the model often mislabeled those classes as ’Other’ or an
unidentified class. Even though it correctly identified the brain class but suffered to
distinguish between the three common brain planes. If we take a look at the matrix,
from the first row, among 108 images, 88 images were correctly labeled as fetal ab-
domen, 0 images were incorrectly labeled as fetal femur, 6 images were mislabeled
as fetal thorax while 1 image was mislabeled as maternal cervix.

5.3 Performance Study Using DS Layer
Comparison of Obtained Results for Different Prototypes

After getting the output from the conv2D layer, the DS layer was applied and the
obtained results were analyzed using 100 prototypes at first. The model used by
Tong et al [24] used 200 prototypes for 60,000 images of the Cifar-10 dataset to find
the distance based support from each test sample to the prototypes and construct
the mass functions. But since we worked with 12,257 images, the prototype number
was then reduced to observe if we could achieve better results. So the DS layer was
then run using 20, 30 and 50 prototypes respectively.

Figure 5.3: Training Vs Test Accuracy of DST based evidential model across different
prototypes

With 12,257 images used from the dataset, we saw that the DS layer was trained the
best when we used 30 prototypes. It gave a better test accuracy of 89.67% and 98%
training accuracy. On the other hand, using 20 prototypes gave a training accuracy
of 88% and test accuracy of 82% which underperformed compared to the use of 30
prototypes. Moreover, without the DS layer, using only the Conv2D model gave us
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a test accuracy of 87% so the purpose of using the DS layer to get a better accuracy
was not served in this case. Using 50 and 100 prototypes respectively gave better
accuracy than using 20 prototypes but no better than when 30 prototypes were
used. By using 50 prototypes, we got a training accuracy of 97% and test accuracy
of 87% which is the same accuracy we got from using VGG-19 only. By using 100
prototypes, we got a training accuracy of 96% and test accuracy of 88.88% which is
a little less than when we used 30 prototypes.

So we can say that the model gave better results when 30 prototypes were used with
a total of 20,776,172 trainable parameters. If there were more images in the dataset,
30 prototypes may not have given the best accuracy. Then, a higher number of pro-
totypes might have to be selected and the total number of trainable parameters
would be increased as well. Besides, using lesser number of prototypes has been
said to classify faster and cost less storage as well [4].

The obtained accuracy graphs for each of those prototypes are thus shown below:

(a) Accuracy graph obtained from using 20
prototypes

(b) Accuracy graph obtained from using 30
prototypes

(a) Accuracy graph obtained from using 50
prototypes

(b) Accuracy graph obtained from using 100
prototypes

Figure 5.5: Accuracy graphs for different prototypes in the DS layer

We can also see the differences in the obtained classification reports for 20, 30, 50
and 100 prototypes respectively.
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precision recall f1-score support
0 0.57 0.88 0.69 67
1 0.74 0.86 0.79 138
2 0.94 0.80 0.87 319
3 0.99 0.98 0.99 240
4 0.90 0.89 0.89 632
5 0.05 0.60 0.10 10
6 0.89 0.61 0.72 363
7 0.60 0.71 0.65 70

accuracy 0.82 1839
macro avg 0.71 0.79 0.71 1839

weighted avg 0.88 0.82 0.84 1839

Table 5.2: Classification Report obtained from using 20 prototypes in the DS layer

precision recall f1-score support
0 0.90 0.87 0.88 106
1 0.83 0.91 0.87 172
2 0.96 0.91 0.94 266
3 1.00 1.00 1.00 263
4 0.92 0.92 0.92 597
5 0.81 0.80 0.80 98
6 0.87 0.76 0.81 271
7 0.52 0.77 0.62 66

accuracy 0.89 1839
macro avg 0.85 0.87 0.86 1839

weighted avg 0.90 0.89 0.89 1839

Table 5.3: Classification Report obtained from using 30 prototypes in the DS layer

precision recall f1-score support
0 0.92 0.82 0.87 119
1 0.75 0.92 0.83 134
2 0.94 0.94 0.94 247
3 1.00 0.98 0.99 241
4 0.92 0.90 0.91 636
5 0.59 0.84 0.69 80
6 0.86 0.72 0.78 299
7 0.61 0.72 0.66 83

accuracy 0.87 1839
macro avg 0.83 0.86 0.84 1839

weighted avg 0.88 0.87 0.88 1839

Table 5.4: Classification Report obtained from using 50 prototypes in the DS layer
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precision recall f1-score support
0 0.92 0.89 0.90 101
1 0.83 0.83 0.83 152
2 0.96 0.92 0.94 273
3 0.99 1.00 0.99 251
4 0.92 0.94 0.93 614
5 0.90 0.77 0.83 131
6 0.84 0.76 0.80 270
7 0.38 0.72 0.50 47

accuracy 0.89 1839
macro avg 0.84 0.85 0.84 1839

weighted avg 0.90 0.89 0.89 1839

Table 5.5: Classification Report obtained from using 100 prototypes in the DS layer

