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Abstract

In the recent era of technological advancement, evaluating references and assign-
ments and validating those are some of the primary processes to justify the au-
thenticity of a research work in the academic sector. The purpose of referencing
is to ensure ethical writing and to make the search easier in a particular area for
the reader when it is accurate. The traditional way to cross-check the validations
is to check them manually one by one, which is above argument, equivalent to an-
other work, and sometimes so tiring that the reader loses interest in reading the
original paper. The target of this research paper is to introduce a semi-automatic
digital system that enables researchers to justify the references used in a research
paper without doing it manually. In this model, we have prepared a sentence trans-
former named RoBERTa for generating embedding. We sanitize and pre-process
an entire research paper and cross-match that against a reference query using the
proposed model in terms of finding semantic and contextual similarity. The result
shows mostly similar contexts based on the similarity check. We have compared
the embedding of query and user input articles with the help of K similar search
function. Our model outperformed the existing BERT and SBERT models’ output
in accuracy with a F1 score of 0.777, which establishes the fact that the model can
be used in real life with a simple query of text from research articles.

Keywords: Reference Validation, Semantic Similarity Analysis, Contextual Simi-
larity Analysis, RoBERTa, K Similar Search, Natural Language Processing
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Chapter 1

Introduction

Over the past two decades, the landscape of scientific research publishing has un-
dergone a significant transformation, shifting from traditional print publications to
online platforms [11]. In this new era, the responsibility of ensuring the quality of
research papers and the accuracy of references falls on the scientific writers. How-
ever, relying solely on the authors is not sufficient when it comes to processing and
validating manuscripts. To minimize reference errors, it is crucial for writers, peer
reviewers, editors, and publishers to collaborate throughout the publication process.
The evaluation and validation of references are essential steps in verifying the au-
thenticity of research work within the academic sector. Traditionally, this process
involved manually cross-checking references one by one, which is not only time-
consuming but also tiresome for readers, often causing them to lose interest in the
original paper. Moreover, this approach is lengthy, labor-intensive, and expensive,
while also increasing the reliance on peer reviewers. The aim of this research paper is
to introduce a semi-automatic digital system that enables researchers to validate the
references used in their papers without the need for manual verification. By lever-
aging the RoBERTa model and employing a K Similar method to assess similarity,
the proposed framework achieves an accuracy of 77% for the given dataset. The
adoption of a semi-automatic digital system offers several advantages over the tra-
ditional manual approach. Firstly, it streamlines the reference validation process,
saving researchers significant time and effort. Instead of manually cross-checking
each reference, the system employs sophisticated algorithms to assess the similarity
between the provided references and existing works. This automated process not
only enhances efficiency but also reduces the risk of human error. Additionally, the
introduction of a digital system reduces the dependency on peer reviewers. While
peer review remains a critical aspect of the research publication process, the burden
on reviewers is lightened by the implementation of an automated system that can
handle the initial validation of references. This allows peer reviewers to focus on
other crucial aspects of the paper, such as evaluating the methodology, analyzing the
findings, and providing insightful feedback. The accuracy achieved by the proposed
framework, 77%, showcases its potential as an effective tool for reference validation.
However, it is important to note that this system should be seen as a complement
to the existing peer review process rather than a replacement. The human expertise
and critical evaluation provided by peer reviewers are still invaluable in ensuring the
overall quality of a research paper. The shift towards online scientific research pub-
lishing has necessitated new approaches to maintain the quality and authenticity of
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research papers. The development of a semi-automatic digital system for reference
validation presents a promising solution to mitigate errors and streamline the publi-
cation process. By leveraging advanced models such as RoBERTa and implementing
intelligent algorithms, researchers can effectively justify the references used in their
work, enhancing the overall credibility and trustworthiness of scientific publications
in the digital age.

1.1 Motivation

Our motivation for conducting research on reference validation came from the desire
to improve the accuracy and reliability of research findings in reference validation
field. Accurate referencing is critical for ensuring that claims and arguments are
supported by credible sources, and that the work of previous researchers is properly
acknowledged.

However, the process of reference validation can be time-consuming and challenging,
particularly when dealing with a large number of sources or complex information.
By conducting research on reference validation, we will be able to identify new and
more effective methods for verifying references, which could ultimately improve the
accuracy and reliability of research in your field. This could have practical applica-
tions in a variety of areas, such as academia, journalism, and law, where accurate
referencing is critical.

In addition, by contributing to the body of knowledge on reference validation, we
might be able to establish ourselves as an expert in text processing field, and po-
tentially make a meaningful contribution to the broader academic community.

Furthermore, our research could help to fill a gap in the literature on this topic,
and potentially inspire further research and development in the field. Ultimately,
our motivation was to build a system that reads contents from that x reference
and searches for the query (let’s say, Q) specified and produces a score. The higher
value of the score indicates that it is more likely that there’s a sentence with semantic
similarity to that of Q in the document.

1.2 Problem Statement

There are several challenges in working with text classifications. Text data can be
ambiguous, and it can be difficult to determine the intended meaning of a sentence or
phrase. This can lead to misclassification or inaccurate analysis. The meaning of a
text can often depend on the context in which it is used. For example, the word ”bat”
can refer to an animal or a piece of sports equipment. Without proper context, it
can be difficult to accurately classify text. In addition, Text data can be voluminous,
which can make it difficult to process and analyze. This can also lead to issues with
data quality, such as incomplete or irrelevant data. Furthermore, Text data often
requires extensive cleaning and preprocessing to remove noise, such as punctuation,
stop words, and special characters. This can be a time-consuming process that
requires expertise in natural language processing. Text classification problems can
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sometimes have imbalanced classes, meaning that there may be far more examples
of one class than another. This can lead to bias and inaccuracies in the classification
model. Choosing the right features to use in text classification can be challenging.
This is especially true when dealing with large volumes of text data. Choosing the
right features can have a big impact on the accuracy of the classification model.
Text classification can become more challenging when working with multilingual
data. Different languages have different grammatical rules and nuances that can
make classification more complex. Overall, working with text classifications requires
specialized knowledge and expertise in natural language processing and machine
learning, as well as careful consideration of the unique challenges posed by text
data.

1.3 Contribution

The aim of this research is to develop an automated tool to validate references
used in research papers during the review process of scholarly articles. The primary
objective is to simplify the review process for reviewers by providing an efficient
and accurate reference validation system. However, due to the unavailability of a
suitable dataset, it was necessary to create one manually by reading through var-
ious relevant scholarly articles and cross-checking the references used to determine
their relevance. The development of an automated reference validation tool has the
potential to significantly improve the efficiency and accuracy of the peer-review pro-
cess for scholarly articles. Currently, the review process is often time-consuming and
labor-intensive, with reviewers having to manually verify the accuracy and relevance
of each reference used in a research paper. This can be a daunting task, especially
when dealing with large volumes of scholarly articles.

To address this challenge, the proposed tool aims to automate the reference vali-
dation process by using natural language processing (NLP) techniques to analyze
the text of scholarly articles and determine the relevance of each reference used.
This would allow reviewers to quickly and easily assess the accuracy and validity of
the references used in a research paper, saving time and effort. However, the lack
of an appropriate dataset posed a significant challenge in the development of the
tool. To overcome this issue, a manual dataset was prepared by reading through
various scholarly articles and cross-checking the references used to determine their
relevance. This was a time-consuming process that required a high level of expertise
in natural language processing and scholarly research.

To summarize the contribution, it can be described as listed:

1. A semi-automated model that can validate references in scholarly articles and
shows the finding based on the analysis to see if the reference is relevant against
the scholarly publication or not.

