
A Hybrid Rumor Detection Model Derived from a Comparative
Study of Supervised Approaches

by

Mehzabin Sadat Aothoi
19101353

Samin Ahsan
19101497

Fardeen Ahmed
22241037

A Thesis submitted to the
Department of Computer Science & Engineering

in partial fulfillment of the requirements for the degree of
B.Sc. in Computer Science & Engineering

Department of Computer Science and Engineering
School of Data and Sciences

Brac University
January 2023

© 2023. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Mehzabin Sadat Aothoi
19101353

Samin Ahsan
19101497

Fardeen Ahmed
22241037

i

Approval
The thesis titled “A Hybrid Rumor Detection Model Derived from a Comparative
Study of Supervised Approaches” submitted by

1. Mehzabin Sadat Aothoi(19101353)

2. Samin Ahsan(19101497)

3. Fardeen Ahmed(22241037)

4. ()

5. ()

Of Fall, 2022 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science & Engineering on January 19,
2023.

Examining Committee:

Supervisor:
(Member)

Mr. Annajiat Alim Rasel
Senior Lecturer

Department of Computer Science and Engineering
Brac University

Co-Supervisor:
(Member)

Ms. Najeefa Nikhat Choudhury
Lecturer

Department of Computer Science and Engineering
Brac University

ii

Thesis Coordinator:

Md. Golam Rabiul Alam, PhD
Professor

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

iii

Abstract
In the current age of social media, information spreads like wildfire. Unfortunately,
this also means that misinformation or rumors can spread easily. The spread of this
misinformation can have negative consequences for society. This is especially true in
recent years due to growing engagement in social media platforms for news. Hence,
to prevent the spread of rumors, rumor detection is necessary. Bangladesh has
been no exception to the spread of misinformation, causing countless propaganda
over the years. Although a significant amount of work has already been conducted
regarding rumor detection in English, Bangla rumor detection is still in its infancy.
For our research, we first compared several Machine Learning (ML) models and Deep
Learning (DL) models for rumor detection using both Bangla and English datasets.
Comparing and analyzing the results, we implemented an Ensemble ML model and
finally our hybrid model, which is a combination of our best-performing ML model
and DL model that outperformed all other baseline state-of-the-art models.

Keywords: Rumor Detection; NLP; Machine Learning; Deep Learning; Decision
tree; Random Forest; Naive Bayes; Support Vector Machine; BERT; RNN; CNN

iv

Acknowledgement
Firstly, all praise to the Great Allah for whom our thesis has been completed with-
out any major interruption.

Secondly, utmost appreciation for our co-advisor Ms. Najeefa Nikhat Choudhury
ma’am, and advisor Mr. Annajiat Alim Rasel sir for their kind support and advice
in our work.

And finally, unending gratefulness for our parents without whose love and care
throughout it may not have been possible. With their endless aid and prayer, we
are now on the verge of our graduation.

v

Table of Contents

Declaration i

Approval ii

Abstract iv

Acknowledgment v

Table of Contents vi

List of Figures vii

List of Tables viii

Nomenclature ix

1 Introduction 1
1.1 Research Problem . 2
1.2 Research Objectives . 3

2 Literature Review 5
2.1 Model Description . 5
2.2 Related Works . 11

3 Methodology 14
3.1 Datasets . 15
3.2 Data Pre-processing . 17

4 Implementations and results 18
4.1 Implementation . 18

4.1.1 Machine Learning Models . 18
4.1.2 Deep Learning Models . 19
4.1.3 Machine Learning Stacked Model 20
4.1.4 Hybrid Model . 21

4.2 Results & Analysis . 23
4.3 Future work . 37

5 Conclusion 38

Bibliography 41

vi

List of Figures

2.1 SVM working mechanism . 6
2.2 RF working mechanism . 7
2.3 CNN working mechanism . 8
2.4 RNN architecture . 9
2.5 BERT working mechanism . 9
2.6 Ensembled ML model structure . 10
2.7 Hybrid model structure . 10

3.1 Dataset label ratio visualization . 15
3.2 BanFakeNews Label Ratio . 16
3.3 Dataset Wordclouds . 16

4.1 BERT Implementation Code . 19
4.2 CNN Implementation Code . 20
4.3 RNN Implementation Code . 20
4.4 Code for compiling the models . 20
4.5 Ensemble Stack Implementation code 21
4.6 Code for custom scoring functions . 21
4.7 Code for building meta dataset . 22
4.8 Code for fitting the meta learner . 22
4.9 Confusion matrices of the DT Model 24
4.10 Confusion matrices of the RF Model 25
4.11 Confusion matrices of the NB Model 26
4.12 Confusion matrices of the SVM Model 27
4.13 Confusion matrices of the Ensemble ML Model 28
4.14 Confusion matrices of the BERT Model 30
4.15 Confusion matrices of the RNN Model 31
4.16 Confusion matrices of the CNN Model 32
4.17 Confusion matrices of the Hybrid Model 34

vii

List of Tables

3.1 Summary of the datasets used . 15

4.1 Accuracy of the ML models . 23
4.2 F1-score of the ML models . 23
4.3 Accuracy of the DL models . 29
4.4 F1-score of the DL models . 29
4.5 Accuracy comparison of the Hybrid model 33
4.6 F1-score comparison of the Hybrid model 33

viii

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

BERT Bi-directional Encoder Representations from Transformers

BiGCN Bi-Directional Graph Convolutional Network

DL Deep Learning

DT Decision Tree

GCN Graph Convolutional Network

GDBT Gradient Boost

GNN Graph Neural Network

LR Linear Regression

LSTM Long short-term memory

ML Machine Learning

MNB Multinomial Naive Bayes

NB Naive Bayes

RBF Radial Basis Function

RF Random Forest

RNN Recurrent Neural Network

RvNN Recursive Neural Network

SVM Support Vector Machine

TF − IDF Term Frequency–Inverse Document Frequency

ix

Chapter 1

Introduction

The spread of rumors has become the subject of countless studies. Rumors have
become synonymous with fake news, although it covers a much more comprehen-
sive range of content. Many have tried to define fake news, but most definitions
become blurry when classifying news as fake in reality. One of the definitions that
adequately cover the range of the types of deceptive news is given by the European
Commission [7]: fake news is “All forms of false, inaccurate, or misleading infor-
mation designed, presented and promoted to intentionally cause public harm or for
profit.” Rumors fall under the umbrella of fake news since they are not verified to
be true or false. Authors from [10] adopt the definition that rumors are, at the time
of posting, circulating information whose veracity is still unverified in their paper
which is in line with most major dictionaries.

The spread of rumors has become blazing fast due to social platform usage being on
the rise. The aftermath of such spreads is typically rather negative and brings more
harm than good to society, such as civil and political unrest. Human judgment can
become heavily skewed by rumors, as has been proven during major events like the
U.S. Presidential Election in 2016 and the recent COVID-19 pandemic. Although
social media companies employ many different methods to eradicate the spread of
rumors, a lot of the time it falls short of the desired success rate. Therefore, im-
proving the rumor detection process has become quite a necessity over the years
and has piqued the interest of different scientific communities, ranging from social
psychology to computer science.

The task of rumor detection becomes much more tedious when it has to be defined
for a computer to understand. Early research, as highlighted in [14], looked at
the factors of rumor diffusion and how believability played a role in its circulation.
Before the dawn of the internet, the spread of rumors was analog, passed around
through in-person conversations and newspapers at best. However, the internet
changed the landscape of information and communication. This was further ampli-
fied by the introduction of social media platforms and their accumulation of large
user bases. Consequently, the task of fact-checking each post became an unantici-
pated and daunting challenge. With the freedom of posting anything for free at any
time, several morally compromised or sometimes uninformed users began spreading
rumors with varying intentions, ranging from malicious to benevolent.

1

To detect and eradicate rumors, computer scientists employ several techniques,
which include ML approaches as well as DL approaches. Regardless of the approach,
research has indicated that there are four major components of rumor classification.
The first is rumor detection, where a binary classifier determines if the information
being a rumor is true or false. The second component is rumor tracking, which
is tasked with collecting and filtering posts that discuss the rumor, now known as
“priori”. Alongside the rumor tracking component, the stance classification compo-
nent tries to establish how each of the posts is contributing to the rumor’s veracity.
Finally, the veracity classification component tries to ascertain the trustworthiness
of a rumor.

1.1 Research Problem
Despite the numerous research programs dedicated to rumor detection, building a
model that can accurately predict if a piece of information is a rumor or not still
brings with it several challenges. The most seemingly difficult task is to find or even
create an appropriate dataset. Then comes the challenge of choosing between dif-
ferent approaches, such as ML-based or DL-based approaches. Each approach has
its own sets of strengths and weaknesses, and the question of which is the best fit
depends on the problem statement itself. Finally, multilingualism poses one of the
biggest challenges, as languages other than English scarcely have labeled datasets
publicly available. The models as well are fine-tuned for the English language in
most cases, which makes it hard to detect rumors on platforms where English is not
the only dominant medium of communication.