The classification report in table 5.2 shows that by using 20 prototypes, the model
struggled to identify label 5 that is, ‘Trans-cerebellum’ of a Fetal Brain, resulting
in an f1-score of 0.1 only. Using 30 prototypes (Table: 5.3), the f1-score was 0.8,
0.69 using 50 prototypes (Table: 5.4) and 0.83 using 100 prototypes (Table: 5.5).
But in case of class 7, that is the ‘Trans-ventricular’ of a Fetal Brain, using 100
prototypes gave an f1-score of 0.5 (Table: 5.5) only while 30 prototypes gave 0.62
(Table: 5.3). Overall, using 30 prototypes gave a better classification report than
using other prototypes.

Then, we analyzed the classification report obtained from using 30 prototypes in the
DS layer with respect to the report obtained from using only VGG-19. We see that
for all classes, the f1 score is more in case of using DST with VGG-19 than using
just VGG-19. By using 30 prototypes, for class 3, i.e. the ’Maternal Cervix’ class,
we got a perfect score that is, 1.00 (Table: 5.3) which is the best result amongst all
the classes. By using only VGG-19, the f1 score for class 3 was 0.99 (Table: 5.1) so
we saw a slight improvement.

A comparative analysis of the confusion matrices by using 20, 30, 50 and 100 pro-
totypes are also given below.
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Figure 5.6: Confusion matrix obtained from using 20 prototypes in the DS layer

Figure 5.7: Confusion matrix obtained from using 30 prototypes in the DS layer
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Figure 5.8: Confusion matrix obtained from using 50 prototypes in the DS layer

Figure 5.9: Confusion matrix obtained from using 100 prototypes in the DS layer

From these confusion matrices, we were able to identify the number of samples that
were being mislabeled as the True Positive class. In all cases of using different
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prototypes, the fetal brain planes were most likely to be misclassified. But for 30
prototypes, the confusion matrix (Figure 5.7) showed comparatively better results
for identifying the fetal brain planes. We can see that out of 98 images belonging
to the ‘Trans-cerebellum’ class of fetal brain, 78 images were correctly identified
as ‘Trans-cerebellum’ whereas 18 images were mislabeled as ‘Trans-thalamic’ and 1
image was incorrectly labelled as ‘Trans-ventricular’ class. After analyzing the ob-
tained matrices, classification reports and accuracy graphs, we were able to conclude
that using 30 prototypes gave the comparatively better result for our model. So we
implemented the utility layer using 30 prototypes.

5.4 Classification Results from Utility Layer

(a) (b)

(c) (d)

Figure 5.10: Original label and DST based prediction

We get a set of predictions for classifying an image after constructing the utility
layer. For cases with precise classification, the sample image has been assigned to a
single set and not multi class sets. This is because there is a certainty in the model
that this image belongs to one particular class, as it has been depicted in Figure
5.10a where the fetal anatomical plane belongs to that of the ‘Maternal cervix’ class.
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Complete outliers have been labeled and predicted as label 4 which is the class
‘Other’ of our dataset as such in Figure 5.10d. So any images that have no re-
semblance to the other seven classes i.e. the Fetal abdomen (Label 0), Fetal femur
(Label 1), Fetal thorax (Label 2), Maternal cervix (Label 3), the three classes of
the fetal brain i.e. Trans-cerebellum (Label 5), Trans-thalamic (Label 6) and Trans-
ventricular (Label 7) are being classified into the label, ‘Other’ (Label 4). In case of
previous classifiers, complete outliers may be assigned an empty set. In the case of
our dataset, since there is a class named ‘Other’, outliers may be classified in this
instead of being assigned an empty set.

