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Abstract
Image is among the most common and important factors in modern day research.
From Image processing to Image synthesis all the aspects of image are necessary
and have always been prioritized. For this we tried to incorporate a comparatively
new process of image generation in our research, that is GAN. In this new era
of technology GAN has gained a lot of popularity for generating new images and
synthesizing old images. Our thesis is a study of two popular GANs that is CGAN
and DCGAN where we came up with the working ability of both the GANs by
analyzing its training and testing with the help of a large volume of discrete datasets.
One of the datasets consists of almost 16000 cars images and the other dataset is of
dogs images which contains almost 5000 dogs images. We have run both the DCGAN
and CGAN for both the datasets with 50 epochs in training and testing. Moreover
besides the use of GAN and comparing it we compared three different techniques
of image compression which are Discrete Cosine Transform that is DCT, K-Means
Clustering and the Pillow Library of Python. With the use of image compression
tools, we can compress images fast and efficiently, resulting in a reduction in storage
space while maintaining a minimal influence on picture quality. We compressed both
the real images from our dataset and the fake generated images. After that we studied
the results by comparing the compression percentage and differentiating the images
quality. We believe that our research will provide an excellent comparison of the
GANs and compression techniques which will help future researchers to understand
which technique to use for optimum result. We hope to improve our models in the
future and also incorporate both the image generation and compression to come up
with better quality images using less memory space. It means that we will be able
to achieve the greatest amount of clarity while taking up the least amount of space.

Keywords: GAN; CGAN; DCGAN; Generator; Discriminator; Image generation;
epochs; training; testing; Compression; K Means clustering; DCT; Pillow
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Chapter 1

Introduction

1.1 Motivation
In this period where everything is dependent on technology and research, neural
networks (NN) are continuously evolving and improving our daily lives, pushing us to
the advanced level of artificial intelligence (AI). This is in addition to being well-suited
to helping individuals in real-world circumstances who are faced with complex issues.
Generating compressed images of good quality is one of the difficulties that must be
addressed to develop more effective methods of carrying out many of the sector’s
activities and reducing its overall workload. Generative adversarial networks (GAN)
is one highly valued architecture of modern science that can be used to generate good
quality compressed images. We know that GANs can make high-quality, perceptual
outputs that aren’t like the training material they were made to learn from. It
is necessary that our reconstructions are both high-quality perceptual images and
accurate representations of their originals when using a compression strategy. There
are a lot of compression techniques present in this era but for us to select the most
reasonable ones which compresses more by keeping the quality intact as much as
possible is a challenge. In everyday life, billions of data sets are used for various
purposes in various industries and sectors. It requires the use of a large quantity of
storage space, which necessitates more time and effort to manage efficiently. However,
there is a risk of disorientation, which might cause any particular sector or individual
to move away too far from their original goal.

1.2 Research Problem
The discovery of enormous volumes of visual data is a time-consuming and expensive
operation. However, it is required in a range of sectors, including medical, sports, and
even container use. Our ability to create new images that are accurate for increased
security while also being compressed to make them lightweight so that they can be
rendered or sent easily between devices is enabled by the use of neural networks such
as GANs, as well as image processing on massive datasets. These are two approaches
we can use to address this problem. However, we can use a compressed image and
still override the volumes if we prefer that option.

1



1.3 Research Objectives
This research will concentrate on building or generating images by neural network
and also compressing to reduce time and space in order to increase the number of
available datasets while also improving the system’s security by making it more
cost-effective. The fundamental purpose of employing a neural network to generate
an image is to eliminate weaknesses in the current method and to make it more
dependable and safe. The objectives of this research are-

• Generating a small sized picture to prevent opponents from altering existing
database values.

• Making the system more trustworthy while also significantly increasing its
security would help to avoid data inconsistencies that may have negative
repercussions.

• Compression pictures to reduce storage space allows us to get rid of redundant
information.

• Saving transmission bandwidth while having just a minimal impact on image
quality.

• Using a large volume of new and trustworthy data, it is possible to develop
more straightforward and effective goal-setting and treatment choices.

• Real-world business difficulties such as marketing modeling, consumer investi-
gation, data authentication, and security control can be addressed by using
neural networks to solve these problems.

1.4 Usage of GAN in Different cases
An existing collection of data which can be used to generate new data in neural net-
works called generative adversarial networks. They are made up of the discriminator
and generator neural networks. The discriminator trains to distinguish the created
data from the real ones, whilst the generator trains to create fresh samples. GANs
are used in a variety of industrial settings, including gaming, cyber security, and
many more. In order to create fresh visual examples, generative adversarial networks
and unsupervised neural networks train on data from a dataset. They are therefore
utilized by the sectors of the economy that rely on computer vision technologies.
GANs are typically used to enhance healthcare, cyber security, produce animations,
translate images, and edit photos. Threats from the internet have grown recently.
Hackers commonly incorporate the technique of adversarial attacks. Hackers take
control of the images by adding shady data to them. It deceives the neural network
and compromises working. For the purpose of identifying these scams, GANs can be
trained. By contrasting scans of tumors with scans of healthy organs, they can also
be utilized to identify tumors. By recognizing differences between the patient’s scans
and the images from the dataset, the model can find anomalies in the patient’s scans.
They can be used to create the molecular structures of therapeutic medications.
Additionally, the video game market can profit from this. GANs can automatically
produce 3D models for animated films, video games, and cartoons, among other

2



things. Their time will be saved by this.

GANs can also be applied to improve images. For example, GANs were used to
remove snow and rain from photos. They can also be used to alter photos of faces and
detect changes in things like gender, hair color, and facial expressions. Additionally,
data from images is translated using GANs. A provided sketch can be used as
input by CGANs to produce a realistic-looking image. Like the illustration of a bird
that is black, blue, or has a golden beak and is quite similar to the actual species.
Converting black-and-white pictures into color.

1.5 Methodology
Our goal of applying neural networks to an image dataset was to discover new pictures
similar to the ones we already had, resulting in an increase in the number of datasets
we already had. After that, we will implement different compression techniques to
compress both the real and generated images thus creating a comparison among
different techniques to identify the optimum result.

Figure 1.1: Process flowchart of generating compressed images

Firstly we will turn our data into the algorithm of the Generative Adversarial network.
Through the help of the algorithm, we will generate new images. Our fetched images
will be passed into the generator of GAN, and the training begins. As the training

3



starts, the generator generates data that is clearly fabricated, and the discriminator
soon learns to recognize that the data is fabricated. The generator becomes better at
misleading the discriminator as training proceeds. The discriminator grows poorer
at detecting real from the fake when generator training goes well. It loses accuracy
when it begins to categorize fictitious data as legitimate. Neural networks function as
both the discriminator and the generator. The output of the generator is connected
in a straightforward manner to the discriminator’s input. A signal is sent to the
generator as a result of the categorization performed by the discriminator. The
generator then applies this signal in order to back propagate an update to its weights.
Our newly created images that pass the GAN algorithm will be sent to a predefined
image processing algorithm. The algorithm will do sampling and factoring to make
those images compressed. The images will go through the preprocessing and the
post-processing procedures to give the results.

Figure 1.2: Process flowchart of generating compressed images

There are only a few steps in the entire procedure. In the first step, we performed
picture preprocessing, in which we removed the undesirable and less-than-perfect
photographs from the massive two-type datasets. Also, we completed the resizing
of the image to meet our requirements, as well as the grey-scaling of the picture.
After that, the GAN approach was used to calculate how much time, also known
as an epoch, is required to generate an image that is the most comparable to the
images contained in the dataset. Next, those real and generated images went through
different compression techniques and the results will be evaluated which technique
worked better at what circumstances as well as get a detailed comparison idea among
them.

4



Chapter 2

Literature Review

2.1 Literature Review
The term ”generative adversarial network” refers to an efficient neural network that
can be utilized for unsupervised machine learning (GAN). The term ”GAN” refers
to a group of different machine learning frameworks that were developed in 2014
by Ian Goodfellow and fellow associates. Through a game, two neural networks
compete with one another. GAN can, for instance, detect and replicate changes
within datasets. GAN excels at creating and modifying images. Given the trained
data set, this approach creates fresh data with comparable statistics. We enter
the photographs initially, after which we preprocess them in a methodical manner.
The discriminator and the generator are GAN’s two primary components. The
discriminator compares these false images with the actual ones after the supplied
input noise makes fake images and transmits them to it. When the discriminator
can readily distinguish between actual and fraudulent pictures, back-propagation
occurs between the discriminator and generator until the discriminator is unable
to distinguish between them. Images that never existed in reality are produced by
GANs. The accuracy, clarity, and quality of the produced pictures are evaluated
by computer comparisons. Researchers combined three neural networks and GAN
to create an encryption technique for the Google brand project in 2016. GANs can
also be applied to drug discovery. When we don’t have enough time to generate
data, GAN finds a solution and doesn’t need human oversight. There are several
different kinds of GANs, including INFOGAN, DCGAN, VSGAN, and WGAN. The
two most common GANs are WGAN and DCGAN. Data labeling is a laborious
human process. GANs can be trained without using labeled data; they can still
learn the internal representations from unlabeled data. The benefit of GANs is that
they may produce data that is identical to the real data. They are therefore useful
in a number of circumstances. They are able to create pictures, text, audio, and
video that perfectly mimic real data. GAN-generated pictures are used in marketing,
e-commerce, gaming, advertisements, and several other industries.

2.2 Related Works
This article, [23], presents a novel Handcrafted Facial Manipulation (HFM) image
collection and soft computing neural network models. [HFM] stands for Handcrafted
Facial Manipulation. In the field of applied soft computing research, a dataset known

5



as Handcrafted Face Manipulation (HFM) is utilized to identify facial alterations. The
authors present a novel neural network-based classifier called Shallow-FakeFaceNet
(SFFN). This classifier has the ability to identify fake face pictures produced by both
humans and GANs. Their cloud computing solution has the capability to identify
forged face content in internet services and Social Network Services. They evaluate
the performance of their method in comparison to other state-of-the-art plagiarism
detectors in a variety of contexts and determine that it offers the best results.

