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Abstract

The field of quantum chaos studies how the chaotic dynamics of a classical system man-
ifest in its quantum counterpart. Various indicators and measures of classical chaos have
been discovered, such as the classical Lyapunov exponent, that allow us to distinguish
and analyze chaos in classical systems. However, the same cannot be said for quantum
chaos. Measures of quantum chaos are few and far between, and the ones that have
been found are not well understood. One such measure is the out-of-time-order corre-
lator (OTOC). In this thesis, we employ out-of-time-order correlators to study quantum
chaos in various billiard systems, and try to find correlations between the classical and
quantum dynamics of these systems.

Keywords: Lyapunov Exponent, Ergodicity, Hyperbolicity, Stickiness, OTOCs, Classical Chaos,
Quantum Chaos, Ehrenfest Time.
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3λg ṽt, which accurately

fits the data within an intermediate time-window 0.4 ≤ l/ds ≤ 1.3. . . . . 48
5.10 Numerically calculated thermal OTOCs on a logarithmic scale, with re-

spect to the length (scaled time) l = ṽt (in units of average collision dis-
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Chapter 1

Introduction

In the 18th century, the esteemed mathematician Gottfried Wilhelm Leibniz declared that
the dynamics of a deterministic system could be predicted for all future time, given that
the initial conditions of the system were known. He elaborated that in much the same
way that we can predict the future trajectories of two spheres that collide with one an-
other in free space given that we know their sizes, positions and velocities, so too can
we predict the future of the entire universe, if we are able to know and take into account
all the different factors involved. His belief hinged on the notion that the dynamics of
all systems in the universe are governed by deterministic laws which are infallible, thus
”everything proceeds mathematically” [1].

However, future scientific endeavours revealed that his claim about our predictive capa-
bilities was not correct. There exist in nature certain systems known as chaotic systems,
which display extreme sensitivity to even minute changes in the initial conditions. Even
the smallest differences in the initial conditions of these systems can lead to completely
different futures. In practice, it is only possible to measure initial conditions to a certain
level of accuracy. This makes it impossible to accurately predict the long-term behaviour
of chaotic systems, as very tiny differences in initial conditions, often many orders of
magnitude smaller than the maximum accuracy to which the initial conditions can be
ascertained, can lead to completely different evolutions of a system. Even though the
dynamics of chaotic systems are governed by deterministic equations, we are unable to
determine the initial conditions with perfect precision, leading to our inability to accu-
rately predict their future states. This extreme sensitivity of chaotic systems is often called
the ’butterfly effect,’ as something as tiny as the flap of a butterfly’s wings can alter con-
ditions enough to entirely change the future of a system. The phase space trajectories of
chaotic systems are aperiodic, governed by non-linear equations that are often not an-
alytically solvable. How this chaos manifests in the quantum realm is a topic of active
research. The methods used to measure classical chaos are not applicable to quantum
systems. Thus, quantum chaos of a system must be analyzed via measures different from
those used to analyze its classical chaos, which makes establishing correlations between
the two difficult.

1.1 Motivation

Quantum chaos is one of the most elusive topics in modern physics, and methods to
quantify and analyze it are few and far between. Hashimoto et al. laid out a comprehen-
sive method for calculating quantities known as out-of-time-order correlators (OTOC)
[2], and explored whether they can be used as an indicator of quantum chaos in certain
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billiard systems. The existence of exponential growth in the OTOCs serves as an indicator
of quantum chaos. However, they did not find exponential growth in the OTOCs of the
classically chaotic stadium billiard even at times before the Ehrenfest time, which indi-
cated that OTOCs may not work as a distinguishing metric between regular and chaotic
systems. We wanted to fully explore this possibility, and thus, we set out to calculate the
OTOCs for a number of other classically chaotic billiard systems. From the OTOCs, we
aim to find quantum Lyapunov exponents which we can then compare to the classical
Lyapunov exponents pertaining to each system. In doing so, we hope to gain some in-
sight into how the quantum dynamics of a system relate to its classical dynamics. We
chose to tackle billiard systems as they are amenable to numerical calculations and simu-
lations. Moreover, we found that the subject of OTOCs had only rarely been explored in
the context of billiard systems in the existing literature. Thus, we decided to investigate
this aspect of quantum chaos in this thesis.

1.2 Organization of the paper

We begin our thesis by giving a general overview of the basics of chaos as it pertains
to classical mechanics in chapter 2. Then, in chapter 3, we move on to describing the
methodology developed for studying classical chaos in billiard systems. After that, we
turn our attention to chaos in the quantum picture in chapter 4, detailing a method put
forth in [2] to quantify the quantum chaos exhibited by a system, via the calculation of
quantities known as out-of-time-order correlators (OTOC). In chapter 5, we present our
original work where we calculate the OTOCs of the cardioid, Sinai and diamond billiard
systems. At the same time, we also calculate the classical lyapunov exponents of these
systems, and use our findings to compare the classical and quantum chaos exhibited by
these systems. Finally, we give a brief summary of our work and discuss the conclusions
that can be drawn from our findings in chapter 6.
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Chapter 2

Classical Chaos

In this chapter, we provide a summary of the main concepts pertaining to the study
of classical chaos, a topic that revolves around the analysis of very interesting systems
known as chaotic systems. The concepts introduced here will be used to analyze billiard
systems later on in the thesis.

2.1 Lyapunov Exponent

The main distinction between chaotic and regular (non-chaotic) systems is that chaotic
systems manifest extreme sensitivity to changes in initial conditions, while regular sys-
tems do not. One way of quantifying this sensitive dependence on initial conditions is
through the use of Lyapunov exponents. Let us consider a system with a one-dimensional
phase space x. Two states of this system, starting from initial points x0 and x0 + δx(0),
evolve with time. Here δx(0) is very small, and it is the separation of the two states at
time t = 0. For a chaotic system, this separation increases exponentially with time. This
can be quantified via the equation

δx(t) ≈ eλtδx(0) (2.1)

where δx(t) is the separation of the two states at time t, and λ is the Lyapunov charac-
teristic exponent. Solving for λ in the equation above and taking the limit t → ∞, we
get

λ ≈ lim
t→∞

1
t

ln
(

δx(t)
δx(0)

)
(2.2)

A positive Lyapunov exponent indicates extreme sensitivity to initial conditions and
thus, chaos. For a multi-dimensional system, there exists a Lyapunov exponent for each
dimension of the phase space, and the system exhibits chaos if one or more of these ex-
ponents are positive.

A method to describe the evolution of a system is called mapping. It involves denoting
the sequence of evolution of a system with time by an index n and expressing the (n +
1)th state in terms of the nth state. Let x be an observable of this system that evolves with
time. Then

xn+1 = g(xn)

where g is a function of xn, is a map of the system. The (n + 1)th state is known as an
iterate. Sometimes, g can be a function of both xn and a constant α that can be varied
depending on certain factors of the system. Starting from the initial value of x, we can
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Figure 2.1: In chaotic systems, two trajectories that start from nearly identical initial
points separate exponentially with time.

apply the map any number of times, jumping forward in time in discrete steps each time,
to arrive at the value of x at a later time.

We can use mapping to arrive at an expression for the Lyapunov exponent, following the
method in [3]. Let an observable x of a system obey the map xn+1 = g(xn). Two states
of this system start out with initial x values x0 and x0 + δx, where δx is very small. After
one iteration, the separation between the x values of the two states is

∆1 = g(x0 + δx)− g(x0) ≃ δx
dg
dx

∣∣∣∣
x0

Similarly, the separation after n iterations is

∆n = gn(x0 + δx)− gn(x0)

where the n superscripts indicate the nth iterate of the map. Now, as δx is the separation
between the initial conditions of the two states, we can write

∆n = gn(x0 + δx)− gn(x0) = δxenλ

where λ is the Lyapunov exponent pertaining to the x dimension. Dividing both sides by
δx and taking the logarithm, we get

ln
(

enλ
)
= nλ = ln

(
gn(x0 + δx)− gn(x0)

δx

)
λ =

1
n

ln
(

gn(x0 + δx)− gn(x0)

δx

)
=

1
n

ln
∣∣∣∣dgn(x)

dx

∣∣∣∣
x0

∣∣∣∣
We arrive at gn(x0) by iterating the map n times starting from g(x0).

gn(x0) = g(g(g(...(g(x0))...)))
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Thus,
dgn(x)

dx

∣∣∣∣
x0

=
dg
dx

∣∣∣∣
xn−1

dg
dx

∣∣∣∣
xn−2

...
dg
dx

∣∣∣∣
x0

Putting this into our expression for the Lyapunov exponent above and taking the limit
n → ∞, we get

λ = lim
n→∞

1
n

n−1

∑
i=0

ln
∣∣∣∣dg
dx

∣∣∣∣
xi

(2.3)

The inverse of the Lyapunov exponent, 1
λ , is the Lyapunov time, which is the timescale

during which the dynamics of a system can be predicted. Once the timescale goes be-
yond the Lyapunov time, the system becomes chaotic and thus, unpredictable.

2.2 Poincaré Section

A way to qualitatively assess the chaoticity of a system is through the use of Poincaré
sections. Poincaré sections illustrate an n-dimensional phase space trajectory in an (n −
1)-dimensional space. This is done by plotting the intersection points of the phase path
with an (n− 1) dimensional hypersurface, or set of hypersurfaces, where one of the phase
space elements takes a certain value, or set of values. The concept is best understood by
means of an example. We consider a trajectory through a 3-dimensional phase space
with dimensions x, y and z. Let us place x − y planes along the z axis at equal intervals
∆z. The sequence of points formed by the intersection of the phase trajectory with these
x − y planes, projected onto the x − y plane, creates a Poincaré section. The concept is
illustrated in Fig. 2.2 and Fig. 2.3.

Figure 2.2: The trajectory through phase space is shown, as well as 3 equidistant x − y
planes. The intersections of the trajectory with the planes create the points on the
Poincaré section.

The choice of the hypersurface is arbitrary. A suitable choice is one which intersects with
the trajectory at all orbits of interest. We can see from our previous example that Poincaré
sections are a useful tool for simplifying the motion through phase space, allowing for
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Figure 2.3: The Poincaré section created by the trajectory in Fig. 2.2.

easier graphing and visualization. In addition to that, they are also a qualitative means
of detecting the presence of chaos in a system. Poincaré sections of regular systems are
rather simple. They can consist of a single point or sets of points in smooth curves, in-
dicating periodic orbits. However, the Poincaré sections pertaining to chaotic motion are
rich in structure, complexity and irregularity. Instead of smooth curves, we see scattered
plots that appear random. This distinction allows us to tell if a system is chaotic or reg-
ular by looking at the Poincaré sections of the phase space motion. An example of this
can be seen in the Poincaré sections of the damped and driven pendulum, a system that
is regular for certain values of the driving force, and chaotic for others (Fig. 2.4 and Fig.
2.5).

Figure 2.4: Poincaré section of the damped and driven pendulum when system is in
regular phase. It is made up of only two points. Picture taken from Ref.[3] page 167.

2.3 Attractors

Another key difference between chaotic and regular systems is the nature of their at-
tractors. In explaining attractors, I will be employing the method of explanation in the
Cornell lectures by Steven Strogatz (Ref.[4]). An attractor refers to a collection of points
A within the phase space that fulfills each of the following conditions:

(i) Every point that is initially contained in A remains within A for all time, making it
an invariant set.

(ii) It attracts an open set of initial conditions. The assemblage of initial conditions it
attracts is known as its basin of attraction.
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Figure 2.5: Poincaré section of the damped and driven pendulum when system is in chaos
phase. Rich in structure, irregular and complex. Picture taken from Ref.[3] page 167.

(iii) There is no subset of A that fulfills both conditions (i) and (ii) mentioned above.
Thus, A is the smallest set that satisfies the conditions.

Sometimes a fourth condition is added to these, although there is debate about whether
this is an essential condition for an attractor:

(iv) Given any neighborhood U of A, there exists a neighborhood V of A such that any
point in V does not leave U for all time.

Condition (iv) essentially demands that any trajectories that start in the vicinity of A stay
in its vicinity for all future time. It excludes objects such as half-stable fixed points from
being classed as attractors. An example may help elucidate the concept of attractors. The
example will make use of the phase portrait given in Fig. 2.6.

There are three possibilities for attractors in the diagram in Fig. 2.6 - the origin, the x-
axis, and the two stable fixed points. The origin cannot be an attractor because it fails to
satisfy condition (ii)- its basin of attraction is the y-axis, which is not an open set. The
x-axis cannot be an attractor as it fails to satisfy condition (iii)- the two stable fixed points
are a proper subset of the x-axis that satisfy all the other conditions. Therefore, the two
stable fixed points are the attractor in the phase portrait above. Another form of attractor
found in phase space is called a limit cycle, which refers to a closed trajectory. This closed
trajectory attracts other trajectories to spiral into it as time goes on. Fig. 2.7 illustrates the
limit cycle attractor corresponding to the van der Pol oscillator system.

The attractors for regular systems are stable fixed points, stable limit cycles, and other
periodic or quasiperiodic constructions. The attractors for chaotic systems, however, are
infinitely complex, aperiodic objects known as strange attractors. Strange attractors stretch
and fold trajectories in their basin of attraction infinitely many times, layering them on
top of one another creating intricate patterns in phase space. As the many sheets of tra-
jectories fold back into nearby areas of phase space they never intersect with one another,
as that would violate the deterministic dynamics. The Poincaré section shown in Fig.
2.5 is an example of a strange attractor. We can see the intricate pattern created by the
stretching and folding of trajectories. The action of the strange attractors sheds some light
on how nearby initial conditions separate exponentially from one another with time in
chaotic systems. A set of nearby initial conditions in the basin of attraction of the strange
attractor at time t = 0 get pulled in by the attractor, and subsequently the various trajecto-
ries get repeatedly stretched and folded in various directions, causing the initially nearby
set of initial conditions to end up at vastly different locations on the attractor within a rel-
atively short period of time. This repeated stretching and folding of trajectories creates a
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Figure 2.6: Phase portrait

structure known as a fractal. Fractals are infinitely complex geometrical objects that are
created by the repetition of a process in a continual feedback loop. In the case of strange
attractors, the process is the repeated stretching and folding of trajectories. Fractals are
self-similar at different scales of magnification, meaning that magnifying a fractal to any
arbitrary scale reveals smaller parts that are similar in structure to the fractal as a whole.

