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Abstract

Radiology imaging, such as magnetic resonance imaging (MRI), computed tomog-
raphy (CT-scan), X-ray imaging (X-ray), and ultrasound imaging (US), is used to
diagnose a variety of disorders, including brain disease, whole-body difficulties, kid-
ney disease, COVID 19, dental status and many more. Out of those diseases, one
of the lung diseases, the coronavirus epidemic has spread to virtually every coun-
try on the globe, inflicting enormous health, financial, and emotional devastation,
as well as the collapse of healthcare systems in some countries. Any automated
COVID detection system that allows for fast detection of the COVID-19 infection
might be highly beneficial to the healthcare system and people around the world.
Molecular or antigen testing along with radiology X-ray imaging and CT scan ra-
diographs are now utilized in clinics to diagnose COVID-19. Nonetheless, due to
a spike in coronavirus and the overwhelming workload of doctors, developing an
AI-based auto-COVID detection system with high accuracy has become imperative.
Given the enigmatic nature of COVID-19 visual markers, lung opacity, and viral
pneumonia, diagnosis can be challenging as the three diseases look quite similar in
nature on x-ray images. Past studies related to lung disease auto detection were
mostly performed on small datasets and the majority of the studies did not reveal
the blackbox of models. Furthermore, despite the fact that there are a large num-
ber of infected people around the world, the amount of COVID data sets needed
to build an AI system is limited and dispersed. Moreover, renal failure, a public
health concern, and the scarcity of nephrologists around the globe have necessitated
the development of an AI-based system to auto-diagnose kidney diseases. For this
thesis, we chose two imaging modalities to study: x-ray and CT scan images. We
automated and assessed our established models for lung illnesses (COVID 19, lung
opacity, and viral pneumonia). Furthermore, utilizing CT images, we constructed
models to automate kidney disease (kidney tumor, cyst, and stone). This research
utilized artificial intelligence (AI) to deliver high-accuracy automated COVID-19
detection from normal chest X-ray images. Further, this study was extended to dif-
ferentiate COVID-19 from normal, lung opacity, and viral pneumonia x-ray pictures.
We constructed six models and trained them with x-ray images. Out of those six
models, three can be used to categorize normal and COVID diseases (i.e., binary
class classification). The other three can be used to categorize normal, COVID-
19, lung opacity, and viral pneumonia images (i.e., four-class classification). All
models were trained and validated using the transfer learning approach and then
tested with unseen x-ray pictures. Each of the binary class models was trained with
different input picture resolutions, and it was found that greater input image reso-
lution training contributed to the model’s better performance and accuracy. With
the employed two-class classification model, the best accuracy, precision, and recall
are found to be 97.5%, 99.5% and 99.5%, respectively. The high accuracy of this
test can significantly assist in reducing global suffering from COVID-19. Moreover,
three models’ decisions are verified and compared by visualizing all internal layers,
including the final layer’s heatmap utilizing GradCam. The best accuracy found for
the multiclass model is 93% while testing the model with unseen data. Each of the
three multiclass models is explained using explainable AI to uncover the blackbox
of the models.In this letter, we also presented a chest CT scan data set for COVID
and healthy patients considering a varying range of severity of COVID, which we
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published on kaggle and that can assist other researchers to contribute to health-
care AI. We also developed three deep learning approaches for detecting COVID
quickly and cheaply from chest CT radiographs. Our three transfer learning-based
approaches, Inception v3, Resnet 50, and VGG16, achieve accuracy of 99.8%, 91.3%,
and 99.3%, respectively, on unseen data. We delve deeper into the black boxes of
those models to demonstrate how our model comes to a certain conclusion, and we
found that, despite the low accuracy of the model based on VGG16, it detects the
COVID spot in images well, which we believe may further assist doctors in visual-
izing which regions are affected.This research also deals with the three major renal
diseases categories: kidney stones, cysts, and tumors, and gathered and annotated
a total of 12,446 CT whole abdomen and urogram images in order to construct an
AI-based kidney diseases diagnostic system and contribute to the AI community’s
research scope. The collected images were exposed to exploratory data analysis,
which revealed that the images from all of the classes had the same type of mean
color distribution. Furthermore, six machine learning models were built, three of
which are based on the state-of-the-art variants of the Vision transformers EANet,
CCT, and Swin transformers, while the other three are based on well-known deep
learning models Resnet, VGG16, and Inception v3, which were adjusted in the last
layers. While the VGG16 and CCT models performed admirably, the swin trans-
former outperformed all of them in terms of accuracy, with an accuracy of 99.30
percent. The F1 score and precision and recall comparison reveal that the Swin
transformer outperforms all other models and that it is the quickest to train. The
study also revealed the blackbox of the VGG16, Resnet50, and Inception models,
demonstrating that VGG16 is superior than Resnet50 and Inceptionv3 in terms of
monitoring the necessary anatomy abnormalities. We believe that the superior ac-
curacy of our Swin transformer-based model and the VGG16-based model can both
be useful in diagnosing kidney tumors, cysts, and stones.

Keywords: Kidney disease, Vision transformer, Transfer learning, Explainable AI,
CT Imaging, X-ray Imaging, Lung opacity, Viral Pneumonia, COVID-19.
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Chapter 1

Introduction

Radiology imaging like magnetic resonance imaging (MRI), computed tomography
(CT-scan), X-ray imaging (X-ray), and ultrasound (US) is used to diagnose vari-
ous kinds of diseases like brain disease, whole abdomen problems, kidney disease,
COVID 19, and so much more. In this thesis, we picked up two modalities of
imaging, X-ray and CT scan. We automated for lung disease (COVID 19, lun-
gopacity, viral pneumonia) and kidney disease (kidney tumor, cyst, and stone) by
using transfer learning and the current state-of-the art transformer model. We re-
vealed the blackbox of the transfer learning models to show the models’ performance
reliability.

1.1 The Motivation behind Lung Disease Analy-

sis of X-ray Radiographs using AI

The novel coronavirus, taxonomically known as SARS-CoV-2 and labeled by the
World Health Organization (WHO) as COVID-19, appeared inWuhan, Hubei Province,
China, before the end of 2019 [62] and has sparked unprecedented global fear. The
World Health Organization declared this a public health emergency of worldwide
concern and dubbed it a global pandemic due to the virus’s fast spread from hu-
man to human [63]. The COVID-19 reproductive number varied from 2.24 to 3.58
implies that 100 infected individuals on average may spread the disease to 200 or
more persons [66]. As a result, Covid 19 has proliferated globally and is practically
dispersed everywhere. Overall, 218,205,951 cases of COVID-19, including 4,526,583
deaths, have been declared by the WHO since 05:05 pm central European summer
time (CEST) on 02 September 2021 [93]. Coronaviruses (CoVs) cause respiratory
and intestinal diseases in human and animal populations [26]. The period of incu-
bation (i.e. from commencement of symptoms) is between 2 and 14 days, a median
of 4 and 5 days. Most persons (i.e., about 80%) who become infected do not have
symptoms or mild illnesses. As a result, people who are infected with the virus
but are unaware of it can infect others, allowing the infection to spread widely. In
situations of age, smoking, or other major medical diseases such as cancer, heart,
lungs, kidney, or liver illness, diabetes, immunocompromising conditions, Sickle cell
disease, or obesity, the risk of serious disease and death increases with COVID-19
[70], [71]. Additionally, numerous forms of covid are spreading faster and having a
negative impact on life and the economy, something humans have never experienced
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in recent history[92].
Effective screening of affected patients is crucial in the fight against COVID-19, as it
enables those infected to receive prompt treatment and care, as well as isolation to
prevent the virus from spreading [64]. The most common clinical testing approach in
COVID-19 patients using respiratory specimens for the purpose of testing is reverse
transcription polymerase chain reaction (RT-PCR), which is expensive, less-sensitive
and requires specialized medical personnel [61]. In addition to RT-PCR, chest X-
rays can predict results in high likelihood scenarios in a patient with COVID-19
[91]. The RT-PCR test is paired with the chest XR in clinical practice, providing
additional information regarding its severity.On the other hand, a high resolution
computed tomography (HRCT) scan is another radiologic option to detect COVID-
19, which assists clinicians in identifying the effect of COVID-19 on various organs
at different phases of the condition.The management and prognosis of COVID-19
can help with an integrated approach based on first-line CXR and optional use of
HRCT [89]. However, there is a scarcity of CT scan facilities and radiologists in
remote regions [69], [83]. The norm has become for screening methods of Covid-19
and its severity is X-ray imaging together with RT-PCR, because X-ray imaging is
rapid, accessible, and less expensive and less radioactively harmful to the human
body than Computed Tomography (CT) imaging technology.
If chest X-rays are utilized to test for a diagnosis, expert radiologists must interpret
the pictures. However, considering the cryptic nature of visual indicators of COVID-
19, lung opacity, and viral pneumonia, it can be difficult to diagnose[39].
Moreover, doctors are overwhelmed by the rise of covid patients, and their work-
load has grown considerably [34], [75]. Considering the surge in Covid-19 cases
worldwide and the high workload of doctors and healthcare employees, shortages of
radiologists, the development of auto-detection systems based on Artificial Intelli-
gence (AI) to detect Covid is a necessity. A number of methods have been reported
for the detection of COVID-19 based on chest-X-Rays [86], [87] and different deep
learning architectures [80], which are approximately 90% or higher in accuracy, but
few solutions must be addressed before it is being used in medical environments.
The research project in many papers is on the changes and accuracy of network
design, but less attention is paid to explaining models, and most of the models are
used to enhance the accuracy of models with small data sets.

1.2 Contribution towards Lung Disease Analysis

of X-ray Radiographs using AI

This paper employs three deep learning algorithms for the classificaiton of two classes
as well as four classes based on Xception, Resnet50, and VGG19. Explainability is
added by using gradient weighted class activation mapping (GradCam), trained
and validated on a large dataset considering the back history of publications. The
primary contributions and proposals of this work are, in essence, as follows:

• Three CNN models were developed for COVID-19 mass screening (two classes:
covid positive & covid negative) from chest x-ray images. Afterward, explain-
able AI was applied to demystify the black box of models.

• Three additional multi-class models were constructed to diagnose non-covid,
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covid, lung opacity and viral pneumonia from chest x-ray radio graphs. Fur-
thermore, explainable AI was used to validate and explain the performance of
each generated multi-class model and to demystify the black box of individual
CNN layers

• Presented a comprehensive performance study of the proposed binary and
multi class systems in terms of the confusion matrix, accuracy, sensitivity,
specificity, and F1-score. Additionally, we compared test accuracy for the im-
plemented dual class CNN models for different training input image resolutions
and investigated the impact of input image size on the models’ accuracy.

1.3 The Motivation behind Lung Disease Analy-

sis of CT Radiographs using AI

Although Xray imaging is less expensive than CT, CT radiographs give more infor-
mation about the severity of COVID[90].
Several studies have been published in last few months in this domain. However,
most of the studies use the COVID Xray data set, as the publicly available Covid
CT dataset is sporadically distributed. A few studies have been published with
CT datasets, but most of the studies are performed with small datasets and used
the transfer learning approach to improve accuracy. However, this publicly avail-
able data set is needed to do more research in this domain, as well as require more
analysis of the black box of the models that are built to detect Covid from CT
radiographs.