To evaluate the different rumor detection models researchers come up with, uniform
datasets are crucial for training and testing. However, in reality, it is extremely
difficult to find datasets that can be used to train all models to make comparisons
on the same scale. One of the primary reasons for this is the unavailability of labeled
datasets for public use. Furthermore, labeled datasets need to fulfill certain criteria
to be used for training models. Authors of [19] conducted a survey for their pro-
posed FNDD characterization, consisting of eleven characteristics for existing and
future datasets. They examined 61 datasets, of which only 27 were explicitly made
available for research purposes. The paper goes on to define the previously stated
characteristics of a dataset, and the existing datasets only partially fit those criteria.
They also highlighted challenges regarding multimedia, multilingual, cross-domain,
and COVID-19 datasets that researchers face regularly. The lack of big, compre-
hensive datasets is also a major point of their paper.

Rumor detection, in general, is a relatively new field of research as pointed out by
[7] who further say that very little work has been done in automatic rumor detec-
tion. The existing approaches mostly focus on stance and veracity classification,
leaving rumor tracking behind. In recent years, ML approaches have gained notable
attention in detecting rumors and obtaining cutting-edge outcomes. ML-based tech-
niques like Support Vector Machine and Decision Tree have all managed to achieve
noticeable improvements in rumor detection, but none are suitable for all use cases.
The choice of approach largely depends on the datasets available and the target

2

itself. Furthermore, ML models depend on data pre-processing to a large extent
and also rely on manual feature extraction. What’s more, they cannot extract high-
dimensional features.

DL is an even newer approach to rumor detection than ML but has proven to be
a better choice in many cases as pointed out by [22]. They discovered that DL has
certain advantages over ML which leads to better scores and, consequently, an im-
proved ability to detect rumors. Some of these are feature extraction automation,
reduced dependence on data pre-processing, high-dimensional feature extraction ca-
pabilities, and overall better accuracy. However, the downsides include the influence
of the feature and selection classifier on the efficiency of the model, lack of feature
engineering, scarcity of propagation-based studies, and overall lack of data. Despite
outperforming ML models and being a seemingly better choice, DL models require
quite a substantial amount of resources that are not always readily available. The
challenge becomes bigger as many papers do not fully make their implementation
details publicly available for further testing and the sizes of the datasets are not
sufficient for improving a DL model performance.

Adding on to the previously mentioned analysis by [19], it is evident that multi-
lingual datasets are a rare breed. Most datasets are developed in English only,
which limits fact-checking efficacy in different languages like Bangla. Similar to
other countries, Bangladesh heavily suffers from the impacts of rumor propagation.
However, tackling the task is no easy task, as only a handful of comprehensive and
labeled datasets are available in the Bangla language. This becomes clear from the
research of [15] who at the time found that no other computational approaches were
available for fake news or rumor detection. They, later on, went on to claim that
their creation of the “BanFakeNews” dataset is the first publicly available Bangla
dataset for rumor detection. Consequently, with this lack of diversity in datasets, it
becomes hard to determine which models are appropriate for general rumor detec-
tion. This is proven by the research from [16] who reported that SVM performed
better than Multinomial Naive Bayes (MNB) in Bangla rumor detection and is gen-
erally a good choice. On the other hand, [11] reported that SVM was particularly
worse than other algorithms like DT and K-Nearest Neighbor. In their study, MNB
provided the best results instead, unlike the previous paper. Contradictory results
like this truly make it difficult to choose an appropriate model for a rumor detection
problem.

1.2 Research Objectives
This paper aims to make the decision-making process of settling on an approach for
a rumor detection algorithm easier to some degree. Our research can be divided into
two sections, the comparative study and the development of a hybrid model where
the output of the first section establishes the parameters for the second one.

The vision of this paper is to first collect and pre-process different publicly avail-
able datasets in order to implement the ML and DL-based models using libraries
like Scikit-learn [1] and Keras [2]. ML-based models include Support Vector Ma-
chine (SVM), Decision Tree (DT), Naive Bayes (NB), and Random Forest (RF).

3

For DL-based models, we have chosen, Recurrent Neural Network (RNN), Convo-
lutional Neural Network (CNN), and Bi-directional Encoder Representations from
Transformers (BERT). Having trained the models, we would test them and pit them
against each other. From the comparison, we would analyze the output and imple-
ment an Ensemble ML Model as well as a Hybrid Model that will be able to outplay
all the other models. Therefore, the objective of this paper can be summarized in
the following key points:

• Collect and pre-process datasets.

• Compare each Machine Learning model.

• Compare each Deep Learning model.

• Show comparisons between ML and DL approaches.

• Analyze the result.

• Implement Ensemble ML Model.

• Implement a Hybrid Model based on analysis.

4

Chapter 2

Literature Review

In the past, a substantial amount of research has taken place on rumor detection
using machine learning, but rumor detection using deep learning is relatively new
and has proven to be more effective than classic ML methods. In this paper, we
aim to determine which ML and DL model outperforms the others, and compare
the average results of ML models with DL ones to find out if DL actually has an
advantage over ML.

2.1 Model Description
This section holds a brief description of all the models that we worked with in order
to accomplish our research.

Firstly, we are going to briefly describe the working mechanism of our ML mod-
els which are, Support Vector Machine, Decision Tree, Naive Bayes, and Random
Forest.

Support Vector Machine (SVM)

We know that SVM is a supervised learning model that categorizes data points by
mapping them into “high dimensional feature space”. After it finds a separator be-
tween the categories, the data is transformed such that a separator in the form of a
hyperplane can be drawn. Following that, new data features can be utilized to pre-
dict which category a new record should fall into. The function used to accomplish
the transformation is known as the “kernel function”. There are different types of
kernel functions. According to SciKit Learn [1], the major ones are Linear, Poly-
nomial, Radial Basis Function, and Sigmoid. By default, SVM uses RBF kernel,
and although some researchers [8] claim that SVM performs faster and better if we
use the Linear kernel function for text-categorization, yet chose to apply the RBF
kernel as our goal is to test the performance of the models in their very default form.
While the kernel function is set to RBF, two parameters must be taken into con-
sideration, C and gamma. Where the gamma parameter, with low values signifying
”far” and high values signifying ”near,” describes roughly how much the impact of a
single training sample extends, and the C parameter compromises between correctly
classifying training samples and maximizing the margin of the decision function. A

5

narrower margin will be acceptable for greater values of C if the decision function
is more accurate at categorizing training points.
The following figures can be used to visualize:

(a) Original (b) Separated (c) Transformed

Figure 2.1: SVM working mechanism

Decision Tree (DT)

From the article [9] we can understand that Decision Trees are also a kind of su-
pervised machine learning where data is constantly separated based on a certain
parameter. Decision nodes and leaves are the two entities through which the DT
can be explained. The decisions are represented by the leaves and the data is sep-
arated at the decision nodes. Although there are several techniques for selecting
the best feature for each node, the Gini impurity (The frequency of misclassification
of a randomly selected attribute), and Information gain (The difference in entropy
between before and after a split on a particular property) are the two most often
utilized splitting criteria approaches. The three most popular decision three algo-
rithms are ID3, C4.5, and CART. For the default decision tree classifier, Scikit-learn
employs an enhanced version of the CART algorithm, and it generally makes use of
Gini impurity to determine the best attribute to split on.

Gini Impurity = 1−
∑
i

(pi)
2 (2.1)

The equation (2.1), pi refers to the likelihood of samples belonging to class i at
a specific node. Gini impurity is bottom capped by 0, therefore, the resulting 0
denotes that the data set is pure and comprises only one class. When assessing with
Gini impurity, a lower value is preferable.

Random Forest (RF)

Another supervised machine learning algorithm is Random Forest. It is trained
with the “Bagging” approach [17]. The combination of multiple learning models to
improve the resulting output drives this concept. In accordance, a random forest
creates a forest by merging numerous decision trees to derive more precise and con-
sistent predictions.

Now, Bagging is the implementation of the bootstrap approach to an ML system
with significant variance. Here, Variance is an inaccuracy caused by sensitivity to
minor differences in the training dataset. and Bootstrap is a statistical procedure

6

Figure 2.2: RF working mechanism

for resampling data. It entails resampling a dataset using substitution repeatedly.

Naive Bayes (NB)

Naive Bayes is a type of classifier that employs the Bayes Theorem [32]. It forecasts
probabilities for each class, such as the probability that a given data element be-
longs to a specific category. The most likely category is the one with the greatest
probability. This is also referred to as Maximum A Posteriori (MAP).
We know from Bayes’ theorem,

P (H|E) =
(P (E|H) ∗ P (H))

P (E)
(2.2)

Conditional probability is the cornerstone of Bayes’s theorem. Some terms in the
theorem are:
Class prior: Probability of occurring event H without any prior knowledge of event
E. Which is P (H).
Predictor prior: Probability of occurring event E without any prior knowledge of
event H. Which is P (E).
Posterior probability: Probability of occurring event E with the knowledge about
event H. Which is P (E|H).
Likelihood: Probability of occurring event H with the knowledge about event E.
Which is P (H|E).