The first strange attractor was discovered in 1963 by Edward Norton Lorenz. He set up a
3-dimensional system with the following dynamical equations:

dx
dt

= σ(y − x) (2.4)

dy
dt

= rx − y − xz (2.5)

dz
dt

= xy − bz (2.6)

where σ, r and b are parameters that can be adjusted. He found that, for a certain range of
parameters, the system had no stable fixed points, stable limit cycles, no stable periodic
or quasiperiodic orbits (Ref.[5]). This was unprecedented at the time, as no attractor
had been found up to that point that was devoid of the aforementioned objects. He also
proved that all trajectories are limited to a certain bounded region of phase space, and
are attracted to a set of zero volume over time. That set is the strange attractor, and it is
shown in Fig. 2.8.

After an initial transient period where a particular initial condition is pulled into the
attractor, the motion falls into a pattern of irregular oscillations that remain aperiodic
as t → ∞. The pattern consists of a trajectory entering the attractor from one side, then
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Figure 2.7: The attractor for the van der Pol system. Picture taken from Ref.[3] page 153.

falling into the center of one of the spirals, after which there is a slow spiral outward lead-
ing to a switch from one side of the spiral to the other. This continues indefinitely in an
aperiodic fashion, with the trajectory never repeatng itself exactly, for all time. The result-
ing pattern is one that resembles the wings of a butterfly. The Lorenz attractor possessed
the fractal microstructure characteristic of strange attractors, made up of an infinite com-
plex of surfaces of trajectories packed together very closely, but never intersecting one
another.

Inspired by the Lorenz attractor, Michel Hénon devised a 2-dimensional map in 1976
that also gives rise to a strange attractor(Ref.[6]). The goal was to visualize the fractal
microstructure of strange attractors. This map, known as the Hénon map, is given by:

xn+1 = yn + 1 − axn
2 (2.7)

yn+1 = bxn (2.8)

where a and b are adjustable parameters. Hénon chose a = 1.4, b = 0.3, and computed
ten thousand successive iterates of the map, forming the strange attractor. The initial
point was taken to be the origin. The result of these iterations, the Hénon attractor, is
shown below.

In Fig. 2.9, zooming into the small square in part (a) gives us part (b), where we see six
seperate curves arranged in a particular pattern. Zooming in even further, into the three
curves at the top of part (b), we get part (c), where we see that the three curves are, in
fact, six curves, arranged in the exact same pattern as the six curves in part (b). If we
were to zoom in further, we would reveal more and more number of curves, arranged in
the exact same way. This would continue on indefinitely, revealing an infinite number of
trajectories. This is the self-similar structure characteristic of fractals.
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Figure 2.8: The Lorenz attractor.

The systems of equations we have mentioned that produce strange attractors are not very
complex. The Lorenz equations have two non-linearities, and the Hénon map only has
one. However, the motion of these systems through phase space is infinitely complex.
Thus, strange attractors provide a mechanism for the infinitely complex aperiodic motion
characteristic of chaos to manifest, even when the deterministic equations governing the
motion are relatively simple.
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Figure 2.9: The Hénon attractor. Picture taken from Ref.[6].
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Chapter 3

Classical Chaos for Billiard Systems

3.1 Introduction

Mathematical billiards are characterized by the motion of one or more particles within
a container, colliding with its walls or crashing onto one another. The dynamical prop-
erties of such systems are closely linked to the shape of the container’s walls, and their
behaviour may range from entirely regular (integrable) to completely chaotic. The most
captivating has been the study of chaotic billiards for both mathematicians and theo-
retical physicists. The theories of the dynamical properties of billiards become highly
complex when we consider friction. In this thesis, we constrain our interest to the 2-
dimensional billiard problems that illustrate a point particle moving on a straight line
with constant speed without friction on a plane enclosed by a closed region.

The necessity of a rigorous approach to billiard problems appeared when A.N. Kol-
mogorov, a renowned Russian mathematician, introduced the concept of entropy of dy-
namical Hamiltonian systems. On September 22, 1958, he distributed a number of re-
search topics to his students through his notes written in Russian [7, p. 122]. In the list
of topics, he allocated the ”Stability of mixing on manifolds of negative curvature” as the
fourth item for Meshalkin and Sinai, while the next item was ”The billiard problem” for
the students under Meshalkin’s supervision. Chaos in the Hamiltonian system was still
in development at that time, wherein the focal point of the mathematicians was the prob-
lem of substantiating statistical mechanics. To resolve the paradoxes that arose while
expressing the kinetic theory of gases built upon the equation of classical mechanics,
Kolmologrov proved the ergodic theory [8], and N. S. Kyrolv formulated another more
complex type of motion in path trajectory called Mixing [9]. We will briefly discuss these
dynamical properties in the context of billiard systems later in the chapter.

Ergodic theory and Kyrolv’s work greatly influenced the research of chaos theory. L.
Boltzmann’s model of gas molecules’ motion, based on elastic balls’ movement and col-
lision, stimulates chaotic behaviour after countless collisions. This results in the estab-
lishment of specific density and temperature, and equalization of pressure. We take the
average of these characteristics and use statistical descriptions. Appropriate mathemati-
cal models become necessary to tackle the mathematical problems associated with these
concepts. One of the most used models for particle collision is billiards.

Physicist Kyrolv’s approach to ”Mixing” during the collision of elastic balls was satisfac-
tory at the level of physical rigour. Still, it could have been more convincing from a math-
ematical viewpoint. Yakov Grigoryevich Sinai, one of Kolmogorov’s most talented stu-
dents, continued Kyrolv’s work on ”mixing”. He also came up with a different definition
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of entropy of dynamical systems, which was found to be the most convenient compared
to Kolmogorov’s definition. It became widely used and given the title of Kolmogorov-
Sinai entropy, often abbreviated as KS entropy [10, 11]. Without delving into a precise
definition, it is worth mentioning that entropy can be thought of as a way to quantify the
rate at which trajectories in a dynamical system converge or diverge exponentially over
time. A rigorous mathematical theory of chaotic billiards still needed to be achieved.
This was a hard task due to the high degree of perplexity arising from the discontinuous
billiard mapping caused by reflections and trajectories intersecting with breakpoints on
the boundary. Sinai solved this problem in 1970. With his groundbreaking paper [12],
the mathematical theory for chaotic billiards was born. Billiards of Sinai stands out as a
critical point in the history of classical chaos. These works captured a substantial interest
from the scientific community and left a lasting impression on the field.

In this chapter, we will informally discuss some of the fundamental topics of the math-
ematical theory of billiards. Our objective is to gain a comprehensive understanding of
classically chaotic billiards and explore the manifestation of classical chaos of those bil-
liards in the quantum behaviour of physical systems in the later sections of our thesis.

3.2 Basic Framework

A smooth boundary is a boundary that is continuous and has no sharp corners. A piece-
wise smooth boundary comprises a finite number of smooth boundaries joined together
at a finite number of points. A simple and helpful definition of a billiard system is as
follows:

Let A ⊂ R2 be a region with smooth or piece-wise smooth boundary. A billiard sys-
tem refers to a point particle moving freely within A with mirror-like reflection off the
boundary ∂A.

3.2.1 Billiard tables

The boundary ∂A, a set of all points that lie on the edge of A, is a union of a finite number
of curves:

∂A = Γ = Γ1 ∪ · · · ∪ Γr. (3.1)

We define each Γi by a Cl (continuous and ”l times differentiable”) map Γi : [ai, bi] → R2.
The map has one-sided derivatives and is one-to-one on [ai, bi). Γ1, . . . , Γr are components
of ∂A, which we call ”walls” of the billiard table A. For Γi(ai) ̸= Γi(bi), a wall Γi is an
arc and ∂Γi = {ai, bi}. For Γi(ai) = Γi(bi), Γi is a closed curve. In this case, if Γi has a
corner point, it will not be the entire Cl smooth. If the closed curve has no corner point
(∂Γi = ∅), we define it on a circle S1 instead of [ai, bi]. We use the notation ∂Γi to represent
the corner points at the endpoint of each boundary component. By combining all such
corner points, we obtain the set

Γ∗ = ∂Γ1 ∪ · · · ∪ ∂Γr. (3.2)

Then, the set of all regular points on ∂A is Γ̃ = Γ/Γ∗.

At a corner point, two curves meet and form an interior angle α, which is measured inside
A. If α is zero, then the corner is called a cusp. Additionally, we establish an orientation
for each Γi, such that A is always located to the left of it. Finally, there are three types of
walls.

1. Flat walls: when Γ” = 0
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2. Focusing walls: when Γ” ̸= 0 and the wall is curved outward, away from the
interior of A.

3. Dispersing walls: when Γ” ̸= 0 and the wall is curved inward, towards the interior
of A.

Figure 3.1: A billiard table A. Γ1 is flat, Γ2 is dispersing, Γ3 is focusing, Γ4 is a closed and
smooth wall, Γ5 is closed but has a corner point. α > 0 is an interior angle at the corner c,
and the corner at a is a cusp. Arrows refer to the orientation of Γ.

The walls intersect each other only at the endpoints, i.e.

Γi ∩ Γj ⊂ ∂Γi ∪ ∂Γj for i ̸= j (3.3)

So far, we have discussed billiard tables with a bounded domain. Although unbounded
billiards exist in the literature, we intend to exclude them from our definition of billiard
systems.

3.2.2 Billiard dynamics

We define q(t) and v(t) as the position and velocity of the particle inside A. the magni-
tude of the velocity is constant. So,

dq(t)
dt

= v(t) and
∣∣∣∣dv(t)

dt

∣∣∣∣ = 0 (3.4)

The particle gets reflected at the regular part of the boundary (q ∈ Γ̃) according to the
reflection law: ”angle of incidence is equal to the angle of reflection.” The velocity of the
particle:

v+ = v− − 2⟨v−, n̂⟩n̂ (3.5)

At point q on Γ̃, the unit normal vector is denoted by n̂, and the velocities before and
after a collision are represented by v− and v+, respectively. If the collision point is one of
the corners of the wall, i.e., q ∈ Γ∗, we cannot describe the particle’s motion beyond that
point. We distinguish two types of collisions:

1. regular: when v+ ̸= v−. This happens when a collision point q ∈ Γ̃ and v− is not
tangent to the wall.
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Figure 3.2: velocity vectors before and after collisions

2. tangential: when v+ = v−. In this case, v− is tangent to the wall. Tangential
collisions happen occurs only on dispersing wall.

The phase space of the system is
Ω = {(q, v)} (3.6)

Ω represents a curve in 4-dimensional space, which describes the system’s time evolu-
tion.

3.2.3 Billiard mapping

Figure 3.3: Boundary wall Γ and billiards’s coordinates

A trajectory consists of multiple line segments known as ”links”, each connecting two
consecutive collisions with Γ. An angle ϕ is the direction of the tangent vector at the
collision point q (see Fig. 3.3). We use the arc length s or the direction ϕ to parametrize
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the position of Γ. The radius of curvature R defines Γi as a function of ϕ, which relates
the two parameters s and ϕ. The relationships are

R(ϕ) =
ds
dϕ

i.e. s(ϕ) =
∫ ϕ

π/2
dϕ′R(ϕ′) (3.7)

Another angle α, between the v+ vector and the tangent vector at q, is assigned for the
direction of the trajectory after a collision. This trajectory can also be described by the
tangential momentum p, which is defined by

p ≡ cos α (3.8)

Calculating the trajectory is easier when we use the ϕ, α description. In contrast, the s, p
illustration is suitable for a theoretical representation. We provide an initial state {s0, p0}
to determine a series of pairs of numbers, denoted by {sn, pn}. Then, a mapping T relates
two succeeding collisions: (

sn+1
pn+1

)
= T

(
sn
pn

)
(3.9)

Since such mappings are normally non-linear, we cannot always represent T by a 2 × 2
matrix. With s, p variables, billiard mapping is area-preserving, i.e.

∂(s1, p1)

∂(s1, p1)
=

∣∣∣∣∂s1/∂s0 ∂s1/∂p0
∂p1/∂s0 ∂p1/∂p0

∣∣∣∣ = 1 (3.10)

The proof of Eq. 3.10 can be found in [13]. When we do the numerical simulation of the
mapping, a 2-dimensional Poincaré section of phase space (s,p) is generated, along with
the trajectory in coordinate space. The set of all ordered pairs (s, p) for the trajectory is
called the collision space M. We explore three kinds of pictures in phase space that can
be generated after many iterations of T.

1. We may come across a finite number of N points s0, p0; s1, p1; . . . ; sn−1, pn−1, which
repeat themselves in coordinate space as closed orbits that complete after N bounces.
The mapping becomes (

sn+N
pn+N

)
= TN

(
sn
pn

)
=

(
sn
pn

)
(3.11)

Every N point of the mapping of a closed orbit is a fixed point.

2. In phase space, every initial condition s0, p0 may evolve on a smooth curve. We call
the curve an invariant curve because it maps onto itself.

3. An area in phase space may be filled by the iterates of s0, p0. This behaviour corre-
sponds to the chaotic dynamics of the system.

The closed orbits that satisfy Eq. 3.11 can be stable or unstable. When starting at a point
s0 + δs0 and p0 + δp0, with minor deviations δs0 and δp0, the orbit may stay close to
the closed orbit after multiple bounces or diverge from it increasingly. Once there have
been N iterations and s0 and p0 have come back to their original values again, the nearby
orbit’s deviation will be (

δsN
δpN

)
= tN

(
δs0
δp0

)
(3.12)

where tn is a 2 × 2 matrix and |tn| = 1.The exact form of this stability matrix tN for
billiard mappings can be found in [13]. The eigenvalues of this matrix determine the
orbital stability. They are given by

λ± =
1
2
[Tr tN ± [(Tr tN)

2 − 4]1/2]. (3.13)
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After performing j rounds on the closed orbit (equivalent to Nj iterations of T), we can
express the deviations (δsNj, δpNj) as a linear combination of λ

j
± multiplied by the eigen-

vectors of tN , i.e. (
δsNj
δpNj

)
= Aλ

j
+

(
δs+
δp+

)
+ Bλ

j
−

(
δs−
δp−

)
(3.14)

Three cases are possible:

1.
|Tr tN | < 2 (stable) : (3.15)

From Eq. 3.13, the values of λ± are complex conjugates with unit magnitude. We
express them as

λ
j
± = e±ijβ (3.16)

where β is the stability angle. Here, deviations (Eq. 3.14) of the nearby orbit oscillate
about zero as the number of iterations j increases. They remain within a specific
range or boundary, indicating that the orbit is stable.