1.4 Contribution towards Lung Disease Analysis

of X-ray Radiographs using AI

Not only are High Resolution Computed Tomography (HRCT) chest datasets re-
leased in this paper, but three deep learning algorithms based on Inception v3,
Resnet50, and VGG16 are also employed. Explainability is achieved by utilizing
gradient weighted class activation mapping (GradCam). The following are the key
contributions and proposals of this research:

• We have collected and annotated 6082 Chest CT images with the HRCT pro-
tocol from hospitals to train and validate the proposed model. We made the
data set public for reproducibility to enable further research.

• We employed three CNN based deep learning models for COVID detection
from chest CT radio-graphs and presented a thorough performance study of
the proposed system.

• We adopted explainable AI to assess and demystify the black box of the pro-
posed models to show affected COVID severity.
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1.5 The Motivation behind Kidney Disease Anal-

ysis of CT Radiographs using AI

Kidney disease is a public health concern since the disease is spreading despite cur-
rent control attempts. To tackle the rising health issues of Kidney disease, a broad
and integrated public health approach is required as a complement to therapeutic
measures to control it[6]. Chronic kidney disease affects more than 10% of the world
population[7], and it was ranked 16th among the leading causes of death in 2016
and is expected to jump to 5th by 2040[20]. Cyst formation, nephrolithiasis (kidney
stone), and renal cell carcinoma (kidney tumor) are the most frequent kidney ill-
nesses that impede kidney function. A kidney cyst is a fluid-filled pocket that forms
on the surface of the kidney and is enclosed by a thin wall. Within the kidneys, one
or more cysts may develop with water density: From 0 to 20 Hounsfield units [25],
[28], [29]. Kidney stone disease is characterized by the formation of crystal con-
cretions within the kidneys, which affects about 12% of the world population[18].
Kidney tumor is abnormal growth in Kidney which is known as Renal cell carcinoma
(RCC) is among the 10 most common cancers worldwide[15]. Kidney cysts, tumors,
and stones may cause kidney failure and even death due to the severity of the kidney
disease, hence the requirement for early detection of kidney abnormalities and gen-
erating public awareness among health-care practitioners and the general public[4].
The number of nephrologists, on the other hand, is severely limited. The number
of nephrologists per million population varies by region, as shown in Fig. 1.1, in-
dicating a global shortage of nephrologists[88]. In South Asia, there is barely one
nephrologist per million people, where in Europe there are 25.3 nephrologists per
million people.

Figure 1.1: No. of Nephrologists per million population around the globe.

X-ray, Computed tomography (CT), B-ultrasound machines (US) and MRI (mag-
netic resonance imaging) machines are often used in conjunction with pathology
tests to check for abnormalities in kidney diseases. The CT machine scans the
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desired part of the human anatomy with X-ray beams to obtain a cross-sectional
image which provides three-dimensional information about the desired anatomy[2].
CT scans in kidney examinations are ideal for study because they provide three-
dimensional information and slice-by-slice images.
Considering the sufferings of the population due to kidney diseases, the shortage of
nephrologists around the globe, and the advancement of deep-learning research in
vision tasks, it has become imperative to build an AI (artificial intelligence) model
to detect kidney radiological findings easily to assist doctors, and reduce the suffer-
ings of people. A few studies have been published in recent years in this domain.
However, the publicly available data set is scarce. In addition, most past studies
have utilized traditional machine learning algorithms to classify single classes of
disease only; either cysts, or either tumors, or either stones. Some studies utilised
ultrasound (US) images.

1.6 Contribution towards Kidney Disease Analy-

sis of CT Radiographs using AI

Here in this paper we created and annotated the ”CT KIDNEY DATASET: Normal-
Cyst-Tumor and Stone” dataset[78], implemented a total of six models, and eval-
uated each of them to come to the conclusion which model is best suitable to use
in realtime. No study that we are aware of has done an analysis based on a trans-
former model with renal cyst, tumor and stone auto detection. The following are
the research’s major contributions:

• We collected and annotated a dataset namely ”CT KIDNEY DATASET:
Normal-Cyst-Tumor and Stone” with 12,446 images utilizing the whole ab-
domen and the eurogram protocol.

• We employed three CNN based deep learning models (VGG16, Resnet50, and
Inception v3 to detect kidney abnormalities and presented a thorough perfor-
mance study, including explanation of the black-box of the suggested models
using gradient weighted class activation mapping (GradCam).

• We employed three recent state-of-the-art Vision transformer variants (EANet,
CCT, and Swin transformers) in CT kidney datasets and presented the per-
formance literature of the models using the confusion matrix, accuracy, sensi-
tivity, specificity, and F1 score.

1.7 Organization of the Report

The following is the format of this report: The background study for this project
was described in Chapter 2. In Chapter 3, Methodologies are addressed and briefly
reviewed. Chapter 4 delves into the findings and result analysis. The thesis’ principal
conclusion is stated in Chapter 5.
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Chapter 2

Literature Review

In this chapter, I’ll discuss about some of the works that have direct or indirect
impact on our study.

2.1 Existing Works related to Kidney Disease

Because of the advent of Deep Learning and its implementation in image processing
and classification, a considerable amount of research has grown in deep learning
applications, specifically in autodiagnosis of radiological findings and segmentation
tasks. The Deep Neural Networks(DNNs) are cutting-edge deep learning models that
are mostly used for image classification and have demonstrated their superiority in
the ImageNet datasets[3]. DNNs are employed in MRI brain illness classification,
covid detection, bio-informatics, robotics, and many more areas, which has made
them popular, particularly when utilizing the transfer learning approach [24]. A
variety of different DNN architectures have been implemented for classifying 1000
different categories of images in the ImageNet dataset, including 8-layered DNN
AlexNet[5], GoogLeNet[10], 18-layered architecture SqueezeNet [13], ResNet and
several variants of ResNet utilizing skip connections [11], and so on. In the classifi-
cation task that employs a transfer learning technique, inception [10], exception[14],
EfficientNet[30] networks have grown in prominence over time.

In recent times, popularly used transformer models for natural language processing
are being introduced in vision tasks, which are showing supremacy and good results
over other models while doing classification tasks. The Vision transformer (ViT)[42]
and several variations of the Vision transformer, like the Big Transformer (BiT)[50],
EANet (External Attention Transformer)[74], Compact Convolutional Transformer
(CCT)[76], and Swin Transformer (Shifted Window Transformer)[81], are perform-
ing better in the imagent benchmark and CIFAR-10[22] dataset.

The Computer Assisted Diagnosis (CAD) system is built to classify tumors from
MRI brain images on paper[36], [47], [72] to assist doctors and radiologists with
the diagnosis using deep residual networks.Recently, a covid surge made it an urge
for researchers to detect COVID 19 using AI, which is very promising as well[38],
[60]. Similarly, numerous deep learning methods are employed in research on kidney
disease classification as well. The renal ultrasound pictures are enhanced with a
median filter, a Gaussian filter, and morphological operations in the article [17], and
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then characteristics from the images are retrieved with principal component anal-
ysis (PCA) and the K-nearest neighbor (KNN) classifier.The paper [96] evaluated
different traditional ML algorithms, such as Decision Trees (DT), Random Forest
(RF), Support Vector,Machines (SVM), Multilayer Perceptron (MLP), K-Nearest
Neighbor (kNN), Naive Bayes (BernoulliNB), and deep neural networks using CNN
and got the highest F1 score of 85.3%. In paper [58], pre-trained DNN models such
as ResNet-101, ShuffleNet, and MobileNet-v2 are used to extract features from kid-
ney ultrasound pictures, which are then classified using a support vector machine,
with final predictions made using the majority voting technique. This paper used
ultrasound images for classification problem and got the highest accuracy of 95.58%.
The residual dual-attention module (RDA module) was employed for the segmenta-
tion of renal cysts in CT images in the paper [73]. Paper [32] integrates the features
of using conventional and deep transfer learning techniques, and finally, features are
used by the SVM Classifier to classify normal and abnormal images using US images.
In paper [27] two CNN models are used consecutively, where the first CNN is used
to identify the urinary tract, and the second CNN is used to detect the presence of
stone and got 95% accuracy. An automated detection of kidney stones (having/not
having stone) in paper [94] using coronal computed tomography (CT) images and
a deep learning (DL) technique yielded a detection accuracy of 96.82 percent. this
paper used 1799 images total to train and validate the model and classified one class
only. The paper [31] proposed two morphology convolution layers, modified feature
pyramid networks (FPNs) in the faster RCNN and combined four IOU threshold
cascade RCNNs to detect kidney lesions and got an area under the curve (AUC)
value of 0.871. The kidney cyst image detection system for abdominal CT scan im-
ages using a fully connected convolution neural network was developed in the paper
[19] and they got a true-positive rate of 84.3%.

In summary, the efforts utilizing machine learning and deep learning approaches
to classify a few kidney radiological findings have provided promising results, but
the majority of the tasks are performed on xray or ultrasound images, and the
accuracy is around 95%. A few approaches were there with CT scan images only
with dual class classification. Considering the scarcity of data and the above findings
of research articles, we created a database of kidney stone, cyst and tumor CT
images. We implemented three deep learning techniques (VGG16, Inceptionv3 and
Resnet50) to classify four classes of kidney disease and demistified the blackbox of
the models to show why our model came to a certain conclusion about a class. We
also implemented the latest state-of-the-art innovations in vision learning (EANet,
CCT, and Swin transformer algorithms) to classify the four classes and have shown
that our model has promising accuracy which can reduce the suffering of the world
population through early diagnosis of diseases.

2.2 Existing Works related to Lung Disease with

X-ray images

Due to global demand and the advent of Artificial Intelligence (AI), a considerable
body of research has evolved to apply Artificial Intelligence (AI) to diagnose differ-
ent respiratory disorders, particularly those directly related to covid, utilizing basic
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XR and CT images.