This article, [18], presents an end-to-end solution for compressing and explaining
convolution neural network predictions. A single pipeline delivers prediction, sparse
description, and compressed images using deep learning. NICE is faster than salience
maps and CAM since it just requires forward propagation of the generator network.
NICE outperforms the salience Map, CAM, and RTIS models. So their tech can be
used in various real-time apps. They developed NICE, a trainable neural explanation
and semantic image reduction system. NICE’s sparse masks are more precise and
concise than several contemporary backpropagation explanation techniques. Previous
semantic compression techniques use sparse masking to achieve higher compression
rates than planned mixed resolution picture compression. They show improved
explanatory quality and semantic image compression rate using CNN models.

In this paper, [6], the authors proposed an approach that is based on incremental
learning to detect and classify GAN-generated images. This paper deals with identi-
fying and adapting real-world scenarios from computer-generated multimedia, where
learning needs to change accordingly as new types of generated data show up. In
other words, the authors proposed an approach to detect and classify GAN-generated
images that is based on incremental learning. It was demonstrated through simula-
tions using a dataset of images produced by a variety of GAN-based models that the
proposed methodology successfully carried out the task of discriminating. At the
same time, new GANs are brought to the network. They attempted to resolve the
problem by enabling humans to establish consciousness about what is genuine and
what is not. Two multi-task versions of the original iCaRL algorithm have been used
in the presented work paper, together with adequate training strategies. Finally, the
study proves that the solution can detect images created by fresh GANs without
affecting old ones’ performance.

This study, [20], presents a novel approach for (SISR) problems, which we refer to
as GMGAN. Here the technique constructs a loss of quality by incorporating an
image quality assessment that is IQA measure termed gradient magnitude similarity
deviation (GMSD) into the picture generation process.It allows us to produce images
more following the human vision system (HVS). For the purpose of overcoming
the uncertainty of the original one, researchers use a form of GANs referred to as
better training of Wasserstein GANs (WGAN-GP). Additionally, authors stress the
necessity of training datasets in addition to GMGAN. Experiments demonstrate that
GMGAN with sheer loss of quality and WGAN-GP is able to produce esthetically
pleasing outcomes and establish a new standard of excellence. Also beneficial to
the outcomes is a large number of high-quality training photos with rich textures,
which may be obtained by using a large number of high-quality training photos. The
GMGAN architecture is presented first, followed by a complete discussion of loss
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concepts by mean squared error (MSE) loss. In particular, the paper, [20], tried to
develop a facetful loss term for the loss function, which is the primary IQA-based
loss term.

This paper, [14], introduces that analytic frameworks based on deep learning pos-
sess the capacity to draw original biological conclusions from large-scale picture
datasets. Using real high-content screening(HCS) images acquired from an drug
testing experiment, a DCGAN-based framework for creating synthetic images can be
developed. HCS is proven to be a implied method to perceive therapeutic effective-
ness as well as estimating potency and danger profiles. Deep learning methods often
necessitate a good number of better calibred samples of data, which may be scarce
during preclinical diagnosis research. This problem has been considered and tried to
resolve by introducing a mathematical framework for generating images based on
generative modeling, which may be used for clinical profiling of drug-induced abnor-
malities. The usage of three types of the Generative Adversarial Network (GAN)
in the creation of the framework was explored in this article: a basic Vanilla GAN,
Deep Convolutional GAN (DCGAN), and Progressive GAN (ProGAN). DCGAN was
discovered to be the most efficient in creating synthetic photos that looks close to real.

In this paper, [3], The author proffers a whole bunch of lossy image compression
at full resolution strategies focusing on the Neural Networks. They claimed this
might be the earliest neural network architecture that can overtop JPEG at image
compression among numerous bitrates on the rate-distortion arch on the Kodak
dataset images, with or without the assistance of entropy coding. In the paper, the
author aimed to anticipate a neural network that can create competition covering
compression estimates on images of capricious dimensions. They came up with two
feasible methods to accomplish it, which are - 1) to plot a powerful patch-built
residual encoder, 2) to plot an entropy coder which is able to apprehend lasting
dependencies among the patches in the images. They addressed both the problems
to amalgamate the two feasible ways to ameliorate compression estimations for a
specified standard. To sum up, the author showed an overall architecture to compress
with Recurrent Neural Networks, content-based residual scaling, and a recent GRU
variant to provide the prominent PSNR-HVS out of the models coached on high
entropy dataset providing a set of models. That can perform satisfactorily according
to these metrics.

The authors, [8], focused on the task of minimizing image compression artifacts
by using GANs, ARGAN. In this research paper, the authors described that this
kind of compression leads to a quite convoluted system that can be diminished
by generative adversarial networks. because compression like JPEG decreases the
possibilities of recuperating a sharp image from a degraded image. Based on this,
the authors offer generative adversarial networks which are more efficient than the
traditional form of compression. According to their plan of action, they indicate a
form (ARGAN) that is stimulated by GAN. Two feed-forward CNNs are also part
of ARGAN. This suggested method contradicts the subsistence traditional method.
To conclude, the paper, [8], shows that after doing a great number of comparisons
with SA-DCT, ARCNN, D3 their proposed ARGAN is worthwhile in eliminating
numerous compression artifacts which makes the image more sharp and clear.
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According to the authors, [26], the image processing studies now mostly focus on
improving existing images. In order to improve low-light images, their proposed
system uses input images to train efficient generative adversarial networks, which
then generate images that may be swapped out for one another in the new context.
The created image is then compared to the original using a loss function that has
been built and minimized in order to train the discriminator. Their ultimate goal
is to ensure an advanced visual task of image requirement. By focusing on several
sides like improving contrast, enrich image content information, clearing low-quality
images, reducing noise etc. To sum up, the paper tells us, solving the issue of low
noise and reduced brightness in data with low light image, the improved network
module to maximize generative adversarial networks is usable. Also, a residual
module was constructed for enhances the capacity to simulate picture enhancement
using low light which is evaluating the effectiveness of the algorithm on two picture
datasets (DPED, LOL) and analyses it to conventional image enhancement meth-
ods that is HE or SRIE and deep learning methods such as EnlightenGAN and DSLR.

In this paper, [2], the authors mentioned that transmission, compression, browsing,
and communications are usual in the methodical theory of digital image processing.
Commonly, the early techniques of digital image transmission and storage used
Pulse Code Modulation (PCM). However, in modern systems, there is more use
of complicated digital compression methods. The authors explained a method to
compress images and an image format in the paper. The technique incorporates
executing a transform on pixel partitions of image data and assessing the resulting
coefficients from every transform in the phrase of a flatness state.

This paper, [19], described a method for creating a generative lossless data compres-
sion system by combining GAN with learned compression techniques. The researchers
look into normalizing layers, discriminator and generator design, perceptual losses,
and training methodologies, among other things. It is their goal to bridge the gap
between rate-distortion perception theory and practice by quantitatively verifying
our technique using numerous perceptual metrics and conducting a user study. As
a result, [19], the scientists demonstrated that optimizing a neural compression
approach using GAN results in reconstruction with maximum perceptual fidelity
that is visually close to the input, despite the fact that these systems consume more
than double the number of bits compared to past methods.

In this article, [27], the author discussed the main lossy along with lossless image
compression techniques, along with their advantages, disadvantages, and future
research directions. The author stated that, for processing, computer programs
convert information from analog to digital. Image compression decreases the storage
space that is needed for photos as well as other multimedia, increasing transmission
and storage performance. Image compression can be lossy or lossless. To achieve
lossless compression, data is reduced in size so that it may be uncompressed and
restored to its original form. Therefore, in order to save a little bit more bandwidth
or storage space, lossy compression algorithms allow for the compromise of some of
the image’s finer elements. Throughout the paper, he thoroughly discussed different
image compression techniques such as lossless compression, lossy compression, run-
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length encoding, Huffman encoding, and many more. The author stated that when
using lossless compression methods, the reconstructed image is identical in terms of
quantity to the original picture. Only a limited fraction of lossless compression can be
used to accomplish compression. On the other hand, RLE uses a pair of techniques
as an alternative to lossy compression (length, value) replacement values for the
original data. The length and value are distinct, which indicates how frequently it
is repeated. Furthermore, in huffman encoding, data will be encoded more often
and with fewer bits, which is done by frequency (pixel in images). In addition to
this, the author also added that a lossy compression system may analyze the color
data for a variety of pixels and identify tiny variations in the color values of the
pixels that the human eye or brain would not be able to differentiate. The computer
may swap out the larger pixels for smaller ones whose color value fluctuations are
visible to humans. Lastly, the author claimed that lossy compression offers a better
compression ratio than lossless compression in his conclusion. Text compression
performs effectively when there is no data loss. All lossy compression techniques have
a high compression ratio when images have a bit depth of more than 0.5 bpp. Ad-
ditionally, the quality of the image has a big impact on how well it can be compressed.

In this paper, [17] , the author implemented some new methods to improve the
outcome of GANs. CGANs provide customizable synthesis of images for use in
computer vision and art programs. CGANs are first degree to second degree orders
of magnitude more compute-intensive than contemporary CNNs. In this study, they
present a general-purpose compression framework for cGANs. Existing compression
approaches perform poorly due to GAN training complexity and generator archi-
tectural issues. It has been responded to in two ways by consolidating unpaired
and paired learning and move intermediate model representations to the compressed
model of the GAN to ensure consistent training. The CNN team should stop recycling
old ideas., their technique searches for efficient structures. Decoupling model training
and search with weight sharing speeds up the search. Their [17] technique works
across supervision settings, network architectures, and learning methodologies.

There are two types of machine learning algorithms: supervised and unsupervised.
Supervised learning systems may categorize tagged data and cluster unlabeled data.
This paper, [7], explains clustering algorithm basics and parameter selection. Analysis
of clustering technique in image compression. This paper, [7], highlights clustering
concerns. Clustering is a learning method for analyzing data structures. Clustering
divides related data into multiple groups. The clustering technique demands the
most similarity between same-cluster data, and the least similarity between distinct
clusters. Clustering is unsupervised learning, unlike categorization. The clustering
method separates the data set into clusters based on sample similarity. Therefore,
data clusters are not predetermined but characterized by sample similarity. Input
cluster data isn’t pre-marked.