2.
|Tr tN | > 2 (unstable) : (3.17)

Again, from Eq. 3.13, we see that the eigenvalues λ± are real and reciprocals of each
other, which means that

|λ±|j = e±jγ (3.18)

The exponent γ is called the instability exponent. Almost all deviations grow expo-
nentially if the exponent exceeds zero, indicating an unstable orbit.

3.
|Tr tN | = 2 (neutral) : (3.19)

In this case, we can determine that the deviation grows linearly because both eigen-
values are either +1 or -1. The orbit has neutral stability, meaning it is neither stable
nor unstable.

3.2.4 An example: cos-billiard

In our study of Poincaré sections and other properties of classical chaos, we will use a
cos-billiard table for numerical simulations. The polar function describes the boundary
of the curve

r(γ) = 1 + ϵ cos γ (3.20)

Fig. 3.4 shows the deformation of the boundary curve as ϵ increases. When ϵ is 0, the bil-
liard table is essentially a circle. We conduct numerical simulations using Mathematica.

Figure 3.4: Deformation of the cos-billiard for the parameters ϵ = 0.3, 0.5, 0.8 and 1.0

First, we define the region of cos-billiard using Eq. 3.20 for a specific value of epsilon. In
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numerical simulations, one generates a trajectory of the system, usually by selecting an
initial point X0 randomly. We call these types of trajectories typical trajectories. To obtain
the particle’s trajectory, we numerically solve the differential equation given in Eq. 3.4
with the reflection condition in Eq. 3.5 as the boundary condition (see appendix B). In
Fig. 3.5, we show the growth of a typical trajectory of a cos-billiard over a period. The

Figure 3.5: Growth of a typical trajectory inside a cos-billiard for ϵ = 0.5

phase space diagram of the cos-billiard is studied in [14, p. 58]. For ϵ = 0.2, the periodic
orbit started getting destroyed; for ϵ = 0.5, the trajectory filled the entire phase space.
Fig 3.6 shows the phase space diagram of cos-billiard for various values of ϵ

Figure 3.6: Phase space for a billiard with boundary r(γ) = 1 + ϵ cos γ for ϵ = (a) 0.1,(b)
0.2, (c) 0.3, (d) 0.4, (e) 0.5. The picture is taken from [14, p. 59].

3.3 Lyapunov exponents and hyperbolicity

One of the crucial factors in a system’s chaos is its sensitivity to initial conditions. As
discussed in Sect. 2.1, Lyapunov exponents describe this sensitivity accurately. The
Lyapunov exponents associated with a specific point in the phase space determine how
rapidly the nearby trajectories diverge with time. The theoretical studies of Lyapunov
exponents and other parameters that indicate chaotic behaviour are highly technical, and
discussing them in detail may not be very beneficial for our study. Henceforth, we will
concentrate on accurately quantifying these parameters through numerical simulations.

In billiard systems, particles move in a straight line between collisions. As a result, the
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trajectories diverge linearly between collisions. Thus, the chaotic dynamics of a billiard
system are contained within its collisions. For this reason, we use the collision index
”n”, which denotes the number of collisions, as the parameter to measure sensitivity to
initial conditions instead of time. The Eq. 2.1, which was used to express the sensitivity
condition, is now expressed by

δn = δ0eλn, (3.21)

where δn refers to the modulus of the difference between the angles of incidence of tra-
jectories after n collisions. As δn is calculated after n collisions, it is calculated at the
(n + 1)th collision. Thus, it follows that δ0 is the modulus of the difference between
the angles of incidence of trajectories at the first collision. Our aim is to find the Lya-
punov exponent of the billiard system. We write the necessary code to determine the
incident angles at each collision and obtain the set of differences in incident angles be-
tween two typical trajectories that started arbitrarily close to each other. In Fig. 3.7, we
plot ln (δn/δ0) against collision points ”n” for two of these typical trajectories. The Lya-
punov exponent is the slope of the non-saturated part of the graph. We calculate the λ
with many different initial conditions to avoid dependence on initial conditions and then
take the average.

Figure 3.7: Saturation of Lyapunov exponent for a cos-billiard for ϵ = 0.5. For this par-
ticular pair of typical trajectories, 80 collisions are taken and saturation starts at around
30 collisions. The Lyapunov exponent refers to the gradient of the unsaturated region.

A point within the phase space of a billiard system is considered hyperbolic if its Lya-
punov exponent is non-zero. The entire billiard system is referred to as a hyperbolic
billiard when the probability of a non-hyperbolic point in the phase space approaches
zero. In other words, almost all the points in the phase space of a hyperbolic system are
hyperbolic.

3.4 Entropy

Entropy is a significant statistical property of dynamical systems, which determines the
level of complexity within the system. In the context of billiard systems, the irregularity
of a group of trajectories starting from different initial conditions should depend solely
on the geometry of the billiard. Entropy provides a quantitative measure of this irregu-
larity. Sinai introduced the Kolmogorov-Sinai entropy (KS entropy) for billiard systems
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and developed the mathematical formulations [15, 16]. However, for our numerical com-
putations, we adopt a simplified definition used in [17]. We generate N collisions, and
the respective angles of incidence are an, where n = 1, 2, 3, . . . , N. The incident angles
take values in the interval I = [−π/2, π/2], and we divide this interval into M equal
sub-intervals Ii. If we have Ni incident angles that lie within the sub-interval Ii, then we
can define the probability for an incident angle an to be in sub-interval Ii as P(Ii) = Ni

N .
The definition of the entropy is

S = −
M

∑
i=1

P(Ii) ln [P(Ii)]. (3.22)

The maximum entropy occurs when each sub-interval Ii has an equal number of incident
angles, resulting in P(Ii) being equal in every sub-interval, i.e., P(Ii) =

1
M . The maximum

entropy is then given by Smax = ln (M). The uniform distribution of incident angles
across the sub-intervals indicates the chaotic behaviour of the system. The entropy is
zero when all incident angles lie in a particular sub-interval Ij, where P(Ii) takes the form
P(Ii) = δij. We calculate the entropy for many initial conditions to avoid dependence on
initial conditions and take the average.

3.5 Ergodicity and mixing

A billiard system is ergodic if the following two statements are equivalent.

1. If we randomly select a region in the phase space, the time spent by a particle in
that region is proportional to the area of that region.

2. A typical trajectory will uniformly visit all possible points in the phase space over
a long time.

Birkhoff showed this relation using the following formula [18]:

lim
T→∞

1
T

∫ T

0
f (ω(t))dt =

∫
Ω

f (ω)P(ω)dω (3.23)

The equation’s left-hand side represents the time average, which is the average value of
the phase space for a single long trajectory, f (ω(t)). The right side, on the other hand,
represents the probability-weighted phase average over the phase space region Ω. We fix
the time for the phase average and take the average of infinitely many points in the phase
space. The ergodic property of the system is important because the system’s behaviour
is independent of the initial conditions.

Mixing is a more complex type of motion than ergodic motion. The motion is analogous
to mixing ink and water. When we stir a drop of ink in water, it spreads over the phase
space in a complex manner.

In ergodic motion, the trajectory successively fills the phase space. The nature of the
movement during mixing is different. In Fig. 3.8, we show the distinct nature of mixing.
Initially, the system covers the whole space with a grid of trajectories for a particular
duration of t = T/2. Then after a time t = T, the phenomenon is repeated, and the cell
sizes of the grid are roughly halved. Mixing is more potent than ergodicity, meaning that
the presence of mixing guarantees ergodicity, but the opposite is not necessarily true.
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Figure 3.8: The difference in movements between (a) ergodic motion and (b) mixing.
Picture taken from [19, p. 29].

3.6 Stickiness and MUPOs

In a billiard system, regular and chaotic motion can exist simultaneously for different
initial conditions. As regular and chaotic trajectories occupy separate components of
phase space, it is reasonable to anticipate that chaotic trajectories would exhibit chaotic
behaviour at all times inside their component of phase space. However, numerical sim-
ulations suggest that when chaotic trajectories draw near the boundary of a region char-
acterized by regular motion, they tend to spend considerable time in the vicinity of the
regular island before moving back into the depths of the chaotic region. These regions
close to the billiard walls where regular motion dominates are referred to as regular is-
lands, and the phenomenon of trajectories sticking to them is known as stickiness. One
crucial point to consider is that, due to ergodicity of a chaotic component of phase space,
trajectories, on average, will not allocate a disproportionately large amount of time near
regular islands when compared to other areas of the same chaotic component.

However, ergodicity does not tell us the order in which the trajectory explores different
parts of the phase space. Thus, the stickiness phenomenon causes the trajectory to spend
”chunks” of time near these regular islands. The theoretical investigation of stickiness
suggests that this phenomenon significantly impacts various measurements of chaotic
behaviour, such as Lyapunov exponents, correlation decay, and other statistical proper-
ties of dynamical systems.

We will not provide a formal definition of stickiness as it is beyond the scope of this
thesis. However, according to [20], stickiness is a characteristic of non-hyperbolic chaotic
systems. We demonstrate two famous chaotic and ergodic billiards in Fig. 3.9.

Figure 3.9: MUPOs in (a) Sinai billiard and (b) Stadium billiard

The one with a circle inside a square is called the Sinai billiard [12], and the other is the
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Bunimovich stadium billiard [21], which has two semicircles connected by two straight
lines. Although the billiards depicted in Figure 3.9 are ergodic, they are non-hyperbolic
because of the existence of orbits that rebound perpendicularly between two parallel flat
walls (shown by dashed lines with arrows in Fig. 3.9), which are only marginally stable.

In these collisions, perturbations grow linearly rather than exponentially. The trajectory
becomes periodic until the perturbation is no longer along the flat walls. As the trajectory
exits the vicinity of periodic orbits, we call them marginally unstable. These periodic
orbits, which are marginally unstable, are referred to as MUPOs (Marginally Unstable
Periodic Orbits) and significantly impact the system’s dynamics due to the stickiness
near them.
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Chapter 4

Quantum Chaos and
Out-of-time-order Correlators

4.1 Introduction

Hyperion, one of Saturn’s 83 moons, is a big challenge for physicists, particularly those in
the field of quantum mechanics. The moon’s axis orientation tumbles chaotically every
few months, making it impossible to predict its orientation even a year in advance, de-
spite precise measurements of its current position and orientation. According to the pre-
dictions of quantum mechanics, this chaotic motion should have ceased after 20 years,
but it has not. The chaotic motion of Hyperion was discovered in the 1990s, and it
still persists today [22]. The agreement between the predictions of quantum mechanics
and classical Newtonian dynamics is valid until a specific time known as the ”Ehrenfest
time.” Before this time, physicists can investigate how classical chaos is reflected in the
quantum behaviour of physical systems, which is the essence of quantum chaos. After
the Ehrenfest time, chaos gradually fades into quantum uncertainty. However, the prob-
lem was solved when physicists realized that the moon’s interaction with clouds of dust
and photons slightly alters the moon’s wave function, causing it to become entangled
with its environment [23]. Since every detail of these interactions is not known, an aver-
age is taken, and the resulting average is consistent with Newtonian dynamics, which is
satisfying.

We discussed in the previous chapter that there are periodic orbits in the phase space,
even in chaos. Using classical methods, finding those periodic orbits in the chaotic sea is
very difficult. Still, it is possible to probe the classical behaviour of this chaotic system
using quantum mechanical methods, finding regularities in the motion that one could
not find otherwise. Thus, in this case, quantum mechanics has come to the rescue of
chaos, and nature works like a bizarre quantum computer. However, what actual ques-
tion are we trying to answer in quantum chaos? One pertinent question is: What are the
characteristics of a quantum system that reflect that the classical motion is chaotic? To-
day, physicists have an answer to this. Nevertheless, quantum mechanical solutions are
usually periodic. When we take superpositions of wave functions, each oscillating at its
frequency, no matter how many one takes, the net result is always a periodic motion. It
would seem that with those periodic results, quantum mechanics is incapable of describ-
ing classical chaos. While trying to understand this, wave physicist M. Berry introduced
the term ”quantum chaology.” However, the term ”quantum chaos” stuck, and people
are still puzzled by what it means.
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Over the years, numerous tools have been devised to link the disparity between quan-
tum and classical mechanics. These tools establish connections between properties that
correspond to the two worlds. For example, correlations have been found between the
dynamics of classically chaotic systems and the level statistics of quantum states [24, 25].
In studying the quantum dynamics of a system, it becomes crucial to specify how oper-
ators evolve in vector spaces that are more complex than the Hilbert space of quantum
states. This poses a challenge, requiring new methods to be developed. It is challenging
to establish general results, particularly for time-dependent cases or systems lacking a
classical counterpart, in areas beyond the study of level statistics of significantly excited
states in many-body systems.

Out-of-time-order correlator (OTOC) has emerged as a valuable tool for researchers study-
ing quantum chaos. It enables them to study the evolution of Heisenberg operators at
separate times and extends quantum chaos research beyond the limited scope of time-
independent, one-body systems. OTOC was first introduced in 1969 by Larkin and
Ovchinnikov to investigate the possibility of applying semiclassical approaches to super-
conductivity [26]. However, it was not until much later that the OTOC gained significant
attention due to its relevance in studying the relationship between black-hole horizon
geometry and chaos [27–29]. Black holes were found to exhibit the same early expo-
nential growth of OTOCs observed in classically chaotic systems, which led to terms
such as ”quantum Lyapunov exponent”, ”scrambling”and ”quantum butterfly effect”.
This behaviour classifies black holes as fast scramblers [30], where information is quickly
spread. Furthermore, Stanford and Maldacena [31] conjectured in 2016 that there is an
upper limit to the OTOC growth rate, which is essentially determined by the temperature
of the system.