However, based upon the Naive Bayes’ theorem,

P (H|E) = P (E|H) ∗ P (H) (2.3)

Unlike Bayes’, Naive Bayes’ classifier presupposes that all the features are indepen-
dent of each other. So, one of the features being present or absent does not anyhow
influence the others. This is also one of many reasons why the algorithm is quicker.

7

Despite being “naive,” it outperforms several complex models.

There are three Naive Bayes’ Classifiers, Gaussian, Multinomial, and Bernoulli. For
our study, we applied the Gaussian one. Because when the variables are continuous,
this Naive Bayes’ classifier is utilized and it also assumes that all variables follow a
normal distribution.

Now for the DL models, we chose to work with CNN, RNN, and BERT. Similarly,
the working principle for the mentioned models are presented below:

Convolutional Neural Networks (CNN)

A CNN works with a volume of inputs and in the simplest of terms it produces a
third relationship from the mathematical combination of two. To extract features, a
filter or kernel is used, the parameters of which depend on the amount of input and
overlapping allowed in a batch. The applied filter generates multiple feature maps
using a non-linear connection for the outcome is generated by an activation func-
tion. As studies like [4] show, the ReLU seems to be the best-performing activation
function. The study also shows that the input word vector representation plays an
important part in performance and suggests using open-source embedding libraries
such as GloVe or word2vec. To prevent the feature maps from shrinking, padding
is used to hold onto information. A pooling layer, such as Max pooling, is used
to reduce dimensional complexity and prevent overfitting. A flattened layer can be
used as well for changing dimensions. The very last layers of CNN are generally
fully connected meaning each node of a layer is connected to the nodes of another
layer.

Figure 2.3: CNN working mechanism

Recurrent Neural Networks (RNN)

RNN belongs to the family of neural networks that usually processes sequential and
time-series data. As the authors from [21] show, the input to the current state of the

8

RNN are gathered from the previous state. This class of neural networks remembers
the past and recalls them along with options based on it. The output from the prior
state is used to update the hidden state. The architecture of an RNN model depends
on the problem at hand. Some variations of it are One-to-one, One-to-many, Many-
to-one, and Many-to-many. Much like CNN, some popular activation functions for
the hidden layers in RNN include ReLU, Sigmoid, and Tanh. Using the memory
it uses to store information from previous inputs, called long short-term memory,
which is optimal at predicting time series or sequential data.

Figure 2.4: RNN architecture

Bidirectional Encoder Representations from Transformers (BERT):

BERT is a bi-directional transformer that is made up of an encoder for reading
text input and a decoder for predicting task output. As the authors of [18] point
out, BERT is able to capture information from unlabeled text by concatenating a
token’s context representation of both sides from all layers. It generates contextu-
alized embedding using its attention mechanism. Because BERT is bi-directional,
it understands word relationships that way and generates vectors to represent that
relationship for each word in a sentence. For representing an input, BERT consid-
ers the sum of the Token embeddings which is added at the start [CLS] and end
[SEP] of a sentence, Segment embeddings which are used to distinguish different sen-
tences, and Position embeddings which denotes the position of a token in a sentence.

Figure 2.5: BERT working mechanism

9

Ensembled Machine Learning Model

For our ensembled ML model, we are going to utilize all of our four models. After
being done comparing all the ML models, we are going to take the models positioned
as 2nd, 3rd, and 4th, stack them, and feed the training data. Lastly, we are going
to use our best-performing ML model as the final classifier in order to extract the
output.

Figure 2.6: Ensembled ML model structure

The Hybrid Model

The hybrid model proposed in this paper is derived from combining the best-
performing baseline ML model and DL model. Here, the DL model is used as
the weak learner which makes predictions based on the training data. The predic-
tions made by it are fed into the meta-learner which is the ML model to make the
final classifications. In this way, the best performance is achieved using both DL
and ML approaches which not only outperform the baseline models but are much
easier to train.

Figure 2.7: Hybrid model structure

For this research, we opted to keep the state of the art models in their default form.
Therefore, even if the addition of certain parameters can make a particular model
perform better, we adhered to the initial form.

10

2.2 Related Works
Several attempts have been made to verify the accuracy of differentiating rumors
and reality. attempted to assess prior studies in which different models based on
Machine Learning and Deep Learning were compared and introduced, in the field of
rumor detection.

From the findings of [11], we see that the authors came to a conclusion that SVM
(75.5%) models fail to handle noisy data, KNN (79.2%) proves to be a lazy learner,
and even though decision tree (82.7%) yield good results, it is concluded to be very
unstable. Therefore the authors initially decided to go with Multinomial Naive
Bayes (90.4%), and Gradient Boosting (88.3%). For a better and more satisfactory
result, they also included Random Forest (86.5%). The dataset that was used in
this paper is a dataset called “LIAR”, which is a very large dataset and available to
the public.

But unlike [11], according to [16], where the authors attempted to detect fake Bangla
news using the previously mentioned MNB and SVM, between the two supervised
algorithms SVM is claimed to be better performant compared to MNB. The authors
scraped data from Bangla news articles published on ProthomAlo.

In the paper [12], several datasets suitable for rumor detection are mentioned with
their properties such as text, user info, timestamp, and propagation info. Along
with datasets, which machine learning approaches were used in a good number of
papers and which types of information were used in them are presented via a table
in a very clean manner. Aside from mentioning various ML approaches and datasets
that are available, the authors also discussed future opportunities. The BanFake-
News dataset is a very impactful resource in the field of Bangla Rumor Detection
as there are not a good number of Bangla datasets available. The dataset by [15]
consists of almost 50k annotated data. To accomplish this, the authors claimed to
use linguistic feature-based approaches for which SVM, RF, LR, and Neural Net-
work Models for which CNN, BiLSTM, and BERT models were used. In this paper,
SVM again proved to perform better compared to RF, LR as well as neural network
models. From [19], we get an insight into what characteristics makes a dataset fit
for training our ML or DL models. The authors extracted 61 datasets from 164
papers and enlisted 10 dataset requirements based on which we should evaluate a
dataset. The mentioned characteristics were further categorized into 4 categories.
In the paper, the authors also mentioned some challenges that researchers face while
developing new datasets for rumor detection.

Both [20] and [13] discuss rumor detection methods and tools. The latter compares
the different strategies and their objectives. The authors also mentioned in the pa-
per how the improvement of rumor detection models can be made by incorporating
linguistics, some pre-defined RD rules, and ML approaches. Similarly in [20] au-
thors also described numerous fake news detection methods (content, knowledge,
style, linguistic, visual, social, network, temporal, credibility-based) and datasets.
The techniques mentioned in this paper are, MVAE (finds correlations across differ-
ent modalities), SAFE (jointly learns the textual and visual features), and FANG

11

(captures the social interactions between users, articles, and media).

3 Decision Tree algorithms were studied by the authors of [9] and they were, ID3,
C4.5, and CART, and their study concluded that ID3 cannot take continuous
datasets for simulation however C4.5 and CART can do so. The authors used a
car dataset to evaluate the 3 DT algorithms and concluded that CART is the slow-
est but the most accurate.

The authors create a dataset of actual and fraudulent news about Covid-19, com-
prising of 10,700 social media posts, in the paper [23]. They use different ML
models: LR, DT, SVM with linear kernel, and GDBT. SVM performed the best
while DT performed the worst. GDBT performed slightly better than DT and LR
performed slightly worse than SVM. A method was proposed by [24] for improving
fake news detection by automatically gathering evidence for each claim. The fake
news classification is performed using several ML (LR and SVM) and DL (LSTM
with pre-trained BERTbase RoBERTbase and XLNETbase classifiers) models. The
results of their experiments show that ML models perform worse than the DL mod-
els.

Furthermore, [26] discusses a system developed as part of the CONSTRAINT-2021
shared task. They compared multiple ML and DL models: SVM, CNN, BiLSTM,
and CNN+BiLSTM and they used TF-IDF and word2vec embedding techniques.
The authors found that for fake news classification, SVM with TF-IDF features
achieves the highest f1 score (94.39%). A combination of CNN and BiLSTM achieved
an f1 score of 92.01%. The SVM models with Word2vec obtained slightly better re-
sults than CNN+BiLSTM (92.66% and 92.94% with 200 and 150-word embeddings
respectively) with the Covid-19 dataset pre-released as part of the CONSTRAINT-
2021 shared task.

Moreover, [27] proposes a hybrid method (ML: SVM, RF, LR, KNN + DL: ANNs)
for fake news detection. Doc2vec and TF-IDF were used for representations. Dif-
ferent versions of the Hybrid Model were used such as Hybrid V1, V2, V3, and V4.

