
A Quantum Algorithm for Pairwise Sequence Alignment

by

Md.Rabiul Islam Khan
22341057

Shaikh Farhan Rafid
20241034

Raya Jahan
18241012

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
January 2023

© 2023. Brac University
All rights reserved.



Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a third
party, except where this is appropriately cited through full and accurate referenc-
ing.

3. The thesis does not contain material which has been accepted, or submitted, for
any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Md.Rabiul Islam Khan
22341057

Shaikh Farhan Rafid
20241034

Raya Jahan
18241012

i



Approval
The thesis titled “A Quantum Algorithm for Pairwise Sequence Alignment” submitted
by

1. Md.Rabiul Islam Khan (22341057)

2. Shaikh Farhan Rafid (20241034)

3. Raya Jahan (18241012)

of Fall, 2022 has been accepted as satisfactory in partial fulfillment of the requirement
for the degree of B.Sc. in Computer Science on January 19, 2023.

Examining Committee:

Supervisor:
(Member)

Shadman Shahriar
Lecturer

Department of Computer Science and Engineering
Brac University

Co-Supervisor:
(Member)

Farhan Feroz
Lecturer

Department of Computer Science and Engineering
Brac University

Program Coordinator:
(Member)

Md. Golam Rabiul Alam, PhD
Associate Professor

Department of Computer Science and Engineering
Brac University

ii



Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

iii



Abstract
DNA Sequence Alignment is the process of aligning DNA sequences in order to identify
similarities between multiple sequences. The primary reason is to sort out the evo-
lutionary, functional or structural relationships within sequences. In our thesis, we are
trying to design a QuantumAlgorithm for finding the optimal alignments between DNA
sequences. This particular method of finding DNA sequences works by mapping the se-
quence alignment problem to a path searching problem through a 2D graph. The tran-
sition which converges to a fixed path on the graph is based on a proposed oracle for
profit calculation. In order to generate a graph and create random paths through it, we
searched and analyzed several QuantumWalk Algorithms to align sequences in contrast
to classical randomwalk search algorithms. Our primary goal is to align DNA sequences
and find the optimal alignments in a faster and efficient way with Grover’s search algo-
rithm. It is capable of quadratic speeding up of any unstructured search problem. The
intent here is to provide a comprehensive elaboration of how path searching algorithm
works on DNA sequences according to a quantum algorithm.

Keywords: Quantum Computing; Qubit; Superposition; Entanglement; Quantum Logic
Gate; Grover’s Search Algorithm; Quantum Fourier Transform; Quantum Random Ac-
cess Memory; DNA Sequence; Sequence Alignment
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Chapter 1

Introduction

Since themidst of the last century, there has been an issue to be addressed regarding clas-
sical computers, that are not sustainable to keep up the pace with emerging necessities
of speeding up the processing of information and rapid shrink in size of the computer
chip whichmay break the physical barrier. Due to these limitations, quantummechanics
is being considered as a powerful counterpart in the race of a future automaton to cope
up with the challenges [1].
The alignment of sequences; arranging sequences of DNA, RNA or Proteins to demon-
strate regions of similarity in the biological, structural and identical connections requires
adequate amount of information and time [2]. With the progress of quantum compu-
tation in this decade, the sequence alignment problem may be solved with nearly full
precision in contrast to previous probabilistic approaches.
Quantum mechanics harnesses the phenomenon of superposition, entanglement, tun-
neling and annealing to solve problems that take a tremendous amount of time [3]. Su-
perposition allows quantum bits to be represented with 0, 1 or both at the same time
[4]. If two systems are strongly co-related to each other then gaining the information of
one system will immediately provide the information for the other system through the
effect is quantum entanglement [5].

1.1 Problem Statement
Finding the optimal alignments of DNA sequences has been one of the most challeng-
ing aspects of Bio informatics. To find the optimal alignment, there have been several
computational approaches for both pairwise and multiple/global sequences. Although
several computational algorithms have been implemented to solve the sequence align-
ment problem, none of these approaches guarantee to sort out the optimal alignment in
the most efficient way.
These approaches include the naive approaches, slow yet working dynamic program-
ming approach and more efficient approaches for large databases such as heuristic and
probabilistic approaches.
With the progression of Quantum computers within this decade, the applications of
these computing machines are being tested theoretically. Particularly in bio informat-
ics, quantum algorithms are believed to solve some of the most complex computational
problems. Although DNA sequence alignment is a decade long computational challenge
and has been proven to be useful in many applications of bio informatics, there has not
been any significant approaches to develop a suitable Quantum algorithm in order to
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find the optimal alignment.
The most naive approach is to search the similarities between two sequences i.e. pair-
wise alignment. Needleman and Wunsch (1970) presented the inaugural approach with
dynamic programming which was meant for protein sequences [6]. However, because
of the running time and memory requirements, the dynamic approaches are proven to
be quite impractical.
Moreover, although heuristic and stochastic methods are more efficient, none of these
algorithms properly guarantee to sort out the optimal alignment. Also, running time
and memory requirements also have been an issue in case of the classical algorithmic
approaches.
In our thesis, we look forward to harness the computational capabilities of quantum
computers to solve the problem of aligning sequences. Rather than taking a probabilis-
tic approach that is quite practical for classical computing, we propose a deterministic
approach and provide a proper guarantee to figure out the optimal path. We can also be
hopeful to speed up the time required for figuring out a desired solution.

1.2 Research Objectives
The primary goal is to figure out the approach to build a proper quantumwalk algorithm
and generate a graph for multiple DNA sequences. Moreover, another important task
will be to sort out the best possible way to define ‘path score’ for the problem statement.
The focus is to implement a deterministic approach to figure out the optimal solution.
In order to do so, getting familiar with path search techniques thorough a graph is a
necessity.
Figuring out an approach to define path cost will be a major task. The optimal path
should correspond to the defined path score.

In summary, our purpose in this thesis is to build and implement a proper Quantum
Algorithm to solve sequence alignment problems in a deterministic manner.

The intention is to address the followings and recognize the best possible answers,

1. Build a proper two-dimensional graph for the problem statement.

2. Generate all possible paths through the graph on the basis of proposed path cost
and create best chances to find out the optimal solution.

3. Figure out a potential quantum algorithm that will be a proper selection for the
implementation of the DNA sequence alignment problem.