In this chapter, our goal is to provide an overview of the out-of-time-order correlator
(OTOC) and its significance in measuring the level of scrambling in a quantum system.
We will discuss the connection between quantum chaos and OTOC, as well as its char-
acteristics and time windows, as described in Ref. [32]. Additionally, we will explore
a technique that uses a semiclassical approach to OTOC in billiard systems, which was
discussed in Ref. [33]. The review will explain the OTOC’s semiclassical limit and its be-
haviour in low-temperature and long-time limits. Furthermore, we will review a method-
ology for computing the OTOC numerically, as presented in Ref. [2], and illustrate its
application to both regular and classically chaotic systems. We will analyze the results
obtained using this methodology under the semiclassical limits.

4.2 Out-of-time-order correlator (OTOC)

4.2.1 Definition

The out-of-time-order correlator is usually defined as

CT(t) = ⟨[Ŵt, V̂]†[Ŵt, V̂]⟩. (4.1)

• Ŵ and V̂ are operators in the Heisenberg representation.

• The subscript t denotes the time-dependent behaviour of the operator Ô as it evolves
under the Hamiltonian i.e. Ôt = Û†

t ÔÛt. Ût = e−iĤt/h̄ is the unitary time evolution
operator.

• The chevron bracket ⟨·⟩ denotes the thermal average. Here, ⟨·⟩ = Tr{ρ}, is the
thermal average value obtained in the canonical ensemble of a fixed quantity of
particles, where ρ = Z−1e−βĤ is the thermal density operator. Here, the canonical
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partition function is denoted as Z, while β = (kBT)−1, where kB is the Boltzmann
constant and T is the system temperature.

Eq. (4.1) is valid for any two operators within a Hilbert space H. However, we aim to
characterize physical observables and study their possible universal behaviour. There-
fore, we restrict our definition of the OTOC to the scenario where the operators Ŵ and V̂
are Hermitian. The definition becomes

CT(t) = −⟨[Ŵt, V̂]2⟩ (4.2)

From equation (4.1), the out-of-time-order correlator (OTOC) can be represented in the
generic scenario as follows

CV̂Ŵ(t) = DV̂Ŵ(t) + IV̂Ŵ(t)− 2 Re{FV̂Ŵ(t)}. (4.3)

• DV̂Ŵ(t) = ⟨V̂†(Ŵ†Ŵ)tV̂⟩.

• IV̂Ŵ(t) = ⟨Ŵ†
t V̂†V̂Ŵt⟩.

• FV̂Ŵ(t) = ⟨Ŵ†
t V̂†ŴtV̂⟩.

If the operators Ŵt and V̂ are unitary, we observe that DV̂Ŵ(t) = IV̂Ŵ(t) = 1, resulting in
the following equation

Cuni
V̂Ŵ = 2 (1 − Re{FV̂Ŵ(t)}) (4.4)

Returning to a specific Hermitian situation, when Ŵ = V̂ and/or the temperature is
infinitely high, it implies that DV̂Ŵ(t) = IV̂Ŵ(t).

Out of the three correlators, DV̂Ŵ(t) and IV̂Ŵ(t) are 3-point functions while FV̂Ŵ(t) is
a 4-point function. The functions IV̂Ŵ(t) and FV̂Ŵ(t) are dependent on four evolution
operators. Among the operators, the least complicated correlator is DV̂Ŵ(t), is defined
by solely incorporating two evolution operators and can be presented as a time-ordered
product. FV̂Ŵ(t) is a true out-of-time-order product and is anticipated to show complex
dynamics over time, which is why it is sometimes called the OTOC. However, we will
not use this ambiguous notion.

4.2.2 Evolution of OTOC

The evolution of the thermal OTOC is linked to the diffusion of quantum information,
also known as information scrambling. This spread can be measured in operator space
by choosing V̂ and Ŵ as operators acting locally on regions that are space-like sepa-
rated (which means that [Ŵ, V̂] = 0). A one-dimensional system is illustrated in Fig.
4.1 [32], with Ŵ located At the center of the chain and V̂ positioned l units away to the
right, following Ref. [34]. The nested commutator expression is obtained by applying the
Baker-Campbell-Hausdorff formula to the expansion of Ŵt.

Ŵt =
∞

∑
k=0

(it)k

k!
[Ĥ, . . . [Ĥ, Ŵ] . . . ] (4.5)

Suppose the Hamiltonian consists of local interactions between n particles (e.g., n = 2 for
nearest-neighbour coupling in a spin chain). In that case, Eq. (4.5) implies that the num-
ber of involved sites increases with time, as shown by the propagation cone in Fig. 4.1. At
first, only the middle site is activated, highlighted by the darkened tone. The remainder
of the system remains unchanged. As time passes, the system evolves according to the
Hamiltonian H, leading to the involvement of other sites (due to higher-order terms in
the expansion of Eq. (4.5)), including the site linked to operator V̂. This Influence can be
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Figure 4.1: The picture shows how an operator Ŵ, located at the middle site of a one-
dimensional system, such as a spin-chain, propagates throughout an operator basis over
time as the Heisenberg operator Ŵt evolves. Another operator V̂, is not influenced by the
initial perturbation (yellow dots) and is located at a site some distance l away from the
center. However, at later times, V̂ enters the propagation cone of Ŵt and is affected by it,
as shown by the green dots. (Picture taken from Ref. [32])

observed through the non-zero commutator of Ŵt and V̂, and consequently, the OTOC.
The primary path to scrambling is predicted to be influenced by the parameter t − l/vB
in an exponential fashion. This guarantees that when t ≪ l/vB, the value of CV̂Ŵ(t) is
very small, and as a result, V̂ is located outside of the propagation cone of Ŵt. The but-
terfly velocity, denoted by vB, determines the inclination of the propagating cone in Fig.
4.1, and it is restricted by the Lieb-Robinson bound [35] on the propagation of quantum
information [36–38]. The simplicity of the image in Fig. 4.1 is attributed to the selection
of operators concentrated at specific sites within a one-dimensional system. It should
be noted that the relationship with t − l/vB may not always take the form of a simple
exponential.

4.2.3 Connection between OTOC and classical chaos

When studying the dynamics of the out-of-time-order correlator (OTOC) in the context
of classical mechanics, it is possible to utilize the quasi-classical limit of h̄ → 0, as was
originally noted upon introducing the OTOC [26]. In this limit, we replace the commu-
tator between two operators with the Poisson brackets of their corresponding classical
quantities. The relation is given by

lim
h̄→0

1
ih̄
[Ŵ, V̂] = {W, V}. (4.6)

By choosing the position and momentum operators, Ŵ = X̂ and V̂ = P̂X respectively, we
can express the commutator [X̂t, P̂X] in the quasi-classical limit as

ih̄{X(t), Px(0)} = ih̄
∂X(t)
∂X(0)

(4.7)

If a system is fully classically chaotic and has a positive Lyapunov exponent, the expo-
nential sensitivity in relation to the initial conditions can be expressed as ∂X(t)/∂X(0) ∼
exp(λt). Thus, the OTOC in the quasi-classical limit can be expressed as

Cqc
T (t) ∼ h̄2 exp(2λt) (4.8)
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This association is fascinating as it highlights the mark of the Lyapunov exponent, which
is a characteristic solely associated with classical systems, within the OTOC, which is a
true quantum entity.

4.2.4 Time windows

The OTOC in its quasi-classical manifestation (Eq. 4.8) suggests that classical properties
can emerge in quantum systems. However, this behaviour is only present in a specific
type of system and within a particular timeframe as discussed in [32, 39]. Therefore, it is
essential to understand the various time periods that manifest during the evolution of the
OTOC. Many previous studies on the time evolution of various systems have shown that
the OTOC can generally be classified into three different time-windows, as portrayed in
Fig. 4.2.

Figure 4.2: A blueprint for the time-windows of the OTOC. If the system is chaotic, it
is anticipated that the initial growth will be exponential. The growth may take on other
shapes if the system is not chaotic. The OTOC will stabilize and exhibit fluctuations
around a constant value after the scrambling time t∗. If there is chaos, the oscillations are
intensely damped, causing the OTOC progresses toward an almost unchanging value.

A. Short times

The short-time window signifies the start of the process where the operator Wt expands,
propelled by the dynamics of the Hamiltonian. Eq. 4.5 indicates a phase at the begin-
ning where the OTOC is predicted to increase following a power law. Following this
initial stage, the OTOC will continue to increase steadily for a brief period before reach-
ing scrambling time t∗. This behaviour has been extensively analyzed for short times,
and predictions such as Eq. 4.8 have been made.

There has been some discussion regarding whether the rate of the OTOC growth (repre-
sented by the exponent Λ) corresponds to the classical Lyapunov exponent λ [40]. And
it has been shown analytically that this correspondence is valid for specific systems. For
instance, this is true for uniformly hyperbolic linear maps on the torus [39]. Numerical
evidence also supports this correspondence for other natural systems such as the Dicke
model and the inverted harmonic oscillator. However, there are exceptions to this be-
haviour of Eq. 4.8, such as chaotic systems with spectral statistics resembling those of
a random matrix that exhibit a power-law growth of the OTOC for a time less than the
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scrambling time t∗. Spin-1/2 chains [41] is one such system, which does not have an obvi-
ous classical analogue. Additionally, there are cases in which the operator evolving over
time remains concentrated at first on a dynamically sensitive fixed point in phase space.
This gives rise to an exponential increase of the OTOC but does not lead to scrambling.
[42]

Quantum maps on the torus are good systems for investigating these behaviors and
exploring general features of quantum chaos in various time windows. The perturbed
Arnol’d cat map describes how the phase space quantities (q, p) and (q′, p′) are related
when undergoing successive iterations with

p′ = p + q − 2πK sin[2πq]
mod 1.

q′ = p′ + q + 2πK sin[2πp′]
(4.9)

This one-dimensional map is particularly helpful for investigating quantum chaos [43,
44]. The value of K indicates how strong the perturbation is. This perturbation works
as a ”kick” that takes effect at every iteration of the map, causing it to deviate from its
original linear behaviour. When K is small, the value of the Lyapunov exponent is almost
the same as the one in the unperturbed map.

When the map is quantized, it is represented by a unitary operator that corresponds to
the associated canonical transformation, which preserves the area. Since phase space has
periodic geometry, quantization leads to an M-dimensional discrete Hilbert space and an
effective Planck constant of h̄eff = 1/(2πM). The unitary operator corresponding to the
cat map (N) can be expressed as an M × M matrix.

ÛN = e−2πi[p2/2M−KN cos (2/pip/M)]e−2πi[q2/2M+KM cos (2πq/M)] (4.10)

The discrete variables q and p take values from ZM = 0, 1, . . . , M − 1. A discrete Fourier
transform relates them. As a result, the operator ÛN can be effectively applied in numer-
ical computations.

In the context of quantum maps, the concept of energy does not exist, and as a result,
the idea of the thermal average is not applicable. Nevertheless, it is possible to assign
significance to the definition (4.1) of the OTOC by substituting the thermal average with
the maximally mixed state ρ∞ ≡ ÎN/M, where ÎM is the identity operator in a Hilbert
space of dimension M. This is comparable to using the microcanonical ensemble by
taking an infinite temperature limit in Eq. (4.1) and will be crucial in our numerical
computations of thermal OTOCs.

By employing semiclassical theory to billiard systems of low dimensions, exponential
increase in the OTOC has been found, characterized by a positive Lyapunov exponent
[33]. This behaviour emerges following a significantly accelerated expansion during
an exceedingly brief duration. The timeframe for detecting the Lyapunov regime is
temperature-dependent, with longer intervals observed at lower temperatures. We will
discuss these findings in Section 4.3.1.

B. Intermediate times

The initial steady growth stops at around the scrambling time t∗, and the OTOC becomes
relatively stable, maintaining a value that remains roughly fixed, with some minor fluctu-
ations in certain instances. This time interval is commonly termed ”intermediate times”
and is particularly significant for highly chaotic systems, as it represents the duration
between t∗ and the state of full relaxation.
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The scrambling time t∗ marks the point at which information pertaining to the initial state
becomes widely spread throughout the available space. For a single particle system with
a bounded space and classical chaotic dynamics, this time corresponds to the Ehrenfest
time tE. This Ehrenfest time is described as the amount of time it takes for a narrow,
coherent wave-packet to spread across nearly the entire accessible phase space. It is given
by tE = λ−1 ln (a/h̄). In this equation, the constant a is determined by the initial wave-
packet size and the system size. The Ehrenfest time sets the upper boundary for using
the Bohr correspondence principle, which describes the similarity between the quantum
and classical evolutions of a system [45].

When a phase space is compact and chaotic, it indicates stretching and mixing phenom-
ena. The exponential separation of trajectories is associated with stretching, while the
folding of these stretched trajectories back onto themselves represents mixing. Short-
term dynamics are primarily determined by stretching, which is quantified by the Lya-
punov exponent. In comparison, intermediate times are influenced by mixing, which is
measured by the decay of the correlation function.

In chaotic systems, the decay of correlation functions is usually exponential and can be
characterized by the Ruelle-Pollicot resonances (RPRs). In black hole physics, Polchin-
ski [46] observed two time windows for the evolution of OTOCs: the initial Lyapunov
regime, characterized by exponential growth for short times, and the later Ruelle regime,
characterized by exponential decay towards equilibrium. Figure 2 of Ref. [46] can be
compared to our Fig. 4.2 above (except for long-time oscillations) by associating ”Lya-
punov” with ”short-time” and ”Ruelle” with intermediate time.