However, the authors of paper [29] discovered that for rumor detection, RNN ar-
chitecture outperforms pure CNN, RNN-CNN, and CNN-RNN architectures. This
paper discusses a rumor detection system for detecting both rumors and non-rumors
using multiple models: SVM, XGBoost Classier, RF, Extra Tree Classifier (ET), and
DT. They use these different machine learning models to build a hybrid ensemble
model and applied two deep learning models: LSTM and BERT. The results show
that the best result is achieved by the hybrid model for the COVID-19 and Twitter
15 and Twitter 16 datasets. Validation loss falls and validation accuracy rises in
both the LSTM and BERT models, indicating that the model is learning effectively.

Additionally, [31] explores self-supervised learning (SSL) on heterogeneous infor-
mation sources, to reveal their relations and improve rumor detection. Over the
social network, a GCN encoder was used to aggregate input from neighbors, and
a CNN encoder was utilized to produce semantic representations. For the exper-
iments, Twitter, Weibo, and PHEME datasets were used. The researchers found

12

their framework (SRD) to consistently outperform all the baselines on all datasets.
Furthermore, the researchers’ proposed method and Bi-GCN performed better than
RvNN and PPC (RNN + CNN).

In like manner, [33] focuses on post-related features such as user-based, content-
based and lexical-based features as well as post sequences. The proposed method
uses essential features and combines two DL models. As manual feature selection
for an ML approach is tedious, the authors use a DL-based approach to overcome
the shortcomings of an ML-based approach. The authors implemented 4 models:
BiLSTM_Embed, Lex_PCA, UCL_PCA, and BiLSTM_UCL. Among these mod-
els, BiLSTM_UCL performed the best.

Thenceforth, [25] uses main keywords and connects and searches for those keywords
across the internet to see if a piece of news is authentic or unreliable. The authors
used RF, FM classifier, Linear SVC, and LR as their models and compared them
using 2 and 4 cores in their distributed system. The authors found that a higher
number of cores did not always produce a higher accuracy score. Lastly, the authors
compared the models across different performance metrics: Precision, Recall, and
F1 score. They found the FM classifier, Linear SVC, and LR to be the most accu-
rate and RF the least accurate. [30] discusses how pre-existing fake news detection
systems may work for more local contexts. For this, they train models on a dataset
of South African (SA) fake news and compare it with models trained on US fake
news datasets. The models they use are Logistic Regression (LR) and LSTM. The
researchers found that LSTM performed better than logistic regression, however,
training and testing on different countries’ datasets produced poorer results. The
models trained on SA datasets performed best for SA fake news detection, and mod-
els trained on US datasets performed best for US fake news detection.

Finally, in [22] the authors encourage using of DL for rumor detection for future
research because there has been relatively less research done in this field using DL
compared to ML and explain how DL has some certain advantages over ML, for
example, it can automate the process of feature selection and has the capability of
high dimensional feature extraction. DL is also not heavily dependent on data pre-
processing and has better accuracy than ML according to the authors. Therefore, we
studied several papers that specifically cover different approaches to deep learning.

13

Chapter 3

Methodology

Our research is primarily divided into two sections. The first one is the comparative
study part and the second one is utilizing the result acquired from the comparative
study in order to create a hybrid model using ML and DL. In regard to the datasets
to be used for our study, we have collected various publicly available datasets con-
structed mostly in English along with a widely acclaimed large Bangla dataset for
rumor detection. However, in the absence of variety in Bangla-labeled datasets, a
major portion of our research and testing has been done with datasets composed in
the English language.

Once we acquired the datasets, we performed data pre-processing in two different
approaches to test each of them out on the models and continued with the one that
helped us achieve better output.

Having successfully pre-processed our datasets, we created the four different ML
models using Sci-kit Learn’s [1] existing classifiers. We then trained the models on
all datasets for each pre-processing approach. For training and testing, we evaluated
a score by cross-validation using Sci-kit Learn. A 5-fold cross-validation was uti-
lized by passing in the scoring parameter for the “accuracy”, “precision”, “recall”,
and “F1-score” for each of the models to acquire their corresponding performance.
According to [34], the higher the number of folds is in a cross-validation, the lower
prediction error we will encounter. Because it means the model is trained by feeding
a larger dataset and evaluated on a smaller test fold. A lower k, on the other hand,
indicates the opposite. The possibility for the data distribution in the test fold to
deviate from the training set is greater in this case, and we should consequently
expect a higher average prediction error. When doing cross-validation, a maximum
of 10 folds are widely utilized as stated by the author. Therefore, we chose 5 folds
because it is the intermediate value. TensorFlow [3] and Keras [2] were used to
implement the DL models, and the evaluation for them has been done in the same
way as the ML models.

Having acquired our comparative study results, we have created our Ensemble ML
model by stacking the four ML models (RF, NB, DT, and SVM) where we used
the best-performing ML model as our final classifier. On the other hand, we have
implemented our hybrid model by combining the ML and the DL model with the
highest performance from our comparative study.

14

3.1 Datasets
For our research, we have currently used 4 news detection datasets. Among the
datasets, all of them (Real or fake news dataset, COVID19 Fake News Dataset NLP
[28], and BanFakeNews [15]) were collected from Kaggle except the ISOT Fake News
Dataset [6] [5], which was collected from the website of the University of Victoria.
All the datasets are binarily labeled (Real and Fake). For the COVID-19 Fake News
Dataset, we took the tweet body, and for the rest, we extracted the title and text
of the articles. Description of the used datasets are presented below in table 3.1:

Name Source #Data Labels Links
Fake or real Kaggle 6,060 Real 50% Link
news Fake 50%
COVID-19 Fake Kaggle 6,420 Real 52% Link
News Fake 48%
ISOT Fake University 44,898 Real 48% Link
news of Victoria Fake 52%
BanFakeNews Kaggle 49,977 Real 97%, Link

Fake 3%

Table 3.1: Summary of the datasets used

The following bar graph in figure 3.1 can help us visualize the data and label ratio
better:

Figure 3.1: Dataset label ratio visualization

If we look at figure 3.1, we can see that all the datasets have an equal distribution
of real and fake data aside from BanFakeNews. We see an immense disparity here.
In order to balance the ratio, we modified the number of real data to be 7 times the
fake data that are present in the dataset while training and testing. The aftermath
can be visualized from the following pie charts, figure 3.2:

In figure 3.2 we can observe the irregular real-fake data ratio being present. Even
though after modifying the labeling ratio, the result is not the most desired one,

15

https://www.kaggle.com/datasets/jillanisofttech/fake-or-real-news
https://www.kaggle.com/datasets/elvinagammed/covid19-fake-news-dataset-nlp?select=Constraint_Train.csv
https://www.uvic.ca/ecs/ece/isot/datasets/fake-news/index.php
https://www.kaggle.com/datasets/cryptexcode/banfakenews

(a) Default label ratio (b) Modified label ratio

Figure 3.2: BanFakeNews Label Ratio

still it is more balanced than before. Therefore, we proceeded with the modified one.

Furthermore, to depict the significant textual data points in terms of their impor-
tance and frequency, we generated a word cloud representation for each dataset in
figure 3.3.

(a) ISOT wordCloud (b) Covid19 wordCloud

(c) FakeOrReal wordCloud (d) BanFakeNews wordCloud

Figure 3.3: Dataset Wordclouds

16

3.2 Data Pre-processing
For pre-processing the data, we first dropped the rows with null values as well as
the columns which are not necessary to train-test our models. Then using LabelEn-
coder we assigned each label a unique integer. For our case, we encoded Fake→0
and Real→1. For those data sets which had separate CSV files for fake news and
real news, we merged the two files and shuffled the rows to distribute fake and real
news in random order. Then we used NLTK and CountVectorizer tools to process
our dataset. For pre-processing with NLTK, we first divided our content into X
and Y sets. Where X contains the features which in our case are the headline and
the whole article body itself while Y contains the encoded labels. Afterward, the
data was converted to lowercase, stop words were removed, and stemming was ap-
plied, which is a process of removing inflection in words to their basic forms. All
these steps aid in the preparation step and subsequent stages of the NLP applica-
tion while parsing. Lastly, the textual data was converted into feature vectors using
TfidfVectorizer which aids in the conversion to a TF-IDF feature matrix from raw
documents. We also used CountVectorizer, a tool equivalent to TfidfVectorizer, but
it converts a collection of textual data into a token count matrix. We used two
different tools in order to find out which one helps to achieve better performance.
Furthermore, we concluded from our analysis that for most of the cases, using NLTK
and TfidfVectorizer resulted in a higher score.

Similar pre-processing steps were followed for all the English datasets. However, the
BanFakeNews dataset had to be processed differently for being in Bengali. For this,
we took the help of the bnlp_toolkit. To tokenize the data, we used the BasicTo-
kenizer in the package and its corpus to remove the stopwords and punctuations.
After cleaning the text, we used the TfidfVectorizer, just like the English datasets,
to vectorize the texts. Finally, to train the ML models we converted vectorized data
into a dense matrix for all datasets.