4. Improve the time and space complexity as well as increase the probability to find
out the optimal alignment. Compare the proposed approach with its classical
counterparts.

5. Measure time and memory requirements and analyze the benefits of quantum
computation in DNA sequence alignment problems.

2



Chapter 2

Quantum Computing

2.1 Quantum Computing
A comprehensive study of quantum computing is provided here [4]. Quantum com-
puters are information processing and computational machines that take advantages of
quantum theory phenomena. It can be immensely helpful for certain tasks where the
computing machines can considerably outperform even the most powerful supercom-
puters. Conventional computers, store data using ”bits”, which may be either 0s or 1s.
On the other hand, qubit (quantum bit), which is the core/fundamental component of a
quantum computer can be 0s or 1s at the same time by the property known as superpo-
sition. Although, after a qubit is measured it is either 0s or 1s. The initial state of the
qubit is presented with the probabilistic outcomes of the basis states.
To create a physical qubit, systems such as the spin of an electron or particle of light,
photon can be used which hold the properties and aspects of quantummechanics. Quan-
tum superposition allows these systems to be in several states (configuration) at the same
time. Through the phenomenon of Quantum entanglement, qubits are inextricably con-
nected to each other. As a result, a set of qubits can represent numerous states at the
same moment.

2.2 Qubit
The functionalities andmechanisms for processing and storing data differ when it comes
to quantum and classical computers. As we know, classical computers deal with bits; a
bit represents information in a two dimensional classical system, whose states are ex-
pressed by 0 and 1.
A qubit (quantum bit) is the quantum equivalent of classical bits. A qubit can be under-
stood by a two state system. We can demonstrate the system with the idea of classical
bits. In quantum computation, qubit is the basic unit of computation. Qubits can be
represented with a two-by-one matrix where qubits are two dimensional matrices with
entries that are complex numbers.
In quantum computing, we represent a qubit which is the unit of information, with “Bra-
ket” notation; 0 as |0⟩ and 1 as |1⟩; these are the computational basis of qubits.

|0⟩ = [10] (2.1)
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|1⟩ = [01] (2.2)

2.2.1 Quantum Superposition
Superposition plays the role in distinguishing between classical bits and qubits that can
be more than just a single system, a linear combination of states.
If we take a random qubit state and the entries are two complex numbers 𝑐0 and 𝑐1,

|𝜓⟩ = [𝑐0𝑐1
] (2.3)

Here, |𝜓⟩ = 𝑐0 |0⟩ + 𝑐1 |1⟩. Each of the systems should be a normalized vector,

||𝑐0||2 + ||𝑐1||2 = 1 (2.4)

In the similar way, n qubits are represented by a superpositional state vector in a 2𝑛
dimensional Hilbert space. A qubit can also be geometrically represented with Bloch
Sphere. Here, all the states are presented as projections where the basis states are or-
thogonal projections to each other.

2.2.2 Bloch Sphere
The pure/actual state of a qubit can be geometrically represented with a ”Bloch Sphere”;
a representation of all possible states of any two-level quantum mechanical system. For
a random qubit with superposition states |𝜓⟩ = a|0⟩ + b|1⟩,

a = cos ( 𝜃2) b = 𝑒𝑖𝜙 sin ( 𝜃2)

|𝜓⟩

𝑥

𝑦

𝑧

𝜙

𝜃

Figure 2.1: Bloch Sphere

2.2.3 Quantum Entanglement
Quantum entanglement is a special kind of state which can’t be expressed independently
with respect to other states. Quantum entanglement is considered as the most fascinat-
ing aspect of quantum computation [5]. In other notation, entangled states are not tensor
products of pure states which means these are not separable. In a combined system of
two qubits, entanglement provides a crucial role in quantum computation. Example of
entangled state can be,

1
√2

|00⟩ + 1
√2

|11⟩
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2.3 Quantum Logic Gate
Quantum logic gates are reversible, unitary operators and can be described with uni-
tary matrices. Quantum logic gates operate and manipulate on qubit systems. These are
the basic quantum circuits. Quantum logic gates are building blocks like their classical
counterparts, digital logic gates.
As, quantum logic gates are unitary operators, these gates preserve the inner product.
Unitary operators are described as unitary matrices, i.e., the inverse is same as the con-
jugate transpose.

2.3.1 Pauli Gates (X, Y, Z)
The Pauli gates are three Pauli matrices that are unitary, involutory and hermitian. These
gates operate on a single qubit.

𝑋 = [0 1
1 0] 𝑋 (2.5)

𝑌 = [0 −𝑖
𝑖 0 ] 𝑌 (2.6)

𝑍 = [1 0
0 −1] 𝑍 (2.7)

Pauli-X gate is known as a bit-flip as it acts like a classical NOT-gate. Pauli-Z gate per-
forms as a phase-flip gate. Pauli-Y maps |0⟩ to 𝑖 |1⟩ and |1⟩ to −𝑖 |0⟩.

2.3.2 Hadamard Gate
Hadamard gate is one of the most used quantum logic gates. Operating on a single qubit,
it can transform the qubit into a superposition of states. In case of computational basis,
Hadamard gate can create equal superposition states that are the orthogonal basis of
qubits; |+⟩ and |−⟩.

𝐻 = 1
√2

[1 1
1 −1] 𝐻 (2.8)

2.3.3 Controlled NOT (CX) gate

𝐶𝑁𝑂𝑇 =
⎡
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥
⎥
⎥
⎦

(2.9)

It is a two-qubit gate, one qubit acts as a control bit and the other qubit is the target bit.
If the controlled qubit is |1⟩, then the target qubit shall be flipped i.e., Pauli-X applied on
the qubit.
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2.3.4 Toffoli (CCX) Gate

𝐶𝑁𝑂𝑇 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.10)

Toffoli gate is three-qubit gate where first two qubits are control bits and the last qubit
is the target bit. If the first two qubits are in the state |1⟩, then, Pauli-X is applied on the
third qubit.