However, the studies in many articles focused on the modifications and accuracy of
network design, but less on explaining models, and most models are used to improve
the accuracy of models with small data sets. L. Wang, Z. Lin, and A. Wong proposed
COVID-Net, a deep CNN [60], to detect COVID-19 instances from roughly 14k chest
X-ray images, but the achieved accuracy was 83.5 percent. Khan et al. [49] used the
transfer learning method on 310 cases of normal pneumonia, 330 cases of bacterial
pneumonia, 327 cases of viral pneumonia, and 284 COVID-19 pneumonia photos
and got 89.5% accuracy. However, as the models employed in this paper used a
small number of images, they required detailed analysis. Explainable AI was not
implemented to show model efficacy. Y. Oh, S. Park and J. Ye trained the Resnet
18 model and showed explainability [54], but the paper used a low number of images
in training and testing and got an accuracy of 89%. Explainability in each layer of
the model is desired. The Darknet model was developed and trained by T. Ozturk,
M. Talo, E. Yildirim, U. Baloglu, O. Yildirim and U. Rajendra Acharya [55] with
127 covid images only, and got 87% accuracy, but model explainability was not
explored. A. Altan and S. Karasu [35] trained EfficientNet B and got a promising
99% accuracy, but it was trained with only 219 covid images, and Explainable AI was
not implemented. J. Civit-Masot, F. Luna-Perej´on, M. Dom´ınguez Morales and
A. Civit [41] trained Vgg16 with 132 Covid images and got an averageF1 (avgF1)
score of 85%, which is not promising in a real clinical scenario due to a low F1 score.
Inception v3, InceptionResNetv2, Resnet50 were trained by A. Narin, C. Kaya and
Z. Pamuk [82] and got a good accuracy of 98%, which is promising, but those
models were trained with 50 normal and 50 covid images, and the explainability
of the model was not depicted. Given the scarcity of COVID-19 images, some
approaches have concentrated on generating artificial data in order to train stronger
models. An auxiliary Generative Adversarial Network (GAN) was employed to
generate artificial images [59]. The results showed that data augmentation boosted
accuracy on the VGG16 net from 85% to 95% [52]. J. Arias-Londono, J. Gomez-
Garcia, L. Moro-Velazquez and J. Godino-Llorente trained the covid-net model with
large et of images but got 91.53% accuracy [37]. Before a model can be utilized in
clinics, it must undergo extensive analysis. Summary results from different letters
are given in Table 2.1.
In summary, numerous recent efforts to transfer learning approaches for detecting
COVID-19 from a small dataset have been reported with promising results. Nev-
ertheless, the process required verification on a large dataset. A few models have
been developed that have low accuracy and need to be improved. Additionally, the
majority of the research does not use explainable AI and does not demonstrate how
the model diagnoses Covid-19 from photos. Although a few studies show Explain-
able AI, they are limited to the final layer of the model only.

In order to address the research’s recurrent issues, we built three transfer learning-
based Neural Networks in this study in order to categorize Covid-19 utilizing bigger
X-ray data sets, exhibiting promising accuracy in an unseen dataset. Likewise, we
leveraged Explainable AI to demistify the blackbox of the stated three models and
illustrate how the system identifies covid from x-ray images across all blocks and
layers by combining heatmap and original images. Our explainability not only serves
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as a responsible and transparent audit of our models, but also may assist physicians
in improving the screening of Covid 19. Moreover, we trained all three models using
images with different input resolutions and found that increasing the image resolu-
tion during training improves accuracy in the test condition.Additionally, to address
the problems associated with diagnosing patients with Viral Pneumonia and Lung
Opacity, we constructed a multiclass model (four classes), validated its accuracy,
and explained it using Explainable AI.

2.3 Existing Works related to Lung Disease with

CT images

Because of the advent of Deep Learning and the rapid spread of coronavirus, a con-
siderable body of research has evolved to detect covid using basic X-ray and CT
images. However, the dataset, which is the major feed to the CNN, is sparse[54],
[79]. Due to the shortage of datasets, several investigations in many papers concen-
trated on network architecture alterations and accuracy. Some articles attempted
to incorporate all publicly available data sources and obtained intermediate and
praised accuracy. Some of the models that provided good accuracy require demisty-
fyig blackbox to gain insight into how the model predicts certain classes.

Covid-net was proposed at paper [60] but got an accuracy of 83.5 %.The author
in [82], attempted to apply the transfer learning based approach using Renset 50,
Inception v3, and Inception Resnet v2 models, and obtained an accuracy of 98%
using Resnet50. In paper [48] the athor used a Densenet201 based transfer learning
approach and got 96% praisable accuracy. However, models’ explainability was not
provided. Paper [33] constructs covid caps: A Capsule Network-based Framework
for COVID-19 identification from x-ray images which gives an accuracy of 95.7%
requires explaibaility. In paper [59], utilized artificial ways to generate new images
by utilizing the Generative Adversarial Network (GAN) network and then trained
the model. The Darknet model was developed and trained on paper [55] with 127
covid images only, and got 87% accuracy. The accuracy of paper [65] was 86.6 per-
cent using 219 covid imaging data and 175 healthy data.It identifies the following
three types of chest CT input image slices: COVID-19, influenza-A viral pneumonia
(IAVP), and cases unrelated to infection The anticipated class of an image is the one
to which the image has the highest probability of belonging. This AI system uses
two different deep learning algorithms: a three-dimensional (3D) CNN segmentation
model for lung segmentation and a ResNet-based model for picture classification[65].
The remaining 90 scans (30 COVID-19 patients plus 30 IAVP cases plus 30 healthy
instances) were used as a testing dataset, while the imaging dataset of 528 (189
COVID-19 cases plus 194 IAVP cases plus 145 healthy cases) was used for training
and validation. On the testing dataset, the AI system had an overall accuracy rate
of 86.7 percent, with a f1-score of 83.9 percent for COVID-19 patients, 84.7 percent
for IAVP cases, 91.5 percent for healthy cases, and a f1-score of 83.9 percent for
COVID-19 cases[68].Paper [67] used 313 covid positive image data and 329 healthy
chest CT data to classify and got an accuracy of 90.8%.Paper [84] used 224 covid
and 504 healthy images of xray radiographs and got 96% accuracy.
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In summary, recent efforts utilizing transfer learning approaches have provided
promising results but require testing on large datasets and require explanation of
the blackbox of the models.

We published a dataset of a total of 6082 images, proposed three CNN-based net-
works, and showed the model gives promising accuracy and provides the explain-
ability of the models utilizing gradcam. We believe that our models’ high accuracy
based on CT images can assist medical physicians in not only identifying covid and
normal individuals, but also in determining the severity of diseases.
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Chapter 3

Methodology

3.1 Methodology behind Lung Disease Analysis

of X-ray Radiographs using AI

In this section, the methodology is depicted in the following order; accumulating data
to train the Neural Network, image preprocessing, the experiments and training the
Neural Network and evaluation processes.

3.1.1 Dataset

The study was created utilizing an XR image dataset comprising the PA and AP
views (Posterior-Anterior (PA) and Anterior-Posterior (AP) views. This study
looked at two different pathological conditions: normal and Covid-19. The majority
of the data for this investigation came from Kaggle’s covid19-radiography-database
[21], [23], [40], [44], [45], [51], [53], [85]. The covid19-radiography-database was de-
veloped by combining different databases [56], [57]. For example, images from the
COVID-19 DATABASE of the Italian Society of Medical and Interventional Radi-
ology (SIRM) [57], the Novel Corona Virus 2019 Dataset by Joseph Paul Cohen
and Paul Morrison, and Lan Dao [56], 43 articles (radiography metadata contains
references), Normal and Viral pneumonia images from the Chest X-Ray Images
(pneumonia) database. The database includes 3616 COVID-19 positive cases along
with 10,192 normal circumstances, 6012 Lung Opacity (Non-COVID lung infection),
and 1345 Viral Pneumonia images. Fig. 3.1 shows sample image data for covid and
normal class images. Fig. 3.2 shows sample images used for multiclass classification.

3.1.2 Image Processing

The X-ray images with Posterior-Anterior (PA) view and Anterior-Posterior (AP)
view were scaled before being fed into the Neural Networks.We developed six models
in total, three of which are utilized to classify normal and covid pictures. The re-
maining three models are utilized for multiclass categorization in order to determine
whether normal, covid, lung opacity, and viral pneumonia are present in the image.
We carried out two investigations in this paper for binary classification. For the first
investigation into the Resnet50 and VGG19 models, images were resized to 224 by
224 pixels and normalized. Images are resized to 299 by 299 for the Xception model
as per the standard requirement. For our second experiment, we scaled all of the
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Figure 3.1: Sample image data(X-ray) for covid and normal class images for two
class classification.

Figure 3.2: Sample image data (X-ray) for multi class classification to detect normal,
covid, lung opacity and viral pneumonia.
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pictures to 512 × 512 pixels for the three models we developed for two class classi-
fications. The investigation chose 1000 images from positive and 1000 images from
non-covid cases randomly from 3616 COVID-19 positive photographs and 10,192
normal-covid images from the database. The trials were assessed with a randomized
80/20 split for training and test splits, with 20% of the training data used as a vali-
dation set to avoid overfitting. For the second setup models for multiclass, we used
1000 images each of covid, normal, lung opacity, and viral Pneumonia instances.
The images were resized as per models’ standard requirements, i.e. for Resnet50
and VGG19 input images were resized to 224 by 224 pixels and normalized. For the
Xception model, input images were resized to 299 by 299 pixels.
The dataset was also adjusted using Z-normalization. In machine learning methods,
standardization helps to stabilize the model while also increasing the training pace.
The following (3.1) applies to z normalization.

X̂ =
X[: i]− µi

σi

(3.1)

Here, µi is the mean value and σi is the standard deviation of the feature.
In this letter, we trained, validated, and tested the collected chest X-ray data in six
different Convolution Neural Networks. The Xception, Resnet50, and Vgg19 models
for both binary class and multiclass were adjusted slightly in the last two layers to
achieve regularization.

3.1.3 Neural Network Models

For both the binary class and multiclass set up, three different Convolution Neural
Networks were employed to train, validate, and test the accumulated chest X-ray
data. The Xception, Resnet50, and Vgg19 models were used to train the dataset
on Google Colab Pro edition with 26.3 GB of Gen RAM and 16160MB of GPU
RAM. The CNN models were tweaked slightly in the last layers to accomplish regu-
larization, and the pre-trained weight ”image-net” was employed to aid the model’s
learning process. A weighted categorical loss function is applied to compensate for
the class imbalance problem in the training data. Models are constructed with the
Adam optimizer with default parameters to achieve computational efficiency and
adaptive learning rate. Early stopping is employed to monitor validation loss and
stop training the model when validation loss is stagnant with a patience parameter
of 15. The model’s last step training was fine-tuned using a factor of 0.25 and pa-
tience 15 when the validation loss reached its plateau. If the model’s performance
does not improve after 15 patience, the training is halted.
The final receiver operating characteristic (ROC) curve, confusion matrix, and eval-
uation matrices were obtained after training the models using a mini-batch size of
16 images and 200 epochs. Furthermore, heatmaps are created in different layers us-
ing the GradCam Technique. The original image and heatmap are superimposed to
locate the crucial locations in the image to anticipate the pathological condition and
model interpretability. Fig. 3.3 illustrates the overall system diagram used in this
investigation. For two class classification only normal and covid image is detected
whereas for multi class problem Normal,Covid, Lung Opacity and Viral Pneumonia
is detected
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Vgg19

In the Image Net Large Scale Visual Recognition Challenge (ILSVRC) in 2014,
VGGNet [8] was a neural network that did exceptionally well. It came in first
place for image localization and second place for image classification. Fig. 3.4 shows
VGG19 in our classification experiment, which consists of 16 convolution layers, 5
Max-pooling layers, one average pooling, flattening, and a dense layer. VGG CNN
has six major blocks which make the network deep, utilizing small 3x3 filters, with a
stride of 1, and the same padding for the Conv Layers and 2x2 filters with a stride of
2 for the Maxpooling/Downsapling layers. In our tailored Vgg19 network, we froze
the weight up to the max-pooling layer of the conv5 block, and then we added one
average pooling, flattening, and dense layer to finetune the model.Fig. 3.4 shows
VGG19 in our classification experiments for lung disease diagnosis. For the four
class problems, Normal, Covid, Lung Opacity, and Viral Pneumonia were detected,
whereas for two classes, only covid and normal images were detected.