Figure 4.3: The top figure shows an OTOC CP̂Q̂ and the bottom one represents a 4-point
function FP̂Q̂(t), both in the case of the cat map where N = 1024. For K=0 (unperturbed),
the orange lines depict the analytical result, whereas the blue lines represent the numer-
ical results for K=0.02. The red curve’s slope in the upper panel is twice the Lyapunov
exponent λ derived from the classical map. In the bottom panel, the dotted line is pro-
portional to |α1|2t, where α1 is the Ruelle-Pollicott resonance with the greatest absolute
value for the corresponding perturbed cat map. (Picture taken from Ref. [32])

When investigating the OTOC for quantum maps, one can choose the position and mo-
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mentum operators as Ŵ ≡ Q̂ and V̂ ≡ P̂. In this case, the saturation of CP̂Q̂ can be
determined by analyzing the decay of FP̂Q̂. In [39], it is shown that FP̂Q̂ decreases ex-
ponentially as |α1|2t, where |α1| represents the Ruelle-Pollicot resonance with the largest
modulus, indicating that |α1| < 1. These findings are exemplified in Fig. 4.3, which de-
picts the behaviour of FP̂Q̂ for the perturbed cat map. The plot reveals that FP̂Q̂ remains
relatively constant until the scrambling time, after which it decays exponentially. The
map presented in Eq. 4.10 is an ideal testbed to study the decay of FP̂Q̂ since the value of
|α1| strongly depends on the strength of the perturbation K, which enables physicists to
demonstrate the significance of RPRs in determining the time evolution of FP̂Q̂.

C. Long times

One aspect of the OTOC in strongly chaotic systems is that once the scrambling time
has passed, the OTOC reaches a steady state where its value remains constant. Various
works have examined the influence of system parameters on the long-time saturation
values of CŴV̂(t) and FP̂Q̂(t) [2, 33, 47]. Moreover, it has been observed that the system’s
dynamics greatly impact the long-time behaviour of the OTOC, whether it is chaotic or
regular. Therefore, studying oscillations in the long-time window can provide a deeper
understanding of the OTOC’s behaviour.

In fully chaotic classical dynamics of one-body systems, the saturation value of the OTOC
scales with the system size and temperature in a linear fashion when Ŵ = X̂ and V̂ = P̂X.
However, the temperature scaling can differ for other operator choices. A study de-
scribed in Ref. [48] suggests that the integrability of the one-body dynamics and the
intricacy of the selected operators might alter the temperature scaling of the OTOC satu-
ration value.

The long-time behaviour of the OTOC can provide accurate measures of quantum chaos,
and analyzing its oscillations can quantify the shift from regular to chaotic dynamics.
This method is consistent with other indicators of chaos commonly used [49].

4.3 Out-of-time-order correlators for billiard systems

4.3.1 Semiclassical theory for billiards

More research has been done on OTOC in systems with many degrees of freedom com-
pared to low-dimensional chaotic systems. However, studying the latter is important
since their classical and quantum dynamics can be obtained. Recently, quantum maps
[39, 40] and two-dimensional billiards [2, 50] have been used to study the time evolution
of the OTOC and connect it to the characteristics of the fundamental classical dynamics.
In this section, we will discuss the semiclassical theory of OTOC for billiards, focusing
on the findings of [33]. In the article, the authors developed a method based on semiclas-
sical principles to investigate OTOC, which can be applied to analyze classically chaotic
systems with low dimensions.

With the choice of X̂ and P̂X operators, it is possible to express each term of Eq. (4.3) as
an integral over space and energy

O(t) = − 1
πZ

∫
dϵ dn′ dn eβϵ Im

{
G(n, n′; ϵ)

}
O(n′, n; t) (4.11)

• O(t) = IP̂X X̂(t), DP̂X X̂(t) or FP̂X X̂(t), the operator sub-index is removed for ease of
notation.
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• O(n′, n; t) = ⟨n′| Ôt |n⟩ are the matrix elements of the operator Ôt, in the basis of
position eigenstates, where O(t) = ⟨Ôt⟩. Ôt = P̂XX̂2

t P̂X, X̂tP̂2
XX̂t, or X̂tP̂XX̂tP̂X.

• Z = mA/(2πβh̄2), The partition function Z represents a spinless particle with mass
m inside a billiard of area A.

• Im{G(n, n′; ϵ)} represents the imaginary component of the Green function.

The Green function G(n, n′; ϵ) is obtained from the Fourier transform of the propagator

K(n′, n; t) =
〈
n′∣∣ Ût |n⟩ , (4.12)

which itself is a matrix element of the evolution operator. When the system is completely
chaotic, the computation of the various O(n′, n; t) can be tackled by utilizing a semi-
classical method, which involves writing the propagator as a summation over classical
trajectories.

Ksc(n′, n; t) =
(

1
2πih̄

)
∑

l(n′,n;t)
C1/2

l exp
[

i
h̄

Rl(n′, n; t)− i
π

2
µl

]
(4.13)

• l(n′, n; t) identify the individual classical paths that connect the points n and n′ in
a time t, over which the sum is computed.

• Rl(n′, n; t) =
∫ t

0 dτ L, is the Hamilton principal function defined as the integral of
the Lagrangian L of the system along the classical path. The Maslov index µ counts
the number of conjugate points.

• Cl = |detBl |, where (Bl)ab = ∂2Rl/∂n′
a∂nb. The variables with primes denote the

final position, while those without denote the initial position. The symbols a and b
represent the Cartesian coordinates.

According to [51], the semiclassical expansion can be used for time periods that are much
longer than the Ehrenfest time. The matrix element D(n′, n; t) is approximated using the
semi-classical method, which involves a double summation over classical trajectories:

Dsc(n′, n; t) =− 1
(2πh̄)2

∫
dn1 ∑

l2(n1,n′;t)
∑

l1(n,n1;t)
C1/2

l2
C1/2

l1
× {P f

X,l2
(X1)

2Pi
X,l1}

exp
[

i
h̄
(Rl1(n1, n; t)− Rl2(n

′, n1; t))− i
π

2
(µl1 − µl2)

]
,

(4.14)

where, X1 = n1 ·⃗̂eX and PX = p ·⃗̂eX. We take ⃗̂eX as the unit vector in the X-direction.
The subscripts i and f indicate the starting and ending states of the trajectory.

During calculations, trajectories that are not related in terms of their phases cancel each
other out when integrated over space. Therefore, the most significant contributions come
from pairs of trajectories that have related phases. The most straightforward connection
occurs when the time-reversed trajectory, l̃2 = T(l1) is in proximity to l1.

The semi-classical forms for Isc(n′, n; t) and Fsc(n′, n; t) are more complex compared to
Dsc(n′, n; t) and involve sums over four classical trajectories. Fsc(n′, n; t) is given by:

Fsc(n′, n; t) =− 1
(2πh̄)4

∫
dn3 dn2 dn1 ∑

l4(n3,n′;t)
∑

l3(n2,n3;t)
∑

l2(n1,n2;t)
∑

l1(n,n1;t)

C1/2
l4

C1/2
l3

C1/2
l2

C1/2
l1

× {X3Pi
X,l3 X1Pi

X,l1}

exp
[

i
h̄
(Rl3(n3, n2; t)− Rl4(n

′, n3; t))− i
π

2
(µl3 − µl4)

]
exp

[
i
h̄
(Rl1(n1, n; t)− Rl2(n2, n1; t))− i

π

2
(µl1 − µl2)

]
(4.15)

31



Figure 4.4: (a): This image illustrates Dsc(n′, n; t) as described in Eq. (4.14) when l1 and l2
trajectories remain close to each other. The label l̃2 = T(l2) represents the time-reversed
trajectory of l2, and n1 represents the intermediate integration position. Trajectories as-
sociated with a positive (negative) sign in the phase term of Eq. 4.14 are coloured blue
(red). (b): A visual illustration of the semi-classical approximation for the other OTOC
components Isc(n′, n; t) and Fsc(n′, n; t), involving four nearby trajectories. The colour
scheme used is the same as in panel a, and n1, n2, and n3 denote the intermediate inte-
gration positions. (Picture taken from Ref. [32])

We get a similar semi-classical equation for Isc(n′, n; t) to that of Eq. (4.15), but with one
modification: we use X̂tP̂2

XX̂t inside the curly bracket.

Fig. 4.4a visually depicts the primary trajectory pairs that contribute to Dsc(n′, n; t) ac-
cording to Eq. (4.14). The main structure of the significant terms is depicted in Fig. 4.4b.
These trajectories can generally be considered specific OTOC contours that exhibit signif-
icant correlations.

The use of semi-classical methods has been extended to include temperature-dependent
stationary systems. However, the time and temperature dependence in Eq. (4.3) re-
quires a more intricate treatment involving energy-dependent Green functions and time-
dependent propagators. A significant simplification can be achieved by incorporating
the free-space Green function to simplify the energy integration in Eq. (4.3), the domi-
nant terms of the semi-classical expansion can be obtained, which occur when the initial
and final points (n and n′) are close, as assumed in the discussion of equations (4.14) and
(4.15).

Dsc(n′, n; t), Isc(n′, n; t) and Fsc(n′, n; t) have the same classical limit. This limit can be
obtained by using a strict diagonal approximation that identifies the classical trajectories
l1 and l̃2 in Fig. 4.4a for Dsc(n′, n; t) and the n of s3 and l̃4 in Fig. 4.4b for Isc(n′, n; t) and
Fsc(n′, n; t), as

Ocl(t) =
β

2πAm

∫
dn dp exp

[
−β

p2

2m

]
{P2

X X2(n, p; t)}. (4.16)

• X(n, n; t) refers to the position of the particle in the X-direction at time t, which is
obtained from the initial condition specified by the point (n, p) in the phase-space
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over which the integration is performed.

• The expression β/(2πmA) = [Z(2πh̄)2]−1 represents the thermal average of P2
X X2(n, n; t).

According to Eq. (4.16), Ccl(t) = 0. This result is not surprising as the finite value of C(t)
is due to the non-commutativity of the operators, which is a concept specific to quantum
mechanics.

To obtain next-order corrections in h̄ of the OTOC components, we calculate δO(t) =
O(t)− Ocl(t). For h̄2, the correction δD(t) = 0 and δI(t) = δF(t). In the case of a uni-
formly hyperbolic system (discussed in Sect. 3.3), where nearby trajectories diverge ex-
ponentially with a Lyapunov exponent λ, the semi-classical approximation of the OTOC
[33] leads to:

Csc(t) =
β2h̄2

64πm2

∫
dp exp

[
−β

p2

2m

]
{e2λtP̂2

X} (4.17)

In polar coordinates, it is easy to perform the angular part of p̂-integration, which results
in

Csc(t) =
β2h̄2

64m2

∫
dp p3 exp

[
−β

p2

2m
+

2λgtp
m

]
(4.18)

• λg = λt/L, a Lyapunov exponent that depends only on the geometry of the system,
where L = (|⃗p|/m)t represents the length of the trajectory.

• ṽ = ⟨V2
X⟩

1/2
= (kBT/m)1/2 is the root-mean-square value of the velocity compo-

nent in the X-direction for a freely moving two-dimensional particle experiencing
thermal contact with a thermostat at temperature T.

When the temperature is sufficiently low and the time duration is not excessively long,
the expression e2λg pt/m in Eq. (4.18) behaves as a smooth function of p. This is because,
for a tiny change in p, e2λg pt/m does not vary much in comparison to the much larger
term e−βp2/2m. As a result, e2λg pt/m can be extracted from the integral, resulting in the
evolution of C(t) at a rate Λ that corresponds to the Lyapunov exponent for the average
velocity. The steepest-descent method can be used to evaluate the p-integral in Eq. (4.17),
and for small values of λgṽt, this method yields:

CLT(t)
h̄2 ∝ exp

[√
3λgṽt

]
(4.19)

Hence, for a short time-window and low temperatures, we have

Λ =
√

3λgṽ (4.20)

At late times, the OTOC reaches a saturation point [33] represented by

Cs ∝ ma2kBT, (4.21)

which scales with the area of the billiard and the temperature. Notably, this saturation
value is independent of h̄ as stated in [2].

Units for the rest of this paper

Going forward, we embrace a new set of units: kB = 2m = h̄ = 1, where m denotes the
mass of a particle.
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4.3.2 Formalism for OTOC computations

We adopt the framework used in [2] for computing the OTOC with a time-independent
Hamiltonian H, where H = H(x1, . . . , xn, p1, . . . , pn). With the choice of Ŵt = X̂ = x(t)
and V̂ = P̂X = p(0) operators, the definition of OTOC proposed in Eq. (4.2) becomes:

CT(t) = −⟨[x(t), p(0)]2⟩, (4.22)

where ⟨O⟩ ≡ Tr
[
e−βHO

]
/ Tr e−βH. In the following, we will leave out the argument of

Heisenberg operators when t = 0 and denote them as O ≡ O(0). We reformulate the
OTOC in the basis of energy eigenstates:

CT(t) =
1
Z ∑

n
e−βEn cn(t) , cn(t) ≡ ⟨n| [x(t), p]2 |n⟩ , (4.23)

where H |n⟩ = En |n⟩. The OTOC associated with a specific energy eigenstate, cn(t), will
be called a microcanonical OTOC. CT(t) will be referred to as a thermal OTOC.