For cases where there is uncertainty, set valued classification was performed where
the image has been classified to a multi class set. That means, partially, multi class
acts have been assigned to that image. For example, for the Figure 5.10b, the sam-
ple image creates a confusion about the label it may belong to. In such cases, a
normal probabilistic model would not have given us enough information about the
prediction of the model. But in this case, we get a set of predicted labels, [1 ,2 ,4 ,6].
This indicates that the image belongs to the class or label, ‘Other’ which is label
4, but there is a possibility of the model predicting the image as label 1, 2 or 6 as
well. In case of Figure 5.10c, the fetal plane belongs to that of ‘Trans-ventricular’
part of a fetal brain class i.e. label 7 but there is a confusion faced by the model
with the ‘Trans-thalamic’ part of a fetal brain, i.e. class 6. Thus, the utility layer
gives a set of possible predictions by the model that contains both label 6 and 7.
This is an indicator of the uncertainty that a model could face while identifying the
fetal anatomical planes and thus, we are able to obtain more information using an
evidential classifier.

5.5 Comparative Study
After computing the DS layer with 30 prototypes, we see a significant difference
between the accuracy from using a conventional CNN classifier and a DST based
Evidential Classifier. Previously, the accuracy obtained from VGG-19 was 87%.
And after applying the Dempster-Shafer layer, the accuracy significantly increased
to 89% due to the conversion of each evidence obtained from the high dimensional
features of the CNN layer into mass functions and combining those evidences in the
DS layer.
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(a) (b)

(c) (d)

Figure 5.11: Original Label, VGG-19 and DST based prediction

Although in most cases, VGG-19 and the E-CNN model gave us the accurate clas-
sification, we have also observed cases in our result where the DST based evidential
model was able to predict a sample correctly but VGG-19 did not give the accurate
prediction. In Figure 5.11a, we see that VGG-19 incorrectly misclassified the image
as label 0 i.e. ‘Fetal Abdomen’ but DST based model was able to classify it into
label 2 i.e. ‘Fetal Thorax’. In Figure 5.11b, the correct label for the image is 1 which
is the ‘Fetal Femur’ class. But VGG-19 placed the image in the ‘Other’ class which
is label 4 whereas our DST based model gave a set consisting of both label 1 and
4 as it found evidence of the image belonging to ‘Fetal Femur’ as well as ‘Other’.
Thus, it did not reject the probability of the image belonging to the ‘Other’ class.

There were also cases where VGG-19 gave an accurate prediction but the E-CNN
model gave a set of classes that contained classes other than the actual label as the
model found similarities of the sample image with the features of that class as well.
In the case of Figure 5.11c, this occurred as the DST based E-CNN model did not
reject the probability that the sample might belong to label 5 and also kept the
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actual label, i.e. label 0 in the set of predicted classes.

There are also a few rare cases where both VGG-19 and DST incorrectly classified
the image as such in the case of Figure 5.11d or cases where VGG-19 might have
accurately predicted the class but the DST based model failed to provide sufficient
information. This may have occurred due to the DS layer clustering evidence from
features found more relevant to other classes than the original class label.
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Chapter 6

Future Work and Conclusion

6.1 Future Work
In the future, we would also like to incorporate the results of some other models
like ResNet, and Inception to incorporate those as evidence to the Dempster-Shafer
layer and create an evidential fusion model. Additionally, we would also like to
implement Explainable AI so that it helps us understand the predictions and results
obtained from the classifier better and also help interpret those results and the causes
behind them. We plan to incorporate any existing XAI architecture like LIME (Local
Interpretable Model-agnostic Explanations) or create our own XAI architecture from
the existing utility layer of our current model. Using these techniques, we want to
be able to explain the reason behind the reason for getting better accuracy while
using a DS layer after a CNN layer than a conventional CNN model. We also plan
on collecting an ultrasound fetal image dataset from Bangladeshi hospitals and work
with that on our model.

6.2 Conclusion
Major malformations of the fetal head, abdominal wall and of the placenta and
umbilical cord can be detected as early as during the first ten weeks of pregnancy
and so it is absolutely crucial to have dependable resources to do so. Be it the
ultrasound images having to go through several specialists for the fetal planes to
be somewhat correctly identified or having varying intensities of speckle-noise or
acoustic shadows, ultrasound still possesses many uncertainties albeit being widely
used and lucrative. With our research, we propose a model that will plug DS with
CNN to improve the overall performance by taking into account multiple pieces of
evidence and parameters to multi-class sets. Additionally, the DS layer gives us a
resulting output on the level of uncertainty that we may get on our obtained results.
We have already obtained a better result using the DS layer along with VGG-19 than
just using VGG-19. We have analyzed cases which might give us the best results and
were thus able to obtain a better result than that of previously used classifiers. We
also performed set valued classification which allowed us to give more information
on the models predictions. In this way, not only the data uncertainty but also the
uncertainty of the model was demonstrated. This is especially significant for US
images as often, fetal planes can be confusing and may be misclassified. Thus, more
information regarding the prediction may help prevent mislabeling.
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