Figure 3.3: Complete block diagram of experiments for lung disease diagnosis.

Resnet50

ResNet [11] has emerged as a ground-breaking deep neural network (DNN) model
for computer vision problems. It made its debut in 2015 when it won the ImageNet
[3] competition.
In most situations, DNNs outperform neural networks (NN) with fewer layers. How-
ever, training a massively stacked NN is notorious for its vanishing gradient issue,
which causes model performance to deteriorate. Identity shortcut connections or
skip connections that bypass one or more layers – have been used to overcome this
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Figure 3.4: VGG19 in our classification experiments for lung disease diagnosis.

issue in ResNet. The use of residual blocks, which consist of the main path and iden-
tify shortcut links, helps to solve the vanishing gradient problem, which is shown in
Fig. 3.5.
The primary path consists of a sequence of Neural Networks, whereas the second
path, known as skip connections, is a straight path from input to output. Skip links
connect to the output of the network directly and the network provides output as
F (X)+X. The Skip connection addresses the gradient vanishing problem associated
with conventional neural networks.
We used the rasenet50 version of Resnet and tweaked it somewhat in the final stages.
We utilized the weight of the image-net to create a classification detector for covid
and normal instances by freezing the weight of the top layers.Our proposed structure
for the ResNet-50, which is used to categorize chest X-rays, is shown in Fig. 3.6.
On top of the pre-trained model, more layers are added. To classify images, an
average pooling layer with a pool size of (4,4), a flattening layer, a dense layer with
Relu activation, a dropout layer with a dropout probability of 50% drops 50% of
the parameters randomly and reduces overfitting, and finally, a dense layer is used.

Xception

Xception [14], a modified version of Inception-v3, is a Depthwise Separable Convolutions-
based deep neural network architecture which Google researchers developed. Depth-
wise Convolution is a convolution in which each input channel is subjected to a single
convolutional filter. Pointwise convolution is a kind of convolution that employs a
1x1 kernel, which iterates across each point. This kernel has a depth equal to the
number of channels in the input picture. A pointwise convolution is used with
depthwise convolutions to create depthwise-separable convolutions.
A pointwise convolution follows the depthwise convolution in the original depthwise
separable convolution, and a depthwise convolution follows the pointwise convolution
in the modified depthwise separable convolution. The Xception model used modified

16



Figure 3.5: One Resblock in resnet50 with main and skip connection.

separable convolutions. Our tweaked Xception model to classify covid and normal
images is depicted in Fig. 3.7.
As in the figure, Separable Convolutions are the modified depthwise separable con-
volutions, and there are residual connections in the middle flow. In the Xception
model, the data initially passes via the input flow, then eight times through the
middle flow, and lastly through the exit flow. We used pre-trained ”image-net”
weight for the system, and a few of the last layers of the model were modified to
fine-tune and gain regularization. Average Pooling layer with a pool size of 4 by 4,
a flattening layer, and a dense layer is added to classify images. For the four classes,
similar architecture is applied and the final dense layer has an output size of four to
detect normal, covid, Lung Opacity and Viral Pneumonia images.

3.1.4 The Experiments

Our tweaked and proposed three models were utilized in this investigation for two
separate experiment setups.

Two class Setup

In two class experiment setup we utilized all the three proposed model utilizing last
dense layer with an output size of 2. we did two investigation with this experiment
setup.
In the first investigation, models were trained with standard image requirements
as per Xception, Vgg19 and Resnet models. The standard inut size requirements
for Xception, Vgg19 and Resnet are 299 × 299, 224 × 224 and 224 × 224 pixels
respectively, for each of the three algorithms. In the second investigation, we first
resized the input photos to 512×512 pixels, and then we trained all of the proposed
models using the resized input images.
For both the investigation, model performances are evaluated using unseen data.
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Figure 3.6: Modified Resnet50 to Classify lung disease.
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The performance of both experimental setup with three proposed model is evaluated
using data that has not been observed by the model while training.

Figure 3.7: Modified Xception Network to Classify Lung Disease.

Multi/Four class Setup

In multi class experiment setup we used all the three proposed model utilizing last
dense layer with an output size of 4. The Xception, Vgg19, and Resnet models were
trained in the field of standard picture needs. The typical criteria for inut size are
299× 299 for Xception, 224× 224 for Vgg19 and Resnet accordingly.

3.1.5 Evaluating Model performances and deep layer fea-
ture investigation

We evaluated accuracy, sensitivity or recall, specificity, precision known as Positive
Predictive Value (PPV), and F1 score to evaluate the performance of three deep
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learning algorithms for categorizing X-ray pictures as per (3.2), (3.3), (3.4), (3.5),
and (3.6). Precision[1] is defined as the ratio of correct positive identifications rela-
tive to all positive identifications. A low precision will result in a significant number
of false positives, meaning patients will be mistakenly categorized as having a cer-
tain condition. The recall[1] is the number of true positives over the number of true
positives plus the number of false negatives. Recall takes the false negative rate
into consideration. Incorrect diagnosis may occur due to low recall rate. The F1-
score(3.6) is the harmonic mean of precision and recall. A high F1 score is desired
in the classification task.

Accuracyi =
TPi + TNi

TPi + TNi + FPi + FNi

(3.2)

Precisioni =
TPi

TPi + FPi

(3.3)

Sensitivityi =
TPi

TPi + FNi

(3.4)

Specificityi =
TNi

TNi + FPi

(3.5)

F1 scorei = 2× Precisioni × Sensitivityi
Precisioni + Sensitivityi

(3.6)

Where,

• i=Covid and Normal for classification problem.

• TP= True Positive

• FN= False Negative.

• TN=True Negative

This paper used the gradient weighted Class Activation Mapping (GradCAM)[16]
algorithm to make models more transparent by visualizing the input areas crucial for
model predictions and demystifying the model performances by visualizing heatmap
in three different CNN networks layers. Fig. 3.8 describes complete process for
Gradcam analysis in our paper for covid and non-covid images. For the four classes,
the same architecture is applied except the output class is Covid, Normal, Lung
Opacity, and Viral Pneumonia. By visualizing heatmap, it is often possible to depict
why the model concluded a particular class. First, we passed an image through the
model to generate a prediction, and from the prediction value, we developed the
class prediction of the image. After that, we computed the gradient of the class
with respect to Feature Map activation Ak

Ak =
∂yc

∂Ak
ij

(3.7)

To derive the neuron significance weights, these gradients flowing back are global-
average-pooled across the width and height dimensions (indexed by i and j, respec-
tively).
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∂yc

∂Ak
ij

(3.8)

Then, using the equation x, we compute the Grad Cam.

Lc
GradCAM = ReLU

(∑
k

wc
kA

k

)
(3.9)

We created visualization by superimposing the original image with the heatmap.For
the binary class, this letter examined the GradCam visualization for all the Xception
model layers and compared heatmap across all the models to find better efficacy and
explain which part of the features affecting model to decide a particular class. First,
we analyzed different layers and different blocks of a model to find which regions
affect categorisation using GradCam. Second, we compared the last convolution
layer of activation maps of three CNN models to demystify model performances.For
the multiclass classification we analyzed last CNN layers heatmap for the three
models and concluded with comparing the same.

Figure 3.8: The complete process for Gradcam analysis for lung disease diagnosis.

3.2 Methodology behind Lung Disease Analysis

of CT Radiographs using AI

Fig. 3.13 illustrates the overall system diagram used in this investigation. First we
created a data set and then, from the dataset, we went through data preprocessing
steps which included image resizing, data augmentation, data normalization, and
data splitting from the train, test, and validation sets. After that, we trained the
model with our modified Inception v3, Resnet 50, and VGG16 models where all the
layers except the last 3 were frozen and we added a few extra layers on top of them.
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The model was tested with unseen data. Gradcam analysis was used to depict the
models’ explainability.

3.2.1 Data Collection Procedure for the CT COVID Dataset
named as ”HRCT Chest Covid Data -CT SCAN”

The data was collected from different hospitals in Dhaka, Bangladesh and verified
by the radiologist.

• With the help of medical technologists for CT and MRI, we first visited differ-
ent hospitals and separated the Covid and non-Covid CT Dicom image data
from the CT Scan machine.

• All the images with the HRCT chest protocol were selected for COVID and
non-COVID patient images. The HRCT protocol uses the same 1.5 mm slice
thickness and 1.5 mm increment.

• From the entire set of images of COVID data, we created a batch of images of
the affected COVID lung region, and from the batch of images of each patient,
we excluded the meta data and patient information.

• Following that, we converted the images to lossless jpg format so that we
wouldn’t lose any necessary information.

• In a similar way, we created batches of images for Healthy chest scan data and
after removing patient information and meta data we converted the dicom
images to lossless jpg format

• We created a data.csv file Fig. 3.9 which contains image id, image path, and
classes. The dataset contains 63% healthy data and 37% COVID data.

• Finally, a radiologist reviewed the radiograph imaging data.

3.2.2 DataSet Description

Even though a large number of patients are affected worldwide, HRCT chest scan
data sets are scattered and limited. To address this, we created an HRCT Chest
Covid Data -CT SCAN[77] and made it publicly available so that other researchers
could benefit from it.
All images were taken using the same protocol with a thickness of 1.5 mm and a
1.5 mm increment from different hospitals in Bangladesh. Initially, the dicom study
was meticulously selected, anomized, and annotations were deactivated. Following
diagnosis, a unique batch of dicom studies was generated for each patient who had
COVID symptoms. In a similar way, a few batches of dicom images were generated
from the HRCT chest scan for healthy patients. Following that, the dicom studies
were converted to Jpeg format without shrinking the pictures to prevent losing
research information. Our dataset contains a total of 6082 images, out of which
3840 non-Covid pictures and 2242 Covid images, and the images’ diagnosis was
verified by a panel of physicians. Fig. 3.10 depicts a selection of pictures from our
dataset[77] .
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Figure 3.9: Data.csv file for Dataset named ”HRCT Chest Covid Data -CT SCAN”.

A different category of affected covid data is chosen for our dataset, from mild to
severe, which can be found through the mean and standard distribution of colours
of the images for covid and normal class, shown in the Fig. 3.11 and Fig. 3.12

3.2.3 Image Processing

The CT images were scaled before to being input into the Neural Networks in
accordance with the models’ standard specifications. Images were reduced to 244 by
244 pixels and normalized for the initial investigation of the Resnet50 and VGG16
models. Images are downsized to 299 by 299 pixels for the Inception v3 model
in accordance with industry standards. The investigation randomly selected 2000
photos from our database of positive and non-covid instances. Trials were evaluated
using a randomized 80/20 split for training and test data, with 20% of training data
used as a validation set to avoid overfitting. Additionally, the dataset is normalized
using Z-normalization, which aids in model stabilization while increasing training
speed. The following (3.10) applies to z normalization:

X̂ =
X[: i]− µi

σi

(3.10)

Here, µi is the mean and σi is the standard deviation value of the feature.