In this paper, [30], the author stated about the compression technique using DCT .
Here , they discussed the Lossy compression technique which is JPEG . A website
or online catalog with dozens or hundreds of photographs will likely need image
compression. Unadulterated image storage can be prohibitively expensive. Several
picture compressing algorithms exist today. They [30] are lossless and lossy. JPEG
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uses the discrete cosine transform to compress lossy images. DCT separates pictures
by frequency. During quantization, part of compression, less significant frequencies
are removed, hence ”Lossy.” Decompressing the image uses only the remaining essen-
tial frequencies. Reconstructed images have some distortion; however, these levels
can be modified during compression. This essay will focus on black-and-white JPEG
compression.

In this paper, [1], the author made a comparative analysis between DCT-DWT
and its hybrid version. DCT is a frequently used image compression technology,
and DWT’s multi-resolution nature improves picture quality. Uncompressed digital
photos require massive storage. Image compression reduces storage space while
maintaining quality. In this study, the performance of DCT, DWT, and Hybrid
DCT-DWT is examined in terms of PSNR, MSE, and compression ratio (CR). The
study’s [1] experimental results reveal that hybrid DCT-DWT image compression
performs better than DCT or DWT alone.
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Chapter 3

Research Methodology

3.1 Generative Adversarial Network (GAN) Ar-
chitecture

Using the data’s statistical distribution as a starting point, generative adversar-
ial networks are implicit probabilistic models that generate data samples. They
serve as a means of generating variations from the dataset. They combine two
neural networks which operate in an ”adversarial” manner, with the discriminator
seeing the fakes as the generator generates them. This compels the generator to
produce better pictures and the detector to detect them more accurately. They
both begin to converge after several epochs of running. This allows us to create
flawless fake images that seem similar to the original yet do not exist in reality. The
generator neural network creates fresh data samples, while the discriminator neural
network evaluates their authenticity. The discriminator determines whether or not
each instance of data under review is a part of the training dataset. GANs are uti-
lized for a wide range of applications. Specifically, voice, image, and video generation.

In order to achieve its primary purpose, at first GAN must determine the unknown
probability distribution of a population that has been used to sample training ob-
servations. We can sample new observations that are made in the manner of the
training distribution once the model has been effectively trained.

Generative and Discriminative models are used in the context of supervised learning.
When it comes to solving the Classification problem, Discriminative Models are
most commonly used. Generative Models generate synthetic data points that follow
the same probability distribution as the training datasets. Generative Adversarial
Networks (GANs) are an example of the Generative Model that we are discussing.

Considering a random noise, the Generator generates synthetic samples, and a binary
classifier, the Discriminator, distinguishes between real and fake input samples.

11



Figure 3.1: Architecture of GAN

The architecture [13] consists of two different components: the discriminator, which
can tell the difference between real and generated images, and the generator, which
can create images in order to fool the discriminator. Both of these components are
incorporated in this system. A probability distribution, denoted by the notation pg,
is understood to be the distribution of samples when another distribution, denoted
by z pz, is provided. Generator The objective of a GAN is to learn the distribution pg
of a generator in a manner that is analogous to the distribution pr of the actual data.
The performance of a GAN can be enhanced by working to minimize a combined
loss function for both the discriminator and the generator.

For our research, we have decided to use the DCGAN and CGAN. We have compared
the results to see how well they perform under the given set of conditions. We have
made a comparison of the outcomes to evaluate how well they performed in the
circumstances that they have been given.

3.1.1 Conditional Generative Adversarial Network Architec-
ture (CGAN)

Conditional probability is a probability of one event occurring if another event has
already happened. The conditional version of GAN is introduced in this paper. Con-
ditional information can essentially be used by simply feeding whatever ”additional”
data, such as picture tags/labels, etc. It is feasible to direct the data creation process
by conditioning the model on auxiliary information.

Conditioning can be done based on the generating task by sending information into
both the discriminator and the generator as additional input via concatenation.
The condition could be demographic data (such as age and height) or semantic
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segmentation in other fields, such as medical image production. CGAN has a ten-
dency to converge more efficiently; It seems that even a random distribution will
have some pattern even if it is completely random. The use of hand-crafted misfor-
tunes or pre-trained systems is not required for CGANs to provide high-resolution
photorealistic symbols. Image synthesis, or the process of synthesizing new im-
ages from an existing dataset, is a strong suit for GANs. Some databases provide
additional information, such as class labels, which can be put to good use. By
providing the label for the image that we want the generator to produce, we have the
ability to exercise control over the output that it generates at the moment of inference.

It is possible that the model might be extended into a conditional model if the
generator and the discriminator are based on some additional information that is
referred to as y. We are able to condition the information by adding an additional
input layer by transmitting y into both the discriminator and the generator. The
MNIST program enables users to create handwritten numbers such as the number
7, and the CIFAR-10 program enables users to create photographs of items such as
animals. As a result, we can refer to this kind of model as a Conditional Generative
Adversarial Network, or CGAN for short.

Figure 3.2: Architecture of CGAN

There [11] are n possible labels that can be given to the generator. It takes one
of them as an input, and it creates a fake example x*|y that looks real and is a
good match for that label. This generator takes inputs as a random noise vector
z and one of the n possible labels as inputs, and outputs as an example x*|y that
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attempts to be both realistic looking and a convincing match for the label given
by the label y. The CGAN Discriminator receives both genuine examples and their
labels (x, y) and synthetically generated samples and the label used to synthesize
them (x*|y, y). This is followed by a probability (calculated by the sigmoid acti-
vation function) that indicates whether the input pair is genuine or a forgery (or both).

G(z, y) = x*|y is the CGAN generator. In response to the random noise vector z
and the label y as inputs, the generator generates an example x*|y that attempts to
accurately match the label in terms of appearance.

3.1.2 Semi-Supervised Generative Adversarial Network Ar-
chitecture (SGAN)

Semi-Supervised Generative Adversarial Network is what ”SGAN” stands for in
its full title. In the architecture of the Generative Adversarial Network, this is an
advanced level that is used to address semi-supervised learning issues. When using
any standard classifier in SGAN, semi-supervised learning can add samples from the
GAN generator to the data set. Also, naming them with a new ”generated” class,
or without adding an additional class when the pre-trained classifier recognizes the
label (conditional probability) with low entropy.

A classification predictive modeling problem is the most typical example. However, a
tiny proportion have a target level from a vast sample of datasets. It is mandatory for
the model to adapt from a specific group of level examples. Also have the capability
to handle extended dataset of unleveled instances. To identify additional cases in
the near future. The final result will be a supervised classification model which will
generalize new cases and a generator model which will generate a realistic example
of images from the domain [12].

Figure 3.3: Architecture of SGAN

The objective of the SGAN Generator [5] is the same as it was in the indigenous
GAN: it took in a vector of random integers known as noises and generated false
examples that were indistinguishable from the training dataset. On the other hand,
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the SGAN Discriminator departs greatly from the manner in which the initial GAN
implementation was carried out. It receives three types of inputs instead of two:

1. Fake examples generated by the Generator (x*)

2. Real examples with and without labels from the training dataset (x).

3. Real examples with labels from the training dataset (x, y), where y specifies
the label for the given, will classify the input example through its associated
class when the sample is actual, but will reject the model if the example is fake
(that might be a particular additional class).

3.1.3 Deep Convolutional Generative Adversarial Network
Architecture (DCGAN)

Deep Convolutional Generative Adversarial Network, or DCGAN, is a modification to
the GAN design that uses deep convolutional neural networks for both the generator
and discriminator models. This type of network is referred to as a DCGAN. A
consistent level of training is generated by the generator as a result of the training
settings and model. The DCGAN is the GAN that is used the most, and it is also
perhaps the GAN that is used the most when compared to the other GANs.

Deep convolutional neural networks were used for the first time in DCGAN, which
was the first work to use them for generators. Deep convolution is a way to show
the features [29] of a CNN, and it has worked well for this. DCGAN uses the
structural up-sampling capability of the deep convolution operation for the generator
making it possible to make higher- resolution images with GANs. DCGAN has
a very different structure than the original FCGAN, making it better for high-
resolution modeling also, stable training. Both the generator and the discriminator
of a DCGAN are generated with layers that are convolutional and convolutional-
transpose combinations. DCGAN first removes any pooling layers by replacing
them with stridden convolutions for the discriminator as well as fractional-strided
convolutions for the generators. Second, batch normalization usually applies not only
for the discriminator but also for the generator which helps the generated and actual
samples have the exact statistics, making it easier to find the generated samples and
actual samples centering at zero. Thirdly, the generator performs ReLU activation
for each layer but not for the output. This is an important distinction. Because it
includes Tanh. The output layer of the discriminator does not use the LeakyReLU
activation that the generator uses for any of the other layers. As the discriminator
sends gradients to the generator, the LeakyReLU activation will prevent the network
from getting stuck in a ”dying state” (for example, having inputs that are smaller
than 0 in ReLU) as the discriminator sends gradients. On the Large-Scale Scene
Understanding (LSUN) dataset, ImageNet, and a dataset [29] of faces that have been
customized, DCGANs are trained. In order to get the models ready, we employed a
method called stochastic gradient descent (SGD), and the batch size was set to 128.
To begin, each of the weights was given a normal distribution with a zero-centered
mean, a standard deviation of 0.02, and a 0.02 standard deviation from the mean.
In this experiment, Adam was given a learning rate of 0.00002 and a momentum
term of 0.5. It was set at 0.2 across the field for all of the models. Images consisting
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of 64 by 64 pixels were used for the training of the models. During the history of
GANs, DCGAN is an essential point, and the deep convolution architecture is used
the most. This is because DCGAN is limited by the size of the model and the way it
is optimized, so it can only work with low-resolution and less diverse images.