17

Chapter 4

Implementations and results

In this section, the process of implementing each of the models is described, along
with the results they yielded for each of the datasets. The results are presented in
the tabular form alongside confusion matrices of each model corresponding to the
datasets.

4.1 Implementation
Implementing the models consisted of three steps: firstly, all the data were pre-
processed using the approaches mentioned in the prior section, and the models were
then instantiated and fitted. Lastly, to derive the results, 5-fold cross-validation was
performed to get the most accurate results.

4.1.1 Machine Learning Models
To implement all the ML models, the Sci-kit Learn library [1] was used. For the DT
model, the class DecisionTreeClassifier, which can conduct classifications of more
than one class on a dataset, was employed. The DecisionTreeClassifier, similar to
other classifiers, takes two inputs of arrays: an array X, storing the training samples,
and an array Y, holding the class labels for the training data. The X array can be
sparse or dense, of the form n samples×n features while the array Y should be of
integer values with a shape of n samples. The RF model has been built with Ran-
domForestClassifier where an ensemble of trees is constructed, each using a sample
that was taken from the training set and replaced. As with other classifiers, forest
classifiers require the fitting of two arrays: an array Y of n samples, storing the
target class labels for the training samples, and an array X of n samples, comprised
of the training samples’ features. To implement the NB model, GaussianNB was
used, which uses the Gaussian Naive Bayes classification technique. It is believed
that the features conform to a gaussian likelihood. As for the SVM model, sklearn’s
SVC was utilized. The mathematical description of the SVM’s decision function
reveals that it is dependent on a subset of the training data known as the support
vectors. SVC, like the previous classifiers, requires two input arrays: an array X of
the form n samples×n features holding the training data and an array Y comprising
class labels which can be strings or integers, of n samples.

18

4.1.2 Deep Learning Models
The DL models were built using the Keras API [2] and TensorFlow library [3].
In order to implement BERT, we used the BERT preprocessor and encoder from
Tensorflow-hub. With an 80:20 ratio of train-test, we divided the data to first train
and then test our models. After that, we constructed our neural network, where
each layer’s output was passed down as an argument for the layer after it. Our
BERT model consists of one input layer, which makes up the model. This layer
would depict every sentence that is supplied into the model. Then we have our
bert_preprocess layer to enter our data to prepare the text and the bert_encoder
layer, to provide the BERT encoder with the preprocessed tokens. Also, we have,
1 dropout layer, with a 0.2 dropout rate. It receives the BERT encoder’s pooled
output before passing on to 2 dense layers: one with 10 neurons and the other
with 1 neuron, respectively. The first dense layer employed a ReLU activation func-
tion and the second used a sigmoid activation function. The layers can be seen in 4.1

Figure 4.1: BERT Implementation Code

Lastly, the Adam optimizer, a binary cross-entropy loss, and an accuracy perfor-
mance metric were used to train the model over five epochs.

To implement CNN, we began by importing the required libraries made available by
Keras. To order for the kernel filter and stride to fit in the input well, we padded
our input data. We set a 100-word maximum for each review input and use a Keras
function to pad sequences.

The input we accept is defined as the maximum length of a review permitted. The
model initially consists of an embedding layer in which we will discover the em-
beddings of the top 10,000 words into a 32-dimensional embedding. Convolutional
and max-pooling layers are then added. We then add dense layers and flatten those
matrices into vectors which can be observed in 4.2.

Then we compiled, fitted, and evaluated the model using the same parameters as
BERT.

19

Figure 4.2: CNN Implementation Code

Lastly, we implemented RNN again by padding our input. The model has an em-
bedding layer in for the embedding of the words into a 32-dimensional embedding,
bidirectional wrappers, dense layers, and dropouts were also applied to the inputs
as seen in 4.3 .

Figure 4.3: RNN Implementation Code

We employed an early stop, which terminates when the validation loss stops im-
proving, and, compiled, fitted, and evaluated the model using the same parameters
as BERT and CNN. The parameters are given in 4.4

Figure 4.4: Code for compiling the models

4.1.3 Machine Learning Stacked Model
In order to achieve better accuracy than the default machine learning and deep
learning models we tried two approaches. The first method is stacking the four ML
models that we initially chose [RF, DT, SVM, NB]. But since RF performed the best
among the fours chosen models, we used it as our final estimator. Using a classifier
for each model from sklearn we made a list of estimators for the DT, NB, and SVM
illustrated in 4.5.

Then we imported the StackingClassifier from sklearn.ensemble where we passed
our parameters which are the estimators’ list and RFC as our final estimator and
performed 5-fold cross-validation to calculate the accuracy.

20

Figure 4.5: Ensemble Stack Implementation code

4.1.4 Hybrid Model
Looking into the result section we can see that both CNN and RNN outclassed
BERT by a long margin. However, the average results of RNN and CNN were al-
most similar with a slight edge towards RNN. While RNN was clearly better, in case
of some datasets CNN scored higher. However, we know that CNNs are frequently
employed to solve issues involving spatial data, like graphics. Where, on the other
hand, RNNs excel at processing temporal and sequential data, like text. Therefore,
for a text classification problem such as rumor detection, RNN was chosen for the
final hybrid model.

Figure 4.6: Code for custom scoring functions

There are several approaches to creating a predictive model combining multiple al-
gorithms. The primary ensemble techniques are Bagging, Boosting, and Stacking.
Bagging consists of base learners running on samples and then aggregating their
outputs. The RF model already utilizes this method where it combined multiple
decision trees. In Boosting the final estimator tries to learn from the mistakes of
its input generator models to predict more accurately in its tests. The AdaBoost
model is an example that uses this approach. Finally, in the Stacking approach, a
model learns from the outputs of other sub-models or weak learners and combines
the inputs to produce more accurate output predictions. For our hybrid model, we
went with the Stacking approach for combining the DL and ML models. In the
previous section we have already discussed the process of creating a stacked model

21

from multiple ML models using the same approach.

Our DL-ML hybrid is composed of RNN and RF. The loss function is “binary cross-
entropy”, the optimizer is “adam”, and the error measure is “F1-score”. As F1-score
isn’t accessible in Keras, we developed the function ourselves along with functions
to calculate recall and precision as well which is given in 4.6.

After saving and loading the model, we began stacking. We start by training
the meta learner by presenting the weak learner instances from the test set. The
build_meta_dataset() function in 4.7 implements the task of creating the dataset
to fit the meta learner, i.e: the RF model. The new dataset is created from the
predictions of the RNN model.

Figure 4.7: Code for building meta dataset

Now, we have constructed the dataset that would be used to train the meta-learner.
For training, we fitted the meta-learner to the data using the fit_hybrid_model()
function in 4.8 and evaluated the model.

Figure 4.8: Code for fitting the meta learner

We choose the RNN model instead of the better-performing CNN model because
RNN is better suited for text classification, especially in the long run. While CNN
performs better in spatial data, i.e: image classification, RNN excels at temporal
or sequential data such as text classification. Moreover, the aim of this research is
to derive a hybrid model that outperforms the baseline models efficiently. In our
implementation, RNN required much less computational power than CNN. Because
of all these factors, we have chosen RNN as the weak learner of our proposed hy-
brid model. For the meta-learning model, RF has been chosen simply because it
outperformed the other chosen ML models in every dataset train-testing.

22

4.2 Results & Analysis
This section contains the accuracy scores acquired from our testing of the different
models in tabular form.

Dataset Models
DT RF NB SVM Ensemble

Fake or real news 81.05% 89.85% 79.36% 51.47% 78.73%
COVID-19 fake news 88.02% 92.72% 86.57% 53.82% 88.32%
UVIC ISOT 98.72% 98.36% 82.23% 52.67% 98.93%
BanFakeNews 92.23% 93.31% 85.88% 88.04% 90.97%
Average 90% 93.56% 83.51% 61.5% 89.24%

Table 4.1: Accuracy of the ML models

Firstly, evaluating the accuracy scores of the ML models from table 4.1 we observe
that, RF has outperformed every other ML model for every dataset except the
“UVIC ISOT” dataset with a marginally lower score than DT and the Ensemble
model. However, on average, RF had the highest accuracy among the ML models
with a score of 93.56%. DT followed with a respectable 90%. The Ensemble model
performed close to DT with an average accuracy of 89.24%. A significant downfall
is seen with the NB model acquiring only 83.51% accuracy. It performed espe-
cially badly for the ”FakeOrReal News” dataset. The worst performer was the SVM
model with an average accuracy of 61.5%. A surprisingly high score was seen in the
case of the Bengali dataset, however. The results clearly show that RF is the best
choice for rumor detection among the other ML models from our testing. As such
we have chosen this as the meta-learner among the ML models for our hybrid model.