2.3.5 Rotational Gates
A qubit can be rotated by an angle 𝜃 in radians along the x-axis, y-axis, and z-axis which
can be called 𝑅𝑥, 𝑅𝑦, 𝑅𝑧 respectively using rotational gates. These gates function on the
edge of the Bloch Sphere. The matrices of 𝑅𝑥, 𝑅𝑦 and 𝑅𝑧 can be represented as below:

𝑅𝑥(𝜃) = [ 𝑐𝑜𝑠𝜃 −𝑖𝑠𝑖𝑛𝜃
−𝑖𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 ] (2.11)

𝑅𝑦(𝜃) = [𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 ] (2.12)

𝑅𝑧(𝜃) = [𝑒
−𝑖 𝜃2 0

0 𝑒𝑖
𝜃
2
] (2.13)

Furthermore, 𝑅𝑥, 𝑅𝑦 and 𝑅𝑧 can be extended to 2-qubit rotational gates which are 𝑅𝑥𝑥, 𝑅𝑦𝑦
and 𝑅𝑧𝑧 respectively. Along the x-axis, 𝑅𝑥𝑥 rotate two qubits by 𝜃 in radians which is
same for other two operators 𝑅𝑦𝑦 and 𝑅𝑧𝑧 along with y-axis and z-axis accordingly. The
matrices of 𝑅𝑥𝑥, 𝑅𝑦𝑦 and 𝑅𝑧𝑧 can be represented as below:

𝑅𝑥𝑥(𝜃) =
⎡
⎢
⎢
⎢
⎣

𝑐𝑜𝑠𝜃 0 0 −𝑖𝑠𝑖𝑛𝜃
0 𝑐𝑜𝑠𝜃 −𝑖𝑠𝑖𝑛𝜃 0
0 −𝑖𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

−𝑖𝑠𝑖𝑛𝜃 0 0 𝑐𝑜𝑠𝜃

⎤
⎥
⎥
⎥
⎦

(2.14)

𝑅𝑦𝑦(𝜃) =
⎡
⎢
⎢
⎢
⎣

𝑐𝑜𝑠𝜃 0 0 𝑖𝑠𝑖𝑛𝜃
0 𝑐𝑜𝑠𝜃 −𝑖𝑠𝑖𝑛𝜃 0
0 −𝑖𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

𝑖𝑠𝑖𝑛𝜃 0 0 𝑐𝑜𝑠𝜃

⎤
⎥
⎥
⎥
⎦

(2.15)

𝑅𝑧𝑧(𝜃) =
⎡
⎢
⎢
⎢
⎣

𝑒−𝑖𝜃 0 0 0
0 𝑒𝑖𝜃 0 0
0 0 𝑒𝑖𝜃 0
0 0 0 𝑒−𝑖𝜃

⎤
⎥
⎥
⎥
⎦

(2.16)
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2.3.6 Quantum Fourier Transform
Quantum Fourier transform (QFT) is a linear transformation on qubits. It is the quantum
analogue of Discrete Fourier transform. Quantum Fourier transform can be represented
as a unitary matrix. For each 𝜔 = 𝜔𝑁,

𝐹𝑁 = 1
√𝑁

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 … 1
1 𝜔 𝜔2 … 𝜔𝑁−1

1 𝜔2 𝜔4 … 𝜔2(𝑁−1)

1 𝜔3 𝜔6 … 𝜔3(𝑁−1)

⋮ ⋮ ⋮ ⋮
1 𝜔𝑁−1 𝜔2(𝑁−1) … 𝜔(𝑁−1)(𝑁−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.17)

2.4 Grover’s Algorithm
Grover’s algorithm is an unstructured searching algorithm to find out an element from
an unsorted array of length N in O(√𝑁) steps in contrast to classical algorithms which
require O(N) evaluations [7].

|0⟩⊗𝑛

𝐻
𝐻
𝐻

𝐻

...

𝑈𝜔

𝐻
𝐻
𝐻

𝐻

...

2 |0𝑛⟩ ⟨0𝑛| − 𝐼𝑛

𝐻
𝐻
𝐻

𝐻

...
...

Figure 2.2: Circuit of Grover’s Algorithm

The steps for Grover’s algorithm:

1. Apply the Hadamard Transform 𝐻⊗𝑛 ;

|𝜓⟩ = 1
√𝑁

𝑁−1
∑
𝑥=0

|𝑥⟩ (2.18)

|𝑥⟩ corresponds to the index register. Initialize the entire system into a uniform
superposition of states.

2. Apply the phase inversion oracle i.e., a unitary operator such that,

𝑈𝑤 |𝑥⟩ = (−1)𝑓 (𝑥) |𝑥⟩ (2.19)

Here, f(x) is the oracle function. f(x) = 1, when the data pointed by x is an item
that has been sought for.

3. Apply the Grover diffusion operator;

• Hadamard Transform 𝐻⊗𝑛

• Conditional phase shift operation, 2|0⟩⟨0| - I
• Hadamard Transform 𝐻⊗𝑛

4. Measure in the computational basis.

A slightly modified Grover’s search algorithm has to be implemented in this work to
find the maximum element only.
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Chapter 3

Feynman Path Integral

3.1 Classical Mechanics
The study of how bodies move when they are subject to external forces is what ’Classical
Mechanics’ deals with. Any force that can modify an object’s velocity, e.g: Sir Isaac
Newton described everyday events using his three laws of motion. The laws generally
describe the movement of anything, from a galaxy to a little particle. Those physical
laws, actually their mathematical representations are verified by experimentation, form
the foundation of mechanics [8]. The modern computer is based on the classical binary
bit, which are represented as 0 and 1. These bits are used as the single most fundamental
element of the computer. These bits make up the whole system of hardware, based on
the on-and-off logical operation in tiny chips in processors. These logical operations
are done in logical gates, such as OR, AND, XOR and XNOR. These gates have their
equivalent devices in quantum computing as well.

3.1.1 Action
Action is a method of finding equations of motions of any given physical system in the
classical domain of physics. It is defined in many ways. One of them is the definition of
what is known as a ”Functional”. These functional’s paved the abstract way-generating
path.

𝑆[𝑞(𝑡)] = ∫
𝑡2

𝑡1
𝐿 (𝑞(𝑡), ̇𝑞(𝑡), 𝑡) 𝑑𝑡

Here 𝑆 is a functional that takes an input function 𝑞(𝑡) of any system in-between time
𝑡1 and 𝑡2. Here 𝑞 denotes the generalized coordinates. The action here is the integral of
Lagrangian 𝐿 as per the evolution from 𝑡1 to 𝑡2, which takes 𝑞(𝑡) and ̇𝑞(𝑡).