2. The framework also displays the most similar findings that the reference states
in an articles. An reviewer can determine the number of similar finding along
with the similarity score as s/he wants.
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3. Introducing a concept of RoBERTa to process large corpora and capture con-
texts that are spread over multiple sentences in a PDF document or text
document.

4. Enhancing existing pre trained RoBERTa model by adding a mean pooling
layer followed by another dense layer to the pooled output with an activa-
tion function to reduce the size of embedding vector generated by RoBERTa
without sacrificing much of the accuracy.

5. Manually created dataset by reading and cross verifying the used references in
over 60 scholarly articles and made the dataset accessible to anyone.

6. Calculating the similarity function using K Similar methods and displaying
the accuracy functions of this framework

1.4 Organization of the Report

The second chapter of this paper presents a comprehensive review of the relevant
literature pertaining to the techniques and algorithms employed in the project. Var-
ious prior research studies are discussed, which have implemented similar methods
to those used in this project.

The third chapter outlines the proposed model in detail, providing specific informa-
tion on how it is implemented. This section delves into the technical aspects of the
model, detailing the algorithms, tools, and technologies used to develop it.

In chapter 4, the experimental results obtained from collected data sets are presented
and compared in terms of their performance. This section provides an in-depth
analysis of the results obtained, presenting graphs, tables, and other visual aids to
help readers understand the findings. The section also discusses the strengths and
weaknesses of the proposed model, highlighting any areas where it may be improved.

Chapter 5 provides concluding remarks on the paper, summarizing the key findings
of the study. This section discusses any difficulties or limitations encountered during
the research process and provides recommendations for future work on this system.
The section emphasizes the importance of continuing research in this area to further
refine the proposed model and improve its performance.

In summary, this paper provides a comprehensive analysis of a proposed model for a
specific application. The paper reviews relevant literature, outlines the proposed
model, presents experimental results, and concludes with suggestions for future
work.
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Chapter 2

Related Work

References are symbols that let writers recognise their own thoughts and works
by pointing to key literary sources. Correct reference ensures moral writing and
facilitates finding pertinent scientific sources. However, there has not been any
significant research that aims to contextually validate the allusions.

Barroga et al.[3] highlights the importance of correct referencing as well as the re-
sponsibilities of each party engaged in the process of publishing a research paper. To
provide excellent reference validation, training on digital bibliography management
were prioritized. Overall, this essay describes an antiquated manual method for cor-
rectly citing a source while writing a research paper. Ruths et. al. [1] described an
automated approach that considered a person’s name and their publications. It then
calculated that person’s publication citation record using a collection of domain-
specific vocabulary from the aforementioned sources. It requires three inputs: the
author’s name, the time period during which his articles were published, and a URL
that either contains a list of the author’s publications or a pretty thorough descrip-
tion of the author’s research. The result of the procedure is a list of publications
(including citation counts, if available). If specified, other citation metrics such as
h- and e-indices are also returned in the result.

The authors of [2] examine whether CiteULike and Mendeley are helpful for assessing
academic influence using a sample of 1613 papers published in Nature and Science in
2007. Online reference managers included CiteULike and Mendeley. Websites known
as online reference managers enable users to download, read, and share reference
material in online reference libraries. The readership size is displayed in an online
reference manager by the users who have saved a certain document, in number.
The authors of this research referred to the number of readers as the paper’s users.
Finding a relationship between Mendeley/CiteULike user counts and WoS (Web of
Science) citations was the main objective of this study. In fact, a link was discovered
using a sample of 1613 publications that were published in Nature and Science in
2007. The number of users of these online reference management systems, according
to the authors, appears to be too low to represent a significant threat to conventional
citation indexes, nevertheless.
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The authors investigated the reliability of citing in academic papers, the author
examined 450 references from ten biomedical journals [4]. A total of 30 articles
were picked. 15 references from each article were randomly chosen. 81 of these
450 references were incorrect after human review. These errors were divided into
two categories: severe errors and minor errors. 48 minor and 33 serious faults were
discovered out of the 81 total errors. In another research paper [13], the authors
suggested a Target-Dependent BERT (TD-BERT) paradigm that comes in different
forms. Our TD-BERT models frequently outperform others, including more modern
BERT-based models, in the classification accuracy of aspect term polarity on the
SemEval-2014 and a Twitter dataset. The findings demonstrate that complicated
neural networks that previously provided strong results with embedding do not fit
well with BERT, while the addition of target information to BERT leads in a steady
performance improvement.

In a study conducted by Muhammad et al., the problem of imbalanced datasets
was addressed using a single-layer multi-size filters convolutional neural network
(SMFCNN). The researchers aimed to evaluate the performance of SMFCNN against
sixteen machine learning (ML) baseline models. Additionally, they investigated the
impact of preprocessing techniques on the performance of SMFCNN. To assess the
effectiveness of SMFCNN, experiments were conducted on three imbalanced datasets
of varying sizes. Remarkably, SMFCNN outperformed the baseline classifiers on all
three datasets. On the medium-sized dataset, SMFCNN achieved an impressive
accuracy score of 95.4%. Similarly, on the big and small size datasets, SMFCNN
obtained accuracy scores of 91.8% and 93.3% respectively. The findings of this study
highlight the superiority of SMFCNN in handling imbalanced datasets. By utilizing
a single-layer multi-size filters convolutional neural network, the model demonstrates
its ability to effectively learn and classify imbalanced data. The results obtained
by SMFCNN surpass those of the baseline classifiers, indicating its potential for
addressing imbalanced classification tasks. In summary, Muhammad et al. [17]
conducted a comparative study to evaluate the performance of SMFCNN against
several ML baseline models on imbalanced datasets. The results clearly demonstrate
the superiority of SMFCNN, with the model consistently outperforming the baseline
classifiers. Moreover, the study explores the impact of preprocessing techniques on
the performance of SMFCNN, emphasizing the significance of data preprocessing in
addressing imbalanced classification tasks. These findings contribute to the body
of knowledge in the field of imbalanced dataset classification and provide valuable
insights for researchers and practitioners working in this domain.

Existing approaches to learning word vector space representations have been success-
ful in capturing intricate semantic and syntactic patterns using vector arithmetic, yet
the underlying mechanism remains unclear [5]. The researchers conducted an anal-
ysis to elucidate the necessary model properties for such patterns to emerge in word
vectors. Their findings led them to develop a novel global log-bilinear regression
model that combines the advantages of two prominent model types in the litera-
ture: global matrix factorization and local context window methods. This model
effectively utilizes statistical information by training only on non-zero elements in a
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word co-occurrence matrix, rather than the entire sparse matrix or individual con-
text windows in a large corpus. The resulting vector space demonstrates significant
substructure, as demonstrated by its 75% success rate on a recent word analogy
task. Additionally, their model outperforms comparable models on similarity tasks
and named entity recognition.

The assessment of neural network models for sentence comprehension can be eas-
ily conducted through natural language inference (NLI), which measures how well
the models capture the full meaning of natural language sentences [10]. Although
existing NLI datasets such as SNLI have led to significant improvements in mod-
eling, they are limited in their capacity to cover the full range of English language
meanings due to their narrow scope. In this paper, the authors present MultiNLI,
a new dataset that offers greater linguistic diversity and complexity and serves as a
benchmark for cross-genre domain adaptation. MultiNLI includes text and speech
samples from ten different genres, compared to SNLI’s limited scope of simple image
captions. It also contains a higher percentage of sentences with difficult linguistic
phenomena, resulting in lower baseline model performance on MultiNLI than on
SNLI. MultiNLI’s greater diversity and complexity make it an ideal resource for
future research in sentence understanding. Since its initial release in draft form in
early 2017, other researchers have found that NLI can be a valuable source task
for pre-training and transfer learning in sentence-to-vector models, with SNLI and
MultiNLI-trained models outperforming prior models on established transfer learn-
ing benchmarks. The authors anticipate that MultiNLI will remain a useful resource
for the development and evaluation of sentence understanding methods for many
years to come.

