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Abstract

Detecting corn leaf diseases helps farmers identify and treat impacted crops. Early
disease identification reduces crop loss. Manual leaf diagnostic imaging takes time
and is prone to mistakes. This thesis proposes a deep convolutional neural network
(CNN) model for autonomous corn leaf disease identification. PlantVillage and
PlantDoc were utilized. The dataset contains 4,188 photos of healthy maize leaves
and three corn leaf illnesses. The photos have disease labels. We rotated, flipped,
and scaled images for augmentation. After augmentation, the total number of photos
in the dataset is about 12,000. We trained our CNN model using pre-trained ar-
chitectures like InceptionResNetV2, MobileNetV2, ResNet50, VGG19, InceptionV3,
VGG16, and DenseNet201. These architectures were chosen for their image feature
extraction and large dataset learning capabilities. We used transfer learning to fine-
tune a model using a pre-trained model. The model accurately detects corn leaf
diseases in new photos. The model is computationally light, making it suited for
smartphones and drones. A maize leaf disease detection mobile app was created
using the proposed CNN model. The application can detect corn leaves uploaded
by anyone. An API analyzes an image using our proposed model from the device’s
camera or gallery when a user selects it.

Keywords: CNN, Deep Learning, Image processing, Machine learning, Proposed
Model, Transfer Learning
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Chapter 1

Introduction

1.1 Introduction

Corn is a vital food and feed crop. Except for rice and wheat, it has the biggest
plant area and total yield in the world. However, the number of corn disease species
and the extent of harm they inflict have increased in recent years, owing mostly to
changes in farming practices, pathogen variety variation, and poor plant protection
measures. Some of the most common leaf diseases are curvularia leaf spot, dwarf
mosaic, gray leaf spot, blight, brown spot, round spot, and Common rust. Corn leaf
disease, in particular, is dangerous and will have an impact on corn production as
well as people’s lives[1].

CNN is composed of a multitude of layers. CNN is a deep learning method that
can classify, segment, recognize and detect images and objects. CNN technology
has expanded into medical imaging, autonomous driving, robotics, and agricultural
imaging. There have been numerous picture studies, such as the classification of
illness in 15 food crops using 5 convolutional layers with googleNet. Mohanty et
al. categorized 14 crops, including corn. 26 diseases were categorized. 54,306
images were tested. For classification, AlexNet and GoogleNet were used as deep
learning neural networks. The accuracy was 31.4%. CNN was used to classify
corn leaf images for disease detection. Sibiya & Sumbwanyambe classified corn leaf
diseases using CNN. Northern leaf blight, common rust, and Cercospora are disease
classifications. CNN architecture was not explained in detail, but it used 50 hidden
layers of convolution, ReLU, and pooling layers. Each class used 100 images, 70%
for training and 30% for testing. In this paper we suggest a lightweight CNN model
with comparable testing accuracy.
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1.2 Problem Statement

Maize is grown all over the world. The United States, China, Brazil, and India are
some of the countries that produce the most corn. Corn is becoming a popular crop
in Northern Bangladesh because it doesn’t need much water. India’s food crop is
the third most important in the world. Blight, Gray Leaf Spot, and Common rust
are the most common diseases that affect corn leaves. Corn diseases can cause a
country to lose a lot of money. The first signs of corn disease show up very quickly.
If diseases are found early and the right steps are taken, it may be possible to keep
the quality of the crop [6]. Corn leaf disease needs to be easy to spot so that risks
can be quickly found and dealt with. We can find corn leaf disease with the help of
computer vision and machine learning.

[12] says that among the 5 algorithms Naive Bayes, SVM, Decision tree, KNN, and
Random Forest (RF) had the best accuracy at 80.68%, which is not good enough.

In [7], Convolutional Neural Network (CNN) is used and the achieved accuracy is
88.46%. But, the model can only detect two diseases which are Blight and Common
Rust.

The purpose of this research is to develop a system for automatically detecting
corn leaf diseases using computer vision and machine learning techniques such as
Convolutional Neural Network.