3.1.2 Principle of Least Action
In everyday life, nature tends to minimize the energy of any system, or take the path
of least energy fluctuation. Such as the spherical shape of a bubble makes the surface
tension have the lowest potential; also when a light ray passes through two mediums of
varying density, it takes a not-so-straight path which ensures that is the optimal path.
With infinite suchmediums, one can approximate what is known as the Brachistochrone
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curve. This nature of moving bodies willing to take the most optimal path is known as
The Principle of Least Action.
On any system, let 𝐾 be the Kinetic energy and 𝑉 be the Potential energy. Lagrangian
𝐿 can be defined as (𝐾 − 𝑉 ). If the time elapses and the system moves from 𝑡0 to 𝑡1, the
Lagrangian 𝐿 can be integrated in that time with the integration measure 𝑑𝑡, which will
formulate the principle of least action. Here, action is represented by 𝑆. [9]

𝑆 = ∫
𝑡1

𝑡0
(𝐾 − 𝑉 )𝑑𝑡

𝑆 = ∫
𝑡1

𝑡0
𝐿𝑑𝑡

These integrals generate a path, one of the examples was given with light rays passing
through a density gradient. Mainly, these paths are continuous in nature, and thus lie in
the realms of continuous Quantum Mechanics.

3.2 Path Integral Formulation

Path integral formulation of quantum mechanics revolutionized the field of Physics.
Richard Feynman developed the mathematical tool in 1948 using the Principle of Least
Action of Classical Mechanics. The formulation of Path Integral removes the unique sin-
gle path notion of a path. It brings in a weighted sum of infinite possible paths, which in
the end gives the trajectory of a particle in a generalized coordinate world. Due to the
superposition nature of the quantum wave function, the “particle” can be formulated in
all possible paths from point 𝐴 to 𝐵 in time 𝑡𝑎 to 𝑡𝑏. Here 𝑡𝑎 and 𝑡𝑏 are the 2 endpoints of
the sliced time sequence.

𝑡𝑎 = 𝑡0 < 𝑡1 < .... < 𝑡𝑛−1 < 𝑡𝑛 < 𝑡𝑛+1 = 𝑡𝑏

9



Similarly to Classical Mechanics, the Lagrangian here is in exponential form due to the
formulation of the wave function with necessary constants such as i and ℏ, and it is
integrated with respect to 𝑑𝑥0, 𝑑𝑥1,...,𝑑𝑥𝑛 from −∞ to +∞.

∫
+∞

−∞
... ∫

+∞

−∞
𝑒𝑥𝑝 ( 𝑖

ℏ ∫
𝑡𝑏

𝑡𝑎
𝐿(𝑥(𝑡), 𝑣(𝑡))𝑑𝑡) 𝑑𝑥0...𝑑𝑥𝑛

The arguments of the Lagrangian 𝐿 are position variable 𝑥(𝑡) and velocity 𝑣 = ̇𝑥(𝑡). This
time integration is approximated by the totality of n terms. When n tends to infinity, it
becomes a functional [10].

3.3 Analogy of Path Integral in DNA Sequencing
The reason to demonstrate Richard Feynman’s path integral Formalism is that we will
be using quantum computation in regard to finding the optimal path that will sequence
genomes at an exponential rate. We will explain this in greater detail, however, to say
briefly, a quantum computer uses the Physics of Superposition of wave functions to
calculate many possible sequencing at the same time.
When two DNA sequences are aligned in an orthogonal form into a 2D grid, where the
selection of the path will determine the optimal sequence between the two genes; clas-
sical algorithms explore each possible path one by one to find the approximation of the
best possible path, or the local maxima of the hill. But as Richard Feynman formulated
in Path Integral, a particle traversing from point A to point B will take all the possible
paths at the same time; the quantum algorithm will also similarly traverse all the pos-
sible paths at the same time from the beginning to the end. This process will not find
the approximated, but the most optimal path based on some certain heuristic function
to calculate the path cost. With the allegory of the Hill Climb algorithm, if we use the
quantum approach, we can find the global maxima of the hill.
Another analogy can be made with the quantum algorithm which generates a path in a
discrete manner, which looks like a maze, where the traveler is starting from a position
and he has to find the way out of the maze by choosing the only path that exists. The
only path in this context is the path of highest profit, and the quantum nature can be
used in this situation to traverse all the paths of the maze at the same time and find the
way out in a nearly extremely efficient manner.
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Chapter 4

DNA Sequence Alignment

4.1 DNA Sequence
DNA sequences are sequences of nucleic acid that represent the order of the nucleotides.
The sequences of nucleic acid (DNA) consists of four characters or letters [11]. These
letters are four nucleotide bases, A, G, C and T representing Adenine, Guanine, Cytosine
and Thymine respectively. The necessities of the knowledge of DNA sequences vary
from biological discoveries to medical researches and to find out a faster method to align
sequences in order to accelerate bio-informatics research [12].

4.2 Sequence Alignment
Sequence alignment is the technique of analyzing and uncovering similarities between
biological sequences; in a variety of bio-informatics applications, sequence alignment
technique is used to align sequences of DNA, RNA, proteins and non-biological se-
quences as well [13]. The goal is to find an optimal sequence by calculating distance
cost between sequences.
Typically, when dealing with alignment problems using dynamic approaches, calculat-
ing edit/path distance between sequences, scores are assigned on the basis of distances.
The similarities between sequences are calculated with the assigned score which is de-
fined on the basis of a proposed method. The most general approach is to assign the
score ‘1’ in case of the same characters in the same index and assign ‘-1’ otherwise [6].
‘Hamming Distance’ is an approach to find the non-matching characters. For the fol-
lowing example, the calculated hamming distance is 2.

A T T C G G A
A T T G C G A

Another approach to find path score is ‘Edit Distance’ that calculates the minimum num-
ber of operations required to change one sequence to another so that the sequences
completely match each other. For example,

A T G A C C G T
A C G T C C G T

Here, the calculated edit distance is 2.
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4.2.1 Global, Local and Pairwise
The alignments can be pairwise, local or global. Global alignment algorithms are typi-
cally implemented to match sequences when a pair of sequences is entirely quite sim-
ilar [14]. Local alignment algorithms are useful when there are regions/local portions
of similarity [15]. Several dynamic approaches have been initiated to align global and
pairwise sequences. Pairwise alignment approaches are applied to align two query se-
quences whether these are local or global. Although, there are three methods for the
technique, word method, dynamic programming and dot matrix; we have extensively
focused on the dynamic approaches in our work [13].