Figure 3.4: The overall architecture of Deep Convolutional Generative Adversarial
Network

This picture shows the DCGAN generator that is used to model LSUN sample scenes.
The DCGAN model was tested against LSUN, Imagenet1k, CI-FAR10, and SVHN
datasets to see how well it did. Make use of DCGAN’s feature extraction features
before proceeding to fit a linear model on top of those extracted features in order to
evaluate how well the model performed. There was no utilization of log-likelihood
metrics in the process of evaluating the quality of work performed. Additionally, it
demonstrated how the generator could learn to forget elements in the scene, such as
the bed, the windows, the lamps, and other pieces of furniture, in addition to doing
vector arithmetic on face samples, which resulted in positive outcomes.

3.2 Generator
By incorporating information from the discriminator[21], the generator component of
a GAN is able to learn how to generate fake data. It acquires the ability to convince
the discriminator that the output it produces is real. It is trained to produce data
that is consistent with plausibility. The discriminator will use the generated instances
as examples of how not to operate in a certain situation. The following components
make up the part of the GAN that is responsible for training the generator:

1. random input.

2. generator network that converts random input into a data instance.

3. discriminator network, which is responsible for classifying the data generated.
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4. discriminator output.

5. loss of the generator, which is a consequence for the generator because it was
unable to fool the discriminator.

Figure 3.5: Back propagation in generator training.

When training first starts, the generator will start putting out data that is patently
incorrect, and the discriminator will quickly learn to detect it.

Figure 3.6: Working of Discriminator

The generator [32], is trained using the procedure below:

1. Samples containing a random amount of noise.

17



2. The generator generates output using random noise.

3. Given the generator output, determine if the discriminator’s categorization is
true or false.

4. The loss caused by discriminator organization is determined.

5. To generate gradients, back propagate via both the discriminator and the
generator.

6. Change only the generator weights using gradients.

3.3 Discriminator
The discriminator in a GAN is essentially the same as a classifier. It makes an
effort to differentiate between real data and data that has been generated by the
generator. Any network architecture that is relevant to the kind of data that is
being classified could be used by it. The data used for discriminator training comes
from two different sources. One is samples of data taken from the real world, such
as photographs of people. During the training process, the discriminator looks at
these instances and judges them to be successful examples. On the other hand, the
generator makes up fake data objects. The discriminator will use circumstances like
these as examples of how not to conduct during the training process.

Figure 3.7: Discriminator Network

Real-world examples, such as images of persons during training, the discriminator
considers favorable possibilities. The generator generates fake data objects. During
training, the scenarios are used as negatives. The two ”Sample” boxes reflect the
two data sources that feed into the discriminator.
During discriminator [32], training:

1. The discriminator differentiates between real and fake data generated by the
generator.

2. The discriminator loss penalizes the discriminator for inaccurately recognizing
a real instance as a fake instance or a fake instance as a real instance.

3. The weights of the discriminators get updated whenever there is back propaga-
tion of the discriminator loss through the network of discriminators.
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Figure 3.8: Working process of discriminator

3.4 Hyper Parameters
The network structure and the method by which the network is trained are both
determined by the hyper parameters, which are the variables that comprise the
network’s structure. They are also defined as the parameters that the user deliberately
specifies to influence the learning process. And this is set before training. A model
hyper-parameter is a setting that is not controlled by the model and whose values
cannot be predicted using data. It is frequently used in processes to estimate model
parameters. Predictive modeling challenges are specified by the usage, set using
heuristics, and refined. We don’t know what the ideal values for model hyper-
parameters are, therefore we have to rely on rules of thumb.

3.4.1 Epochs
One iteration through the entire training dataset constitutes an epoch. The process
of training a neural network typically requires more than just a few iterations, also
known as epochs.In other words, the goal is to achieve stronger generalization when
the neural network is provided with a new ”unseen” input by feeding it training
data in a variety of patterns over the duration of more than one epoch (test data).
Iteration and epoch are terms that are commonly mistaken with one another. The
number of steps through split packets of training data corresponds to the number of
batches, and the number of iterations required to finish one epoch is proportional to
that number. An epoch is made up of one or more batches. Batch gradient descent
learning refers to an epoch of a single batch. It is similar to a ’for’ loop over epoch
numbers that goes over the entire training-set. Within this loop, another nested
’for’ loop goes over each of the batches of samples. A ’batch-size’ has been assigned
to one batch. The batch size refers to the number of samples. It is quite usual to
represent this data graphically, with the y-axis indicating the error or skill of the
architecture and the x-axis indicating the time that has elapsed. They are referred
to as learning curves, and they have an impact on how well a model can pick up new
information.

3.4.2 Batch Size
The quantity of samples that are typically processed by the neural network all at
once is referred to as the batch size. The quantity of a batch that is typically referred
to as a mini-batch. The generation of one or more batches is possible with the use of
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a training dataset. The algorithms used for the various batches, along with their
respective conditions [22], are explained below:

Batch Gradient Descent. Batch Size = Size of Training Set
Stochastic Gradient Descent. Batch Size = 1
Mini-Batch Gradient Descent. 1 < Batch Size < Size of Training Set

The volume of samples that are run through the analysis before making any modifi-
cations to the model is referred to as the batch size. On the other hand, the number
of epochs is equal to the number of times the training dataset has been traversed
in its entirety. This is because the two concepts are equivalent. Therefore, we may
state that the size of a batch must be more than or equal to one, but it must not
be greater than or equal to the number of samples that are included in the training
dataset.

3.5 GAN Loss Function
Generating a precise clone of a probability distribution is the aim of GANs. They
must therefore employ loss functions that show how far apart the distribution
of data produced by the GAN is from the distribution of the actual data. The
generator and discriminator models must be simultaneously trained according to the
GAN’s architecture. The discriminator model is updated similarly to any other deep
learning neural network, but the generator’s loss function is implicit because it uses
the discriminator as the loss function. and is learnt as part of the training process.
The standard GAN loss function[32], is known as the min-max loss which represent
with following equation:

The discriminator works toward increasing the value of this function, while the
generator works toward reducing it as much as possible. This particular formulation
of the loss seems to be the most effective option.

Discriminator loss and Generator loss are two more subcategories of the conventional
GAN. The discriminator is in charge of categorizing both the real data and the
fictitious data generated by the generator throughout the training phase. On the
other hand, during the training phase of the generator, it collects samples of random
noise and creates an output based on that noise. Following this, the output is sent
into the discriminator, where it is evaluated to determine whether it should be
labeled as ”Real” or ”Fake.” This determination is made based on the discriminator’s
capacity to differentiate between the two types of data.

Loss Functions are also present in Deep Convolutional Generative Adversarial net-
works, just like they are in GANs. The equations[4], explaining the loss function of
Minimax GAN loss are as described in the following:
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For Discriminator:

Where D(x) - discriminator with real image and D (G (z)) - discriminator with
generated image.

For Generator:

Where D (G (z)) - discriminator with the generated image.

The adversarial loss in the original GAN model does not vary, whereas the loss
function in the CGAN model does. Furthermore, the discriminator in the CGAN
model observes the inputs, whereas the discriminator in the original model does not.

3.6 Sigmoid
When constructing a neural network or using a built-in library for neural network
learning, it is of the utmost relevance to have a thorough comprehension of the
significance of a sigmoid function. The sigmoid function is a variant of the logistic
function and is typically represented by [25], �(x) or sig(x) and the equation stands
like-

3.7 Tanh
Tanh is one of the main activation functions in machine learning and this is a viable
alternative to the more conventionally known ’Sigmoid’ function. The tanh derivative
is used whenever there is a need to calculate the influence of inaccuracy on weights.
Similar to the sigmoid function, the derivative of the hyperbolic tangent function
has a straightforward representation. Equation for the hyperbolic tangent function
is given below:

The range of tanh is [-1 to 1] and the range of the derivative of the function is
0 to 1. Domain: (-∞, +∞); σ(0) = 0.5
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3.8 Gradient Penalty
The gradient penalty loss is calculated by measuring the squared difference between
the norm of the gradient of the predictions with respect to the input images and the
gradient penalty term. The model will naturally be inclined to find weights that
ensure the gradient penalty term is minimized, which will encourage the model to
conform to the Lipschitz constraint.The problem with weight clipping is that it only
learns basic functions and does not take into consideration the most significant times;
gradient penalty solves this problem.

3.9 Optimizers
Optimizers minimize the loss function and ensure modification of weight of each
epoch. Optimizers are methods or algorithms that are used to modify the parameters
of the neural network, such as weights and learning rate, in order to minimize losses.
Optimizers use function minimization to address optimization problems. As a result,
this results in an increase in accuracy while simultaneously reducing loss. There are
different types of optimizers that reduce loss function and it is very important to
choose the best optimizers to reduce the loss at maximum level. Here we will discuss
a few optimizers and how to exactly minimize the loss.

3.9.1 Gradient Descent
Gradient descent is based on a convex function. The Gradient Descent method is
the sort of optimization algorithm that is the most basic but also the most widely
used. It plays a significant role in a number of different algorithmic processes, such
as linear regression, classification, and back propagation, among others. It modifies
a function’s parameters in an iterative manner in order to reduce that function to its
local minimum value. Iteratively reducing a loss function is the goal of the gradient
descent algorithm, which does so by moving in the opposite direction of the steepest
ascent. This optimizer is easy to understand and implement but it costs a large
memory and it is computationally expensive and also time consuming.
Algorithm: θ = θ − α·∇J(θ)

The Stochastic Gradient Descent algorithm[31], is an extension of the Gradient
Descent algorithm, and it eliminates some of the drawbacks that are associated with
using the GD approach. In order to load the entire dataset of n-points at once for
the purpose of computing the derivative of the loss function, the Gradient Descent
algorithm has the drawback of requiring a significant amount of memory to do so.
Calculating the derivative using the SGD algorithm involves doing so one point at a
time.
Algorithm: θ = θ − α·∂ (J(θ; x(i), y(i)))/∂ θ

where x(i), y(i) are the training examples.

The ideas behind SGD and batch gradient descent have been combined to create
Mini Batch Stochastic Gradient Descent (MB-SGD). It basically divides the training
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dataset into multiple batches of a reasonable size and then applies an update to each
of those batches. This results in a nice balance between the robustness offered by
stochastic gradient descent and the efficiency of batch gradient descent. When the
parameters are changed, it has the potential to reduce the variance, which in turn
makes the convergence more stable. It leads to more stable convergence and efficient
gradient calculations but if the rate of learning is too low, the rate of convergence
will be on the slow side.
Algorithm: θ = θ − α·∂ (J(θ; B(i)))/∂ θ

where B(i) are the batches of training examples[31].