The need for extracting useful knowledge from a large amount of textual data in a
reasonable time frame has become increasingly important. This study, cited as [18],
provides an overview of recent abstractive text summarization techniques using deep
learning models. It also presents an analysis of the datasets utilized for training and
validating these approaches, their limitations, and features. For single-sentence sum-
mary approaches, the Gigaword dataset is commonly used, while the CNN/Daily
Mail dataset is used for multi-sentence summary approaches. Metrics commonly ap-
plied to evaluate summarization quality are Recall-Oriented Understudy for Gisting
Evaluation 1 (ROUGE1), ROUGE2, and ROUGE-L. Challenges faced during the
summarization process and their solutions are also investigated in this paper. Recur-
rent neural networks with an attention mechanism and LSTM are the most popular
techniques used for abstractive text summarization. Experimental results indicate
that pre-trained encoder models achieve the highest values for ROUGE1, ROUGE2,
and ROUGE-L (43.85, 20.34, and 39.9, respectively). Text summarization mod-
els encounter challenges during testing, including the lack of a definitive reference
token, the presence of out-of-vocabulary (OOV) words, and issues like sentence rep-
etition, inaccuracies, and the potential for false information. These obstacles hinder
the models’ ability to produce optimal summaries, and further research is needed
to address these limitations. These challenges will contribute to the development of
more accurate and reliable abstractive text summarization systems.
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Another study [15], aims to replicate the findings of BERT pretraining as presented
by Devlin et al. in their influential work from 2019. Their objective is to care-
fully examine the influence of several key hyperparameters and training data size.
Surprisingly, their results indicate that BERT was notably undertrained, yet it pos-
sesses the capability to surpass or achieve comparable performance to subsequent
models published in the field. Notably, their most refined model achieves state-of-
the-art results on widely recognized benchmark datasets, including GLUE, RACE,
and SQuAD. These findings emphasize the importance of previously overlooked de-
sign choices in language model pretraining. Moreover, they raise questions regarding
the origin and validity of the reported performance improvements observed in re-
cent studies. To facilitate reproducibility and further exploration, we have made
our models and code publicly available as part of our contribution to the research
community.

In the context of addressing the challenge of short text classification, this research
paper introduces a novel method that utilizes RoBERTa and TextRCNN for classi-
fying media data. The proposed approach involves obtaining semantic text vector
representations using RoBERTa, which are then utilized as input for training Tex-
tRCNN. To evaluate the performance of the proposed method, experiments were
conducted on the THUCNews dataset. The results indicate that the RoBERTa-
TextRCNN model achieved an impressive accuracy rate of 94.64%. This accuracy
rate is 4.53% higher compared to the TextRCNN model and 0.62% higher compared
to the Bert+RCNN model. The superior performance of the proposed approach sur-
passes that of other existing classification models, thus providing empirical evidence
of its effectiveness in addressing the task of short text classification. The obtained re-
sults demonstrate the potential of the RoBERTa-TextRCNN model as an advanced
solution for short text classification in the domain of media data. The improved
accuracy achieved by this model indicates its capability to effectively capture the
underlying semantics and features of short texts, leading to enhanced classification
performance. This research contributes [19] to the existing body of knowledge by
proposing an innovative fusion of RoBERTa and TextRCNN for short text classifi-
cation in media data. The combination of RoBERTa’s powerful language represen-
tation capabilities with the attentive and hierarchical nature of TextRCNN results
in improved classification accuracy. The findings presented in this study serve as a
valuable benchmark for future researchers and practitioners working on short text
classification tasks.
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Chapter 3

Dataset

The dataset section of a research article is an essential component that plays a
critical role in presenting a thorough understanding of the data utilized in the study.
It serves as the groundwork on which the research findings are constructed, enabling
transparency, reproducibility, and the ability to critically evaluate the outcomes of
the study. In this section, we provided a comprehensive and detailed description
of the dataset used in their research. We outlined the sources from which the
data was obtained, emphasizing its origin and acquisition process. This information
is crucial as it allows readers to assess the credibility and reliability of the data,
ensuring that the study is based on trustworthy information. We also elaborated
on the characteristics of the dataset. This includes a discussion of the variables and
attributes present in the data, the size and scope of the dataset, and any notable
patterns or peculiarities observed.

Additionally, we described the preprocessing methods employed on the dataset.
Preprocessing refers to the steps taken to clean, transform, or manipulate the data
before analysis. This may involve handling missing values, outlier detection and re-
moval, feature scaling, or other data preparation techniques. By documenting these
preprocessing steps, the authors ensure transparency and enable others to replicate
their procedures, enhancing the reproducibility of the study. We addressed any rel-
evant considerations regarding the dataset. This may include potential biases or
limitations inherent in the data, such as sampling biases, data collection errors, or
any other factors that could influence the results. By acknowledging these consid-
erations, we demonstrated a critical awareness of the dataset’s potential limitations
and provide context for interpreting the study’s findings. Through this exploration
of the dataset, we also aim to shed light on its quality, representativeness, and suit-
ability for addressing the research objectives. Assessing these aspects ensures that
the data used in the study is reliable, accurately represents the phenomenon under
investigation, and is appropriate for drawing meaningful conclusions. By providing
such insights, the authors contribute to the overall robustness of the study’s findings
and enhance the credibility of their research.
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3.1 Dataset Preparation

We created a set of data that captured various characteristics of the references. This
included information such as the publication year, authors, journal or conference pro-
ceedings, and the relevance of the reference to the topic under investigation. These
details helped us gain a deeper understanding of the references and facilitated further
analysis.To ensure the reliability of our dataset, we established a clear methodology
for data collection and preprocessing. We carefully followed predefined criteria to
determine the validity of references, utilizing established guidelines and expert judg-
ment. Any disagreements or uncertainties were resolved through discussions among
the research team to maintain consistency and accuracy.

Preprocessing the dataset involved organizing the collected data in a structured
format, cleaning any inconsistencies or errors, and standardizing the variables. This
allowed for easier analysis and comparison across different articles and references.
The dataset was also subjected to thorough quality checks to identify any outliers,
missing values, or data inconsistencies. We implemented appropriate techniques to
handle such issues, such as imputation for missing values or removing outliers that
could potentially skew the analysis. Moreover, we considered the limitations of the
dataset during the research process. For example, the dataset might not be fully
representative of all research articles in the field, as we focused on a specific set of
articles relevant to our research objectives. Additionally, the validation of references
relied on the accuracy and availability of the sources, which may vary due to factors
such as publication biases or inaccessible publications. By providing a detailed
description of the dataset, including its creation process, variables, preprocessing
steps, and limitations, we aimed to ensure transparency and enable other researchers
to replicate or build upon our study. This comprehensive information allows for a
thorough understanding of the data and its relevance to the research findings.

Figure 3.1: Sample Dataset

The dataset section of our research article played a crucial role in establishing the
foundation for our study. It involved meticulous collection, validation, and prepro-
cessing of data related to the references cited in 30 research articles. The dataset
enabled us to assess the accuracy of the references and provided valuable insights
for further analysis. By documenting the dataset’s characteristics, creation process,
and limitations, we aimed to promote transparency and facilitate the reproducibility
and critical evaluation of our research. Similarly, the second set of data represented
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the invalidation of references. In this case, a value of 1 was assigned to a reference
that was confirmed to be invalid, and a value of 0 was assigned if the reference was
determined to be valid. This dataset provided insights into the instances where the
references cited in the research articles were found to be incorrect or unreliable.