Dataset Models
DT RF NB SVM Ensemble

Fake or real news 81.05% 89.77% 80.11% 68.89% 78.26%
COVID-19 fake news 88.59% 93.06% 87.25% 69.39% 88.76%
UVIC ISOT 98.72% 98.35% 81.75% 68.77% 98.97%
BanFakeNews 92.23% 93.31% 85.88% 88.04% 94.98%
Average 90.15% 93.62% 83.75% 73.42% 90.24%

Table 4.2: F1-score of the ML models

Aside from accuracy, the models’ performance can be further observed through F1-
scores. Table 4.2 represents the F1-scores for all the ML models and here too the
RF model comes out on top with an average F1 of 93.62%. This means that RF also
has the best precision and recall for rumor detection compared to other models. The
Ensemble model sits on the second position with an average F1 of 90.24%, which
used to be occupied by DT in the accuracy measure. This time DT follows with a
close 90.15% score. A similar jump down to lower score is seen here just like the
accuracy measure with NB scoring 83.75%. The worse performer by far is the SVM

23

model again, with a F1 of 73.42%.

To get an idea of how the models achieved these scores, we need to look at their
confusion matrices.

(a) FakeOrReal (b) COVID19

(c) UVIC ISOT (d) BanFakeNews

Figure 4.9: Confusion matrices of the DT Model

From figure 4.9 the performance of DT can be visualized. In all instances, it had
little trouble correctly identifying the true labels which are expected as it comes
second to RF. Another important factor is that the DT model seems to have less
trouble correctly identifying the Real texts as opposed to the Fake ones. The matrix
for the BanFakeNews dataset can be misleading with its lighter Fake-Fake square
but we need to keep in mind that the amount of fake data in the dataset is very low
to begin with. As a result, a similar imbalance of colors is seen for every model.

The performance of RF can be seen in figure 4.10 where it is clear that it had barely
any trouble correctly predicting the labels. Although it performs better than DT,

24

(a) FakeOrReal (b) COVID19

(c) UVIC ISOT (d) BanFakeNews

Figure 4.10: Confusion matrices of the RF Model

25

it struggles with fake data as well.

(a) FakeOrReal (b) COVID19

(c) UVIC ISOT (d) BanFakeNews

Figure 4.11: Confusion matrices of the NB Model

Figure 4.11 illustrates why the NB model failed to score as high as the previous two
models. Not only did it make more mistakes in predicting fake texts, it was less
useful in labeling real data as well. A drop in performance in both cases led to the
model’s lower metric in accuracy and F1.

The performance of SVM, with the least impressive scores, can be observed in figure
4.12. The main reason it scored the least can be attributed to it labeling real data
as fake. However, it is interesting that it consistently managed to identify all the
real data. It seems it has a tendency to label everything as real. Further research
can be done to explore the characteristics of SVM.

Finally, the confusion matrices of the Ensemble ML model can be seen in figure 4.13.
This is our first attempt at creating a model that could possibly perform better than

26

(a) FakeOrReal (b) COVID19

(c) UVIC ISOT (d) BanFakeNews

Figure 4.12: Confusion matrices of the SVM Model

27

(a) FakeOrReal (b) COVID19

(c) UVIC ISOT (d) BanFakeNews

Figure 4.13: Confusion matrices of the Ensemble ML Model

28

the other ML models. However, it could not surpass either DT or RF. The reason
for this could be the presence of SVM. Compared to those, this model had more
difficulty in correctly identifying both fake and real data.

Dataset Models
BERT RNN CNN

Fake or real News 72.37% 86.74% 87.21%
COVID-19 fake news 82.39% 91.67% 91.58%
UVIC ISOT 84.3% 96.9% 95.4%
BanFakeNews 95.67% 95.14% 96.24%
Average 83.68% 92.61% 92.60%

Table 4.3: Accuracy of the DL models

Moving on to the accuracy of the DL models from table 4.3, it is evident that RNN
and CNN performed the best with average scores of 92.61% and 92.60%. However,
we did not consider CNN for our hybrid model as it is not the best suited for text
classification in the long run. For detecting rumors well, we need a model that
can learn textual patterns better. Such a model is RNN which, on its own, had
marginally higher accuracy on average. It even outperformed the CNN model in
half the datasets. Since it has quite a respectable accuracy and is an optimal choice
for text classification, we took this as the weak learning neural network for our hy-
brid model. BERT had the lowest score among all the DL models with an average
of 83.68% accuracy. The only exception to this was the “BanFakeNews” dataset
where we implemented a pre-trained BanglaBERT model from its authors. Only in
that instance did it perform fractionally better than RNN, just shy of CNN.

Dataset Models
BERT RNN CNN

Fake or real News 73% 86.09% 86.84%
COVID-19 fake news 81.25% 91.5% 91.5%
UVIC ISOT 84.5% 97% 96.5%
BanFakeNews 85.5% 97.18% 96.73%
Average 81.06% 92.94% 92.89%

Table 4.4: F1-score of the DL models

The F1 scores from table 4.4 give further insight into the DL models’ precision and
recall. In this case, as well, RNN came out on top with an average score of 92.94%.
CNN resided close by with 92.89%, a minuscule difference. The worst performer
by far was BERT, scoring only 81.06%. CNN performed marginally better on the
FakeOrReal dataset, scoring 86.84% compared to RNN’s 86.09%. RNN performed
equally well as CNN in the case of the COVID-19 dataset. It outperformed both
the other models in ISOT and BanFakeNews.

The confusion matrix from figure 4.14 shows us where the BERT model struggled.
In all instances, it mixed up either real data with a fake label or fake data with the

29

(a) FakeOrReal (b) COVID19

(c) UVIC ISOT (d) BanFakeNews

Figure 4.14: Confusion matrices of the BERT Model

30

real label. The latter can be seen in the FakeOrReal dataset whereas in COVID-
19 and ISOT the first is true. Only in BanFakeNews, had a noteworthy performance.

(a) FakeOrReal (b) COVID19

(c) UVIC ISOT (d) BanFakeNews

Figure 4.15: Confusion matrices of the RNN Model

Figure 4.15 illustrates how RNN had ease in identifying the labels correctly. It
barely missed any predictions in almost all cases.

The performance of the second-placing CNN model is visible in figure 4.16. Although
it managed to accurately label quite well, it particularly slipped when distinguish-
ing fake data compared to RNN. Labeling real data, it was almost on par with RNN.

Lastly, looking at the accuracy of the proposed hybrid model from table 4.5, we
see that it outperforms all other best performing baseline models for every dataset.
Overall, it had an accuracy of 95.29% which is even more than the highest-scoring
ML model, RF. It not only outperformed the CNN model as well, but it also did
so while taking up lesser resources. Thus, it is shown that the hybrid model we

31

(a) FakeOrReal (b) COVID19

(c) UVIC ISOT (d) BanFakeNews

Figure 4.16: Confusion matrices of the CNN Model

32

Dataset RF Ensemble RNN Hybrid Model(RNN+RF)
Fake or real News 89.85% 78.73% 86.74% 92.34%
COVID-19 fake news 92.72% 88.32% 91.67% 94.47%
UVIC ISOT 98.36% 98.93% 96.9% 98.1%
BanFakeNews 93.31% 90.97% 95.14% 96.25%
Average 93.56% 89.24% 92.61% 95.29%

Table 4.5: Accuracy comparison of the Hybrid model

suggested, achieves state-of-the-art results by performing better than all the other
baseline ML and DL models. This is true for each individual dataset rather than on
average.

Dataset RF Ensemble RNN Hybrid Model(RNN+RF)
Fake or real News 89.77% 78.26% 86.09% 92.79%
COVID-19 fake news 93.06% 88.76% 91.5% 94.6%
UVIC ISOT 98.35% 98.97% 97% 97.5%
BanFakeNews 93.31% 94.98% 97.18% 97.85%
Average 93.62% 90.24% 92.94% 95.68%

Table 4.6: F1-score comparison of the Hybrid model

The F1 scores of the hybrid model from table 4.6 further establish its superiority
over the other models. With an average of 95.68%, it scored more than all other
baseline models. However, the Ensemble model was the best for the UVIC ISOT
dataset with a score of 98.97% as opposed to the hybrid’s 97.5%. Regardless of
that, the overall higher score of the proposed model proves it has better precision
and recall than the other state-of-the-art models.

Figure 4.17 visualizes how the hybrid model came out on top of others. Compared to
the other confusion matrices a more consistent result can be observed. The proposed
model manages to accurately label both real and fake data with ease whereas other
models struggled in at least one area. Although some were better at labeling one
criterion than the hybrid model, the ability to excel in both is required for real-life
applications. Hence, the hybrid model created by combining RNN and RF is the
optimal choice for rumor detection.