The rate of learning is maintained in a constant manner across all of the algorithms
that we have covered so far. The optimizer AdaGrad (Adaptive Gradient Descent)
changes the learning rate. It executes less significant changes for parameters that
are associated with features that occur frequently, and it executes more significant
updates for parameters that are connected with features that occur infrequently.
Iterations bring about an adaptive change in the Learning Rate and are able to train
sparse data as well but however, since the learning rate is continually falling, the
training process moves at a decreasing rate.

Root Mean Square Propagation (RMS-Prop) is a modified version of Adagrad in
which the learning rate is calculated based on an exponential average of the gradi-
ents rather than the cumulative sum of squared gradients. This allows RMS-Prop
to achieve significantly faster results. RMS-Prop essentially combines momentum
and AdaGrad into an one algorithm. Learning rate is automatically modified in
RMS-Prop, and it selects a unique learning rate for each parameter. RMS-Prop
develops at a different pace depending on the value of the parameter. The RMSprop
algorithm also performs a division of the learning rate by an exponentially decaying
average of squared gradients. Hinton proposes that [31], the parameter be set to 0.9,
whereas a value of 0.001 is an acceptable default for the learning rate.

3.9.2 Adam
The Adam optimizer is a well-known and extensively utilized algorithm for gradi-
ent descent optimization. It is also one of the most well-known gradient descent
optimization techniques. It is a process that determines personalized learning rates
for each individual based on the characteristics that are being considered. It stores
the decaying average of the past squared gradients, which is similar to RMS-Prop
and adadelta, in addition to the decaying average of the past gradients, which is
similar to momentum. Both of these averages are held in its memory. Both of
these averages are declining with time. As a result, it includes the benefits that
are associated with both of the procedures. This method is easy to implement and
also computationally efficient, converges rapidly and most importantly requires less
memory. The configuration parameters of Adam are given below:

1. Alpha - the amount of progress made or the rate of learning. The increment
by which weights are adjusted, such as 0.001. Smaller numbers slow down
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the learning rate during training, like 1.0−5. Greater numbers result in faster
initial learning before the rate is revised, such as 0.3.

2. Beta1- the exponential decay rate of the first moment estimates, like 0.9.

3. Beta2- the exponential decay rate of the second moment estimates, like 0.999.

4. Epsilon- To prevent division by 0 a really small number, like 10−8.

3.10 Layers
Layers are used to develop any Generative Adversarial Network or Neural Network.
Many various kinds of layers, together with their specifics, characteristics, and re-
quirements, are included in the designs in order to build the model. Different layers
apply different modifications to their inputs, and some layers are more effective than
others at performing particular tasks.

For instance, models that operate with image data often include a convolutional
layer. Fully connected layers, as the name indicates, fully connect each input to each
output inside their layer. Recurrent layers are employed in models that cope with
time series data. Both the Convolution-layer and Transpose-layer are used by all
GAN designs. So, they are covered in more detail below-

A convolutional layer is the fundamental component of a CNN. Artificial intelligence
is also a sort of convolutional layer. It is made up of a number of kernels. The
parameters must be acquired during the training phase. The sizes of the filters
are smaller compared to those images. They control spatial redundancy by sharing
weight. As we delve deeper into the network, the features become more specialized
and educational, [15]. Convolution layers are great for extracting visual characteris-
tics because they handle spatial redundancy through weight sharing. As redundancy
is eliminated, we are left with a representation of a compressed aspect of the image’s
content. Sharing weight is no longer necessary for this mapping function since a
whole feature vector is needed to draw a valid conclusion. Learned features from
convolution feature extractors are often converted into a vector that may be used as
an image descriptor. This conversion can be carried out in one of two ways, [9]. One
method is to simply arrange all of the final layer activations of the feature extractor
into a 1D tensor. The second method uses full-scale average pooling to provide a
feature representation of the image’s content that is compressed. The following two
parameters determine the convolutional layer that is applied to an input with a size
of i x i.

Parameter (P): The size of the original input is increased by the number of padding
zeros to (i+2*p)x(i+2*p).

Stride (S): The distance that the kernel travels over the input picture before shifting.

The two-step operation of a convolutional layer is shown in the following figure.

24



Figure 3.9: Convolution

In the first step of the process, the provided image is padded with zeros. In the
second step, the kernel is applied to the padded input and slid across to form the
output pixels as dot products of the kernel and the overlapped input area. By making
hops whose sizes are determined by the stride, the kernel is moved over the padded
input. The convolutional layer often down-samples, meaning that the output’s spatial
dimensions are less than those of the input. The size of the output feature map (o)
produced for a given size of the input I kernel (k), padding (p), and stride (s), is
given by

On the other hand, a transposed convolutional layer [10], is often used for upsampling,
or creating an output feature map with a larger spatial dimension than the input
feature map. The padding and stride of the transposed convolutional layer are the
same as those of the regular convolutional layer. These padding and stride values
correspond to the hypothetical operations that were performed on the output to
produce the input. In other words, if you take the output and do a conventional
convolution with specified stride and padding, the generated spatial dimension will
be the same as the input. The graphic below shows all of the processes in detail.

Figure 3.10: Transposed Convolution
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The size of the output feature map, denoted by ”o,” is determined by the size
of the input I kernel, denoted by ”k” the amount of padding, denoted by ”p” and
the stride, denoted by ”s” is given below:

3.11 ReLU
ReLU, or a rectified linear unit, is a technique for increasing the network’s non-
linearity without harming the convolution layers’ receptive fields. ReLU is a max
function with input x, such as a matrix from a complicated picture (x, 0). ReLU
causes all of the negative values in matrix x to be reset to the value 0, but it does
not affect the other standards in any way. It is a piecewise linear function with an
output of zero if the input is negative and the input itself as the output if the input
is positive. It is many neural networks’ default activity. ReLU provides for quicker
data training, whereas Leaky ReLU may be utilized to address the disappearing
gradient issue.

A type of activation function based on a Rectified Linear Unit that is known as a
Leaky ReLU is referred to as a Leaky ReLU. This function has various advantages.
Zero-slope parts are not present in the solution to the ”dying ReLU” issue. According
to research, ”mean activation” would be close to 0, which would speed up training.
However, rather than being flat for negative numbers, it has a little slope. Negative
input output slope is a parameter that may be learned. The term ”hyper-parameter” is
used to describe it; this is the sole distinction. The slope coefficient is predetermined;
it is not acquired via training. When doing tasks that might be hampered by
sparse gradients, such as when training generative adversarial networks, this kind of
activation function is often used.

3.12 Norms
Data standardization is accomplished by the application of norms, also known as
normalization. Having many data sources that fall within the same range. The
process of turning all data in the range of 0 or 1 or maybe any other range is called
normalization. This approach helps certain algorithms, particularly when Euclidean
distance is involved. Our network may have issues, making it much more difficult to
train it and slowing down its learning rate if the data is not normalized before train-
ing. Since batch-norm or instance-norm were both employed in the aforementioned
designs, these two will be covered in more depth below.

Batch Norm, a normalizing method, is a widely used deep learning strategy because
it reduces training time while also improving model performance in layers of a neural
network rather than in the raw data [28]. Instead of using the whole data set, it
is done in mini-batches. It facilitates learning by accelerating training and using
greater learning rates. By stabilizing layer input distributions, the batch-Norm
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technique enhances neural network training. This is achieved by managing the first
two moments of these distributions by adding additional network layers (mean and
variance). There is a regularization impact of batch norm. The data distribution of
the model experiences noise each time since it is calculated across mini-batches rather
than the whole data set. This may serve as a regularizer, preventing overfitting and
enhancing learning. The added noise, on the other hand, can hardly be heard. As a
consequence of this, it is frequently utilized in conjunction with Dropout due to the
fact that it is typically insufficient to properly regularize by itself.

3.13 Compression
One or more files can have their sizes decreased by using a technique known as
compression, sometimes known as ”data compression.” When compared to its un-
compressed counterpart, a compressed file takes up significantly less room on the
hard drive and may be moved to different computers much more quickly. As a result,
compression is utilized frequently in order to save space on a disk and cut down
the amount of time necessary to download files over the internet. The creation of
computer science in the late 1940s marked the beginning of modern data compression
work. The probabilistic block cipher was developed in 1949 by Claude Shannon and
Robert Fano. Then, in 1951, David Huffman discovered the best way to achieve this.

Data compression comes in two forms:

1. File Compression

2. Media Compression

All sorts of data can be compressed into a compressed archive using file compression.
To access the actual files from these archives, a decompression tool must first be
used to compress them. File compression is always done with a lossless compression
technique, which means that no information is lost during the process. The actual
size of a file is reduced by the process of data compression, which is also known as
file compression. This is done to save space on a computer’s hard drive and to make
data transfer more straightforward and efficient over a network or the Internet. Files
can be compressed in a number of different ways. It allows the creation of a version
of one or more files that has the same data but is significantly lower in size than
the file that was originally created. RAR, ZIP, and TAR are a few examples of file
extensions for compressed data. ZIP is not the sole format for compressed files, but
it is unquestionably the most widespread. One could talk for hours about ZIP, ARC,
ARJ, RAR, CAB, and dozens of others, but they all operate in a comparable pattern.
A compressed file is generally a document that holds one or more files with reduced
file sizes. As these files are compact, they require less storage space and may be
transferred over the Internet at a faster rate. Using a tool such as 7-zip, one may
then decompress the file or files without degrading their actual quality. ZIP files
allow users to compress multiple files into one, which saves time and space during
transfer. Once the files are extracted using a tool like 7-zip, the receiver will get
everything the sender supplied in a single, streamlined folder. Everyone knows that
hard disks are quite pricey. Massive data storage naturally demands a large amount
of physical storage space, so it makes sense to maximize efficiency. As an example, if
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someone has 300GB of data, he may compress it into a ZIP file that only takes up
100GB. Then he doesn’t have to shell out any additional cash to keep all the data
safe and accessible whenever he needs it.