4.2.2 Substitution Matrix
Substitution matrices are indicator of the frequency of the evolutionary changes in the
genomics structures i.e., nucleotide and protein sequences. In the context of sequence
alignment, these stochastic matrices are used to calculate identical similarities between
sequences [16].

4.2.3 Multiple Sequence Alignment
The extended approach to find out optimal sequence(s) from multiple query sequences;
termed as multiple sequence alignment. The goal is to incorporate more sequences at a
time rather than a couple of sequences at a time. Primary reasons are due to the hypo-
thetical assumptions, when two biological bodies are thought to be connected through
an evolutionary change. These approaches are typically computationally complex; lead-
ing to NP-hard optimization problems on frequent occasions [17].
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Chapter 5

Literature Review

The motivation of our work has been initiated from Keith and Kroese (2002) who pro-
posed a stochastic method to find the optimal alignment of DNA sequences [18]. The
approach is to create random paths through a graph. Each of the generated paths are
assigned with scores and are used to update the transition probabilities of the Markov
chain. When this process converges into a path it will correspond to an optimal or
sub-optimal sequence. The update of the transition probabilities is based on the Cross
Entropy Method. The minimization of Cross Entropy distance between two distribu-
tions dynamically updates the transition probabilities.
Although, the primary intention was to implement a stochastic/probabilistic approach
with quantum walk algorithms, we have modified our work to be deterministic. The
goal is to find the maximum element/profit from the generated paths. We have referred
to Ahuja and Kapoor (1999) who demonstrated a modified version of Grover’s search al-
gorithm to find the maximum element only [19]. Grover’s algorithm, can quadratically
speed up the unstructured search problems with 𝑂(√𝑁) for an array of length N, was
introduced in 1996 by Lev Grover [7].

5.1 Works on Sequence Alignment
DNA sequence alignment algorithms have been built and implemented to both pairwise
and global alignments and has been a topic of extensive studies. The algorithms can be
classified as deterministic, stochastic and heuristic. Needleman and Wunsch (1970) pre-
sented a dynamic approach for global alignments to sort out protein sequences which
was the first approach to find sequence alignments [6]. Similar approach for local align-
ments have been initiated by Smith and Waterman (1981) [20]. The dynamic algorithms
can guarantee to find optimal paths on the condition of defining a good scoring function
which is quite unsuitable for larger sequences. These algorithms create a matrix, where
each cell represents the similarity score of the sub-string of the first sequence ending
at that row and the sub-string of the second sequence ending at that column. The al-
gorithm then fills in the matrix by comparing each residue of the two sequences and
scoring their similarity.
The Gibbs sampler approach proposed by Lawrence, Altschul, Boguski, Liu, Neuwald,
and Wootton (1993) presented a stochastic approach [21]. Stochastic approach works
better than dynamic approach for larger datasets but there remains the probability of
returning an optimal or suboptimal path. Although, we are primarily focusing on deter-
ministic approaches to address our problem statement. Stochastic approaches are quite
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similar to heuristic approaches.
Heuristic approach may also return a suboptimal path. These algorithms define problem
specific search techniques in contrast to the stochastic approaches. Pevzner (1992) pre-
sented some examples and spotted the differences between the dynamic and heuristic
approaches [22].

5.2 QuantumWalk Algorithm
To understand how fundamental algorithms such as Grover’s algorithm can be imple-
mented on path searching problems as well as on graphs, we have gone through several
articles on quantumwalk algorithms. Venegas-Andraca (2012), presented the theoretical
foundations as well as the advancement of discrete and continuous quantum walks in
his comprehensive review of quantum walk algorithms [23].
Lovett, Cooper, Everitt, Trevers and Kendon (2010) demonstrated that along with con-
tinuous quantum walk, discrete quantum walks are universal for quantum computation
as discrete quantum walk is able to implement universal gate sets [24]. Moreover, their
proposed set of components provide perfect state transfer for discrete time quantum
walk.
To get an overview of quantum walk on graphs, we have referred to Aharonov, Ambai-
nis, Kempe and Vazirani (2001) [25]. They generalized random walk on finite graphs for
various aspects of quantum computation.

5.3 Recent Works
Sanchez, Salami, Ramirez and Valero (2006) presented a micro-architecture performance
analysis of recognized biological applications in order to compare and align sequences
[26]. They adopted a methodology based on simulation and performed detailed work-
load characterization of the applications regarding sequence comparison as well as the
alignment task.
Other works include, Tulsi (2008) demonstrating a quantum algorithm to find an item
fromN items in O(√𝑁 ln𝑁) steps in contrast to previouswalk algorithmswith O(√𝑁 ln𝑁)
complexity [27]. The proposed improvement is O(√ln𝑁) and achieved by controlling
quantum walk on lattices using an ancilla qubit.
Dürr et all. (2006) [28], provided tight lower and upper bounds for bounded error quan-
tum query complexity of connectivity, strong connectivity, single source shortest path
and minimum spanning tree problems. They showed that for a matrix model the quan-
tum query complexity of a single source shortest path problem is O(𝑛3/2 log2 𝑛) for an
array model the complexity turns out to be O(√𝑛𝑚 log2 𝑛).
Moreover, in the survey paper of Santha (2008), intuitive treatment has been given of the
discrete time quantization of classical Markov chains and stated that, Grover’s search
algorithm along with other quantum walk algorithms by Ambainis et al. can be the
quantum analogues of classical search problems [29]. We relied on Ambainis (2003) to
get an overview of quantum walks and the potential applications [30].
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5.3.1 Quantum Algorithms for Aligning Sequences
With the progression of a fully performing quantum computer, the sequence alignment
problem is being addressed over the last couple of years. A pattern matching algorithm
based on the hamming distance named QiBAM has been proposed by Sarkar et al.(2019)
which can provide quadratic speedup and can be implemented using Grover’s algorithm
[31].
Quite different from the previous approaches, an updated approach of connecting dot-
matrix plotting and quantum pattern recognition has been initiated by Prousalis (2019)
in order to improve the process of aligning sequences [32].
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Chapter 6

Framework

In order to address the sequence alignment problem, this work is focusing on finding
out the optimal sequence of any pairwise alignment; dealing with a pair of sequences in
contrast to global alignment which deals with a large number of sequences in a database.
The proposed method starts with building a proper graph. For a pair of sequences, a
2-Dimensional graph is required to be implemented. The method may refer to path
searching algorithms with the basis of calculated path cost/profit.