1.3 Research Objectives

The purpose of this study is to develop a CNN-based model that is capable of
accurately diagnosing and categorizing diseases that affect maize leaves. This system
will take images as input. We will use Deep Learning to figure out whether or not
the images show disease. After any necessary preprocessing, the images will be run
through the proposed CNN model, which will sort them into four groups. These are
the goals of this research:

• Know how image processing works and how it is done.

• To know how to use techniques like Denoising and Reshaping to prepare data.

• To use images to build a model that can find Corn diseases.

• To figure out what deep learning means for our model.

• To understand the importance of hyper parameter optimization.
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1.4 Literature Review

Crops are a significant food for human beings. We directly or indirectly depend on
these crops. Corn is a famous food all over the world, especially in Asia and Europe.
Corn kernels come in six varieties: flint, flour, dent, pop, sweet, and waxy. Corn
flour is made from flour corn, which is predominantly farmed in the Andean region
of South America. Waxy corn is a Chinese crop with a texture similar to sticky rice.
Flint corn has a hard outer shell with kernels in a variety of shades ranging from
white to crimson which is similar to dent corn. Sweet corn has a higher natural
sugar content than other forms of maize, making it extremely sweet.

Maize is susceptible to diseases such as gray leaf spot, blight, tar spot, and com-
mon rust and southern rust during the growing season. Early disease treatment
is essential for maintaining a healthy corn crop and protecting yields. Maize seed
rots and seedling blights are caused by many fungal species belonging to numerous
genera (Fusarium spp., Rhizoctonia spp., Pythium spp., Diplodia spp., Penicillium
spp., Trichoderma spp). These fungus are all common microbes found in cornfields.
They can be discovered in crop leftovers and soil. It is preferable to avoid or manage
a disease outbreak when the disease is at low levels, rather than attempting to cope
with a disease that has already caused major harm, in order to efficiently manage
corn for disease. Weekly field scouting can reveal whether illnesses are present, their
severity, and the risk of crop loss if not treated.

In paper [11], An optimized custom DenseNet model for diagnosing and classifying
leaf diseases was shown. This custom DenseNet model has less parameters than
most CNN designs, so it takes less time to run. Here has also trained VGGNet,
XceptionNet, EfficientNet, and NASNet, which are all well-known CNN models, to
recognize and classify corn leaf diseases. Twelve thousand three hundred and thirty-
two images with a size of 250 x 250 pixels were collected by hand from different
sources and split into four crop classes. In addition, a Dataset called ”Total Leaf
Dataset” is used here. The model has been right 98.06 percent of the time. In the
future, a mobile app is expected to be launched which will be able to detect diseases
on corn leaf.

In paper [1], GoogLeNet and Cifar10 models for recognizing leaf diseases based on
deep learning are made better. The main goals of this paper were to cut down on
the number of network parameters and improve how well corn leaf diseases could
be found. The Cifar10 model is only capable of identifying maize leaf diseases with
an average accuracy of 98.8 percent, but the GoogLeNet model is able to recognize
eight different types of corn leaf diseases with an average accuracy of 98.9 percent.
There were a total of 500 photographs sourced from various locations, such as the
websites of Plant Village and Google, that demonstrated various stages of maize
leaf disease. These photographs have been organized into nine distinct categories.
Finding new varieties of corn diseases and pests will be the primary focus of future
research; this will be followed by the development of new algorithms and other forms
of deep learning structures for use in the testing and training of models.

In paper [6] real-life-based deep convolutional neural network method is proposed.
The model identifies the two most common corn diseases in India. They are Leaf
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Blight and Common Rust. The images that were taken from the corn plants them-
selves are used as the dataset. The network is given an image with a resolution of
150x150 pixels. For each of the weights, a batch size of 32 was selected, and Glorot
uniform initialization was used. Maximum pooling with a pool size of two by two
is utilized here. Additionally, the relu activation function is utilized throughout the
network with the exception of the last layer. The Softmax activation function is
used for the final layer’s processing. In order to obtain an accuracy of more than
96%, other network-hyper parameters, such as the learning rate and the maximum
epoch, were altered during training. The accuracy of this model was determined to
be 88.46 percent on the whole.