The results observed from the experiments provide us valuable insights into why
the models performed the way they did. The superiority of the implemented hybrid
model can also be further established by breaking down the models’ performances.
It has been consistently observed that the DT model was almost on par with the
RF model in every instance. This comes as no surprise as RF is the culmination
of multiple decision trees. For this reason, RF is able to produce much more accu-
rate predictions on the test sets aggregating the outputs from randomly generated
decision trees, creating a forest. The NB model, on the other hand, assumes all
the features are continuous and that they are independent. While this is an easier
algorithm to implement, the results clearly suggest that it is not the best suited for

33

(a) FakeOrReal (b) COVID19

(c) UVIC ISOT (d) BanFakeNews

Figure 4.17: Confusion matrices of the Hybrid Model

34

making the most accurate predictions regarding rumors, at least for the datasets
used here. It might be due to the fact that the features are dependent on each
other in reality which would make sense in the context of rumors. But it is quite
close to DT despite being less complex. By far the worst-performing model was
the SVM model which utilizes a RBF kernel. It tries to produce a feature space
that resembles the norm distance between a chosen point and another fixed point.
However, its ultimate goal is to divide the data points into two planes like other
SVM algorithms. Although this is a widely used ML model, it was not suited for
rumor detection at all from the testing conducted in this paper. It also took the
highest amount of time to train and test which is attributed to its quadratic growth
of fit time with the number of inputs. In an effort to reduce that time and prevent
overfitting, a gamma value of 100 and a higher cache size were specified. It did not
perform well probably due to the increased need for resources for processing such a
vast number of inputs. The results from the SVM model could be improved by using
a linear kernel rather than a non-linear one. We experimented with such settings
which produced similar results to the DT model. But we did not go forward with
that approach as we wanted to stick to the default implementations for all models
in sklearn. Overall, RF was the best performing among the ML models due to its
utilization of decision trees to consider every feature and aggregate among them.

Moving on to the DL models, the BERT models achieved way lower scores than
both RNN and CNN. This could be due to the fact that BERT keeps the ”meaning”
of a certain word fixed irrespective of the circumstance. It tries to account for the
change in meaning by employing bi-directional transformers but in the case of ru-
mors it seemed to have less impact than other learning strategies. The title for best
performing DL model, was closely contested by RNN and CNN. However, research
proves that CNN is better fitted for spatial data like images where input sizes are
generally fixed as opposed to varying length inputs in the case of texts. Even though
this has been accounted for using a 1-dimensional convolution and pooling layers,
CNN is still not suited for long-term learning of patterns. For this reason, despite
CNN performing similar to RNN in almost every dataset we chose RNN for the
hybrid model as it is better for text classification. It also had higher accuracy in all
datasets compared to CNN. RNN is more commonly used for temporal or sequential
data and can handle inputs of changing size. It is also better at long-term pattern
detection as it utilizes time-series information to better understand the context. For
these reasons, it is observed that RNN performs very well on the chosen datasets.
Over time, it can also outperform the CNN architecture in the case of rumor detec-
tion.

Considering both ML and DL approaches, it can be said that both are necessary for
all sorts of classification problems. However, problems such as rumors need massive
amounts of data to be detected and prevented from spreading. This is where DL
outperforms ML as it can handle big data more comfortably. In fact, they perform
significantly better over time. The drawback is that DL generally requires more re-
sources than ML as it consists of more layers that learn from a hierarchy of concepts.
Therefore, in order to achieve better results with a more realistic availability of re-
sources, we propose a hybrid model composed of the best ML model and DL model
from our testing. The hybrid model consistently outperformed all other state-of-the-

35

art baseline models. It is evident from the previous tests that the meta-learner, the
RF model, manages to make more accurate predictions from a dataset constructed
from the output of the RNN model. Because of the inclusion of RNN, it would also
become more accurate at detecting rumors over time and the RF model would aid
in the final classification.

36

4.3 Future work
We attempted to show our approach to implementing the hybrid rumor detection
model in this paper that can outrun several state of the art models by analyzing the
outcome of our performed comparative study. Thus far, we believe it has a lot of
potential for future research. Some of them are listed below:

• Constructing the Bangla dataset to compensate for the paucity.

• Involving more models in the comparative study.

• Including different variants of the models.

• Building hybrid models with more possible combinations.

• Improving the models that performed poorly.

37

Chapter 5

Conclusion

The only way to defend against the threats of mass rumors spread through virtual
platforms is to generate methods that can accurately predict rumors. In this paper,
we first presented a comparative study among several state-of-the-art ML and DL
models using the aforementioned datasets and drew conclusions for which ML and
DL to proceed with. From the analysis, we chose Random Forest and RNN for our
further experiment. Then we built our Ensemble ML model where we stacked SVM,
DT, and NB and used RF as our final classifier. Lastly, we implemented our unique
hybrid model for rumor detection combining RF and RNN and it has been able to
outdo the rest of the state-of-the-art models that we selected for our experiments.

38

Bibliography

[1] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine learn-
ing in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[2] F. Chollet et al., Keras, https://keras.io, 2015.
[3] Martín Abadi, Ashish Agarwal, Paul Barham, et al., TensorFlow: Large-scale

machine learning on heterogeneous systems, Software available from tensor-
flow.org, 2015. [Online]. Available: https://www.tensorflow.org/.

[4] Y. Zhang and B. Wallace, A sensitivity analysis of (and practitioners’ guide to)
convolutional neural networks for sentence classification, 2015. doi: 10.48550/
ARXIV.1510.03820. [Online]. Available: https://arxiv.org/abs/1510.03820.

[5] H. Ahmed, I. Traore, and S. Saad, “Detection of online fake news using n-gram
analysis and machine learning techniques,” in Intelligent, Secure, and Depend-
able Systems in Distributed and Cloud Environments, I. Traore, I. Woungang,
and A. Awad, Eds., Cham: Springer International Publishing, 2017, pp. 127–
138, isbn: 978-3-319-69155-8. doi: 10.1007/978-3-319-69155-8_9.

[6] H. Ahmed, I. Traore, and S. Saad, “Detecting opinion spams and fake news
using text classification,” SECURITY AND PRIVACY, vol. 1, no. 1, e9, 2018.
doi: https://doi.org/10.1002/spy2.9. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1002/spy2.9. [Online]. Available: https://onlinelibrary.wiley.com/
doi/abs/10.1002/spy2.9.

[7] E. Commission, C. Directorate-General for Communications Networks, and
Technology, A multi-dimensional approach to disinformation : report of the
independent High level Group on fake news and online disinformation. Publi-
cations Office, 2018. doi: doi/10.2759/739290.

[8] J. Ma, W. Gao, and K.-F. Wong, “Rumor detection on Twitter with tree-
structured recursive neural networks,” in Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), Melbourne, Australia: Association for Computational Linguistics, Jul.
2018, pp. 1980–1989. doi: 10.18653/v1/P18-1184. [Online]. Available: https:
//aclanthology.org/P18-1184.

[9] H. Patel and P. Prajapati, “Study and analysis of decision tree based classi-
fication algorithms,” International Journal of Computer Sciences and Engi-
neering, vol. 6, pp. 74–78, Oct. 2018. doi: 10.26438/ijcse/v6i10.7478.

39

https://keras.io
https://www.tensorflow.org/
https://doi.org/10.48550/ARXIV.1510.03820
https://doi.org/10.48550/ARXIV.1510.03820
https://arxiv.org/abs/1510.03820
https://doi.org/10.1007/978-3-319-69155-8_9
https://doi.org/https://doi.org/10.1002/spy2.9
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spy2.9
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spy2.9
https://onlinelibrary.wiley.com/doi/abs/10.1002/spy2.9
https://onlinelibrary.wiley.com/doi/abs/10.1002/spy2.9
https://doi.org/doi/10.2759/739290
https://doi.org/10.18653/v1/P18-1184
https://aclanthology.org/P18-1184
https://aclanthology.org/P18-1184
https://doi.org/10.26438/ijcse/v6i10.7478

[10] A. Zubiaga, A. Aker, K. Bontcheva, M. Liakata, and R. Procter, “Detection
and resolution of rumours in social media: A survey,” ACM Comput. Surv.,
vol. 51, no. 2, Feb. 2018, issn: 0360-0300. doi: 10.1145/3161603. [Online].
Available: https://doi.org/10.1145/3161603.

[11] A. Kumar and S. Sangwan, “Rumor detection using machine learning tech-
niques on social media: Proceedings of icicc 2018, volume 2,” in Jan. 2019,
pp. 213–221, isbn: 978-981-13-2353-9. doi: 10.1007/978-981-13-2354-6_23.

[12] Q. Li, Q. Zhang, L. Si, and Y. Liu, “Rumor detection on social media: Datasets,
methods and opportunities,” 2019. doi: 10.48550/ARXIV.1911.07199. [On-
line]. Available: https://arxiv.org/abs/1911.07199.

[13] M. Ali, Rumour detection models and tools for social networking sites, Feb.
2020.