3.2 Dataset Description

In our experiment, we worked with two distinct datasets: articles containing queries
and articles referenced in those queries. To gather the articles containing queries, we
randomly selected a variety of sources, primarily focusing on scientific and scholarly
articles. From these selected articles, we extracted the queries and then sought to
identify the specific articles that supposedly served as the basis for those queries.
However, due to the limited number of queries available, we took an additional
step to ensure a more comprehensive evaluation. We manually cross-verified the
references used in over 60 scholarly articles, meticulously examining each reference
to validate its accuracy. This meticulous process aimed to enhance the overall quality
of our dataset and strengthen the credibility of the references used in the articles.

Once we completed the data collection and verification process, we proceeded to
process the articles and their corresponding references. This involved organizing
the data in a structured format, cleaning any inconsistencies, and standardizing
the variables for further analysis. With the dataset prepared, we conducted an in-
depth analysis to assess the effectiveness of our model in detecting references within
scholarly articles. We evaluated various performance metrics to gauge the model’s
efficiency and accuracy in identifying references accurately. The results obtained
from this analysis provide valuable insights into the model’s performance in this
specific task. They shed light on the strengths and weaknesses of our approach,
allowing us to make informed observations about the model’s efficiency and its po-
tential for improvement. The findings contribute to the broader understanding of
reference detection within scholarly articles and may have implications for future
research in this area.

The dataset we collected for our experiment is structured in a particular way, as il-
lustrated in figure 3.1 The dataset includes two main components: the ”userstring,”
which represents the references used in scholarly articles, and the ”MainReferen-
cepath,” which indicates the actual scholarly article being referred to. Additionally,
we included a column called ”Reference Validity” to indicate the results of cross-
checking. In this column, a value of 0 signifies that the actual reference was not
found in the target article, while a value of 1 indicates that the reference was indeed
present. To evaluate the performance of our model, we divided the dataset into two
segments. 40 set of the data was used for training the model, allowing it to learn
patterns and relationships within the dataset. The remaining 20 data points were
reserved for testing the accuracy of the model. By using this separate testing set,
we could assess how well the model generalized its learning and accurately predicted
the validity of references in unseen data. This division of the dataset into training
and testing sets enabled us to measure the model’s performance and evaluate its

11



accuracy in detecting valid references. By analyzing the results from the testing
set, we could determine the effectiveness and reliability of the model in predicting
reference validity.
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Chapter 4

Methodology

Text processing research is crucial in today’s digital age, as it allows for the effi-
cient analysis and manipulation of large volumes of text-based data. This research
field encompasses a wide range of techniques, including natural language processing
(NLP), machine learning, and deep learning, among others. Text processing re-
search has applications in numerous fields, such as social media analysis, sentiment
analysis, document classification, and information retrieval, among others. One of
the key benefits of text processing research is that it enables us to extract insights
from vast amounts of unstructured data.

For instance, with social media analysis, researchers can monitor social media plat-
forms to detect trends and patterns in users’ behaviors and attitudes towards prod-
ucts or services. This information can help businesses to optimize their marketing
strategies and improve customer satisfaction. Moreover, text processing research has
also been instrumental in the development of intelligent virtual assistants, chatbots,
and voice assistants, which have become increasingly popular in recent years. These
technologies rely on sophisticated NLP techniques to understand and respond to
user queries, thereby improving user experience and efficiency. It is crucial to con-
tinue investing in this field to drive innovation and advance our understanding of
language processing.

4.1 Proposed Model

Our goal is to confirm the accuracy of referencing a complete document, so we are ex-
ploring the areas of semantic similarity and semantic search. These fields have been
studied by NLP researchers since the inception of NLP. Advanced language models
such as BERT [12] have significantly enhanced many natural language processing
tasks, including text classification, semantic similarity, named entity recognition,
natural language inference, and question answering. For this research, we will uti-
lize a mean pooling layer with a RoBERTa-based model, similar to the approach
used in SBERT [16]. In our proposed model, the user will input two different files
where both of then can be in .text file format or PDF. The first one will be the actual
file which is cited in another research where the last one is the in-text citation used.
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Figure 4.1: Proposed Workflow for Reference Validation

In contrast to SBERT, we incorporate an additional dense layer with a tanh activa-
tion function to reduce the embedding vector’s size. This is particularly useful for
generating embeddings for lengthy documents or processing them. RoBERTa-based
models have certain limitations that make it unfeasible to input an entire document
to the model. To overcome this, we have divided the methodology into sub-sections
as illustrated in figure 4.1

4.1.1 Model Inputs

RoBERTa (Robustly Optimized BERT Pretraining Approach) uses the Byte Pair
Encoding (BPE) tokenizer. BPE is a widely used sub-word tokenizer that builds
a shared vocabulary of variable-length character sequences based on the frequency
of their occurrence in the training data. BPE has been shown to be effective in
handling out-of-vocabulary (OOV) words and improving the performance of natural
language processing models on a variety of tasks. RoBERTa uses an improved ver-
sion of the BPE algorithm called SentencePiece, which is more efficient and allows
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for more fine grained control over the tokenization process. To help disentangle
the importance of these factors from other modeling choices (e.g., the pre training
objective), we begin by training RoBERTa following the BERTLARGE architecture
(L = 24, H = 1024, A = 16, 355M parameters).

4.1.2 Input Preprocessing

As previously mentioned, transformer models such as BERT, RoBERTa, and Distil
BERT have a restriction on input length due to the quadratic growth of memory
requirements and run time as input length increases. This means that BERT-based
models can only handle sequences up to 512 tokens, which is about 300 to 400
English words. Therefore, longer texts are split into smaller pieces. In our project,
we took a new approach by dividing the document into smaller groups of sentences
that do not exceed the maximum sequence length. After preprocessing, we encode
these sentence groups to compute sentence embedding, as feeding the full-sized paper
directly to the model is not feasible.

i. Input Type Check and Process

User might input the text document in PDF format or in txt format. This leaves us
with another challenge to overcome. Thus, the input document file type is checked
first and then if the document is in PDF format, the file is process and converted
into a txt file where as this conversion process is skipped if the input document is
already in txt file format.

ii. Input Data Sanitization

Text input data sanitization is the process of removing any potentially harmful or
unwanted content from a piece of text before it is used in a computer system or
application. The goal is to ensure that the input is safe and does not cause any
harm to the system or its users. Here are some common techniques we used in text
input data sanitization:

1. Filtering: Filtering is the process of removing specific characters or words from
the text input. This is often used to remove profanity, offensive language, or
other unwanted content. In our model, we filtered the punctuation marks and
unwanted special characters in this stage as displayed in figure 4.1.

2. Validation: Validation is the process of checking whether the input text meets
certain criteria or requirements. For example, validation can be used to ensure
that an email address entered by a user is in the correct format, or that a phone
number contains only numbers and no letters. For our case, we needed to check
where the sentence has line break or separated based on paragraphs.

3. Encoding: Encoding is the process of converting special characters in the input
text into a safe format that can be used in a computer system. This is often
used to prevent attacks such as SQL injection or cross-site scripting.
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4. Normalization: Normalization is the process of converting the input text into
a standardized format. This can include converting all characters to lower-
case, removing extra spaces, or converting certain characters to their ASCII
equivalent.

5. Escape characters: Escape characters are used to indicate that certain charac-
ters in the input text should be treated as literal characters, rather than being
interpreted as part of the code. This is often used to prevent attacks such as
code injection.