With the aid of the completeness relation, microcanonical OTOC can be expressed as

cn(t) = ∑
m

bnm(t)b∗nm(t) , bnm = −i ⟨n| [x(t), p(0)] |m⟩ (4.24)

bnm(t) is Hermitian: bnm(t) = b∗mn(t). We substitute x(t) = eiHtxe−iHt and use the com-
pleteness relation again to write bnm(t) as

bnm = −i ∑
k

(
eiEnktxnk pkm − eiEkmt pnkxkm

)
, (4.25)

• Enm = En − Em

• xnm = ⟨n| x |m⟩ and pnm = ⟨n| p |m⟩

The expression in Eq. 4.25 contains matrix components of p, which may not be ideal
due to potential inaccuracies in numerical derivatives of wave functions. In the case of a
Hamiltonian of the form

H =
N

∑
i=1

p2
i + U(x1, . . . , xN), (4.26)

pnm can be calculated using xnm. We apply ⟨m| . . . |n⟩ to the both side of [H, x] = −2ip,
and obtain

pnm =
i
2

Emnxmn. (4.27)

Substituting Eq. (4.27) into Eq. (4.25), we get

bnm =
1
2 ∑

k
xnkxkm

(
EkmeiEnkt − EnkeiEkmt

)
(4.28)

As soon as we know the energy spectrum En and the matrix elements of x, OTOCs can
be computed using Eqs.(4.28), (4.24), and (4.23). However, a sufficiently large truncation
cut-off must be chosen in actual numerical calculations. We spend the rest of this chapter
calculating the microcanonical and thermal OTOCs of two billiard systems, namely the
circle and stadium billiards. These OTOCs were calculated in Ref[2], and we replicate
those calculations in order to portray the methodology discussed above.
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4.3.3 OTOCs for a regular billiard: circle billiard

The very first billiard system we will tackle in this thesis is the circle billiard. It is a
two-dimensional, integrable and regular system made up of a particle confined within
a circular region of radius R. Inside the circle, the particle moves freely with constant
speed, while having elastic collisions with the boundary of the circle. We translate this
system into a quantum problem by placing a particle inside a circle with zero potential
on the inside of the circle, and infinite potential everywhere outside of the circle. We set
the radius of the circle R = 1√

π
so that the area is equal to 1. Our Hamiltonian is given by

H = − ∂2

∂x2 − ∂2

∂y2 + Vcircle(x, y), Vcircle(x, y) =

{
0, x2 + y2 < R2

∞, elsewhere

First, we need to solve the time-independent Schrodinger equation

Hψn = Enψn

Due to the nature of the problem and the boundary conditions, it is easier to work in
polar coordinates. Thus we express the potential in polar coordinates

Vcircle(r) =

{
0, r < R
∞, r ≥ R

Expressed in polar coordinates, the time-independent Schrodinger equation for the re-
gion inside the circle is

−
(

∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂θ2

)
ψ(r, θ) = Eψ(r, θ) (4.29)

with the boundary condition that ψ(r, θ) goes to zero at all points on the boundary of the
circle, namely ψ(R, θ) = 0 for all θ. We assume a solution for ψ(r, θ) of the form

ψ(r, θ) = A(r)B(θ)

where the radial and angular components have been separated. Putting this into Eqn.(4.29),
we can separate the partial differential equation into a set of ordinary differential equa-
tions

r2 ∂2A(r)
∂r2 + r

∂A(r)
∂r

+ Er2A(r)− σA(r) = 0 (4.30)

∂2B(θ)
∂θ2 + σB(θ) = 0 (4.31)

where σ is a constant. The boundary conditions are A(R) = 0 and B(θ + 2π) = B(θ).
Eqn.(4.30), with some manipulation, becomes the Bessel equation and thus, we get solu-
tions in the form of Bessel functions. Eqn.(4.31) gives us exponential solutions, and we
combine the two solutions to get expressions for the energy eigenfunctions. The resulting
energy eigenvalues, E, and eigenfunctions, ψ, are

Euv = πρ2
uv

ψuv = NJu(
√

πρuvr)eiuθ

where u and v are integers, u ∈ Z and v ∈ Z+. Ju denotes the Bessel function of the
first kind, and ρuv denotes the v-th root of the Bessel function Ju. N is the normalization
constant which is equal to 1

π Ju+1(ρuv)
. Next, we relabel the eigenvalues and eigenfunctions
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by a single index n in ascending order of the eigenvalues Euv, giving us an ordered list of
eigenvalues, En, and eigenfunctions, ψn. Now we have everything we need to calculate
the x-matrix elements in the energy eigenbasis.

xnm =
∫ 1√

π

0
r dr

∫ 2π

0
dθ ψ∗

nr cos θψm

The θ integral in the above equation can be analytically performed. However, the r
integral cannot. Thus, we compute the r integral numerically and determine the ma-
trix elements xnm. Subsequently, we put the eigenvalues and the x-matrix elements
into Eqn.(4.28) to calculate the bnm, then calculate the microcanonical OTOCs through
Eqn.(4.24). Finally, we employ Eqn.(4.23) to calculate the thermal OTOCs. Microcanon-
ical OTOCs of the circle billiard for various n, as well as thermal OTOCs of the circle
billiard for various temperatures, T, are shown below.

(a) Microcanonical OTOC (b) Thermal OTOC

Figure 4.5: Log plots of (a) microcanonical OTOCs (b) thermal OTOCs for circle billiard
(pictures taken from [2]).

As we can see in Fig. 4.5 the microcanonical OTOCs appear to be highly oscillatory, with
dips at particular times. Additionally, the microcanonical OTOCs corresponding to larger
n values tend to be larger. In similar fashion to the microcanonical OTOCs, the thermal
OTOCs are oscillatory and tend to dip at certain times. The OTOCs for higher T tend to
be larger in value.

4.3.4 OTOCs for a chaotic billiard: stadium billiard

We will now consider an example of a non-integrable, classically chaotic billiard system:
stadium billiard. The stadium billiard comprises of a particle moving freely inside the
confines of a stadium-shaped enclosure. As discussed in Sect. 3.6, this billiard is ergodic
but non-hyperbolic. The stadium comprises of a rectangular mid-region, combined with
a semicircle on each side. The enclosure is shown below.

As in the case of the circle billiard, the quantum problem is set up by having zero potential
inside the stadium, and infinite potential outside it. Therefore, our Hamiltonian is given
by

H = − ∂2

∂x2 − ∂2

∂y2 + Vstadium(x, y), Vstadium(x, y) =

{
0, (x, y) ∈ Ω
∞, elsewhere

(4.32)

where Ω is the region inside the stadium. We shall denote the radii of the semicircles as
R and the length of each of the straight lines that comprise the boundary as 2a. For our
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Figure 4.6: The stadium shape

calculations, we used a stadium with a/R = 1. The first step towards calculating the
OTOC of the stadium billiard is to solve the time-independent Schrodinger equation

Hψn = Enψn (4.33)

using the boundary condition that the wavefunction goes to zero at all points on the
boundary of the stadium. As in Ref. [2], we used the Mathematica package ”NDEigen-
system” in conjunction with the finite element method package to solve the equation and
get the eigenvalues and eigenfunctions. Plots of the eigenvalues and eigenfunctions are
shown below.

Figure 4.7: The eigenvalues En plotted against the energy levels n.

Next, we calculate the x matrix elements in the energy eigenbasis,

xnm =
∫

Ω
ψnxψm dx dy.

We calculate the matrix elements numerically up to n, m ≤ 400, giving us a 400 × 400
x matrix. Now we have all the components we need to calculate the bnm(t) through Eq.
4.28, the microcanonical OTOCs cn(t) through Eq. 4.24, and finally, the thermal OTOCs
CT(t) through Eq. 4.23. As mentioned before, the infinite sums in these equations were
truncated to Itruncation = 400. The resulting microcanonical OTOCs and thermal OTOCs
are shown in Fig. 4.9. We can see that the microcanonical OTOCs are non-periodic, with
OTOCs corresponding to higher n-values rising to higher levels than OTOCs of lower
n-values. The OTOCs for higher n-values, namely the ones for n = 30, 45 and 100 tend to
oscillate around fixed values at late time.

The thermal OTOCs in Fig. 4.9 look pretty similar to the thermal OTOCs of the circle
billiard. Both sets of OTOCs rise to a particular level at an early time and then oscillate
around fixed values. The expected observation in log scale at short times is a straight line
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(a) n = 1 (b) n = 2 (c) n = 8

(d) n = 48 (e) n = 190 (f) n = 400

Figure 4.8: Eigenfunctions of the stadium billiard for various energy levels n.

(a) Microcanonical OTOC (b) Thermal OTOC

Figure 4.9: Log plot of the out-of-time-order correlators for the stadium billiard with
deformation parameter a/R = 1.

for chaotic cases, but there is no observable exponential growth in either set of thermal
OTOCs at any point.

The authors of Ref. [2] reached a similar conclusion and disputed the presence of expo-
nential growth in thermal OTOCs for billiard systems. However, we discussed in Sect.
4.3.1 that there is a semi-classical approach where exponential growth can be observed
for billiards within a specific low temperature and short time frame. Ref. [33] discovered
that there is a region of exponential growth in an unsymmetrized stadium (one-quarter
of the stadium we studied). We show the unsymmetrized stadium in Fig. 4.10.

Since energy is constant in classically chaotic billiards, time can be scaled. The authors of
Ref. [33] used length (l = ṽt) as the scaled time and plotted the OTOCs in units of a. The
distance between the two parallel flat walls of the billiard is denoted by a, as depicted in
Fig. 4.10.

We also attempt to detect exponential growth in our chosen stadium billiard by using
a time scale of l/2a, where 2a denotes the separation between the two straight lines in
the stadium. We show the thermal OTOCs with respect to this scaled time in Fig.4.11
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Figure 4.10: The unsymmetrized stadium

for the stadium billiard depicted in Fig. 4.6. As we increase the value of l, we observe a
small range with a quadratic take-off followed by a period of rapid growth. Afterwards,
we identify an l-range where the OTOCs increase exponentially, and in this range the
OTOCs are accurately fitted by the exponential functions in Eq. 4.19.

Figure 4.11: The OTOCs calculated numerically on a logarithmic scale, with respect to
the length (scaled time) l = ṽt (in units of 2a), where ṽ = (βm)−1/2 is the mean-squared
x-velocity component, for the stadium billiard. The black straight lines correspond to
the exponential growth a(T)e

√
3λg ṽt, which is valid within an intermediate time-window

0.1 ≤ l/2a ≤ 1.2.

From the graph, we derived the geometric Lyapunov exponent value of λg = 0.42. The
black solid lines represent the a(T)e

√
3λg ṽt, where ṽ =

√
2 in our chosen units. In Refs.

[52–54], a similar numerical value (0.43) for the Lyapunov exponent is reported, and they
took the same area of the billiard as we did, which was A = π + 4. The exponent scales
as A−1/2 and yields 1.15 for A = 1. This value is consistent with the value predicted in
Ref. [2] as they took A = 1.
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Chapter 5

Out-of-time-order Correlators for
Sinai, Cardioid and Diamond
Billiards

Now that we have reviewed two examples of billiard systems and discussed the be-
haviour of OTOCs for those systems, we move on to our calculations of the OTOCs for the
selected three classically chaotic billiard systems: Sinai, cardioid and diamond billiards.
Additionally, we calculate the classical Lyapunov exponents of these systems, which will
facilitate a comparison between classical and quantum dynamics. We will examine the
growth rate of OTOC at low temperatures and its saturation behaviour at late time. We
will compare semiclassical results from Sect. 4.3.1 with numerical quantum calculations
done on our selected billiards and connect these results with predicted limits on OTOC
growth rate.

5.1 Sinai billiard

The Sinai billiard is based on the Lorentz gas system, originally proposed by Lorentz in
1905 as a model for the behaviour of a dilute electron gas in a metal. In this model, the
electrons are assumed to interact with the fixed heavier atoms but not with each other.
The Sinai billiard is a simplified version of this system, in which a single hard point-
like particle moves within a 2-dimensional square lattice. The stationary heavy atoms
are replaced with hard disks of infinite mass, and the moving particle undergoes elastic
reflections on these disks as well as on the walls of the square lattice if they have finite
length.

A further simplified version of the system is a billiard system consisting of a single hard
disk placed at the centre of a square box. The point-like particle moves freely within the
region bounded by the box and the disk and undergoes elastic reflections on the walls of
this region. The deformation parameter is determined by l/R, where l2 is the area of the
box and R is the radius of the disk. We fix the deformation parameter of l/R = 4 for our
numerical calculation, as depicted in Fig. 5.1.

The presence of dispersing walls in the Sinai billiards makes them chaotic for a finite
deformation parameter l/R. They are also ergodic but non-hyperbolic. However, if we
consider only particle collisions with disks and no flat walls, these billiards are proven
to be hyperbolic and are called infinite horizon billiards [55]. In fact, any billiards with
everywhere dispersing walls are chaotic and hyperbolic [12]. Our one-disk Sinai billiard,
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Figure 5.1: The Sinai billiard enclosure. The particle is confined within the shaded region
Ω, and the deformation parameter is l/a = 4.

as explained in Sect. 3.6, exhibits the stickiness property due to the presence of flat walls.
This property has an impact on the system’s dynamics, and as a result, accurately calcu-
lating the Lyapunov exponent is a challenging task.

5.2 Cardioid billiard

Our next classically chaotic billiard system of interest is the cardioid billiard. The cardioid
billiard system consists of a particle confined within a cardioid, which is a 2-dimensional
’heart-like’ shape, depicted below.

Figure 5.2: The cardioid shape

The cardioid billiard is part of the family of cos-billiards (Eq. 3.20), specifically for the
deformation parameter ϵ = 1. Its boundary is made up entirely of focusing walls that
intersect at a single point, forming a cusp. It has been proven that the cardioid billiard is
both ergodic and mixing [56–58].

5.3 Diamond/Superman billiard

The final billiard system we will be exploring in this thesis is the diamond billiard. The
diamond billiard is a classically chaotic system that is non-integrable, where a particle
is confined within a two-dimensional enclosure that has a shape resembling a diamond
or the logo of Superman. The enclosure is made up of a half-stadium combined with a
triangular region at the bottom, as illustrated in Fig. (5.3).

We denote the radii of the two quarter-circles on each side of the shape as r, the horizontal
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Figure 5.3: The diamond shape.

line making up the very top of the boundary of the enclosure as l1, and the vertical line
bisecting the triangular region as l2, as shown in the diagram above. We shall define a
deformation parameter, σ, in the same way as was done in Ref. [17]. The relationships
between σ and the quantities r, l1 and l2 are given below.

r(σ) = 1 − σ

l1(σ) =
5
2
+ σ

l2(σ) =

√
3
4

l1(σ)

Thus, the value of σ determines the shape of the enclosure. It takes values in the range
0 ≤ σ ≤ 1, and the shape changes from a diamond to an equilateral triangle as σ goes
from 0 to 1. In our calculations, we took σ to be 0, thus giving us a diamond shape.