3.2.4 Neural Network Models

The dataset was trained using the Inception v3, Resnet50, and Vgg16 models on
Google Colab Pro version with 26.3 GB of Gen RAM and 16160MB of GPU(Persistence-
M) RAM. The CNN models were slightly altered in the last layers to achieve reg-
ularization, and the model’s learning process was aided by the pre-trained weight
”image-net”[3].
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Figure 3.10: Sample image data for covid and normal class images.

Figure 3.11: Class-wise mean color value distribution of the CT images.
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Figure 3.12: Mean and standard deviation of Image samples.

Figure 3.13: The overview of the proposed system
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To compensate for the class imbalance problem in the training data, a weighted cat-
egorical loss function is used. To maximize computational efficiency and adaptive
learning rate, models are generated using the Adam optimizer with default param-
eters. With a patience level of 15, early stopping is used to monitor validation loss
and to stop training the model when validation loss becomes stable. When the val-
idation loss reached a plateau, the model’s final step training was fine-tuned using
a factor of 0.25 and patience 15.

After training the models with a mini-batch size of 16 pictures and 100 epochs, the
final receiver operating characteristic (ROC) curve, confusion matrix, and evalua-
tion matrix were obtained. Additionally, using the GradCam technique, heatmaps
are formed in the last convolution layers of the three employed models. The orig-
inal image and heatmap are layered to identify the image’s critical regions and to
demistify the blackbox of the models.

Vgg16

VGG16 is comprised of a 16-layer deep neural network[8], and we modified the
VGG16 by taking all but the final three layers. We froze the weights of 13 Conv
blocks and 5 MaxPooling blocks, and additionally we added average pooling, flatten-
ing, a dense layer with relu activation function, drop out, and finally another dense
layer with sigmoid activation function to distinguish covid and non-covid chest ct
radiographs. Fig. 3.14 depicts our modified version of VGG16 network.

Figure 3.14: VGG16 in our classification experiments.

Resnet50

The resnet[11] gained popularity as a way to circumvent the drawbacks of very
deep neural networks and avoid the vanishing gradient problem. By utilizing skip
connections, Resnet was able to alleviate difficulties associated with standard deep
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neural networks. We modified the original resnet50 by freezing all layers except
the final three, and then adding average pooling, flattening, a dense layer with
relu activation function, drop out (50 percent dropout rate), and finally another
dense layer with sigmoid activation function to classify covid and non-covid chest ct
radiographs.

Inception v3

Inception-v3[10], a deep neural network architecture a deep neural network archi-
tecture based on different filter size, is improved and tuned to categorize covid chest
ct pictures. We used pre-trained ”image-net” weights for the system, and we elim-
inated the model’s final three layers in favor of a few additional layers to fine-tune
and gain regularization. To finetune model performance, average pooling, flattening,
a dense layer with relu activation function, a drop out (50 percent dropout rate)
layer, and finally another dense layer with sigmoid activation function are added
sequentially. Fig. 3.15 depicts our modified Inception v3 model.

3.2.5 Performance Evaluation Methods

We examined accuracy, sensitivity or recall, specificity, precision known as Positive
Predictive Value (PPV), and F1 score to evaluate the performance of three deep
learning models for categorizing CT pictures.
Moreover, we used gradcam[16] to examine the heatmap and de-mystify the blackbox
of our models. Fig. 3.16 describes process for Gradcam analysis in our paper. We
created a heatmap of the last convolution layer of the three models to see why
our model concluded a certain way. A prediction was made for an image by first
passing it through the model to get a prediction, then classifying it. Afterwards, we
computed the class gradient with regard to Feature Map activation, Ak.
These gradients flowing back are global-average-pooled over the width and height
dimensions to obtain the neuron significance weights.
To derive the neuron significance weights, these gradients flowing back are global-
average-pooled across the width and height dimensions (indexed by i and j, respec-
tively). Then, using the equation (3.11), we compute the Grad Cam.

Lc
GradCAM = ReLU

(∑
k

wc
kA

k

)
(3.11)

3.3 Methodology behind Kidney Disease Analysis

of CT Radiographs using AI

We first collected and annotated the datasets to create a database for Kidney Stone,
Tumor, Normal, and Cyst findings. Data augmentation, image scaling and normal-
ization, and data splitting are among the preprocessing techniques utilized. After
that, we employed six models to investigate our data, including three Visual Trans-
former variants (EANet, CCT, and Swin Transformer), Inception v3, and Vgg16
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Figure 3.15: Modified Inception v3 Network to Classify Covid and Normal image

Figure 3.16: The overview of GradCam analysis for covid and non covid class
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and Resnet 50. The model’s performance was evaluated using previously unseen
data. The Block contains details about our experiment’s diagram can be found in
Fig. 3.17

Figure 3.17: Complete Block Diagram of Experiments to diagnose Kidney tumor,
cyst and stone

The methodology is presented in this part in the following order: dataset descrip-
tion, image preprocessing, neural network models, and evaluation strategies of the
experiments.

3.3.1 Data Collection Procedure for CT Kidney Data named
as ”CT KIDNEYDATASET: Normal-Cyst-Tumor and
Stone”

• The data was gathered from PACS (picture archiving and communication
system) systems at various hospitals in Dhaka, Bangladesh, where patients
had been diagnosed with a kidney tumor, cyst, normal, or stone condition.

• Both the Coronal and Axial cuts were chosen from both contrast and non-
contrast examinations for the complete abdomen and urogram, according to
protocol.

• The Dicom study was then chosen, one disease diagnosis at a time, first kidney
stone and from those a batch of Dicom images of the region of interest for each
radiological finding was made.

• We excluded the meta data and patient information and then converted the
dicom images to lossless jpg without shrinking the size of the images.
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• In a similar manner, we collected Data for Kidney Normal, Tumor and Cyst
findings and converted to jpg.

• Finally, radiograph imaging data was verified by a radiologist and a nephrol-
ogist.

• We created a data.csv file Fig. 3.18 which contains image id, image path, and
classes. The data set contains 12,446 unique data points. Within it, the cyst
contains 3,709, normal 5,077, stone 1,377, and tumor 2,283 images.

Figure 3.18: Data.csv file for Dataset named ”CT KIDNEY DATASET: Normal-
Cyst-Tumor and Stone”.

3.3.2 DataSet Description

The dataset was collected from PACS (Picture archiving and communication system)
from different hospitals in Dhaka, Bangladesh where patients were already diagnosed
with having a kidney tumor, cyst, normal or stone findings. Both the Coronal and
Axial cuts were selected from both contrast and non-contrast studies with protocol
for the whole abdomen and urogram. The Dicom study was then carefully selected,
one diagnosis at a time, and from those we created a batch of Dicom images of
the region of interest for each radiological finding. Following that, we excluded
each patient’s information and meta data from the Dicom images and converted
the Dicom images to a lossless jpg image format. After the conversion, each image
finding was again verified by a radiologist and a medical technologist to reconfirm
the correctness of the data.
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Our created dataset contains 12,446 unique data within it in which the cyst contains
3,709, normal 5,077, stone 1,377, and tumor 2,283. The dataset was uploaded to
Kaggle and made publicly available so that other researchers could reproduce the
result and further analyze it. Fig. 3.19 depicts a sample selection of our datasets.
The red marks represent the finding area or region of interest that a radiologist uses
to reach a conclusion for specific diagnosis classes.
Fig. 3.20 and Fig. 3.21 show the image color mean value distribution and the image
color mean value distribution by class for our dataset. From both these distributions,
it can be concluded that the whole dataset is very similar to the distribution of
individual normal, stone, cyst, and tumor images. The mean and standard deviation
of the image samples plot show that most of the images are centered, whereas
stones and cysts have lower mean and standard deviation which can be visualized in
Fig. 3.22. From the plot, we can conclude various types of images are being collected
and images are not very similar in nature, which shows the variety and severity of
different classes in our datasets.

3.3.3 Image Processing

After converting DICOM images into jpg images, we preprocessed scaled the images
as per the standard size requirement of neural network models. For the all trans-
former variant algorithm, we resized it to 168 by 168 pixels. Images for Inception
v3 were rescaled to 299 by 299 pixels, while images for VGG16 and Resnet were
reduced to 224 by 224 pixels. We then randomized all the images and took 1300
examples of each diagnosis for the models’ consideration. 80% of the images were
taken to train the model and 20% to test the data. Within 80% of the train images,
we took 20% to validate the model to avoid overfitting. Additionally, the dataset is
normalized using Z-normalization[9] using following (3.12):

X̂ =
X[: i]− µi

σi

(3.12)

Here, µi is the mean and σi is the standard deviation value of the feature.

3.3.4 Neural Network Models

From the dataset, i. e., the CT KIDNEY DATASET: Normal-Cyst-Tumor and
Stone, we randomly chose 1300 images of each class and trained our six models. All
the neural network models were trained on Google Colab Pro Edition with 26.3 GB
of GEN Ram and 16160 MB of GPU RAM using Cuda version 11.2. All the models
were trained with a batch size of 16 and up to 100 epochs.

Vgg16

In our experiment, the 16-layer VGG 16[8] model was tweaked in the last few layers
by using the first 13 layers of the original VGG16 model, and we added average
pooling, flattening, and a dense layer with a relu activation function. A dropout
and finally another dense layer is added to classify the normal kidney as well as
cysts, tumors, and stones. The total number of parameters in our modified VGG16
is 14747780, out of which 4752708 are the trainable parameters and 9995072 are
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Figure 3.19: Sample image data of kidney cysts, normal, stone and tumor findings.
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Figure 3.20: Colour mean value distribution of images for kidney disease analysis..

Figure 3.21: Image colour mean value distribution by class for kidney disease anal-
ysis..
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Figure 3.22: Mean and standard deviation of Image samples for kidney disease
analysis.

the non-trainable parameters. Table 3.1 shows the number of parameters of the
different models used in our study.

Resnet50

To avoid the vanishing gradient problem, and performance degradation of deep
neural networks, skip connections are being used in the original Resent model. We
utilized 50-layer resnet50 [11] models and modified them as the same as the Vgg16
and Inception v3 layers in the final few layers to achieve the classification task. The
total number of parameters in our modified Resnet 50 model is 23719108. Trainable
and nontrainable parameters are 135492 and 23583616 respectively.

Inception v3

A variant of the Inception family neural network, Inception v3 based on Depthwise
Separable Convolutions, is used in our study to classify images. Similar to VGG 16,
we modified the original Inception v3[10] model in the last few layers, by keeping all
the layers except the last three. We added average pooling, flattening, a dense layer,
a dropout, and finally a dense layer to do the classification task. The total number
of parameters in inception v3 is 22327396 with 524612 trainable parameters. The
total number of non-trainable parameters is 21802784.