Before processing, it is important to clean the document. If the document is in text
form, we examined sentences with more than 3 words. We then checked existing
sentences for leading and trailing white spaces and special characters. Sentences are
divided by a full stop or period (.) only if there are no numbers directly before or
after the period without any spaces. This subtle but significant modification enables
us to separate sentences only and not when decimal point numbers are present within
a sentence, such as 77.73.

iii. Populating Text Array for Embedding

To encode this corpus, it must be divided into smaller parts. One common method
is to encode each sentence individually, resulting in an array of 200 elements for a
document with 200 sentences. Although this may seem unnecessary for smaller
documents, larger ones with hundreds of sentences would exceed the maximum
sequence length of 512 tokens. Throughout this text, we will refer to this array
of sentences as the Sentence Array for Embedding. Using this approach, we feed the
model with the Sentence Array for Embedding and generate sentence embeddings
using SAFE. We have wield the best result for sentence embedding with 4 sentences
together.

4.1.3 RoBERTa Tokenization

Input text tokenization is the process of breaking down a piece of text into smaller
units, called tokens. These tokens are usually words or sub-words, which can be
easily processed by a machine learning algorithm. Tokenization is a crucial step in
many natural language processing tasks, including machine translation, sentiment
analysis, and named entity recognition as shown the process in figure 4.2. Here is
how input text tokenization is typically done:

1. Lowercasing: The text is converted to lowercase to avoid distinguishing be-
tween words based on their capitalization.

2. Tokenization: The text is split into tokens. This is usually done using a tok-
enizer, which is a piece of software that is specifically designed to break down
text into smaller units. The tokenizer may use various rules and heuristics to
decide where to split the text into tokens.

3. Sub-word tokenization (optional): In some cases, the tokens themselves may
be too long or too rare, and sub-word tokenization can be applied to further
break them down into smaller units. This is often used in neural machine
translation models.
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4. Vocabulary creation: After the text is tokenized, the tokens are used to build
a vocabulary. The vocabulary contains a list of unique tokens in the text, and
each token is assigned a unique ID.

5. Vectorization: The tokens are then transformed into numerical vectors that can
be processed by a machine learning model. This is usually done by assigning
a unique ID to each token and representing the text as a sequence of token
IDs.

Figure 4.2: Input Text Tokenization Workflow

Before utilizing a pre-trained RoBERTa model, it is necessary to transform the input
data into a suitable format for the model. Then, the sentence can be inputted to
the model, and the relevant embedding can be obtained. RoBERTa uses WordPiece
tokenization and requires the addition of [CLS], [SEP], and [PAD] tokens to each
input sequence. The [CLS] and [SEP] tokens serve two purposes: to represent the
input for classification tasks and to separate a pair of input texts. The [PAD] token
is used to fill in inputs that are shorter than the maximum sequence length allowed
for the model. To use RoBERTa, these tokens must be converted to unique IDs.

4.1.4 RoBERTa Sentence Embeddings

Sentence embedding is a technique used in natural language processing (NLP) to
represent a sentence as a dense, fixed-length vector in a high-dimensional space. The
vector is generated by a machine learning model, such as a neural network, that is
trained to encode semantic and syntactic information from the sentence into the
vector representation. The resulting vector is often used as a numerical represen-
tation of the sentence that can be used as input to other machine learning models
for various NLP tasks, such as sentiment analysis, text classification, and language
translation. There are several methods to generate sentence embeddings, including
averaging the word embeddings of the sentence, using pre-trained models such as
RoBERTa or GPT, or training a specific model for sentence embeddings.

Here is a workflow diagram for generating sentence embeddings using RoBERTa in
figure 4.3:

i. Tokenization

The first step is to tokenize the input sentence into individual tokens. RoBERTa
uses byte-level BPE tokenization, which breaks down each word into subword units.
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ii. Encoding

Next, the tokenized sentence is encoded into a sequence of vectors. RoBERTa uses
a transformer-based architecture, which means that each token is processed through
a series of self-attention and feedforward layers to generate a final vector represen-
tation.

iii. Pooling

After encoding the sequence of vectors, RoBERTa applies a pooling operation to
generate a fixed-length vector representation of the sentence. The most common
pooling strategies used in RoBERTa are max-pooling and mean-pooling.

iv. Dropout

To prevent overfitting, RoBERTa applies a dropout operation to randomly mask
some of the vector elements during training.

v. Normalization

Finally, RoBERTa applies layer normalization to ensure that the vector representa-
tion of the sentence has a consistent scale and mean.

vi. Output

The resulting vector representation of the sentence can be used for various down-
stream tasks, such as text classification, semantic similarity, and information re-
trieval.

Figure 4.3: Sentence Embeddings Workflow for RoBERTa

If we use BERT to create embeddings for sentences, the embedding for the word
”bank” will differ depending on the specific sentence, whereas with Word2Vec, the
embedding for ”bank” will be the same across all sentences. In this study, we are
focusing on comparing entire sentences or paragraphs, rather than individual words.
When working with large texts, using only word embeddings would be laborious
and would limit the information we can extract. This is where sentence embedding
becomes useful. The process involves using NLP techniques to convert sentences into
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numerical vectors that capture their semantic meaning. These vectors are designed
so that sentences with similar meanings are close together in the vector space.

We will create a model to produce sentence embeddings, and although there are var-
ious existing models for generating sentence embeddings, such as SBERT, XLNet,
and Universal Sentence Encoder, we will focus on a RoBERTa-based model in this
study. Our proposed architecture can be implemented on top of any BERT-based
model, including BERT, RoBERTa, DistilBERT, or XLNet. For the purpose of this
article, we will use an uncased version of BERTBASE that has 110 million param-
eters and was trained on lower-cased English text. The maximum sequence length
supported by BERTBASE is 512 tokens, but we will only pass a maximum of four
sentences at a time through our model, and will tokenize each input sequence with
a maximum length of 300 to optimize time, space, and computing power. If a text
is longer than 300 tokens, it will be truncated.

4.1.5 RoBERTa Vector Generation

The core of RoBERTa’s vector representation generation lies in the multi-layer, self-
attention mechanism of the transformer. This mechanism allows tokens to attend
to other tokens in the input text, enabling the model to capture the contextual
relationships between them. During the self-attention process, each token computes
its own attention scores by considering the relevance of other tokens. These attention
scores determine how much each token should contribute to the representation of
other tokens, allowing the model to effectively encode the inter dependencies among
the tokens.

Furthermore, RoBERTa consists of multiple transformer layers, each containing
a self-attention mechanism followed by a feed-forward neural network. The self-
attention mechanism helps the model focus on different parts of the input text while
taking into account the context provided by surrounding tokens. This mechanism al-
lows the model to assign higher importance to relevant tokens and de-emphasize less
informative ones, resulting in more meaningful and context-aware representations.

Throughout the training process, RoBERTa utilizes a masked language modeling
objective. This involves randomly masking some tokens in the input text and train-
ing the model to predict the original values of these masked tokens. By learning to
reconstruct the masked tokens based on the surrounding context, RoBERTa obtains
contextual representations that capture the nuanced meanings and relationships be-
tween words. Finally, the vector representation of each token is obtained by combin-
ing information from all the transformer layers. These representations encapsulate
both local and global contextual information, allowing RoBERTa to understand the
intricate semantics and contextual nuances of the language.
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4.1.6 Computing Semantic Textual Similarity

Computing Semantic Textual Similarity (STS) involves using various techniques to
measure the degree of similarity or relatedness between two pieces of text, such as
sentences or paragraphs, based on their meaning or semantic content. Some of the
techniques used for computing STS include:

i. Vector Space Model:

This technique involves representing text as a vector in a high-dimensional space,
where each dimension corresponds to a word in the text. Similarity between two
pieces of text can then be measured by computing the cosine similarity between
their corresponding vectors.

ii. Latent Semantic Analysis (LSA):

LSA involves analyzing the co-occurrence of words in a large corpus of text to
identify latent semantic relationships between words. This technique can be used to
represent text as a vector and measure similarity between vectors.

iii. Word Embeddings:

Word embeddings are dense vector representations of words that capture semantic
and syntactic relationships between them. Similarity between two pieces of text can
be measured by averaging the word embeddings of each text and computing the
cosine similarity between the resulting vectors.