Similar to file compression, media compression tries to lower file size and conserve
disk space. On the other hand, the methods used to compress particular types of data,
such as audio and video files, are specific to those types of media only. Compression
is used in the vast majority of the most prevalent image formats. JPEG, GIF, and
PNG are the three formats that are used the most frequently. JPEG compression,
which is widely used for digital images, makes use of a lossy compression technology
that minimizes imperceptible color changes by taking the average of surrounding
colors and averaging them together. When an image is compressed using GIF, the
number of colors in its palette is reduced to 256 or less, giving a more efficient
technique for displaying each color contained within the image. PNG compression
uses a lossless compression algorithm that filters image data and predicts pixel colors
based on nearby pixels. This ensures that the quality of the compressed picture is
not compromised. Each of these algorithms works in a somewhat different manner,
but they all have the capability of significantly reducing the file size of an image
that has not been compressed. The size of the files that are stored in several popular
audio file formats can be decreased through the use of compression. The sound is
stripped of wavelengths that are barely detectable, and the volume level is decreased
as a result of the employment of compression algorithms in common audio formats
such as MP3 and M4A. Due to the large storage requirements of uncompressed audio
files like AIFF and WAVE, these formats are often converted to more compact ones
(like MP3 and M4A) before being made available online for widespread listening.
They have approximately the same sound quality as the original audio files, but
take up only a tenth of the space. Additionally, video files are typically compressed.
Some of the most widely used video compression techniques include MPEG and
DivX. When compressing video, each codec has its own unique method of stripping
away unnecessary details. If a video’s background doesn’t shift for several frames, for
instance, the codec can save space by not drawing it for each frame. Similarly, the
audio track can be compressed using a video encoder to make it smaller. In order to
play an encoded video, the player must have access to the corresponding decoding
codec. Also, to play a compressed video file, any video player software needs to have
the right converter installed.

3.14 Image Compression
The procedure of encoding the original image using fewer bits than necessary is
known as photo compression, which is an application of data compression. [24] The
goal of picture compression is to get rid of any duplicate parts of an image while also
storing or sending data in the most efficient way possible. In its most basic form,
image compression is the process of deleting or combining parts of a picture file to
reduce its size. Importance of Image Compression has various sectors such as:

1. Uncompressed images are longer to upload, and some email providers have size
restrictions, thus it helps in sending and uploading images faster and without
problems.
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2. Image compression lessens the load on hard drives.

3. Moreover, when it comes to website design, uncompressed photos might slow
down a site’s load time, which can result in lost visitors.

4. Color, contrast, and sharpness are all reduced when an image is compressed in
a camera or on a computer. With some compression, anyone can accommodate
more files on a camera’s memory card, but they may lose quality.

5. A high-resolution image has a bigger file size and may lose quality on a normal
monitor. Compression reduces image size more than reducing resolution before
quality degradation.

6. Users can minimize a picture’s file size by compressing its color format, de-
pending on how many colors it uses. A compressed image uses fewer bits per
pixel without sacrificing quality.

Everything that is useful also has disadvantages. In image compression there are
some techniques that reduce the actual quality of that image after decompression.
For example, JPEG compression. If any image has distinct edges or lines, then JPEG
should not be used. However, images with layers are not supported by JPEG files.

Figure 3.11: Classification of Image Compression Technique

Images can be compressed in two ways: lossless and lossy.

3.15 Lossless Compression
Files can be compressed using lossless compression to save space without sacrificing
quality. With lossless compression, a picture can have its file size decreased while
retaining all of its original quality. In most cases, this is accomplished by omitting
metadata that isn’t essential from the JPEG and PNG files. Researchers [24] say
”typically” because certain alternative compression algorithms, such as the one used
by Imagify, are able to take advantage of other compression possibilities without
reducing the image’s overall quality. GIF, PNG, and BMP are the three formats for
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lossless images that are used the most frequently. On the other hand, the quality
of these formats could suffer slightly depending on the manner in which they are
adapted for use on the web. Interestingly, our eyes are incapable of detecting it.
The most significant advantage and benefit of using lossless compression is that
it enables users to keep the quality of the photographs even after the file size of
those images has been decreased. It’s a win-win scenario: the performance of the
website will improve, and the quality of the photographs won’t be affected in any
way. Photos taken using a DSLR camera, for instance, can be saved in either RAW
or JPEG format. But for a serious photographer or editor, one should use RAW files
because they lack compression. Nonetheless, they are larger in size. If there is any
concern about how quickly the hard disk will fill up, may consider switching to JPEG,
although this format does result in some data loss. Lossless compression is best for
archiving and is often used for medical imaging, technical drawings, clip art, or comics.

Some Lossless Compression Algorithms are-

Run Length Encoding(RLE) - RLE-scans the data first, then records each item
on the run length so that the number of times it occurs is followed by the item
itself. It is a type of compression that doesn’t lose any information because the
compressed dataset has everything it needs to make the original data again (after
decompressing).

1. It works best when data contains runs of the same value – like BG images of
a page in a book, which encode well due to the large amount of white data.
Also, 8-bit indexed color images.

2. Line art and architectural drawings with few lines and large areas of white and
black are also good choices.

3. Data collected by a data logging application will also suit this encoding and
medical scans.

4. PNG, tiff, and tga image formats can use this compression.

Lempel Ziv Welch(LZW)- Abram Lempel, Jacob Ziv, and Terry Welch developed
the table-based lookup method known as LZW compression to reduce large files into
smaller ones. The GIF format, which is used for images on the web, and the TIFF
format, which is also used for images, are two examples of file formats that use LZW
compression. Multiple bit rates can be compressed using this lossless method. File
sizes are typically bigger compared to other compression methods due to its lossless
nature. Unless it is concerning losing no data and having no artifacts appear in
the final product, this is the compression to choose. This approach also allows for
superior compression of smooth images over noisy ones, and of simple images over
complicated ones.

Huffman Encoding- Huffman Encoding compresses data losslessly. David A.
Huffman created it as an MIT Sc.D. student and published it in his 1952 work ”A
Method for the Construction of Minimum-Redundancy Codes.” As a ”Compression
Technique,” the goal is to encode the same data using less space. Huffman Coding
gives each symbol in a data set a unique code. Without compression, ”ABC” takes 3
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bytes. Assume A is encoded as 00, B as 01, and C as 10. 6 bits may contain the
same data as 3 bytes [21].
Huffman Encoding uses symbol frequency and a binary tree structure. It consists of
3 steps.

1. Probability Calculation Symbol Ordering,

2. Binary Tree Transformation,

3. Assigning Codes to the Symbols.

We begin by counting [21] the frequencies of each symbol across the whole data. Next,
we determine the ”probability” of each symbol by dividing the count of those symbols
by the total number of letters included in the data. Because it is an algorithm that
uses probability, symbols that are more common and so have a greater probability
are typically represented with a smaller number of bits than symbols that are less
common. This is one of the many benefits that come along with using Huffman
Encoding. The encoded characters of any format string binary code can be viewed
in the form of a binary tree. Each node of a Huffman tree, also known as a Huffman
coding tree, represents a unique individual letter of the alphabet.

3.16 Lossy Compression
When a file is compressed using a lossy algorithm, the data is removed and is
not returned to the original state following decompression. This technique, often
known as irreversible compression, entirely erases the data. This data loss often goes
undetected.Lossy compression eliminates details from an image to make it smaller.
Nonetheless, this is not necessarily indicative of poor final image quality in the
photograph. As far as popularity goes, JPEG and GIF are the kings of lossy image
formats. But ordinary human vision is not able to distinguish between JPEG, GIF,
PNG, and other formats. The human visual system makes images ideal for lossy
compression. The human eye is not uniformly sensitive to color. As some colors are
more important than others, we can use this to our advantage when compressing
the final image. Lossy algorithms are ideally suited for natural pictures, such as
photographs, in applications where a slight or possibly unnoticeable loss of quality
is acceptable in exchange for a considerable bit rate reduction. This compression,
which results in little visual abnormalities, is referred to as ”visually lossless.” The
most significant advantage of using lossy compression is the size reduction of the
image file, which is accomplished by a considerable margin. On the contrary, the
most significant drawback is that this can only be accomplished at the expense of
some reduction in quality, despite the fact that, as it has already been demonstrated,
this reduction is nearly undetectable [24]. Most compression tools let users choose
how much compression will be done to the photos. Some of the algorithms used for
lossy compression are-

3.16.1 Discrete Cosine Transform(DCT)
When discussing a specific family of DCTs, the term ”DCT-II” is often used to
designate the DCT. In most cases, this method of image compression yields the
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best results. The most widely used lossy format, JPEG, employs DCT. DCT is the
abbreviation for Discrete Cosine Transform. This is a sort of fast Fourier transform
that converts original signals to their corresponding frequency domain digits. The
discrete cosine transform (DCT) can only be applied to the real component of a
complex signal since the overwhelming majority of signals that occur in the practical
world are real signals and do not include any complex components. Very few of
widely used and widely available lossy compression techniques is the JPEG com-
pression algorithm, which makes use of DCT. In a DCT algorithm, an image (or
frame in an image sequence) is first split into square blocks that are independently
processed, then the DCT of these blocks is performed, and finally, the quantization
of the DCT coefficients that were obtained is performed. Blocking artifacts are a
possibility if this operation is carried out, particularly at high data compression ratios.

There is no need for a clutch pedal since a DCT operates by employing two clutches
instead of one and both of those are computer controlled. The dual clutch transmis-
sion is regulated by several in-built computers. These computers remove the need
for the driver to manually shift gears and automate the whole procedure.

To be more specific, a discrete cosine transform, or DCT, is a Fourier-related trans-
formation that is similar to a discrete Fourier transform, or DFT, but using only
real numbers. It should stand to reason that the DCT is linear, since that it defins
as a matrix-vector multiplication. The elements of the transformation matrix are
particular cosine values (depending on the sort of DCT we are considering), and
although it is common knowledge that cosine is not a linear function, that has
nothing to do with the linearity of the transform.