3.3.5 External Attention Transformer(EANet)

Though the transformer-based models were popular in Natural Language Process-
ing, the recent advent of the vision transformer is gaining popularity over time,
which utilizes the transformer architecture that uses self-attention to sequences of
image patches[42]. The sequence of image patches is the input to the multiple trans-
former block in this case, which uses the multihead attention layer as a self-attention
mechanism. A tensor of batch size, num patches, and projection dim is produced by
transformer blocks, which which may subsequently be passed to the classifier head
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Table 3.1: No of parameters of different models

Model Total Parameter Trainable Parameter

VGG16 14,747,780 4,752,708
Inception v3 22,327,396 524,612
Resnet50 23,719,108 135,492
EANet 600,907 600,900

Swin Transformers 412,788 396,372
CCT 407,365 407,365

using softmax to generate class probabilities. One variant of the Vision Transformer
EANet is shown in Fig. 3.23 . EANet[74] utilizes external attention, based on two
external, small, learnable, and shared memories, Mk and Mv.The purpose of EANet
is to drop patches that contain redundant and useless information and hence improve
performance and computational efficiency. External attention is implemented using
two cascaded linear layers and two normalization layers. EANet computes attention
between input pixels and external memory unit via following formulas (3.13),(3.14)-

A = Norm
(
FMT

k

)
(3.13)

Finally, input features are updated from Mv by the similarities in Attention A.

Fout = AMv (3.14)

We utilized TensorFlow Addons packages to implement EANet. After doing data
augmentation with random rotation at scale 0.1, random contrast with a factor of
0.1, and random zoom with a height and width factor of 0.2, we implemented the
patch extraction and encoding layer. Following that, we implemented an extraneous
attention block, and transformer block. The output of the transformer block is
then provided to the classifier head to produce class probabilities to calculate the
probabilities of kidney normality, stone, cyst, and tumor findings.

3.3.6 Compact Convolutional Transformer (CCT)

Convolution and transformers are combined on CCT to maximize the benefits of
convolution and transformers in vision. Instead of using non overlapping patches,
which are used by the normal vision transformer in CCT[76], the convolution tech-
nique is used where local information is well-exploited. Fig. 3.24 illustrates the CCT
procedure-
CCT is run using TensorFlow Addons, where first data is augmented using random
rotation at scale 0.1, random contrast with a factor of 0.1, and random zoom with
a height and width factor of 0.2.To avoid gradient vanishing problems in CCT, a
stochastic depth [12] regularization technique is used, which is very much similar to
dropout except, in stochastic depth, a set of layers is randomly dropped. In CCT,
In CCT, after doing convolution tokenization, data is fed to a transformer encoder
and then sequence pooling. Following the sequence pooling MLP head gives the
probabilities of different classes of the kidney diagnosis. The total number of pa-
rameters in our proposed CCT model has 407365 parameters and all the parameters
are trainable.
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Figure 3.23: External attention of EANet model

Figure 3.24: Compact Convolutional Transformer (CCT) used in the study
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3.3.7 Shifted Window Transformers(Swin Transformers)

Another variant of the Vision Transformer is the Swin Transformer[81], which is
another powerful tool in computer vision. Detailed block diagram of the Swin trans-
former is shown in Fig. 3.25. In the picture, we can see four unique building blocks.
First, the input image is split into patches by the patch partition layer. The patch
is then passed to the linear embedding layer and the swin transformer block. The
main architecture is divided into four stages, each of which contains a linear embed-
ding layer and a swin transformer block multiple times. The Swin transformer is
built on a modified self-attention and a block that includes multi-head self-attention
(MSA), layer normalization (LN), and a 2-Layer Multi-Layer perceptron (MLP). In
this paper, we utilized the swin transformer to tackle the classification problem and
diagnose kidney cysts, tumors, stones, and normal findings.

Figure 3.25: Shifted Window Transformer(Swin Transformer) diagram used in the
study

3.3.8 Performance Evaluation Methods

The quantitative evaluation of all the six models is calculated based on the parame-
ters of accuracy, sensitivity or recall, specifity and precision. True positive(Tp), false
positive(Fp), true negative(Tn), and false negative(Fp) samples are used to calculate
the accuracy(3.15), precision(3.16), sensitivity(3.17) and specificity(3.18). The F1
score(3.19) of all the models is calculated by using those models’ sensitivity and
specificity. The following formulas are applied to accuracy, precision, sensitivity,
specificity, and F1 score.
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Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn

(3.15)

Precision =
Tp

Tp + Fp

(3.16)

Recall/Sensitivity =
Tp

Tp + Fn

(3.17)

Specificity =
Tn

Tn + Fp

(3.18)

F1 score = 2× Precision× Sensitivity

Precision + Sensitivity
(3.19)

The area under the curve is also calculated for each developed model, and finally,
all the models are compared to take a decision on which model is superior compared
to other models.
Moreover, we used Gradcam[16] using (3.20) in the last convolution layer of the
three models (VGG16, Resnet50, and Inception v3) to create a heatmap and then
we superimposed the heatmap with the original image to see why our model came
to a certain conclusion about a class.

Lc
GradCAM = ReLU

(∑
k

wc
kA

k

)
(3.20)

Where,

• Ak= feature map activation

• wc
k= neuron significance weights

Summary of the all the models implemented in all the disease are shown in table3.2
below-
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Table 3.2: Summary of the all the models implemented in all the disease

Disease Modality Model

Lung Xray

ResNet50
VGG19
Xception

Lung CT

ResNet50
VGG16
Inception v3

Kidney CT

ResNet50
Vgg16
Inception v3
EANet
CCT
Swin transformer
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Chapter 4

Implementation & Result Analysis

In this section of the thesis, we will describe the findings and conclusions of our
research.

4.1 Result Analysis of Lung Disease Analysis of

X-ray Radiographs using AI

The results of the experiments are broken down into two sections. In the first phase,
results were analyzed statistically, and in the second phase, feature extraction in
different layers of different models was visualized using GradCam and analyzed why
our model came to the conclusion of detecting Covid and non-Covid images.

4.1.1 Statistical Analysis

We assessed the model’s performance using a separate test set that models were not
exposed to during training. The models were evaluated statistically by computing
the test precision, recall, F1-score (F1), accuracy (Acc), Positive Predictive Value
(PPV), and the Area Under the ROC Curve (AUC).
Table 4.1 summarizes the performance of the three CNN networks studied in this
paper for two class setup. performance is also shown for the implemented three net-
works for two different input image sizes. Similarly, Fig. 4.1 shows the performance
comparison of all three models at normal picture size as per model’s requirement
and 512× 512 input images.
From Table 4.1, we can examine the accuracy of the Xception and Vgg19 is 97%
while training the model with standard image size requirements as per model, while
the Resnet50 provides 92.5% accuracy. The F1 score for detecting normal and
Covid images for Xception and Vgg19 is 0.971, 0.969, 0.967, and 0.972 respectively,
where as for the resnet model, it is 0.923 and 0.972. Clearly, Xception and Vgg
are outperforming the Resnet 50 considering accuracy and F1 score. The sensitivity
to detecting covid is higher than the other two models and it is 97.9%, where high
precision of 97.7% is observed in Vgg19 for the covid class. For the normal class,
recall is highest in vgg 19 and precision is highest in the Xception model. For the
512 × 512 image size, again, accuracy is higher in Xception and Vgg19 and both
provide an accuracy of 97.5%. The F1 score for covid and the normal class for the
Xception model is 0.976 and 0.973, where as in the Vgg19 model, it is 0.975 and
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Table 4.1: Performance measures for the three models for two class classification(X-
ray Lung).

Input Image Size Models Accuracy Class Precision(PPV) Recall(Sensitivity) F1 Score AUC Explainable AI

299x299 Xception 0.97
Normal 0.981 0.962 0.971 0.99

YCovid 0.959 0.979 0.969 0.99

224x224 VGG19 0.97
Normal 0.962 0.973 0.967 0.99

YCovid 0.977 0.968 0.972 0.99

224x224 Resnet50 0.925
Normal 0.958 0.892 0.923 0.97

YCovid 0.896 0.959 0.926 0.97

512x512

Xception 0.975
Normal 0.995 0.953 0.973 1

YCovid 0.958 0.995 0.976 0.99

VGG19 0.975
Normal 0.961 0.99 0.975 0.99

YCovid 0.99 0.961 0.975 0.99

Resnet50 0.933
Normal 0.983 0.881 0.93 0.98

YCovid 0.89 0.985 0.935 0.98

0.975. So, it can be concluded that training with increased image size improves the
accuracy and performance of the model. This may be because, while resizing to
a lower resolution, we may lose some vital information from the image which may
take part in decision making processes. Fig. 4.1 shows precision, recall, F1 score and
AUC bar bar chart comparison for three models: Xception, Vgg19 and Resnet50
while training the model with standard input image size and 512× 512 input image
size. Precision, recall, F1 score and AUC bar bar chart for three models when model
is trained with standard image size (a).Precision, recall, F1 score and AUC bar bar
chart for three models when models are trained with the images size of 512×512 (b).
It is evident that Resnet is performing poorly compared to Vgg19 and Xception. It
is also evident that training with increased image resolution helps to achieve better
performance of the models.
Fig. 4.3 shows ROC curves and confusion matrices for each of the models, considering
each of the classes individually while training the model with standard image size.
Top: ROC curves. Bottom: Normalized confusion matrices. Left: ROC curve
and confusion matrices for the Xception model. Center: ROC curve and confusion
matrices for the Vgg19. Right: ROC curve and confusion matrices for the Resnet
model, and Fig. 4.2 shows the ROC curves and confusion matrices for each of the
models, considering each of the classes individually while training the model with
512x512 input image resolution. Top: ROC curves. Bottom: Normalized confusion
matrices. Left: ROC curve and confusion matrices for the Xception model. Center:
ROC curve and confusion matrices for the Vgg19. Right: ROC curve and confusion
matrices for the Resnet model. it is undeniable that training models with higher
picture quality results in enhanced performance of the models after they have been
trained.
Table 4.2 and Fig. 4.4 summarizes the performance of the three CNN networks
studied in this paper for multi class setup. We can see the Xception model is
outperforming VGG19 and Resnet50 and giving accuracy 93%. F1 score for Normal,
Covid, Lung Opacity, and Viral Pneumonia is 0.92, 0.92, 0.96 respectively. Vgg19
is quite close performance wise and gives 92% accuracy.
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(a) Bar graph with standard image resolution

(b) Bar Graph 512× 512

Figure 4.1: Precision, recall, F1 score and AUC bar chart comparison for three
models.
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Table 4.2: Performance measures for the three models for multi class
classification(X-ray Lung).