[14] T. Bian, X. Xiao, T. Xu, et al., Rumor detection on social media with bi-
directional graph convolutional networks, 2020. doi: 10.48550/ARXIV.2001.
06362. [Online]. Available: https://arxiv.org/abs/2001.06362.

[15] M. Z. Hossain, M. A. Rahman, M. S. Islam, and S. Kar, Banfakenews: A
dataset for detecting fake news in bangla, 2020. doi: 10.48550/ARXIV.2004.
08789. [Online]. Available: https://arxiv.org/abs/2004.08789.

[16] M. G. Hussain, M. R. Hasan, M. Rahman, J. Protim, and S. A. Hasan, Detec-
tion of bangla fake news using mnb and svm classifier, 2020. doi: 10.48550/
ARXIV.2005.14627. [Online]. Available: https://arxiv.org/abs/2005.14627.

[17] T. Zhu, “Analysis on the applicability of the random forest,” Journal of
Physics: Conference Series, vol. 1607, p. 012 123, Aug. 2020. doi: 10.1088/
1742-6596/1607/1/012123.

[18] R. Anggrainingsih, G. M. Hassan, and A. Datta, Bert based classification
system for detecting rumours on twitter, 2021. doi: 10.48550/ARXIV.2109.
02975. [Online]. Available: https://arxiv.org/abs/2109.02975.

[19] A. D’ulizia, M. C. Caschera, F. Ferri, and P. Grifoni, “Fake news detection: A
survey of evaluation datasets,” PeerJ Computer Science, vol. 7, 2021.

[20] S. Hangloo and B. Arora, “Fake news detection tools and methods – a review,”
2021. doi: 10.48550/ARXIV.2112.11185. [Online]. Available: https://arxiv.
org/abs/2112.11185.

[21] A. Mathew, P. Amudha, and S. Sivakumari, “Deep learning techniques: An
overview,” in Advanced Machine Learning Technologies and Applications, A. E.
Hassanien, R. Bhatnagar, and A. Darwish, Eds., Singapore: Springer Singa-
pore, 2021, pp. 599–608, isbn: 978-981-15-3383-9. doi: 10.1007/978-981-15-
3383-9_54.

[22] M. F. Mridha, A. J. Keya, M. A. Hamid, M. M. Monowar, and M. S. Rahman,
“A comprehensive review on fake news detection with deep learning,” IEEE
Access, vol. 9, pp. 156 151–156 170, 2021. doi: 10.1109/ACCESS.2021.3129329.

[23] P. Patwa, S. Sharma, S. Pykl, et al., “Fighting an infodemic: COVID-19 fake
news dataset,” in Combating Online Hostile Posts in Regional Languages dur-
ing Emergency Situation, Springer International Publishing, 2021, pp. 21–29.
doi: 10.1007/978-3-030-73696-5_3. [Online]. Available: https://doi.org/10.
1007%2F978-3-030-73696-5_3.

40

https://doi.org/10.1145/3161603
https://doi.org/10.1145/3161603
https://doi.org/10.1007/978-981-13-2354-6_23
https://doi.org/10.48550/ARXIV.1911.07199
https://arxiv.org/abs/1911.07199
https://doi.org/10.48550/ARXIV.2001.06362
https://doi.org/10.48550/ARXIV.2001.06362
https://arxiv.org/abs/2001.06362
https://doi.org/10.48550/ARXIV.2004.08789
https://doi.org/10.48550/ARXIV.2004.08789
https://arxiv.org/abs/2004.08789
https://doi.org/10.48550/ARXIV.2005.14627
https://doi.org/10.48550/ARXIV.2005.14627
https://arxiv.org/abs/2005.14627
https://doi.org/10.1088/1742-6596/1607/1/012123
https://doi.org/10.1088/1742-6596/1607/1/012123
https://doi.org/10.48550/ARXIV.2109.02975
https://doi.org/10.48550/ARXIV.2109.02975
https://arxiv.org/abs/2109.02975
https://doi.org/10.48550/ARXIV.2112.11185
https://arxiv.org/abs/2112.11185
https://arxiv.org/abs/2112.11185
https://doi.org/10.1007/978-981-15-3383-9_54
https://doi.org/10.1007/978-981-15-3383-9_54
https://doi.org/10.1109/ACCESS.2021.3129329
https://doi.org/10.1007/978-3-030-73696-5_3
https://doi.org/10.1007%2F978-3-030-73696-5_3
https://doi.org/10.1007%2F978-3-030-73696-5_3

[24] M. Rawat and D. Kanojia, Automated evidence collection for fake news de-
tection, 2021. doi: 10.48550/ARXIV.2112.06507. [Online]. Available: https:
//arxiv.org/abs/2112.06507.

[25] M. Saif, M. K. H. Kanon, N. Hasan, M. S. Hossen, and F. Z. Anannya, Identi-
fication of fake news using machine learning in distributed system, Jun. 2021.
[Online]. Available: http://dspace.bracu.ac.bd/xmlui/handle/10361/15199.

[26] O. Sharif, E. Hossain, and M. M. Hoque, Combating hostility: Covid-19 fake
news and hostile post detection in social media, 2021. doi: 10.48550/ARXIV.
2101.03291. [Online]. Available: https://arxiv.org/abs/2101.03291.

[27] L. Singh, “Hybrid ensemble for fake news detection: An attempt,” in Data
Engineering for Smart Systems, Springer Singapore, Nov. 2021, pp. 101–108.
doi: 10.1007/978-981-16-2641-8_10. [Online]. Available: https://doi.org/10.
1007%2F978-981-16-2641-8_10.

[28] S. D. Sourya Dipta Das Ayan Basak, Covid19 fake news dataset nlp, 2021.
doi: 10.34740/KAGGLE/DSV/2016658. [Online]. Available: https://www.
kaggle.com/dsv/2016658.

[29] F. Tafannum, M. N. S. Shopnil, A. Salsabil, and N. Ahmed, Sep. 2021. [Online].
Available: http://dspace.bracu.ac.bd/xmlui/handle/10361/15604.

[30] H. de Wet and V. Marivate, Is it fake? news disinformation detection on south
african news websites, 2021. doi: 10 . 48550/ARXIV .2108 . 02941. [Online].
Available: https://arxiv.org/abs/2108.02941.

[31] Y. Gao, X. Wang, X. He, H. Feng, and Y. Zhang, Rumor detection with self-
supervised learning on texts and social graph, 2022. doi: 10.48550/ARXIV.
2204.08838. [Online]. Available: https://arxiv.org/abs/2204.08838.

[32] C. Naulak, A comparative study of naive bayes classifiers with improved tech-
nique on text classification, May 2022. doi: 10.36227/techrxiv.19918360.v1.

[33] S. Shelke and V. Attar, Rumor detection in social network based on user,
content and lexical features - multimedia tools and applications, Mar. 2022.
[Online]. Available: https://link.springer.com/article/10.1007/s11042-022-
12761-y.

[34] L. R. Olsen, Multiple-k: Picking the number of folds for cross-validation, Jan.
2023. [Online]. Available: https://cran.r-project.org/web/packages/cvms/
vignettes/picking_the_number_of_folds_for_cross-validation.html.

41

https://doi.org/10.48550/ARXIV.2112.06507
https://arxiv.org/abs/2112.06507
https://arxiv.org/abs/2112.06507
http://dspace.bracu.ac.bd/xmlui/handle/10361/15199
https://doi.org/10.48550/ARXIV.2101.03291
https://doi.org/10.48550/ARXIV.2101.03291
https://arxiv.org/abs/2101.03291
https://doi.org/10.1007/978-981-16-2641-8_10
https://doi.org/10.1007%2F978-981-16-2641-8_10
https://doi.org/10.1007%2F978-981-16-2641-8_10
https://doi.org/10.34740/KAGGLE/DSV/2016658
https://www.kaggle.com/dsv/2016658
https://www.kaggle.com/dsv/2016658
http://dspace.bracu.ac.bd/xmlui/handle/10361/15604
https://doi.org/10.48550/ARXIV.2108.02941
https://arxiv.org/abs/2108.02941
https://doi.org/10.48550/ARXIV.2204.08838
https://doi.org/10.48550/ARXIV.2204.08838
https://arxiv.org/abs/2204.08838
https://doi.org/10.36227/techrxiv.19918360.v1
https://link.springer.com/article/10.1007/s11042-022-12761-y
https://link.springer.com/article/10.1007/s11042-022-12761-y
https://cran.r-project.org/web/packages/cvms/vignettes/picking_the_number_of_folds_for_cross-validation.html
https://cran.r-project.org/web/packages/cvms/vignettes/picking_the_number_of_folds_for_cross-validation.html

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Research Problem
	Research Objectives

	Literature Review
	Model Description
	Related Works

	Methodology
	Datasets
	Data Pre-processing

	Implementations and results
	Implementation
	Machine Learning Models
	Deep Learning Models
	Machine Learning Stacked Model
	Hybrid Model

	Results & Analysis
	Future work

	Conclusion
	Bibliography