Formula
X=C−1YD−1. This interpretation of Y as coefficients relevant for the reconstruction
of X is notably important for the Discrete Cosine Transformation.

Strides for Implementation of DCT for Image Compression:
In order to process images with multiple channels, we have to apply the algorithm
separately to each channel. Before we can begin the DCT processing, the RGB image
will need to be converted to the equivalent YCbCr format. Change the range of pixel
values from 0 to 255, which is the normal value range for 8-bit pictures, to -128 to
127 instead.
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The image has been divided equally into N*N sized chunks. In this case, we select
N=8 since it is the default value specified by the JPEG Algorithm. After that, DCT
is applied to each block in a sequential manner. Quantization is a technique that
limits the amount of values that may be recorded in a database without compromising
the integrity of the data. A portion of the quantized blocks are saved into an array
so that they may be retrieved and subjected to further processing at a later time.
The YCbCr image will be obtained after the IDCT algorithm has been applied to
the quantized blocks and the 8x8 blocks have been arranged in sequential manner.
The original image in its compressed state may then be obtained by converting this
image to the RGB color mode.

Here, the pixels in the input image are represented by the notation P(x,y).

When working with JPEG compression, however, we usually use the value N = 8,
which alters the equation and gives us the equation shown below:

D(i, j) =
1

4
C(i)C(j)

7∑
x=0

7∑
y=0

p(x, y)cos

[
(2x+ 1)iπ

16

]
cos

[
(2y + 1)jπ

16

]
However, carrying out this intricate scalar calculation for each pixel in an 8x8 picture
block might be a time-consuming process; hence, we can reduce the equations even
more in order to develop a vector representation of the same. The same may be
described in the following way using the vector representation:

Ti,j =

{ 1√
N
, if i=0

√
2
N
cos

[
(2j+1)iπ

2N

]
, if i>0

}

We apply the formula below to get the DCT:

D = DCT_Matrix @ Image_Block @ DCT_Matrix.T

The block of quantization for the 8*8 DCT is now explicitly programmed into the
function. The user, on the other hand, is given the ability to choose the level of
compression that is required for the subsequent program.

Applications

The images may be stored in the compressed format, and when they need to be
presented, they can be reconverted to the RGB version.mThe information that has
been processed into blocks may then be delivered through a communication channel,
which results in a lower bandwidth use. The information that has been processed
using DCT may be offered as a source of high-quality data for Deep Learning-based
computer vision jobs, which often need a lot of it.

3.16.2 K means clustering image compression
The K-Means algorithm is a clustering procedure that is based on centroids. Utilizing
this method, the dataset is divided up into k different clusters. The K-Means
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clustering algorithm uses the cluster’s centroid point to represent each cluster in the
data. This is a lossy compression algorithm [16].
Using the K-Means clustering algorithm and setting the value of k to 3, the image
that can be seen below fig 3.12 (image 1) explains how three clusters are created
from a single dataset [16].

Figure 3.12: Creation of clusters from a single dataset.

Approach

To group colors, use K-Means clustering that are similar altogether and then separate
those colors into ’k’ clusters (let’s assume k=64) (RGB values). As a result, the color
vector that best represents a given cluster in RGB space is the one that corresponds
to the location of the centroid of that cluster. These centroids of ’k’ cluster are
going to restore the color vectors within their individual clusters at this point. As
a consequence, the only piece of information that needs to be saved for each pixel
is its label, which identifies the cluster to which it belongs. In addition to this, we
maintain a record of the color vectors that are associated with every cluster rivet.

Libraries needed –

-> Numpy library: sudo pip3 install numpy.
-> Matplotlib library: sudo pip3 install matplotlib.
-> scipy library: sudo pip3 install scipy. [16]

Segmentation

The process of segmenting an image into its constituent parts. The idea is to make
the visual representation simpler and more meaningful. Due to the complexity of
real-world photographs, this is a crucial stage in the image processing pipeline. The
image for autonomous vehicles, for instance, might include the road, vehicles, walkers,
and other obstacles. Therefore, segmentation may be required to divide items so
that we may examine each object independently to determine its nature. The goal
of the unsupervised machine learning process known as K-Means clustering tends to
split N observations into K clusters, with the expectation that each observation will
belong to the cluster that has the mean that is closest to it. A group of data items
that have been grouped together due to their shared characteristics is referred to as
a cluster. Clusters here stand for different colors in the image, and they are used to
divide up the image [16].
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Chapter 4

Process of Application

4.1 Dataset
We used two different types of dataset for the whole process. The datasets that we
have used are a group of JPG Images. The first dataset that we are referring to
as the protagonist of our thesis is Car’s Dataset that we have obtained from the
Stanford AI Lab website. It is a preprocessed data and holds 16185 images out of 196
different classes of several cars. It splits into a 50-50 scale containing 8144 training
photos and 8041 testing photos. Few of the dataset pictures are given below:

Figure 4.1: Dataset Images of Car

Another dataset that we have used is the dataset that contains dog images. We
obtained the dataset from Kaggle. Though the dataset contains both the cats and
dogs images we have used only the dogs images for our convenience. The training
set contains 4006 images and the testing set contains 1013 images which is a split of
80-20 scale. Few of the dataset picture is given below:

Figure 4.2: Dataset Images of Dog
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To make our GAN architectures to read and learn the way of behavior of our data
we are using the training set. The hyperparameters are kept constant for all the
architectures so that there are no discrepancies in the way of comparisons and to
make the process smooth and easier. The architectures have been trained to know
the ways of data’s behaviors. Training the GANs we are making them learn all the
labels and the features of the images through which it becomes capable of producing
or generating better images by predicting the data earlier through learning the
behaviors of the images of the dataset. Thus we will be able to give a comparison of
the generated images through GANs with the images of the dataset and then also
by sending them in various compression techniques. And later on for ensuring and
solidifying our results from GAn we used the testing set of both the dataset. Though
there is a difference in the testing set, if we get a close result with similar patterns
then we would be able to understand that the training was successful. This will show
how better our model is performing and will generate and provide more information
to assist our work.

4.2 Training of the Architecture
We used CGAN and DCGAN for generating the images. We also used Google
Collaboratory for running the codes of the CGAN and DCGAN with runtime type
set to GPU. The compression techniques have been used which are DCT, Kmeans and
also the pillow library of Python. The DCT and compression with Pillow has been
done in a laptop with average specifications and graphics. There is no certain reason
for using different Architecture Training methods. It was just for the convenience of
our working and we think using any other methods or ways would give us similar
results.
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Chapter 5

Analysis of Results

5.1 GAN
This section will display the findings of GAN architectures that are CGAN and
DCGAN. The code of both CGAN and DCGAN has been runned separately in
Google Colaboratory. The generated images are being considered to analyze the
difference and also the time taken by the different GAN architecture. We will also
study the difference in the generator and discriminator loss in both the cases and
finding the accuracies.

5.1.1 Training Time of Cars Dataset
For the car dataset we have run both the GANs that are CGAN and DCGAN for 50
epochs each. We used a sample size of 8000 images. The batch size has been set to
20. The training times of both the GANS is given below.

GAN Model Training Time

DCGAN 52 Minutes

CGAN 2 Hours 42 Minutes

Table 5.1: Training time of Cars Dataset

5.1.2 Training Time of Dogs Dataset
For the dogs dataset we have run both the GANs that are CGAN and DCGAN for
50 epochs each. We used a sample size of 4000 images. The batch size has been set
to 15. The training times of both the GANS is given below.

GAN Model Training Time

DCGAN 28 Minutes

CGAN 1 Hour 13 Minutes

Table 5.2: Training time of Dogs Dataset
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5.1.3 Testing Time of Cars Dataset
For the car dataset we have run both the GANs that are CGAN and DCGAN for 50
epochs each. We used a sample size of 8000 images. The batch size has been set to
20. The testing times of both the GANS is given below.

GAN Model Testing Time

DCGAN 48 Minutes

CGAN 2 Hours 34 Minutes

Table 5.3: Testing time of Cars Dataset

5.1.4 Testing Time of Dogs Dataset
For the dogs dataset we have run both the GANs that are CGAN and DCGAN for
50 epochs each. We used a sample size of 1000 images. The batch size has been set
to 5. The training times of both the GANS is given below.

GAN Model Testing Time

DCGAN 12 Minutes

CGAN 23 Minutes

Table 5.4: Testing time of Dogs Dataset

From the above tables we can get a clear idea about the time required for CGAN and
DCGAN training and testing. We can easily say that the DCGAN is the faster one
as it takes considerably very less time to train as it is not that deep in architecture.
For all the cases we can see that the test time is less than the training time. The
CGAN is slow due to various conditions and critic scores which increase the time of
processing of the architecture.
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5.2 Loss of Generator and Discriminator

5.2.1 DCGAN
For the cars dataset:

Figure 5.1: DCGAN Training Loss for Car Dataset

Figure 5.2: DCGAN Testing Loss for Car Dataset
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For the dogs dataset:

Figure 5.3: DCGAN Training Loss for Dog Dataset

Figure 5.4: DCGAN Testing Loss for Dog Dataset

From the loss diagrams of training and testing of DCGAN we can see that there are
a lot of big spikes in the graph which shows the variations of loss in every epoch
or step. That is there is sign of both convergence and also the divergence in the
graph of DCGAN. This gives an idea of the possibility of both the convergence and
divergence. The convergence in both the training and test is quite similar. Though
the losses in the DCGAN shows there is a very high chance of convergence of loss
factors in this GAN. We can see for the training of dogs dataset the convergence
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possibility is good, but as the testing set is very small the DCGAN for test with this
small dataset didn’t work well and thus we can see a lot of divergence as well and
the images generated is also not good enough. However, The DCGAN also ran very
quickly for all the cases which resulted in quick epoch times. Running the DCGAN
for a higher amount of time or with more epochs has the possibility to give or provide
with better quality of images.