Input Image Size Models Accuracy Class Precision(PPV) Recall(Sensitivity) F1 Score AUC Explainable AI

299x299 Xception 0.93

Normal 0.89 0.95 0.92 0.99

Y
Covid 0.93 0.91 0.92 0.99
Lung Opacity 0.91 0.92 0.92 0.99
Viral Pneumonia 0.98 0.94 0.96 0.99

224x224 VGG19 0.92

Normal 0.87 0.97 0.92 0.99

Y
Covid 0.94 0.88 0.91 0.99
Lung Opacity 0.87 0.92 0.89 0.99
Viral Pneumonia 1 0.89 0.94 0.99

224x224 Resnet50 0.75

Normal 0.8 0.9 0.85 0.96

Y
Covid 0.65 0.78 0.7 0.89
Lung Opacity 0.73 0.49 0.59 0.87
Viral Pneumonia 0.85 0.85 0.85 0.94

(a) ROC curve for Xception
model at input image resolu-
tion 512× 512

(b) ROC curve for Vgg19 at in-
put image resolution 512×512

(c) ROC curve for Resnet50 at
input image resolution 512 ×
512

(d) Confusion Matrix for
Xception model at input
image resolution 512× 512

(e) Confusion Matrix for
VGG19 at input image resolu-
tion 512× 512

(f) Confusion Matrix for
Resnet50 at input image
resolution 512× 512

Figure 4.2: ROC curves and confusion matrices for dual class models with 512x512
input image resolution(xray-lung).
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(a) ROC curve for Xception
model at input image resolu-
tion 299× 299

(b) ROC curve for Vgg19 at
input image resolution 224 ×
224

(c) ROC curve for Resnet50
at input image resolution
224× 224

(d) Confusion Matrix for
Xception model at input im-
age resolution 299× 299

(e) Confusion Matrix for
VGG19 at input image reso-
lution 224× 224

(f) Confusion Matrix for
Resnet50 at input image res-
olution 224× 224

Figure 4.3: ROC curves and confusion matrices dual class models with standard
image size(xray-lung).

4.1.2 Model’s Explainability and Interpretability

It is commonly feasible to show why the model determined a specific class using
a heatmap. We qualitatively examined network-identified regions of interest us-
ing Grad-CAM activation maps and by displaying heatmaps at different layers of
three proposed networks. To anticipate the pathological condition and model inter-
pretability, and to further analyze, the original image and heatmap are superimposed
to locate the critical spots in the image. Although the last CNN layer is generally
used in GradCAM literature, we visualized all the network layers to study the learn-
ing process of the models, since the last layer contains high-level information. In
this letter, we utilized the GradCAM approach to 1) visualize and compare the dif-
ferent layers of a model to identify the model’s decision processes and 2) identify
the network sections that have the most significant impact on categorization. 3)
to compare activation maps of three CNN models’ last convolution layer to demys-
tify all the model performances. For the Xception model, we used GradCAM to
display the activation maps for all the CNN blocks for covid and noncovid class
images. We visulaized the activation map for all the layers in the same block for
the Xception model. Furthermore, we implemented expainable AI to the Resnet50
and Vgg19 models and compared the activation maps to see which model should
perform better in clinic conditions. We approached GradCam analysis for four class
classification to show the last conv layer output of the Xception models since the
accuracy of Xception model is higher than the Vgg19 and Resnet50.
Fig. 4.5 depicts the visualization results for the Separation Convolution layers in
Block 14,12,10,8,4 and 1 for the Xception model for a ground truth normal image.
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(a) ROC curve for Multi
Class Xception model at in-
put image resolution 299×299

(b) ROC curve for Multi
Class Vgg19 at input image
resolution 224× 224

(c) ROC curve for Multi Class
Resnet50 at input image res-
olution 224× 224

(d) Confusion Matrix for
Multi Class Xception model
at input image resolution
299× 299

(e) Confusion Matrix for
Multi Class VGG19 at input
image resolution 224× 224

(f) Confusion Matrix for
Multi Class Resnet50 at input
image resolution 224× 224

Figure 4.4: ROC curves and confusion matrices for Multi Class models with standard
image size(xray-lung).

45



Figure 4.5: GradCam Analysis for the Xception model for normal class images at
different layers.

Figure 4.6: GradCam analysis of covid class photos at various layers using the
Xception model.
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Figure 4.7: GradCam analysis of covid and normal class photos at various layers in
a single block using the Xception model.

Figure 4.8: GradCam analysis of covid and normal class photos at the final convo-
lution layer in the Xception, Vgg19, and Resnet models.
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Figure 4.9: GradCam analysis of four class photos at the final convolution layer in
the Xception model.
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Figure 4.10: GradCam analysis of four class photos at the final convolution layer in
the Xception model, Vgg19, and Resnet50 models.
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First row: chest xray image belonging to the normal class. Second row: GradCam
activation mapping for the xray image. Third Row: superimposed image of Xray
image and Activation map. The first column shows the original image, heatmap and
superimposed image of the block14 separation convolution 2 in the Xception model.
The second, third, fourth, fifth, and sixth columns are for Block 12 sepconv2, Block
10 sepconv2, Block8 sepconv2, Block4 sepconv2, and Block1 conv1 respectively.
Block 14 detects high-level features and impacts decision making, where as block 1
detects lower-level features such as colors and edges. From the original x-ray images,
heatmap, and superimposed images, we can visualize that Separation Convolution
block 14 has the most significant impact on image classification as it can see the
high-level complicated features. Block 14 builds up features by combining all the
features that were detected in the early layers. On the other hand, block 1 just
impacts the model performance by detecting low-level features such as edges and
colours. The Deep layers feature mainly contributed to better offering an explana-
tion of the failure or success of a deep learning network in a particular decision. In
this case, the Xception model detected the image truly and detected it as a class of
image which is normal.

Similarly, Fig. 4.6 shows GradCam analysis of covid class photos at various layers
using the Xception model. First row: shows a chest xray image from the covid class.
The GradCam activation mapping for the xray image is shown in the second row.
Third row: Xray picture placed on an activation map to show the usperimposed
image. The first column displays the original image, heatmap, and overlay image of
the Xception model’s block14 separation convolution 2. The second, third, fourth,
fifth, and sixth columns correspond to Block 12 sepconv2, Block 10 sepconv2, Block
8 sepconv2, Block 4 sepconv2, and Block 1 conv1. Block 14 detects high-level fea-
tures and influences decision-making, whereas block 1 detects lower-level features
like colors and edges.From Fig. 4.6, we ca say that x-ray images with ground truth
Covid diagnosis has a comparable impact, indicating that Block 14 strongly influ-
ences finding classification areas. It can be seen that in the last block convolution
layer, the model is looking into the chest region, which is the region of interest
for detecting covid, and the model almost sees all the regions of the covid affected
area.The Xception model was flawless in this case, predicting it. In summary, the
last block contributes more to the classification than the whole block.

In the search for determining which layer in a convolutoin block provides more
decisiveness, for covid and normal classes, we checked the sep convolution layer,
batchnormalization (bn) layer and activation (act) layer heatmap along with the
original and superimposed image, shown in Fig. 4.7. The first row displays covid
and normal chest xray images. In the second line, the xray image’s GradCam
activation mapping is displayed. The third row displays superimposed images. The
first three columns display the original image, heatmap, and overlay image of the
Xception model’s block14 separation convolution 2, batchnormalization, and ReLu
activation layers for a normal class image. The latter third column displays the
original image, activation mapping, and superimposed image of block14 separation
convolution 2, batchnormalization, and ReLu activation layer for a covid class image
for the Xception model. The activation layer model there observes a more narrow
region in search for covid and normal classes. Although the convolution layer watches
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the spread region, the activation contributes more to the decision making process.
Since the activation layer is closest to the output, the activation layer must detect
relevant features and in our Xception model it does the same.
In the final stage of our model visulization for two class classification, deep layer
feature investigation, and model explainability, we checked the last convolution layer
heatmap of all our implemented models.The GradCam analysis of covid and nor-
mal class photos at the final convolution layer in the Xception, Vgg19, and Resnet
models is shown in Fig. 4.8. The first row shows a chest xray image from the covid
and normal class. The GradCam activation mapping for the xray image is shown
in the second row. Xray picture placed on an activation map to show the usperim-
posed image in the third row. The first three columns display the original image,
heatmap, and overlay image at the final convolution layer of the Xception, Vgg19,
and Resnet50 models for a normal class image. The last third column displays the
original image, activation mapping, and superimposed image from the final convo-
lution layer of Xception, Vgg19, and Resnet50 for a covid class image. The final
convolution layers for the Xception, Vgg19 and Resnet models are block14 sep conv
2, block5 conv 4 and conv5 block 3 3 conv respectively. From the image shown, the
Vgg19 and Xception models are more looking into the high lever features in search
of desired regions. For normal class, all three models look into the desired region
and all three models predict it perfectly. However, in covid class Vgg19 misclassified
the image and from the heatmap we can see that although it is watching in the chest
region, it came into prediction by watching in the other portion rather than the chest.

GradCam analysis of four class photos is shown in Fig. 4.9 and Fig. 4.10. Ex-
plainable AI at the final convolution layer in the Xception model is visualized in
Fig. 4.9.First row: shows chest xray images of different classes. The GradCam ac-
tivation mapping for the xray image is shown in the second row. Third row: Xray
picture placed on an activation map to show the usperimposed image. The first
column displays the original image, heatmap, and overlay image of the Normal class
at the final convolution layer of the Xception model. The second, third, and fourth
columns display the original image, activation mapping, and superimposed image
for the Covid, Lung Opacity, and Viral Pneumonia classes respectively. All the im-
ages were correctly classified in this case and we can see the model is watching the
region of interest to differentiate Normal, Covid, Lung Opacity and Viral Pneumo-
nia classes. From Fig. 4.10 it is possible to visualize that Vgg19 misclassified Covid
and Viral Pneumonia classes as the last layer is watching some other points rather
than the desired region. However, the Xception and Resnet models detected image
classes perfectly in this case.

4.2 Result Analysis of Lung Disease Analysis of

CT Radiographs using AI

Table 4.3 and Fig. 4.11 summarizes the performance of the three CNN networks
studied in this paper. We tested the results of the model using a different test set
which the models did not view while they were trained.
From the 4.3 and Fig. 4.11, we can visualize that our proposed Incepion v2, Vgg16,
and Resnet give 0.993, 0.998, and 0.915 accuracy consecutively. Inception and Vgg16
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(a) ROC curve for Inception
v3 model

(b) ROC curve for Vgg16 (c) ROC curve for Resnet50

(d) Confusion Matrix for In-
ception v3 model

(e) Confusion Matrix for
VGG19

(f) Confusion Matrix for
Resnet 50

Figure 4.11: ROC curves and confusion matrices for each of the models(CT-Covid)

are performing better than Resnet here. The F1 score and area under the curve are
also higher in Inception v3 and Vgg16. For the healthy class, precision and recall are
higher in the Inception v3 model, whereas in Vgg16, pression and recall are similar
for healthy and normal class pictures.

Table 4.3: Measures of performance for the three models studied in the research(CT-
Covid).