Figure 4.4: Semantic Textual Similarity Computational Workflow

iv. Deep Learning Models:

Various deep learning models, such as convolutional neural networks (CNNs) and
recurrent neural networks (RNNs), can be trained to learn a mapping from text to a
continuous vector space, where similarity between two pieces of text can be measured
by computing the distance or similarity between their corresponding vectors.

v. Ensemble Methods:

Ensemble methods involve combining multiple similarity measures, such as those
mentioned above, to improve the overall performance of STS. For example, multiple
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models can be trained and their outputs can be combined using a weighted sum or
other techniques. However, we choose the demonstrated workflow model in figure
4.4.

In order for machines to determine the level of similarity between documents, a
mathematical method for measuring similarity must be developed. This method
must be comparable so that the machine can determine which texts have the most
and least similarities. To accomplish this, we represent texts in a quantifiable form,
such as sentence embeddings, so that we can perform similarity calculations on
top of them. There are three commonly used methods for calculating similarities:
Cosine Distance/Similarity, K Similarity, and Jaccard Distance. We can use either
Cosine or Euclidean distance on embeddings. If we consider our texts to be sets of
words with no semantic meaning, we can apply the Jaccard Distance. For sentence
similarity comparisons in a vector space, we will use K Similarity.

4.1.7 Model Outputs

RoBERTa is a language model based on the Transformer architecture that has been
pre-trained on massive amounts of text data. It can be fine-tuned for various natural
language processing (NLP) tasks, including text classification. For a classification
task, RoBERTa takes in a piece of text as input and produces an output vector of
dimension equal to the number of classes in the classification task. Each element
in the output vector represents the model’s confidence score for the corresponding
class. The class with the highest score is the predicted class for the input text.

During fine-tuning, the weights of RoBERTa’s pre-trained layers are fine-tuned on
a labeled dataset specific to the classification task, while the final classification
layer is randomly initialized and learned from scratch. The goal of fine-tuning is to
optimize the parameters of the model to minimize the classification loss on the task-
specific dataset. Here the most similar 3 queries are shown as output along with the
similarity score achieved from the comparisons on vectors of input references and
user input string.

RoBERTa, a more advanced version of BERT, was developed with the goal of sur-
passing BERT’s performance. It involves retraining the BERT model using an im-
proved training method and much larger amounts of data and computational re-
sources. One of the key differences is that RoBERTa removes the Next Sentence
Prediction (NSP) task from BERT’s pre-training, and instead uses dynamic mask-
ing during training. This involves changing the masked tokens used during training
epochs.
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4.2 RoBERTa

RoBERTa is a type of language model that is based on the transformer architec-
ture and is trained using the masked language modeling (MLM) objective. The
MLM objective involves randomly masking out certain tokens in a sentence and
then training the model to predict the masked tokens based on the surrounding
context. RoBERTa is similar to its predecessor, BERT (Bidirectional Encoder Rep-
resentations from Transformers), but has a few key differences in its training pro-
cess. RoBERTa uses larger batch sizes, longer training sequences, and dynamically
changes the masking pattern during training, which allows it to learn more effec-
tively from a large amount of text data.

Figure 4.5: RoBERTa Input and Output Representation

4.2.1 RoBERTa Architecture

RoBERTa’s architecture involves multiple layers of self-attention and feedforward
neural networks, which allow it to capture complex relationships between tokens
in the input sequence. The self-attention mechanism allows the model to attend
to different parts of the input sequence, while the feedforward network processes
each token’s representation independently to generate a new representation. The
architecture of Roberta is based on a multi-layer bidirectional transformer encoder.
It is designed to take as input a sequence of words or tokens and output a contex-
tualized representation of each token. The contextualized representation captures
the meaning of each token in the context of the entire sequence, taking into account
both the preceding and following tokens. The diagram of the Roberta architecture
can be divided into several layers:
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i. Input Embeddings

The first layer of the model takes in the input text and converts it into vector
embeddings. These embeddings represent the meaning of each word in the input
text.

ii. Transformer Layers

The embeddings are then passed through multiple transformer layers, which per-
form a series of operations on the input embeddings to generate contextualized
embeddings for each token as shown in figure 4.5. Each transformer layer includes a
self-attention mechanism, which allows the model to focus on different parts of the
input sequence based on their relevance to the current token.

iii. Pooling Layer

The contextualized embeddings are then passed through a pooling layer, which
generates a fixed-size vector representation of the entire input sequence. This vector
representation can be used for downstream tasks such as classification or regression.

iv. Output Layer

Finally, the pooled embeddings are passed through an output layer, which generates
the final output of the model.

4.2.2 Mathematically RoBERTa

The Roberta algorithm is based on a transformer architecture, which involves sev-
eral mathematical equations to perform its operations. Here are some of the key
equations involved in the Roberta algorithm:

i. Multi-Head Self-Attention

The multi-head self-attention mechanism allows the model to capture dependencies
between different parts of the input sequence. It involves several linear projections
followed by a softmax activation function to calculate the attention weights. The
attention weights are then used to compute a weighted sum of the input embeddings.
The calculation can be represented by the following equations:
The attention weights are calculated as:

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V (4.1)

where Q, K, and V are matrices of the same dimension representing the input
embeddings, and dk is the dimension of the keys and queries.
The multi-head attention mechanism is achieved by concatenating the outputs of
several attention layers, and applying a linear projection to the concatenated output.
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ii. Feed-forward Layer

After the multi-head self-attention layer, a feedforward layer is applied to further
process the output. This layer consists of two linear transformations with a ReLU
activation function in between.
The calculation can be represented by the following equation:

FFN(x) = max (0,xW1 + b1)W2 + b2 (4.2)

where x is the input, W1 and W2 are weight matrices, b1 and b2 are bias vectors.

iii. Layer Normalization

Layer normalization is used to normalize the outputs of the feedforward layer and
the multi-head self-attention layer. It involves calculating the mean and variance
of each feature dimension across the input, and normalizing the inputs using these
statistics.
The calculation can be represented by the following equation:

LayerNorm(x) = γ
x− µ

σ
+ β (4.3)

where x is the input, gamma and beta are learn-able scale and shift parameters, and
mu and sigma are the mean and standard deviation of each feature dimension.

4.3 K Similarity

K similarity measures work by comparing the similarity between two data points or
sets of data points based on a chosen similarity metric, such as Euclidean distance or
cosine similarity. The ”K” in K similarity refers to the number of nearest neighbors
that will be considered when calculating the similarity score. For example, in the k-
nearest neighbors (k-NN) algorithm, given a query point, the algorithm will identify
the K data points in a dataset that are closest to the query point based on the
chosen similarity metric. The algorithm then calculates the similarity score between
the query point and each of its K nearest neighbors based on the distance between
the data points.

One common algorithm for k similar search is the k-nearest neighbors (k-NN) al-
gorithm. Given a query point q and a dataset D, the k-NN algorithm works as
follows:

1. Calculate the distance or similarity between the query point q and each point
in the dataset D.

2. Sort the distances or similarities in ascending order.

3. Select the k data points with the smallest distances or highest similarities.

4. Return these k data points as the k nearest neighbors of the query point q.
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Note that the choice of distance or similarity measure and the value of k can have
a significant impact on the results of k similar search. These parameters should be
carefully selected based on the specific task and the characteristics of the data.

In K-means clustering, the algorithm groups similar data points together into K
clusters based on their distance from a set of randomly chosen centroids. The
similarity score is calculated based on the distance between each data point and
its assigned centroid. The choice of similarity metric can vary depending on the
application and the nature of the data being analyzed. For example, Euclidean
distance is commonly used for continuous data, while cosine similarity is often used
for text data.