6.1 2D Graph
The method to build a proper graph has been initiated from Needleman and Wunsch
(2002) [6]. A generated edit graph for a pairwise sequence alignment is demonstrated
below. If we have two sequences of DNA,

A T G G T C A G C
A C G G T C

Here the lengths of the sequences are 9 and 6 respectively. Therefore, the generated 2D
array will have total of (10×7) = 70 nodes.

A T G G T C A G C

C

T

G

G

C

A

Figure 6.1: Edit graph
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6.2 Generate Paths through the Edit Graph
After building a graph for the problem statement, next step is to generate paths through
the graph. Here, every path corresponds to an alignment. But not all paths may corre-
spond to the optimal alignment.
If the optimal path is figured out through ‘Edit Distance’ (Minimum number of oper-
ations required to change one sequence to another so that the sequences completely
match each other), the paths with the lowest ‘Edit Distance’ (lowest number of mis-
matched characters) will correspond to the optimal path generated through the graph.
The transition (path) from one node to another should be either horizontal (right), ver-
tical (below) or diagonal (right-below).

Figure 6.2: Possible transitions from a node

For the sequences in section 6.1, following figure demonstrates a generated optimal path
though the graph which corresponds to the optimal alignment.

A T G G T C A G C

C

T

G

G

C

A

Figure 6.3: Optimal path generated through the edit graph

The marked path of the above graph corresponds to the following alignment,

A T G G T C A G C
A C G G T C _ _ _

The gaps correspond to “indel”. Mismatch happens when characters of the same index
do not match. The “edit operation” indicates three operations in case of mismatches or
indels.
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• Substitution is required for mismatches,

• Insertion is required in case of indels.

• Deletion is the process of removing a character.

The goal here is to minimize the differences between two sequences or in other words,
generate a path through the graph with the minimum number of mismatches possible,
considering all possible paths/combinations possible.
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Chapter 7

Organization

7.1 Path Cost/Profit
In order to find out the optimal path, a proposition has been made on how the path
cost/profit should be calculated. The particular method works by assigning cost/profit
to each of the edges. In this thesis, instead of cost, profit shall be calculated based on the
proposed oracle. The path with the highest profit shall correspond to the optimal path.
A single block of the graph/grid shall act as a unit for profit calculation. For the following
figure,

B′

B

x

x

x+y x+z

A
A′

Figure 7.1: Possible path profits for single transition

For the figure above,

• x, y, z > 0

• z > y

• {A, A′, B, B′} ∈ {A, G, C, T}

Here,

1. If, transition from (A, A′)→ (B, B′) and B = B′, then profit should be x+z.

2. If, transition from (A, A′)→ (B, B′) and B ≠ B′, then profit should be x+y.

3. If, no transition from (A, A′)→ (B, B′), then profit should be x.

Although, x, y and z can be any natural number, x, y, z ∈ ℕ with respect to the above
conditions, throughout this thesis work, the value of x, y and z shall be 1, 1, 2 respectively
to ensure simplicity in circuit building.
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7.2 Quantum Implementation
To demonstrate the transition in a single block, a composite state of two qubits shall be
used; the first qubit represents a horizontal transition and the second qubit represents a
vertical transition. Here, the orientation can be vice versa as well.

Composite State Transition Profit Direction

|00⟩ No Transition 0 •

|01⟩ Vertical (Lower) x ↓

|10⟩ Horizontal (Right) x →

|11⟩ Diagonal (Lower Right) x+y/x+z ↘

Table 7.1: Quantum representation of Transitions

7.2.1 Qubit Size
Number of Transitions

• If, there are a pair of sequences, whose length are m and n respectively then at
most (m + n) transitions are required.

• If, m = n, then at least {(m + n) / 2} transitions are required.

• If, m ≠ n and m > n, then at least {n + (m - n)} transitions are required.

• If, m ≠ n and m < n, then at least {m + (n - m)} transitions are required.

If, t transitions are required to sort out the optimal path, t pairs of qubits or, simply 2t
qubits are required to demonstrate every transitions.

Profit, Horizontal and Vertical Nodes

If there are a pair of sequences, whose length are m and n respectively then maximum
profit should be,

• 3n or 3m, if m = n.

• 3n + (m - n), if, m ≠ n and m > n.

• 3m + (n - m) otherwise.

The number of qubits required for profit calculation should be the minimum number of
bits required for the binary representation of the maximum profit.
For the demonstration of horizontal and vertical shifts/transitions, number of qubits re-
quired shall be the minimum number of bits required to represent m and n.
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The Letters in the Sequence

As, there can be four separate letters, A, T, G and C in the sequences, two qubits may
suffice for the quantum representation. Although, there are no formal conventions, the
table below can be followed to signify biological properties of DNA.

Composite State Letter

|00⟩ A

|01⟩ C

|10⟩ G

|11⟩ T

Table 7.2: Quantum representation of Nucleotide Bases

Matching of Two Characters

It is required to match two characters in order to calculate profit. For instance, in Figure
6.1, it is needed to be verified if, B = B′ due to the transition from (A, A′) → (B, B′) and
profit would be incremented based on the matching of the characters.
As, each of the characters (Nucleotide Bases) are represented with two qubits, two more
qubits are required to act as control qubits along with another qubit which may act as
the target qubit. If the target qubit is |1⟩ then the characters match with each other.
If we take two 2-qubit sequences a and b, Toffoli gates that flips the target bit only when
both the control states are either |11⟩ or |00⟩, are used in the following circuit to represent
the matching process. In other words, the target qubit will be |1⟩ if and only if both the
control qubits are |1⟩. Also, the control qubits would be |1⟩ if a = b.