5.4 Numerical calculation of classical Lyapunov exponents

We will employ the numerical method described in Sect. 3.3 to calculate the Lyapunov
exponents of the Sinai, cardioid, and diamond billiards. Before this, we must obtain the
typical trajectories using the approach outlined in Sect. 3.2.4. These trajectories can be
obtained by numerically solving the differential equation in Eq. 3.4 with the reflection
condition in Eq. 3.5 as the boundary condition. In Fig. (5.4a), we display the typical
trajectories (coloured red and blue) of two point particles that start from two extremely
close points, A(1.3, 0.6) and A′(1.3 + 10−5, 0.6 + 10−5), both having the same velocity
components.. After a few collisions, the particles become separated.

Fig. (5.4b) illustrates the growth rate of trajectory separation for the trajectories shown in
Fig. (5.4a) changes depending on the number of collisions, denoted by n. In this case, we
have considered approximately 80 collisions, and the saturation point occurs at n = 22.
The Lyapunov exponent is the slope of the unsaturated part, as given by Eq. 3.21.

One important point to note is that in the case of the Sinai billiard, the separation of
trajectories only increases when they collide with the dispersing walls of the disk. This
can be observed in Fig. (5.4b), where some points create flat lines as n increases. This
occurs when the trajectories hit the flat walls, and there is no increase in separation. As
explained in Sect. 3.6, this phenomenon is known as the stickiness of MUPOs. As a
result, collisions that occur before the first impact on the curved walls are not relevant
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(a) (b)

Figure 5.4: (a) The trajectories of two particles in the Sinai enclosure starting from initial
points very close to one another. (b) The growth rate of separation between the trajecto-
ries in (a), with respect to number of collisions, n.

for calculating the Lyapunov exponent because they do not trigger chaos. Additionally,
we note from Eq. 3.21 that δ0 corresponds to the difference in incident angles at the first
collision. If the first collision occurs on the flat walls, δ0 = 0. To avoid this, we always
aim for the first collision to occur on the curved walls when computing the Lyapunov
exponent.

(a) (b)

Figure 5.5: Growth rate of separation between two trajectories that start out extremely
close to one another for the (a) cardioid and (b) diamond billiard systems.

Figs. (5.5a) and (5.5b) depict the growth rate of separation between a particular pair of
trajectories that start out very close to one another for the cardioid and diamond billiards,
respectively. Here, the saturation point for the cardioid billiard is at n = 21, while for the
diamond billiard, it is at n = 18. In the case of the diamond billiard, we always aimed to
hit the walls of the quarter circles for the first collision.

We calculated the Lyapunov exponents for each billiard using 50 typical trajectories with
varying initial conditions. Although the velocity’s magnitude does not affect the Lya-
punov calculations for billiards, we kept the velocity at a fixed value of 1 and varied its
components to hit different parts of the walls for the first collision. We then averaged the
Lyapunov exponents obtained from the 50 typical trajectories. Additionally, we calcu-
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lated the average distance between two consecutive collision points, denoted by davg for
each typical trajectory and then averaged it across the 50 trajectories. The Mathematica
code required to do the numerical calculation is provided in appendix B. We show the
average Lyapunov exponents and the average distance between consecutive collisions of
our selected billiards in Table 5.1.

Billiards A λavg davg davg for A = 1

Sinai 16 − π 0.635 1.696 0.415
Cardioid 3π/2 0.588 1.843 0.904

Diamond
π + 4

2
+ 4 0.777 2.193 0.872

Table 5.1: Average Lyapunov exponents λavg and average distance between consecutive
collisions davg of Sinai, cardioid, and diamond billiards, along with the area A of the
billiards used in the Lyapunov exponent calculations.

If we assume that the area of the billiard is A = 1 and use our units where h̄ = kB =
2m = 1, we can readily obtain the dimensional parameters by recognizing

Time ∼ 2mA
h̄

, Energy ∼ h̄2

2mA
, Length ∼

√
A.

Since we have used length as the parameter instead of time to calculate the Lyapunov
exponent, we get the same exponent for any velocity of the particle. The Lyapunov expo-
nent does not depend on how fast the separation of the trajectories reaches the saturation
point, but solely depends on the geometry of the billiard table. Hence, this Lyapunov
exponent is comparable to the geometric Lyapunov exponent introduced in Eq. 4.18. We
may write

λavg = λg = λ/v. (5.1)

We can recover the value of area A easily by substituting λ with the expression
√

Aλ
based on the dimensional analysis.

5.5 Numerical calculation of OTOCs

The Hamiltonian of the billiards is given by

H = − ∂2

∂x2 − ∂2

∂y2 + Vbill(x, y), Vbill(x, y) =

{
0, (x, y) ∈ Ω
∞, elsewhere

(5.2)

where Ω is the region inside the billiard. In the same way as with the stadium billiard
in Sect. 4.3.4, we used Mathematica to find the eigenvalues and eigenfunctions of the
Hamiltonian. We follow the same procedure as with the stadium billiard to calculate the
x matrix elements as

xnm =
∫

Ω
dx dy ψnxψm (5.3)

We calculate the microcanonical OTOCs by substituting the position matrix elements xnm
and energy eigenvalues En into Eq. 4.28 to obtain bnm, which we then use in Eq. 4.24
to calculate the microcanonical OTOCs cn(t) for each energy level n. Taking the thermal
average of cn(t) using Eq. 4.19, we obtain the thermal OTOCs. Appendix C provides
the Mathematica code necessary for computing the thermal out-of-time-order correlators
(OTOCs). However, since numerical calculations require truncation of the summations
in Eqs. (4.28), (4.24), and (4.23), we must choose a sufficiently large truncation cut-off.
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We chose to truncate the sums to Itruncation = 400 and we show in appendix A that this
truncation value is large enough so that our results remain sufficiently accurate. We show
the log plots of the thermal OTOCs of our selected billiards in Fig. 5.6.

(a) Sinai billiard

(b) Cardioid billiard

(c) Diamond billiard

Figure 5.6: Log plots of thermal OTOCs for (a) Sinai billiard, (b) cardioid billiard, (c)
diamond billiard.

There is a noticeable initial growth in the thermal OTOCs of our selected billiards at
short times, and the intermediate window occurs within 0.6 < t < 1.1. These graphs are
similar to Fig. 4.2, where we presented a schematic diagram of the growth of the thermal
OTOCs. At later times, the OTOCs stabilize and oscillate around a constant value.

However, at very low temperatures, there is no significant growth in the thermal OTOCs
for the diamond billiard and cardioid billiard, and for the cardioid billiard, we observe
large oscillations. This behavior is also observed in the case of low mode microcanonical
OTOCs. The reason for this lies in Eq. 4.23, where the Boltzmann factor e−βEn suppresses
the contribution from high modes at low temperatures. Conversely, at higher tempera-
tures, the Boltzmann weight does not suppress the high modes, leading to an increased
number of modes contributing to the thermal OTOCs [59].
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Nevertheless, we observe a strict initial growth in the thermal OTOCs of the Sinai billiard
even at T = 1, despite the suppression of high modes by the Boltzmann factor. If the
aforementioned explanation is accurate, this initial growth should also be evident in the
microcanonical OTOCs of the same billiard. To verify this, we present the microcanonical
OTOCs for both the Sinai and diamond billiards in Figure 5.7.

(a) Sinai billiard (b) Diamond billiard

Figure 5.7: Log plots of microcanonical OTOCs for (a) Sinai billiard, (b) diamond billiard.

Indeed, we see that there is initial growth in microcanonical OTOCs of the Sinai billiard
for low modes as well. However, the question arises: why does this initial growth only
occur in the case of the Sinai billiard? The answer lies in the shapes of the wavefunctions
of these billiard systems with low n-values. In Fig. 5.8 we can see contour plots of the
wavefunctions of the diamond, Sinai, cardioid, and stadium billiards for n = 1. It is clear
from the contour plots that only the Sinai n = 1 wavefunction consists of multiple peaks
and troughs, whereas the other n = 1 wavefunctions consist of only one peak (or trough).
This means that the typical scale (characteristic length scale over which the probability
density of the wavefunction changes significantly) is smaller (as a fraction of the total
size of the system) in the case of the Sinai billiard, in comparison to the typical scales of
the wavefunctions of the other billiard systems for n = 1.

This disparity holds for wavefunctions of these systems corresponding to low n. For the
diamond, cardioid and stadium billiards, the typical scales of their low n wavefunctions
are about the same size as the size of the system. Thus, these wavefunctions do not ”feel”
the curvature of the walls of their enclosures [2]. However, due to the typical scales of
the low n Sinai wavefunctions being significantly smaller than the size of the system, the
wavefunctions do experience the curvature of the walls. As a result, the wavefunctions
of the Sinai billiard are the only ones out of the four billiard systems to be appreciably
affected by the curvature of the walls at low n. This manifests itself as an initial growth in
microcanonical OTOCs of the Sinai billiard corresponding to low n-values. It follows that
the other three billiard systems do not experience this initial growth in their low-mode
microcanonical OTOCs.

The thermal OTOCs for our billiards reach saturation after a specific time, which is pro-
portional to temperature and consistent with Eq. 4.21. However, estimating the pro-
portionality constant in the semiclassical framework is challenging due to the various
possible pairings [60] and the influence of trajectory loops [61, 62]. During the interme-
diate time window, the OTOC exhibits oscillations with respect to the length parameter,
providing insight into the dynamics of the billiard system and the influence of periodic
orbits. [33].
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(a) (b)

(c) (d)

Figure 5.8: Contour plot of the wave function for the (a) Sinai billiard, (b) diamond bil-
liard, (c) stadium billiard and (d) cardioid billiard, for n = 1.

5.6 Reading quantum Lyapunov exponent from thermal OTOCs

In Sect. 4.3.4, when analyzing the thermal OTOCs for the stadium billiard, we deter-
mined the scaled time window where the thermal OTOCs exhibit exponential growth,
and we expressed this scaled time in units of 2a. However, when calculating the classical
Lyapunov exponent in Sect. 5.4, we used collision numbers as the parameter instead of
time. Essentially, we replaced the time axis with length, but in the unit of distance be-
tween two consecutive collisions. Similarly, we can express the scaled time axis of the
thermal OTOCs in units of the average collision distance between two consecutive colli-
sions. We calculated the average distance between collisions (davg) for our billiards and
presented the values in Table 5.1.

We show the thermal OTOCs for the Sinai billiard as a function of scaled time, depicted in
a logarithmic scale in Fig. 5.9. On the x-axis, we have l/ds. Here, l = ṽt is the scaled time
(length), where ṽ is the mean squared X-velocity component. To achieve a comparable
time scale on the x-axis as our classical calculation, we set E ∼ T = 1 and keep the area
A = 1. Through dimensional analysis, we obtained ṽ =

√
2. The scaled time is expressed

in units of the average collision distance, which is davg = ds = 0.415 for the area of the
billiard A = 1. The OTOCs pertaining to various temperatures, T, are shown.

In the short time regime, the behaviour of the OTOCs can be divided into two distinct
parts. Initially, there is a quadratic increase in the OTOC with respect to time or length,
which is characteristic of quantum perturbation theory. This is followed by a rapid
growth, leading to a window of length with an exponential increase in the OTOC. The
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Figure 5.9: Numerically calculated thermal OTOCs on a logarithmic scale, with respect to
the length (scaled time) l = ṽt (in units of ds), where ṽ = (βm)−1/2 is the mean-squared x-
velocity component, and ds is the average collision distance calculated in Sect. 5.4 for the
Sinai billiard. The black straight lines correspond to the exponential growth a(T)e

√
3λg ṽt,

which accurately fits the data within an intermediate time-window 0.4 ≤ l/ds ≤ 1.3.

semiclassical approach discussed in Sect. 4.3.1 is valid for the second interval but unsuit-
able for the initial perturbative or rapid growth periods. This is because they correspond
to times much earlier than the time of the first collision with the boundaries, when the
exponential divergence of classical trajectories has not begun to take place.

The exponential increase displayed by the thermal OTOCs is fitted well by Eq. 4.19 with
the value λg = 0.63, for the Sinai billiard. In Fig. 5.9, the solid black lines represent
the exponential functions a(T)e

√
3λg ṽt, which well approximate the OTOCs within the

temperature range of 12 ≤ T ≤ 20. As the temperature increases beyond 20, the time
window of exponential increase tends to shrink until it disappears. Fig. 5.10 displays
the thermal OTOCs for the cardioid and diamond billiards, presented as a function of the
scaled time.

(a) Cardioid billiard (b) Diamond billiard

Figure 5.10: Numerically calculated thermal OTOCs on a logarithmic scale, with respect
to the length (scaled time) l = ṽt (in units of average collision distance) for (a) cardioid
billiard and (b) diamond billiard. The black straight lines correspond to the exponential
growth a(T)e

√
3λg ṽt, which accurately fits the data within an intermediate time-window

0.1 ≤ l/ds ≤ 0.75 for both cardioid and diamond billiards.

The scaled time (length), denoted as l = ṽt, is given in units of average collision distances
for A = 1 and is indicated as dc for the cardioid billiard and dd for the diamond billiard.
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The values of dc = 0.904 and dd = 0.872 are taken from Table 5.1. The range of tempera-
tures where the exponential functions provide the best fit is 4 ≤ T ≤ 10 for the cardioid
billiard and 10 ≤ T ≤ 20 for the diamond billiard. The quantum Lyapunov exponent, λg,
is extracted in a similar way as for the Sinai billiard by fitting the exponential function
to the data. Table 5.2 compares the classical Lyapunov exponent (λcl) and the quantum
Lyapunov exponent (λq) for our selected billiards.

Billiards λcl λq

Sinai 0.635 0.63
Cardioid 0.588 0.588
Diamond 0.777 0.7

Table 5.2: Numerically calculated average geometric classical Lyapunov exponents λcl
and average quantum Lyapunov exponents λq extracted from thermal OTOCs for Sinai,
cardioid, and diamond billiards.

The thermal OTOCs are expected to exhibit a linear growth on a logarithmic scale. The
results show that the growth is almost perfectly linear for the Sinai billiard. However,
in the case of the cardioid billiard, the lines are not as smooth during the exponential
growth window. However, the quantum Lyapunov exponent obtained from fitting the
exponential function from Eq. 4.19 to the OTOCs is found to be identical to the nu-
merically calculated classical Lyapunov exponent in Sect 5.4 for the Sinai and cardioid
billiards. The values for the diamond billiard are also very close.