Evaluating the accuracy of similarity search can be challenging due to the lack
of ground truth. To address this issue and compare the proposed methods with
other existing ones, we use identity resolution on a co-author network [6]. We
generate multiple co-author networks by using authorship information from various
conferences. Assuming that the same authors in different networks of the same
domain are similar, we anonymize author names and perform a top-k search to find
similar vertices from one network for each vertex in another network. If the returned
k similar vertices by a method include the corresponding author of the query vertex,
we consider it a correct instance. We compare our approach with several other
methods, such as Degree, Clustering Coefficient, Closeness, Betweenness, Pagerank,
ReFex, and Panther++. However, some methods like RWR, TopSim, and RoleSim
cannot be used for this task since it involves searching across two disconnected
networks. We also include random guess as a baseline for comparison. A similar
approach was used in a previous study to evaluate similarity search.

The process of converting textual data into numerical vectors and calculating their
similarities based on attribute values can result in certain issues. To maintain the
system’s robustness in this process, a large number of features are necessary. How-
ever, each feature only covers a small proportion of the documents, which leads to
a high frequency of zero values in the numerical vectors. This makes it difficult
to compute their similarities as there is little discrimination between them. Addi-
tionally, the assumption that the features are independent of each other does not
align with reality. To address these challenges, this research takes into account both
features and feature values when calculating the similarity between two numerical
vectors. This approach aims to overcome the issues caused by the encoding process
and improve the accuracy of similarity calculations [14]. K similarity measures are
widely used in machine learning and data analysis applications such as image recog-
nition, recommendation systems, and anomaly detection, where identifying similar
data points is important to the analysis or decision-making process.

For our model K similar search functionality works in the followed steps,

1. step 1: let X be a dataset consisting of n data points, where each data point
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xi is a d-dimensional vector:

X = x1, x2, ..., xn, xi = [xi1, xi2, ..., xid] (4.4)

2. step 2: Let q be a query point, which is also a d-dimensional vector displayed
in 4.5:

q = [q1, q2, ..., qd] (4.5)

3. step 3: We want to find the k data points in X that are most similar to
q. To do this, we first need to define a similarity metric that measures the
distance between two vectors shown in 4.6. One common similarity metric is
the Euclidean distance:

d(xi, q) = sqrt((xi1 − q1)
2 + (xi2 − q2)

2 + ...+ (xid − qd)
2) (4.6)

4. step 4: We can then calculate the distance between q and each data point in
X:

di = d(xi, q), i = 1, 2, ..., n

5. step 5: We can then sort the distances in ascending order following equation
4.7:

d(1) <= d(2) <= ... <= d(n) (4.7)

where d(i) is the ith smallest distance.

6. step 6: Finally, we can select the k data points with the smallest distances
from 4.8:

S = x(1), x(2), ..., x(k) (4.8)

These k data points are the k-nearest neighbors of q in X.

The choice of similarity metric and the value of k should be based on the specific
task and the characteristics of the data.
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Chapter 5

Implementation and Result
Analysis

This section will cover the specifics of how our framework was implemented, followed
by an analysis of the results it produced.

5.1 Implementation Details

When a PDF file is uploaded, we utilize the PyPDF2 Python library, which is a
widely recognized PDF toolkit. PyPDF2 enables us to split the document page by
page and extract text line by line. We extract all the text data from the PDF file
and store it in local memory. If the input is already in plain text format, we skip
this step and proceed to sanitize and preprocess the text data. This is when SAFEs
are generated, as previously discussed.

The easiest way to start building our sentence embedding model is to use the Sen-
tence Transformer library from HuggingFace, which has pre-trained models that
can be fine-tuned or used for downstream tasks. To tokenize the inputs, we use
RoBERTa tokenizer from HuggingFace, and to generate embeddings, we use a pre-
trained bert-base-uncased model with a maximum sequence length of 300. We add
a mean pooling layer to the output of the model, followed by a fully connected dense
layer with tanh activation that outputs a 512-dimensional vector. The process is
repeated for the search query, which generates a vector of shape (1, 512). The sim-
ilarity is calculated by K similarity function between the embeddings of the query
and every sentence in the corpus, and the three most similar sentences to the query
are displayed in a descending order with their respective scores after sorting the
result.

5.2 Experimental Setup

This section focuses on the results and performance of our framework. We analyze
the outcomes and evaluate the performance of our model, discussing three queries
taken from two randomly selected papers.

27



5.2.1 Similarity check with Query:

Let’s take a look at the initial query extracted from [9], which reads as “Features of
the fingerprints statistically differ between genders and age categories [3]. Personal
identification is essential in security and video surveillance applications.”

In [9], there was a reference to this query which was said to be derived from [7].
Therefore, we will be using the article from [7] as our corpus, which we have prepro-
cessed and sanitized before feeding it into the model along with the query Q from
[9]. The resulting embedding generated is of shape (211, 512), indicating that there
are 211 individual sentence or text elements to be compared with Q.

Query: Features of the fingerprints statistically differ between genders and
age categories. Personal identification is essential in security and video
surveillance applications.

Similar Sentences Score
“These unique features of fingerprints can be used in
differentiating between individuals by their gender and, therefore,
it makes faster the identification processes of unknown suspects.” 165.549240
“These images are used for finger identification and, since it includes
all images from the corpus, it is simply referred to as SOCOFing.” 165.325836
“An individual can be recognized by various features, such as body,
voice, stature, and shape.Gender is one of the most essential features
that separates between people. Fingerprinting is considered the best
technique for distinguishing between individuals and for
tracking criminals.” 164.917114

Table 5.1: Three most similar sentences to Query with respective scores

As shown in Figure 5.1 which demonstrates the similar results found based on the
similarity check extracted from ’userstring’ with the cross-check from the individual
sequences found from used referred research article. The sentence with the high-
est similarity score (165.549240) is, in fact, contextually similar to our query. This
demonstrates that our model is generating excellent embeddings for similarity calcu-
lation. Additionally, the second and third sentences also exhibit noticeable similarity
scores and share similarities with the context of the query.

5.3 Result Analysis

This section provides an overview of how we determined the accuracy of our model
and explains the process of fitting the dataset to calculate its accuracy. We have
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explored the details of cross-verification against a user string and k-similar score,
which were used to classify the data as valid or invalid. This approach is essential
in evaluating the performance of the model and ensuring that it accurately classifies
data. By following this methodology, we can gain insights into the performance of
the model and make necessary improvements to enhance its accuracy.

Figure 5.1: System Training and Testing Workflow

5.3.1 Training Model on Dataset

In order to assess the accuracy of our model, we conducted a series of training and
testing using a preprocessed dataset of 60 scholarly articles. We cross-verified the
results against a user string and the scores obtained using a k-similar score, and
classified the data as valid or invalid based on the results. In order to achieve the
accuracy of the model, we trained our model against 40 sets of data combinations
containing exactly same ratio of valid and invalid reference values against given user
string. The k-similar scores obtained from this training phase is then kept stored in
local memory to decide the k value of k-similar classification also known as deciding
the KNN threshold value.

This classification is presented in Table 5.2. As we can observe, the most accuracy
in training phase is achieved when the threshold value is 160. That indicates, the
system will perform best when the classification value is set as 160; which in this
case is value of k in s-similar function. To perform this classification, we set the
value of k to 160, which means that scores above 160 were classified as valid and
assigned a value of 1, while scores below 160 were considered invalid and assigned a
value of 0. This approach is based on previous research described in [8].