|𝑎0⟩
|𝑎1⟩
|𝑏0⟩
|𝑏1⟩

|𝑐𝑜𝑛𝑡𝑟𝑜𝑙0⟩

|𝑐𝑜𝑛𝑡𝑟𝑜𝑙1⟩

|𝑡𝑎𝑟𝑔𝑒𝑡⟩

Figure 7.2: Quantum circuit to match two 2-bit numbers
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7.3 Quantum Random Access Memory
In case of a classical computer, a RAM or Random Access Memory randomly addresses
2𝑛 memory cells with n bits. A qRAM or quantum Random Access Memory can address
the quantum superposition of 2𝑛 memory cells with n qubits. The concept of qRAM has
been proposed by Giovannetti, Lloyd and Maccone (2008) [33].
The proposed qRAM accesses memory addresses coherently using quantum superposi-
tion. To access a superposition of memory cells, the superposition of addresses must be
inherited by an address register ‘a’ and through a superposition of data inherited by a
data register ‘d’, qRAM passes the superposition of data to the quantum computer which
needed to access the superposition of memory cells.
If we have two registers; an address register |𝑗⟩ and a data register |𝐷𝑗⟩,

∑
𝑗
𝜓 |𝑗⟩𝑎 𝑞𝑅𝐴𝑀⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃯ ∑

𝑗
𝜓 |𝑗⟩𝑎 |𝐷𝑗⟩𝑑 (7.1)

Here,∑𝑗 𝜓 |𝑗⟩𝑎 corresponds to the superposition of addresses. The data 𝐷𝑗 is stored in the
jth address/location of the memory cell.

|𝑗⟩ → |𝐷𝑗⟩ (7.2)

To match sequences, two separate qRAM’s are needed in order to generate specific char-
acters/letters from the pair of DNA sequences and should correspond to a specific ad-
dress/index of the address register.
For example considering the following pairs of addresses and data,

0 → 1 (01 in binary)
1 → 3 (11 in binary)

The corresponding qRAM is as follows,

|𝑎𝑑𝑑𝑟𝑒𝑠𝑠⟩ 𝐻
|𝑑𝑎𝑡𝑎0⟩
|𝑑𝑎𝑡𝑎1⟩

𝑋 𝑋

Figure 7.3: Sample qRAM
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Chapter 8

Circuit and Algorithm

8.1 Path Generation and Index Calculation
By applying Hadamard gate to the pairs of transition qubits, we can generate all possible
paths through the property of quantum superposition. The path profits are calculated
simultaneously along the process.
Total number of steps required are equal to the number of total pair of transition qubits
(One qubit corresponds to the horizontal shift and another corresponds to the vertical
shift). Path generation for a single step is shown in figure 8.1.
Here, to match two characters (horizontal and vertical) in case of any lower diagonal
transition, it is required to keep track of their particular indexes. We are using two
counters which increments along with every corresponding transition.

|𝑠𝑡𝑒𝑝ℎ𝑜𝑟𝑧0⟩ = |0⟩

|𝑠𝑡𝑒𝑝𝑣𝑒𝑟 𝑡0⟩ = |0⟩
𝐻

𝐻

|𝑐𝑜𝑢𝑛𝑡𝑒𝑟ℎ𝑜𝑟𝑧𝑚⟩ = |0⟩

|𝑐𝑜𝑢𝑛𝑡𝑒𝑟ℎ𝑜𝑟𝑧𝑚−1⟩ = |0⟩
...

|𝑐𝑜𝑢𝑛𝑡𝑒𝑟ℎ𝑜𝑟𝑧0⟩ = |0⟩

|𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑣𝑒𝑟 𝑡𝑛⟩ = |0⟩

|𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑣𝑒𝑟 𝑡𝑛−1⟩ = |0⟩
...

|𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑣𝑒𝑟 𝑡0⟩ = |0⟩

+1

+1

Figure 8.1: Path generation and counter incrementation for a single step

8.2 Quantum Adder Circuit
Although there are several methods and circuits for addition operations in quantum
computers, we are referring to Draper (2000) [34].
Primary reason behind choosing this approach is for being convenient in terms of qubit
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size reduction and deduction of the necessity of carry bits. This method can be imple-
mented using the concept of Quantum Fourier Transform (QFT).

|𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐵𝑖𝑡⟩

|𝑞𝑛⟩

|𝑞𝑛−1⟩

|𝑞0⟩

…
𝑄𝐹𝑇

…

𝑅0

…
𝑅𝑛−1

…

𝑅𝑛

… …
𝑄𝐹𝑇−1

…

Figure 8.2: Quantum adder circuit

To add two numbers, the algorithm works as follows:

1. Apply QFT on any of the numbers.

2. Apply controlled phase gates (Transform Addition) on the transformed qubits.
The rest of the qubits should act as control bits. Here, phase gates should operate
as conditional rotation matrices,

𝑅𝑘 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 𝑒
𝑖𝜋
2𝑘

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8.1)

3. Perform IQFT (Inverse Quantum Fourier Transform) to acquire the result of addi-
tion.

In this work, the maximum profit from a single step is equal to 1.

8.3 Circuit for matching characters
Tomatch two separate characters, the proposed design requires four qubits as each char-
acter require two qubits. To get any character corresponding to a specific index, two
qRAM’s are applied; for horizontal and vertical sequences accordingly.
A sample demonstration is provided in figure 8.3. Both of the target bits would be |1⟩ if
the characters matches each other.
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𝐶𝑜𝑢𝑛𝑡𝑒𝑟ℎ𝑜𝑟𝑧 = |0⟩⊗𝑚

𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑣𝑒𝑟 𝑡 = |0⟩⊗𝑛

𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟ℎ𝑜𝑟𝑧 = |0⟩⊗2

𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑣𝑒𝑟 𝑡 = |0⟩⊗2

𝑡𝑎𝑟𝑔𝑒𝑡 = |0⟩⊗2

𝑞𝑅𝐴𝑀ℎ

𝑞𝑅𝐴𝑀𝑣

Figure 8.3: Circuit for matching two characters using qRAM

8.4 Profit Calculation
Completed circuit for calculating path along with the generated path is given below.
This approach ensures the traversal/visit to every possible nodes in contrast to prob-
abilistic/heuristic approaches. Also, total number of steps are also not increased and
therefore, can figure out the optimal alignment using deterministic approachwith nearly
full precision.
As mentioned previously, if there are t number of transitions/steps, total 2t registers are
required for those steps. For the counters, number of qubits will be equal to the number
of bits required for the binary representation of the length of the horizontal and vertical
sequence.