Models Accuracy Class Precision(PPV) Recall(Sensitivity) F1 Score AUC Explainable AI

VGG16 0.993
Healthy 0.99 0.995 0.992 0.99

YCovid 0.995 0.99 0.993 0.99

Inception v3 0.998
Healthy 0.998 0.998 0.998 0.99

YCovid 0.977 0.977 0.977 0.99

Resnet50 0.915
Healthy 0.87 0.981 0.922 0.98

yCovid 0.976 0.846 0.906 0.98

We produced activation maps of the last convolution layer of the three models and
compared them for covid and non covid images. Furthermore, to analyze, we su-
perimposed the activation map with the original image to see which region is more
critical to determining a certain class. The Fig. 4.12 shows the gradcam visual-
ization of the last conv layers of Inception v3, Resnet50 and Vgg16 models.First
row: shows a chest xray image from the normal and covid class. The GradCam
activation mapping for the xray image is shown in the second row. Third row: Xray
picture placed on an activation map to show the usperimposed image. The first
three columns display the original image, heatmap, and overlay image at the final
convolution layer of the Inception v3, Vgg16, and Resnet50 models for a normal
class image. The last third column displays the original image, activation mapping,
and superimposed image from the final convolution layer of Inception v3, Vgg16,
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Figure 4.12: GradCam analysis of covid and normal class photos at the final convo-
lution layer in the Inception v3, Vgg16, and Resnet models.
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and Resnet50 for a covid class image. From the figure we can see that all the models
are observing the chest region to conclude a certain class. However, Vgg16 is watch-
ing more high-level features and the covid region while deciding a covid and normal
class images. Despite the fact that the Inception v3 model achieved great accuracy,
gradcam analysis suggests that Vgg16 is the preferred model in this circumstance.
Vgg16 can help doctors not only to find covid or normal class, but can also assist
in detecting which regions are affected.

4.3 Result Analysis of Kidney Disease Analysis of

CT Radiographs using AI

The results of the implemented six models using different tests are evaluated by
calculating the accuracy, recall, F1 score (F1), accuracy (Acc), positive predictive
value (PPV), and ROC curve area of interest (AUC). Table 4.4, Fig. 4.13 and
Fig. 4.14 summarizes the performance of the six networks studied in this paper.
Fig. 4.16 presents us with the gradcam analysis of the Inception v3, Resnet50, and
Vgg16 models, and Fig. 4.15 provides us with a time comparison of the different
models’ training times.
From the table 4.4, we can see that the InceptionV3 model performed worse with
our dataset and gave an accuracy of 61.60%. EANet and Resnet 50 performed
moderately by giving accuracy of 77.02% and 73.80%. CCT, VGG16 and Swin
Transformers provided accuracy of 96.54%, 98.20% and 99.30% accuracy respec-
tively. The Swin transformer, which is a transformer-based model, is outperforming
all the other models in respect of accuracy. For the cyst, normal, stone, and tu-
mor classes, the highest F1 score is provided by the swin transformer also, and the
numbers are 0.996, 0.998, 0.985, and 0.996 consecutively. The Swin transformer
also provides the highest precision for Stone and Tumor classes, and readings are
0.981 and 0.993. For the cyst class, the Swin transformer and VGG 16 are provid-
ing the same value of 0.996, whereas for the normal class, the Swin transformer is
performing better and giving a reading of 0.996. Considering the above, the Swin
transformer is superior and outperforms all the models, and can be of great use in
kidney medical imaging diagnosis.
From Fig. 4.13 and Fig. 4.14, we can see that the Area Under the Curve and F1
Score are found promising in the case of CCT, VGG16, and SWin Transformers,
compared to Resnet50, EANet, and Inception v3. The F1 score is the highest of
all the classes-cyst, normal, stone and tumor in the case of the Swin transformer
model.
When it comes to model training time, the CCT and Swin transformers take less
time to train the same amount of epochs. Because transformer models have a small
number of parameters, training them takes less time. As a result, we can con-
clude that the Swin transformer requires less training time and has higher accuracy,
making it superior in renal image diagnosis.
We analyzed the activation maps of the three models’ final convolution layer for and
analyzed the activation map by superimposing it on top of the original image to
identify which region is more important in determining a specific class. From the
figures, it can be concluded that VGG 16 is watching more regions of interest in the
desired anatomy than the other models, and its accuracy is better than Resnet50
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Table 4.4: Measures Of Performance For The Six models studied in the re-
search(kidney Disease).

Models Accuracy Class Precision(PPV) Recall(Sensitivity) F1 Score AUC

EANet 77.02%

Cyst 0.593 1 0.745 0.98
Normal 0.896 0.848 0.871 0.98
Stone 0.845 0.495 0.624 0.91
Tumor 0.93 0.777 0.847 0.97

Swin Transformers 99.30%

Cyst 0.996 0.996 0.996 0.99993
Normal 0.996 0.981 0.988 0.9998
Stone 0.981 0.989 0.985 0.99975
Tumor 0.993 1 0.996 1

CCT 96.54%

Cyst 0.968 0.923 0.945 0.99605
Normal 0.989 0.975 0.982 0.99841
Stone 0.94 1 0.969 0.99924
Tumor 0.964 0.964 0.964 0.99723

VGG16 98.20%

Cyst 0.996 0.968 0.982 0.99856
Normal 0.985 0.973 0.979 0.99844
Stone 0.966 0.988 0.977 0.99908
Tumor 0.982 0.996 0.989 0.99902

Inception v3 61.60%

Cyst 0.645 0.826 0.724 0.92689
Normal 0.584 0.898 0.708 0.90642
Stone 0.568 0.462 0.509 0.78185
Tumor 0.76 0.295 0.425 0.8029

Resnet50 73.80%

Cyst 0.735 0.641 0.685 0.90721
Normal 0.77 0.79 0.78 0.95069
Stone 0.745 0.692 0.717 0.9314
Tumor 0.706 0.827 0.762 0.94447

(a) ROC curve for Inception
v3 model

(b) ROC curve for Vgg16 (c) ROC curve for Resnet50

(d) Confusion Matrix for In-
ception v3 model

(e) Confusion Matrix for
VGG16

(f) Confusion Matrix for
Resnet 50

Figure 4.13: ROC curves and confusion matrices for Inception v3, VGG16 and
Resnet 50.
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(a) ROC curve for EANet (b) ROC curve for Swin
transformer

(c) ROC curve for CCT

(d) Confusion Matrix for
EANet

(e) Confusion Matrix for Swin
transformer

(f) Confusion Matrix for CCT

Figure 4.14: ROC curves and confusion matrices for EaNet, Swin transformer and
CCT.

Figure 4.15: Training time comparison for 100 epochs of different models.
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Figure 4.16: GradCam analysis of kidney Cyst, Normal, Stone and Tumor class
photos at the final convolution layer in the Inception v3, Vgg16, and Resnet models.
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and Inception v3, which are also resonant with the analysis. In our case, VGG16 is
predicting all the images as correct class and watching the region of interest region
perfectly, whereas Resnet is predicting normal findings as tumors and stones as
normal in this case and also not watching where the model should watch to make
a decision. Inception V3 is also not watching the region of interest perfectly and
watching more low-level features, and in this case, it predicated the tumor class as
the normal class.
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Chapter 5

Conclusion

This study presents a total of six deep CNN-based transfer learning approaches .
Three approaches are used for automatically recognizing COVID-19 disease from X-
ray images, and the other three are used to detect normal, covid, lung opacity, and
viral pneumonia images. Using chest X-ray pictures, three prominent and previously
published CNN-based deep learning systems were modified to better distinguish the
images for dual and four class images. Models were trained with pre-trained image-
net weight, verified, and tested with an unseen dataset. Experiments were carried
out in two ways for dual class classification; first, models were trained with the im-
age size as per the standard requirements of the model; 299× 299 for the Xception
model, 224 × 224 for the VGG19, and the Resnet50 model. Second, the proposed
three models were trained with 512 × 512 pixel input images. It is concluded that
image input of 512 × 512 pixels delivers greater accuracy, which might be because
image resizing loses some essential information from photos, lowering accuracy. It
is critical to train the model with an image size that does not lose any meaningful
information, as this is a healthcare-related sensitive diagnostic. With standard pic-
ture input, the accuracy of Xception, VGG19, and Resnet is 0.97, 0.97, and 0.925,
respectively. With 512 by 512 pixels, the accuracy is 0.975, 0.975, and 0.933. Fur-
thermore, Explainable AI was applied to three networks, and it was revealed that
the Xception model was watching the chest region where Covid was present, sug-
gesting that Xception was the superior of the three models. It was also evident from
the experiment that the last block of all models watches relevant information for the
classification, and the last block activation layer is responsible for detecting more
complicated features as it is close to the model output. For the multi class classifica-
tion, the Xception model gives an accuracy of 93% and the Xception model watches
the relevant portion of the chest while detecting the four class images. COVID-19
has already posed a danger to the global healthcare system, with respiratory failure
being the primary cause of death. Because doctors’ time is restricted due to the
enormous number of patients seen outside or in an emergency, the Xception model-
based diagnosis presented in this study has the potential to save lives through early
screening and appropriate therapy. Not only can our explainability serve as a re-
sponsible and transparent audit of our models, but it may also aid physicians in
enhancing covid screening.

Furthermore, This study presents a total of 6082 chest HRCT images and made
them public to contribute to the healthcare AI. Exploratory analysis of the images
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performed and shown data varied from highly affected to covid to low symtomp
images. Furthermore, this study developed three deep learning based models to
classify COVID and non-COVID from the CT images. Three popularly known deep
learning models, Resnet, Vgg16, and Inception v3, are modified and tweaked in the
last layers. Models were trained with pretrained imagenet weight and tested with
unknown data, and it was found that all three models were performing reasonably.
With standard picture input, the accuracy of Inception v3, VGG16, and Resnet is
0.998, 0.993, and 0.915, respectively. Models’ blackboxes are demistified and found
VGG16 is watching more high level features and watching the covid affected region
more while taking any decision about the class. We believe our models’ superior
accuracy and models’ region of interest while detecting certain classes can help med-
ical doctors not only detect COVID but also decide how severe the condition is, thus
having the potential to reduce sufferings around the world.

Moreover, This thesis collected, annotated, and published a total of 12,446 whole
abdomen and urogram CT scan images containing cysts, tumors, normal, and stone
findings. Exploratory data analysis of the images was performed and showed that
the images from all the classes had the same type of mean colour distribution. Fur-
thermore, this study developed six models, out of which three models are based on
recent state-of-the-art variants of the Vision transformers EANet, CCT, and Swin
transformers, and the other three are based on popularly known deep learning mod-
els, Resnet, Vgg16, and Inception v3, which are tweaked in the last few layers. A
comparison of all the models performed revealed that, while VGG16 and CCT per-
formed well, the swin transformer outperformed all the models in terms of accuracy,
providing an accuracy of 99.30%. The F1 score and precision and recall compar-
ison provide evidence that the Swin transformer is outperforming all the models,
and also, compared to all the models, the Swin transformer is taking less time to
train the same number of epochs. The study also revealed the blackbox of VGG16,
Resnet50, and Inception models and showed that VGG16 is better compared to
Resnet50 and Inceptionv3 and watches the desired abnormalities in the anatomy
better. We believe the superior accuracy of our model based on the Swin trans-
former and the VGG16-based model can both be of great use in detecting kidney
tumors, cysts, and stones, and can reduce the pain and suffering of patients.
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Chapter 6

Limitations and Future Direction

The most challenging task is to get data as healthcare data is scarce and limited.
We feel more data is required to do more extensive study and to build better model
that can see and diagnosis the diseases very early stages. Different anatomy diseases
can be targeted in future and can be approached 3D model. We dream to see a
combined system to detect all the diseases that is required for human being so that
peoples pain can be alleviated significantly.
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