The growth rate of OTOCs is denoted by Λ =
√

3λqṽ (Eq. 4.20) and is proportional to
√

T.
This prediction is in line with the proposed bound on the growth rate of OTOCs, which
states that Λ ≤ 4πkBT/h̄ [31]. The only exception is the extremely low temperatures
where kBT is approximately equal to the ground state of the billiard.
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Chapter 6

Summary and Conclusion

We chose three geometrically distinct classically chaotic systems for our OTOC calcula-
tions. The Sinai billiard was the only one with dispersing walls and was surrounded by
the flat walls of a square. The cardioid billiard had only focusing walls with a cusp as
the corner point, while the diamond billiard had both flat walls in the shape of a triangle
and focusing walls in the shape of two quarter circles. Our initial goal was to investigate
whether there was any exponential growth in their thermal OTOCs and to compare the
differences between them. We used the numerical method described in Ref. [2] to cal-
culate the microcanonical and thermal OTOCs for the selected billiards. The authors of
Ref. [2] computed the thermal OTOCs of the circle and stadium billiards at different tem-
peratures and observed no discernible difference between the graphs of the two billiards.
Despite the expectation of an exponential growth in the case of the stadium billiard due
to its chaotic nature, no such growth was observed. We replicated their calculation of the
thermal and microcanonical OTOCs for the stadium billiard and obtained similar results.

In 2019, two years after the publication of Ref. [2], another paper was published [33] that
used a semi-classical approach to study the OTOCs and found that for low temperatures
and not too long times, there should be an exponential growth with a growth rate of Λ =√

3λgṽ. They performed numerical calculations for an unsymmetrized stadium using
length as a scaled time and found exponential growth. They also extracted the geometric
Lyapunov exponent from the growth rate of the OTOCs. After reading Ref. [33], we were
motivated to use length as the parameter instead of time since energy is constant and
time can easily be scaled. Thus, we calculated the thermal OTOCs as a function of scaled
time for the stadium shape used in [2]. From this, we extracted the geometric Lyapunov
exponent, which was consistent with the classical value of the Lyapunov exponent of
stadium billiard.

Next, we numerically calculated the classical Lyapunov exponents of the cardioid, Sinai
and diamond billiards using the collision number as a parameter, following the method
in Ref. [17]. We also computed the average distance between consecutive collisions with
the billiard walls. Using length as a parameter, we ensured that the Lyapunov exponent
we obtained was independent of the energy of the system and equivalent to the geometric
Lyapunov exponent derived from the semiclassical result.

Finally, we applied the semiclassical result to our numerically computed thermal OTOCs
as a function of length, which we expressed in units of the average collision distance cal-
culated earlier. We observed specific length windows in all our selected billiards with
linear growth in the logarithmic scale for low temperatures. We then extracted the ge-
ometrical Lyapunov exponent from the growth by fitting the data with the exponential
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functions prescribed by Eq. 4.19. The quantum geometrical Lyapunov exponent we got
was almost identical to the classical ones we had calculated earlier.

In Ref. [31], a bound was suggested for the OTOC growth rate, which is Λ ≤ 4πkBT/h̄.
However, we obtained a growth rate of Λ =

√
3λgṽ for our selected billiards and opera-

tors under consideration. Therefore, the suggested bound would only hold if the condi-
tion kBT ≥ 3h̄2λ2

g/(16π2m) is satisfied. Therefore, we can infer that the proposed bound
would be valid unless the system’s thermal energy is comparable to the ground state
energy of the billiard.

An interesting phenomenon was encountered when we found that there was a noticeable
initial growth in the thermal OTOCs of the Sinai billiard even at low temperatures. How-
ever, this significant initial growth was not found in the low temperature thermal OTOCs
of the other billiard systems we studied. After analyzing the low energy wavefunctions
of the various systems, we discovered that the low energy wavefunctions of the Sinai
billiard had typical scales that were smaller, in proportion to the total system size, than
the typical scales of the low energy wavefunctions of the other billiard systems, and this
ultimately caused the discrepancy in the low temperature behaviour of the OTOCs of the
billiard systems.

For the three billiard systems we studied in depth, namely the cardioid, Sinai and dia-
mond billiards, we found that the calculated classical lyapunov exponents were remark-
ably close in value to the calculated quantum lyapunov exponents extracted from low
temperature thermal OTOCs. This indicates that the semiclassical approximation we
used to ascertain the quantum lyapunov exponents is sufficiently accurate at low temper-
atures. Furthermore, the close agreement between the classical and quantum Lyapunov
exponents indicates that, at least before the Ehrenfest time, the quantum dynamics of a
system have strong correlations with its classical dynamics.
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Appendix A

Assessment of the error resulting
from level truncation

At various points during our calculations of OTOCs, namely Eqs. (4.28), (4.24), and (4.23),
we encounter infinite sums. As we evaluate these sums via numerical calculations, the
infinite sums in these equations must be truncated to a certain cut-off value, Itruncation.
In this segment, we determine the effect of taking different values of Itruncation on the
OTOCs with the aim of ascertaining a suitable cut-off value. We shall focus on the Sinai
billiard and compute the microcanonical OTOC with n = 100 for various truncation
values Itruncation. The microcanonical OTOCs for Itruncation = 100, 150, 200, 300, 400 are
shown below.

Figure A.1: Microcanonical OTOCs of the Sinai billiard corresponding to n = 100 for
Itruncation = 100, 150, 200, 300, 400.

As we can see, the microcanonical OTOCs for n = 100 converge fairly well as the value
of Itruncation is increased from 100 to 400. We found similar convergences for microcanon-
ical OTOCs with n < 100. As n increases above 100, the corresponding microcanonical
OTOCs do not contribute to the thermal OTOCs to a significant extent. This is because
the exp

(
−En

T

)
term in Eqn. (4.23) suppresses the contributions of microcanonical OTOCs

corresponding to large n. As a result, the microcanonical OTOCs for n ≤ 100 converging
well at our truncation value Itruncation is sufficient for our purposes. Therefore, we picked
Itruncation = 400 for our calculations of the Sinai OTOCs. Furthermore, we found, through
similar analyses, that Itruncation = 400 was a suitable truncation value for the cardioid and
diamond billiard systems as well. Thus, we truncated the infinite sums to Itruncation = 400
during the calculations of the OTOCs of those systems as well.
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Appendix B

Numerical simulation of trajectories
inside billiard table and Lyapunov
exponent calculation with
Mathematica 12.1

In the beginning, the geometry of billiard tables is described by the equation f (x, y) = 0,
where the expression f (x, y) is saved as a variable by the name of the particular billiard
table. To simulate trajectories on the billiard table, we must set initial conditions for two
trajectories that are separated by an order of 10−5 in the initial condition variables. One
example of initial conditions for the Sinai billiard is provided in the code. We can also
adjust the velocity components using the variables (x′(0), y′(0)). Once the first cell is
compiled, the simulation will begin.

The next cell creates a module for calculating the angle of incidence. We need to compile
the cell to activate the module. After compiling the next few cells, the graph from which
the slope is calculated will be generated. Sometimes, there may be glitches, and we may
need to compile the ”ang1” variables more than once to generate the desired graph.

After the graph is generated, we right-click on it and select ”get coordinates” to check the
collision point ”n” where the saturation appears to begin. We need to manually check
the saturation point for each calculation and set n equal to that collision point. After
compiling the next few cells, the Lyapunov exponent will be calculated and saved in
a cell. After 50 calculations, we can compile the last 2 cells of the code to obtain the
average Lyapunov exponent and average collision distance of the system. The code for
this is provided from the next page.
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Trajectory Calculator:

In[ ]:= cardioid = x2 + y2 + x
2
- x2 + y2;

sinai = x - 2 x + 2 y - 2 y + 2 x^2 + y^2 - 1;

cosb = x2 + y2 -
x2 + y2 + x ϵ

x2 + y2
/. ϵ → 0.5;

diamond = y - Piecewise 1 - x + 12 , -2 ≤ x ≤ -1,

{1, -1 ≤ x ≤ 1},  1 - x - 12 , 1 ≤ x ≤ 2 x + y + 2 x - y - 2;

f[x_, y_] = sinai;

initialCoordinate = {1.4, 0.2};

initialCoordinate2 = {1.4 + 10^-5, 0.2 + 10^-5};

k = {};

k2 = {};

reflect[vector_, normal_, pos_, time_] := Block{a, b, c, d}, a = vector;

b = normal;

c = pos;

d = time;

AppendTo[k, time];

-vector - 2 vector - Projection[vector, normal];

reflect2[vector_, normal_, pos_, time_] := Block{a, b, c, d}, a = vector;

b = normal;

c = pos;

d = time;

AppendTo[k2, time];

-vector - 2 vector - Projection[vector, normal]

plot = ContourPlot[f[x, y] ⩵ 0, {x, -2.5, 2.5}, {y, -2.5, 2.5}, PlotPoints → 50];

sol = NDSolvex''[t] ⩵ 0, y''[t] ⩵ 0,

{x[0], y[0]} ⩵ initialCoordinate, {x'[0], y'[0]} ⩵  2  3 , 1  3 ,

WhenEvent[f[x[t], y[t]] ⩵ 0, {{x'[t], y'[t]} → reflect[{x'[t], y'[t]},

{Derivative[1, 0][f][x[t], y[t]], Derivative[0, 1][f][x[t], y[t]]},

{x[t], y[t]}, t]}], {x, y}, {t, 0, 150}, MaxStepSize → 0.01;

sol2 = NDSolvex''[t] ⩵ 0, y''[t] ⩵ 0, {x[0], y[0]} ⩵ initialCoordinate2,

{x'[0], y'[0]} ⩵  2  3 , 1  3 ,

WhenEvent[f[x[t], y[t]] ⩵ 0, {{x'[t], y'[t]} → reflect2[{x'[t], y'[t]},

{Derivative[1, 0][f][x[t], y[t]], Derivative[0, 1][f][x[t], y[t]]},

{x[t], y[t]}, t]}], {x, y}, {t, 0, 150}, MaxStepSize → 0.01;

ani = Animate[Show[plot, ParametricPlot[{x[t], y[t]} /. sol, {t, 0, c},

PlotPoints → 200, PlotStyle → Directive[Opacity[.5], Red]] /. Line[c_] →

{Arrowheads[{{.01, 1, {Graphics[{Red, Opacity[1], Disk[]}], 0}}}], Arrow[c]},

ParametricPlot[{x[t], y[t]} /. sol2, {t, 0, c}, PlotPoints → 200,

PlotStyle → Directive[Opacity[.5], Blue]] /. Line[d_] →

{Arrowheads[{{.01, 1, {Graphics[{Blue, Opacity[1], Disk[]}], 0}}}], Arrow[d]},

PlotRange → 2.5], {c, $MachineEpsilon, 150},

ControlPlacement → Bottom, AnimationRate → 1]



Angle of incidence Calculator:

In[ ]:= angle[sol_, time_] := Block{a, b}, a = sol;

b = time;

timepos = Table[{pli, pbi}, {i, 1, Length[b]}];

pretimepos = Table[{plli, pbbi}, {i, 1, Length[b]}];

postimepos = Table[{pllli, pbbbi}, {i, 1, Length[b]}];

pre = b - 0.01;

posss = b + 0.01;

xpos = x /. a[[1, 1]];

ypos = y /. a[[1, 2]];

Do[pli = xpos[b[[i]]], {i, 1, Length[b]}];

Do[plli = xpos[pre[[i]]], {i, 1, Length[b]}];

Do[pllli = xpos[posss[[i]]], {i, 1, Length[b]}];

Do[pbi = ypos[b[[i]]], {i, 1, Length[b]}];

Do[pbbi = ypos[pre[[i]]], {i, 1, Length[b]}];

Do[pbbbi = ypos[posss[[i]]], {i, 1, Length[b]}];

Doaai =
PlanarAngle[{pretimepos[[i]], timepos[[i]], postimepos[[i]]}]

2
,

{i, 1, Length[b]};

Table[aai, {i, 1, Length[b]}]

Graph Generator:

Calculate two set of incident angles for infinitesimally close initial points from the previous section. 
name them ang1 and ang2.

In[ ]:= ang1 = angle[sol, k];

In[ ]:= ang2 = angle[sol2, k2];

In[ ]:=

If[Length[ang1] > Length[ang2], ang1 = Drop[ang1, {Length[ang2] + 1, Length[ang1]}],

ang2 = Drop[ang2, {Length[ang1] + 1, Length[ang2]}]];

angdif = Abs[ang2 - ang1];

lambda = Log
angdif

angdif[[1]]
;

a = ListPlot[lambda, Frame → True,

FrameLabel → {Style[n, Bold, 16], Style["ln [(δn/δ0)]", Bold, 16]}];

b = ListLinePlot[lambda, Frame → True, PlotStyle → Thick,

FrameLabel → {Style[n, Bold, 16], Style["ln [(δn/δ0)]", Bold, 16]}];

Show[

a,

b]



Define these empty cells in the beginning . Do not compile them for the next 50 calculations otherwise 
the lists will become empty.

In[ ]:= lyapunovs = {};

collisiondist = {};

set n = highest x axis value of unsaturated part.

In[ ]:= n = 20;

lyapunov1 = lambda[[n]]  n - 1

Out[ ]= 0.617

In[ ]:= lyy = Table[lyi, {i, 1, n - 1}];

Dolyi = lambda[[i + 1]] - lambda[[i]] , {i, 1, n - 1};

lyapunov2 = Total[lyy]  Length[lyy]

Out[ ]= 0.617

In[ ]:= AppendTo[lyapunovs, lyapunov1];

AppendTocollisiondist,
Min[k[[n]], k2[[n]]]

n
;

After calculating 50 lyapunovs, calculate the average:

avglyapunov = Total[lyapunovs]  Length[lyapunovs]

avgcollisiondist = Total[collisiondist]  Length[collisiondist]



Appendix C

Numerical calculation of OTOCs
with Mathematica 12.1

The codes for calculating thermal OTOCs are given below:
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