𝑆𝑡𝑒𝑝ℎ𝑜𝑟𝑧 = |0⟩⊗𝑡

𝑆𝑡𝑒𝑝𝑣𝑒𝑟 𝑡 = |0⟩⊗𝑡

𝑃𝑟𝑜𝑓 𝑖𝑡 = |0⟩⊗𝑘

𝐶𝑜𝑢𝑛𝑡𝑒𝑟ℎ𝑜𝑟𝑧 = |0⟩⊗𝑚

𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑣𝑒𝑟 𝑡 = |0⟩⊗𝑛

𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟ℎ𝑜𝑟𝑧 = |0⟩⊗2

𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑣𝑒𝑟 𝑡 = |0⟩⊗2

𝐻
𝐻

+1

+1

+1 +1

𝑞𝑅𝐴𝑀ℎ

𝑞𝑅𝐴𝑀𝑣

+1

Figure 8.4: Quantum circuit to generate path and calculate profit

8.5 Finding the Path with Maximum Profit
To find out the optimal path, this thesis work is focusing on the approach taken by Ahuja
and Kapoor (1999) [19]. The proposed method uses Grover’s search algorithm to find
out the maximum element from an unsorted array.
The algorithm for finding out the maximum profit:

1. Start with any initial guess of an index a from an array D of length N, such that a
∈ (0, ....., N - 1).

2. Repeat a loop for O(√𝑁) times:

• Take a initialized state using n-bit Hadamard transfomation;
|𝜓⟩ =∑𝑖

1
√𝑁

|𝑖⟩ |𝑎⟩. i is the index of the maximum element.
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• Find marked states using Grover’s algorithm such that the following oracle’s
are satisfied.

𝑓𝑖(𝑗) = 1, 𝑖𝑓 𝐷[𝑗] > 𝐷[𝑖] 𝑎𝑛𝑑 𝑓𝑎(𝑥) = 1 (8.2)

• Make measurements. Replace awith the result of the measurements to make
a new guess.

3. Return the index of the maximum element.

8.6 Complete Circuit
The complete circuit would be the merge betweenmodified circuit of Grover’s algorithm
for finding out the maximum element from an unsorted array and the circuit for calcu-
lating profit by generating paths through the edit graph. Full circuit demonstration is
provided in figure 8.5.

𝑐𝑜𝑢𝑛𝑡𝑒𝑟ℎ𝑜𝑟𝑧 ∶ |0⟩⊗𝑛

𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑣𝑒𝑟 𝑡 ∶ |0⟩⊗𝑛

𝑝𝑟𝑜𝑓 𝑖𝑡 ∶ |0⟩⊗𝑛

𝑠𝑡𝑒𝑝0 ∶ |0⟩⊗2

𝑐ℎ𝑎𝑟0 ∶ |0⟩⊗2
𝐻⊗2

𝑠𝑡𝑒𝑝1 ∶ |0⟩⊗2

𝑐ℎ𝑎𝑟1 ∶ |0⟩⊗2

Single Step
Profit Accumulation

𝐻⊗2

𝑠𝑡𝑒𝑝2 ∶ |0⟩⊗2

𝑐ℎ𝑎𝑟2 ∶ |0⟩⊗2

Single Step
Profit Accumulation

Single Step
Profit Accumulation

𝐻⊗2

Single Step
Profit Accumulation

Single Step
Profit Accumulation

𝑚𝑎𝑥_𝑝𝑟𝑜𝑓 𝑖𝑡 ∶ |0⟩⊗𝑛

𝑚𝑎𝑥_𝑠𝑡𝑒𝑝0 ∶ |ℎ0⟩ ⊗ |𝑣0⟩
𝑚𝑎𝑥_𝑠𝑡𝑒𝑝1 ∶ |ℎ1⟩ ⊗ |𝑣1⟩
𝑚𝑎𝑥_𝑠𝑡𝑒𝑝2 ∶ |ℎ2⟩ ⊗ |𝑣2⟩

Calc.
Profit

𝑑𝑖𝑓 𝑓 ∶ |0⟩

𝑈𝑓

𝑈𝑓

𝑈 †
𝑓

𝑈 †
𝑓

Grover
Diffusion

…

…

…

…

…

…
…
…

|ℎ′0⟩ ⊗ |𝑣 ′0⟩

|ℎ′1⟩ ⊗ |𝑣 ′1⟩

|ℎ′2⟩ ⊗ |𝑣 ′2⟩

Updated value
for 𝑚𝑎𝑥_𝑠𝑡𝑒𝑝

Repeat 𝑂(√𝑁) times

Figure 8.5: Quantum Circuit for Pairwise Sequence Alignment

8.7 Complexity
For our scope of the work in this paper, we are not considering the space complexity due
to the implementation of qRAM in the circuit.
In the first section of generating the paths and calculating profit, 𝑁 (or, 𝑀, if 𝑁 is the
length of the first sequence and 𝑀 is the length of the second sequence.) steps would
be required on average. To find out the optimal path, the searching process based on
Grover’s algorithm requires √𝑁 steps [7]. Let, 𝑁 be the average length of the sequences.
Total number of steps will be the total time required by both the processes. Therefore,
time complexity of the algorithm is 𝑂(𝑁 ) + 𝑂(√𝑁). After eliminating the non-dominant
term it turns to be 𝑂(𝑁 ).
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Chapter 9

Conclusion

DNA Sequence alignment is one of the topics of extensive research in computational
biology and bio-informatics. In this work, we proposed a quantum algorithm to find out
the optimal DNA sequences by aligning these sequences. In order to do so, we had to
implement a deterministic method based on a graph traversing problem and Grover’s
search algorithms. Moreover, analyzing our proposed method and calculate the time
and memory requirements has been a major task. Although, to find out the possible
advantages of quantum computation in bio-informatics and computational biology, we
are still required to compare the existing classical algorithms with the proposed quan-
tum counterpart with full precision. In summary, our primary focus has been to create
a graph to align the DNA sequences, generate random paths through it based on the
path transition profits, implement a quantum algorithm and sort out the optimal DNA
sequences.
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