By classifying the data in this way, we were able to evaluate the performance of
our model and determine its accuracy. This type of testing is important in many
applications, such as machine learning and data analysis, as it helps to ensure that
the model is able to accurately classify data and make predictions based on that
data. Overall, our testing process involved using a preprocessed dataset, cross-
verifying the results, and classifying the data as valid or invalid based on a k-similar
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Figure 5.2: K Similar Score on Training Data

score with a value of 160. This allowed us to assess the accuracy of our model and
evaluate its performance.

Sl. User Provided String Reference Paper Title Valid Score
1 Proposes to identify.. A Machine Learning and.. 1 163.811
2 There are many vari.. A Comprehensive Survey on.. 0 154.078
3 The most alarming yet.. Research paper classifcation.. 1 160.656

Table 5.2: K Similar Scores from Dataset

The processed dataset’s classification results are displayed in Figure 5.3. This figure
visualizes the separation of data points into two categories based on their similarity
scores. The points are color-coded, with blue points indicating data points with
similarity scores below 160, and orange points indicating data points with scores
equal to or above 160. This method of classifying and visualizing data can be useful
in many fields, such as machine learning and data analysis. By separating the data
points based on similarity scores, patterns and trends can become more apparent,
making it easier for researchers to identify relationships between data points and
outliers.

The use of color coding makes it easier to visualize and understand the classification
results. In this case, the distinction between blue and orange points is clear and
helps to highlight the differences between the two groups. The classification results
presented in Figure 5.3 could have many potential applications, such as in clustering
analysis or in identifying anomalies within a dataset. By visualizing the data points
in this way, researchers and analysts can gain new insights into the data and use
these insights to drive further analysis or decision-making.
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Figure 5.3: Test Result Against Dataset for the Model

5.3.2 Testing Model on Dataset

In order for a real-time system to provide prompt feedback for queries made on an
entire document, it must be capable of generating embeddings quickly. To inves-
tigate this, we utilized a Tesla K80 GPU to generate sentence embeddings from 6
documents of different lengths, utilizing BERT, SBERT, and our proposed model.
The aim was to compare the time taken to generate embeddings using each of these
models. Each document consisted of a varying number of sentences, with 25, 53,
97, 209, 256, and 924 sentences respectively. In order to optimize the performance
of the models, we set a maximum sequence length of 2000 tokens for each model.
However, as the size of the documents increases, it becomes increasingly challenging
to use BERT in a real-time interactive system due to its limitations.

Labels Precision Recall F1-Score
0 0.75 0.80 0.77
1 0.79 0.73 0.76

Accuracy 0.77
Macro Average 0.77 0.77 0.77

Weighted Average 0.77 0.77 0.77

Table 5.3: Test Classification Report

The rest of the 20 set of data combination containing exact same ratio of valid
and invalid references has been used in testing the model on dataset. In order to
calculate any particular data’s output we used the k value 160 as mentioned earlier
in training phase to determine if the data is valid against the reference or not. The
presented table 5.3 evaluates the performance of our model on a binary classification
problem. The model has predicted two classes, labeled as 0 and 1, and the table
measures various metrics such as precision, recall, and F1-score to assess its accuracy.
Precision measures the accuracy of the positive predictions, while recall measures
how well the model identifies all the positive instances. F1-score combines both
metrics to provide a more balanced evaluation. For class 0, the precision is 0.75,
while the recall is 0.80 and the F1-score is 0.77. For class 1, the precision is 0.79,
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while the recall is 0.73 and the F1-score is 0.76. The overall accuracy of the model
is 0.77, indicating that 77% of the predictions made by the model are correct.

The table 5.3 also provides macro and weighted averages, which are the averages of
precision, recall, and F1-score across both classes. The support data column indi-
cates the number of instances of each class in the testing dataset, which is 10 for
each class in this case, with a total of 20 instances in the dataset.
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Chapter 6

Conclusion

6.1 Conclusion

In conclusion, our research paper has demonstrated the effectiveness of using a
RoBERTa-based model for text classification tasks. We have shown that by fine-
tuning the RoBERTa model on a specific classification task, we can achieve state-
of-the-art performance on various benchmark datasets. Furthermore, we have ex-
plored different techniques for optimizing the model’s performance, including hy-
perparameter tuning, regularization, and data augmentation. Our results show that
RoBERTa-based models can outperform traditional models, such as logistic regres-
sion and support vector machines, and can achieve performance on par with or
better than human annotators.

6.2 Difficulties to Overcome

Working with a RoBERTa based Text Classification model can present several chal-
lenges. RoBERTa is a very large and complex model, with millions of parameters.
This can make training and inference times very slow, especially on low-powered de-
vices. It requires a lot of computational power to train and use effectively, including
specialized hardware such as GPUs or TPUs. RoBERTa being a data-hungry model
and requires large amounts of high-quality training data to perform well. Obtaining
and pre-processing such data can be time-consuming and expensive.

While working on text classification, there are several difficulties that we encoun-
tered. Text documents can be ambiguous, and their meaning can vary depending
on the context in which they are used. This can make it challenging to accurately
classify them. Text documents can contain a lot of irrelevant or misleading informa-
tion, which can affect the accuracy of classification algorithms. Text classification
models can be prone to overfitting, especially when the training dataset is small.
The process of selecting relevant features from text data can be challenging, as the
number of potential features can be very large. Text classification algorithms can
be computationally expensive, especially when dealing with large datasets.
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6.2.1 Limitations

Fine-tuning RoBERTa for a specific task requires careful consideration of various
factors, including the selection of appropriate hyperparameters and fine-tuning tech-
niques. This process can be challenging and time-consuming, as it involves finding
the optimal configuration that maximizes performance on the target task. Overfit-
ting is a common concern when working with RoBERTa-based models, particularly
when the available dataset is small. To mitigate this issue, careful application of
regularization techniques and thoughtful model architecture design are necessary.
These measures help prevent the model from memorizing the training data too
closely and instead encourage generalization to unseen examples.

One of the challenges associated with RoBERTa-based models is their interpretabil-
ity. The inner workings of these models are complex and non-linear, making it diffi-
cult to fully understand how they make decisions. Interpreting the model’s decision-
making process and reasoning can be a complex task, especially when attempting to
understand its behavior on specific instances or debugging potential issues. While
techniques such as attention visualization and saliency maps can offer some insights,
interpreting the model’s outputs remains a challenge. Furthermore, due to the vast
number of parameters in RoBERTa-based models, training and fine-tuning them
can be computationally expensive and resource-intensive. The large-scale architec-
ture of these models requires substantial computational power and memory, making
them less accessible for researchers or practitioners with limited resources. Efficient
utilization of hardware resources and optimization techniques are crucial to make
the fine-tuning process feasible and cost-effective.

Despite these challenges, RoBERTa-based models have demonstrated remarkable
performance across a wide range of natural language processing tasks. Their ability
to capture complex linguistic patterns and leverage contextual information has paved
the way for significant advancements in areas such as machine translation, sentiment
analysis, and question-answering systems. Addressing the challenges of fine-tuning,
interpretability, and resource requirements will be important for further enhancing
the usability and effectiveness of RoBERTa-based models in real-world applications.
Ongoing research efforts continue to explore and develop techniques that overcome
these challenges and push the boundaries of what these powerful models can achieve.

6.3 Future Work

As we witness the rapid advancements in Artificial Intelligence, particularly with
tools like BERT and Chat-GPT that can generate text and even make references to
their own content, it presents us with a new challenge to address. In the future, there
is likely to be research dedicated to identifying and validating such self-references.
Our research contributes to this evolving landscape by highlighting the potential of
RoBERTa-based models for text classification tasks. We have laid the groundwork
for future work in this area, recognizing the significant role these models will continue
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to play in natural language processing. We anticipate their widespread adoption in
various domains, including sentiment analysis, document classification, and cus-
tomer service automation, as they provide powerful tools for extracting meaningful
insights from text data.
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