5.2.2 CGAN
For the cars dataset:

Figure 5.5: CGAN Training Loss for Car Dataset

Figure 5.6: CGAN Testing Loss for Car Dataset
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For the dogs Dataset:

Figure 5.7: CGAN Training Loss for Dog Dataset

Figure 5.8: CGAN Testing Loss for Dog Dataset

Evaluating the loss diagrams we can get the idea that compared to DCGAN the
CGAN has not performed that much well. Except for the dogs training part all the
other graphs show us a significantly higher amount of loss score. The dogs training
part may seem that it has performed really well but there is a chance of convergence
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failure as the generator score reaching close to one in very less amount of time. Here
Generator is learning how to fool the discriminator easily and thus generating very
low-quality images. All the other graphs didn’t converge really well but still there
is no sign of high divergence. Maybe running the training for more epochs will
show some significant ups or downs. By comparing this CGAN with the DCGAN
graphs we can clearly state that the DCGAN has much better performance as its
convergence was better.

5.3 Generated Images by GAN and their Compar-
ison

The two GAN Architecture that is CGAN and DCGAN have been trained by us and
both of them generated new images from the dataset. We compared the images of
both the GAN and also among the fake generated training and testing images. The
comparison of images for both the dataset is given below.

5.3.1 DCGAN

Cars Dataset
Method Real Fake

Training

Testing

Table 5.5: DCGAN Images for car dataset

In the above table 5.5 of real and generated fake images of DCGAN for cars dataset
we can see a good quality and similar images of both training and testing. The fake
images have a good resemblance with the real images but the accuracy is not up to
the mark. We think if we run the training for more time that is for more epoch then
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the quality of the generated image would be much better. And it is actually rational
because it took considerably less time to run DCGAN than CGAN.

Dogs Dataset
Method Real Fake

Training

Testing

Table 5.6: DCGAN Images for dog dataset

In the above table 5.6 of real and generated fake images of DCGAN for dogs dataset
we can see a lot of difference in the training and testing images. The fake image of
the training set has a good resemblance with the real images though the accuracy
is not up to the mark. We think if we run the training for more amount of time
that is for more epoch then the quality of the generated image would be much better
even though it would be not close to that of the cars dataset. For the testing the
images are nowhere near to be good as we can see distorted images with bad color
frequencies. The batch size of 5 was used for the testing as it has a lower number of
images.

5.3.2 CGAN
We can see in the above table 5.7 that CGAN training and testing images written
on grid for the cars dataset are quite clear and similar. Though the fake images that
have been generated are quite distorted. If we could run the CGAN for more epochs
then the image could have come more clear. But it would take a large amount of
time as we have already discussed that CGAN took a lot more time to train and test
than DCGAN.
We can see in the above table 5.8 that CGAN training and testing images written on
grid for the dogs dataset are not that clear. Moreover, the testing fake images are
fully distorted and not even showing any aspect of dogs. We believe this is because
of the 80-20 split of training and testing dataset of dogs. For the dogs dataset if
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Cars Dataset
Method Real Fake

Training

Testing

Table 5.7: CGAN Images for car dataset

Dogs Dataset
Method Real Fake

Training

Testing

Table 5.8: CGAN Images for dog dataset

we could run the CGAN for more epochs then the image could have come more
clearer in the training. But, it would take a large amount of time as we have already
discussed that CGAN took a lot more time to train and test than DCGAN. Though
the testing process with this little amount of images is quite impossible as it already
seems.

5.4 Analysis of Results from Compression Tech-
niques

Here we will analyze three different image compression techniques

5.4.1 DCT
Firstly we use an image from our dataset to compress it with Discrete Cosine Trans-
formation. We use a picture of a car which is of size 155 KB. The image is compressed
with different threshold values in the DCT algorithm and the result is stored, checked
and compared.

The code of the DCT algorithm takes the threshold value as input and runs com-
pression on the image given by removing the high-frequency components on the size
of an 8x8 block of the image. After that, by doing the run length coding it debugs
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the generated text file which is delivered for Huffman encoding and the metadata
is created. After this the .xyz file is decompressed through Huffman decode and
eventually we get the compressed image.

Figure 5.9: Unmodified Image of size 155 KB

Firstly we compress the image with the threshold value of 0.01 and check the result.

We get a compressed image of size 60.6 KB. Which is almost 94.4 KB less than the
original one.

Figure 5.10: Metadata of compression with threshold 0.01

Figure 5.11: Compressed image of size 60.6 KB with threshold 0.01

Now the image is being compressed with threshold values of 0.02 and 0.03 respectively
to check how much these threshold values can compress the image and then will try
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to find out the amount of compression happens for each threshold.

Figure 5.12: Metadata of compression with threshold 0.02

Figure 5.13: Compressed image of size 43.5 KB with Threshold 0.02

Figure 5.14: Metadata of compression with threshold 0.03

Threshold Compression %

0.01 60.903 %

0.02 71.936 %

0.03 76.968 %

Table 5.9: DCGAN Images for dog dataset

Here we can see that by comparing the images with different values of threshold,
threshold 0.01 has compressed the images to 60.903% without making any significant
changes to the image. But the threshold value of 0.02 and 0.03 has compressed the
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Figure 5.15: Compressed image of size 35.7 KB with Threshold 0.03

image more than 10% to that of 0.01, but the quality of the image has degraded a
lot, which is not rational.
Similar thing happens with the generated fake images from GAN.

Figure 5.16: Generated Image of Car compressed with DCT

5.4.2 K Means clustering
K-Means clustering is a method of compression which belongs to the transform
method and it is based on centroid-based clustering. It clusters the dataset into k
different clusters which are represented by centroid points.

We are using coloured images as our dataset. So, when we give our image for
the compression through K-Means clustering though the image contains a lot of
colors, K-Means Clustering uses comparatively less number of colors which ultimately
helps to compress the image. The pixel values are replaced by the centroid points
which are actually the k-colors. The color combinations using these values are slightly
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Figure 5.17: The original image Figure 5.18: The compressed image

Figure 5.19: The GAN generated im-
age

Figure 5.20: The GAN generated im-
age with compression

lesser than the original image.

This can be easily seen that the compressed image color has been deprecated because
of the K-Means clustering. So, though the size has decreased from 155 KB to 90 KB,
the change in the compressed image is totally recognizable with naked eyes.

5.4.3 Pillow Library
The Python pillow library provides us with an easy way to compress an image by
delivering the quality parameter to it, and we used this technique to find out how the
compressed image with the pillow library is different from the other techniques we
have used. The Pillow library mostly uses RLE and Huffman encoding to compress
the images, which is a form of lossless image compression. Therefore, the image
quality does not degrade extensively. However, because we used the JPEG file format
here, there will be a good portion of quality degradation with the provided quality
parameter.

With a quality parameter of 90, the image that we get has a compression of 79 KB
and we see that there is no bigger change in the compressed image than the original
image, which can be recognized by the naked eye.
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Figure 5.21: Original Image of 155KB Figure 5.22: Compressed image of 76KB

Figure 5.23: The output details with quality parameter 90

Now, as in DCT, by the threshold value of 0.1, we got a compressed image size of
60.6KB and so in this pillow library, by degrading the quality, we tried to reach a
size close to 60.6 KB and then compare the images. So with a quality score of 85,
we get an image which is compressed to 60.2 KB and there is no vital change in the
picture that is recognizable with the naked eye.
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Figure 5.24: Compressed image of size 60.2 KB

Figure 5.25: Output details with Quality parameter 85

So we can say that by comparing with the DCT and K-Means clustering process of
image compression, the Pillow Library of Python has worked much more efficiently
as it has been able to compress the image to a very good extent while keeping the
quality of image mostly intact.

But when we used this library to compress the GAN generated fake image of 60.82KB
with a quality parameter similar as before, that is 85, then the compression percent-
age didn’t show us a very promising result.
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Figure 5.26: Uncompressed Fake GAN Generated image of 60.82 KB

Figure 5.27: Compressed Fake Generated image of size 56.04 KB

Figure 5.28: Output details for compressing GAN generated image
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Chapter 6

Conclusion

6.1 Conclusion
In this modern world the creation of new images is an on demand technology. A
lot of research is being done on this topic of image generation. The more or higher
the images can be created from datasets will be better for future research purposes.
Moreover there is endless research in using less memory for storing information. We
tried to bring on something new by coming up with the idea of generating new
images through the help of modern technology GAN and then storing those images
in less space of memory by compressing them with compression techniques. Till now
we have tried to make a comparison between two types of GAN that is CGAN and
DCGAN by analyzing the images generated from them and forming graphs of the
losses. We used cars and dogs images as our two datasets and using different batch
sizes by keeping the other hyperparameters constant we ran our training and testing.
We have also compared the training and testing sets of both the GAN. Moreover
after successful use of GAN, we used compression techniques like DCT, K-Means
clustering and also the Pillow library of Python to compress the real as well as fake
generated images. We also compared the compression abilities and quality of the
compressed images. By which we came to an idea of using which technique and its
sub properties will help us to generate new compressed images with its fusion with
GAN. GAN being a relatively new technology we believe we have come up with new
sights and information of GAN by generating images with two different types of
datasets. Lastly, our point of view of making the newly generated images compressed
for ease of storage will open many doors for new research.

6.2 Future Work
In terms of our research and effort, we obtained a notable amount of precision based
on the models we developed and published. Our existing work may be used as the
starting point to expand upon and sway this further.

• Our main objective is to enhance and fine-tune the models in order to increase
their accuracy and reliability.

• To use these models, test them across a range of conditions, make use of other
datasets, and tweak extra parameters, such as hyper-parameters and photo
resolutions.
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• To enhance comparisons by adding new datasets with much bigger sample
sizes.

• To use several GAN models and compare the outcomes in order to produce
superior outcomes.

• To combine a GAN with a compressed picture to produce new images with
improved compression output that will be more effective and consume less
memory.

• Compare the results and add further compression if a better outcome is
achievable.

• To generate immutable compressed pictures if it can reduce the length of time
that all these difficulties and unavoidable conditions exist.

• To determine if and how much our architectures are impacted by factors like
orientation, object distance, categorization, picture labels, light levels, and
color schemes.

• To do further study, gather more data on the provided models, and seek for
higher accuracy.

• And finally, to launch a new period of intense GAN research within the scientific
community.
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