In paper [13], the ResNet50 model was proposed. Adam approach optimized the
model by adding L2 regularization. Reduces overfitting. ResNet50 recognizes better
than other models. The data set has 98.52±% image recognition accuracy, and agri-
culture has 97.826±%. SVM, genetic algorithm, local discriminant mapping, and
local linear embedding algorithms operate poorly with weak resilience. 2309 photos
of mosaic, gray spot, rust, and leaf blight corn diseases were collected. Brighten-
ing, translation, and flipping improved identification accuracy. The input module,
four blocks (3, 4, 6, and 3 in each module), and output module comprise the net-
work. Levels used ReLU activation functions. Batch canonicalization units improved
model flexibility. ADAM optimizes network recognition accuracy. After loading the
data file, the pretraining model was loaded followed by a data reader which helps
for image classification. Optimization strategy and parameters were set before fine-
tuning. Then, the model parameters were trained and evaluated.When the ReLU
function is applied, recognition accuracy is maximized. If 7*7 stacking layers are
replaced with 3*3 stacking layers, the layer of ResNet50 network is improved as it
effectively reduces the amount of calculation, without changing the initial receptive
field.

In paper [5], the CNN recognition model has been proposed based on a combination
of data augmentation and transfer learning. The authors compared and analyzed
the original GoogleNet network and then used other CNN to transfer the learning
effect. The training data set has used four ways to add more data: random cropping,
horizontal flipping, vertical flipping, and center cropping. This model can be used
to analyze remote sensing images, especially to figure out what they are. It can be
used in many different ways in agriculture. Two changes are made: (1) the data are
improved to make the model more robust and general, and (2) migration learning
is used to speed up the training process and reduce the amount of overfitting. The
network model has been made as good as it can be by using Adam’s (Adaptive
Moment Estimation) optimization algorithm. Plant Village was used to get the
data set. In this study, 4,354 pictures of corn leaves were used. These pictures were
put into four groups: Corn Gray Leaf Spot, Corn Common Rust, Corn Healthy,
and Corn Northern Leaf Blight. The image resolution was set to 224 x 224 for both
training and testing data by the authors. Lastly, they changed the PIL Image or
Ndarray to a tensor, normalized the data to [0,1], and made sure it was the same for
each channel. In the first part of the experiment, they kept changing the training
hyper parameters, such as the learning rate, optimizer, and batch size, so that the
model could be more stable. This improved CNN model records the highest precision
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of 96.05%, recall rate of 97.01%, and F1 score of 96.53% when compared to VGG19,
VGG16, and ResNet18.

In Paper[15] an expert system is introduced using the forward chaining method, an
artificial intelligence-based system for disease detection in corn plants at an early
stage. Here, PHP programming language and MySQL database are being used for
system development. It’s a step-by-step process of making a Data Flow Diagram, a
context diagram for creating database design followed by coding the symptoms(31
symptoms for 6 diseases) of corn diseases. Based on test methods, its user acceptance
is 84% and for the black box method, the system’s functionality is 100%. The
designed system application can not only detect disease but also provides a treatment
solution in the form of a consultation tool for the farmers.

In paper [16], deep transfer modeling or in other words deep neural network has been
proposed for identifying and classifying corn plant leaf disease. For fast and accurate
detection AlexNet Model and Plant Village Data set containing two categories of
diseases have been used. Cercospora comprises 1363 photos, whereas Gray contains
929 images. The AlexNet model introduced has 5 convolution layers, 3 max-pooling
layers, and multiple epochs such as 25, 50, 75, and 100 times iteration. Accuracy
performance improves as the number of iterations increases. When the various
approaches are compared, the proposed method achieves an accuracy rate of 99.16%.
Though a huge number of data sets and iterated AlexNet CNN associated with epoch
iteration can turn into main challenges while following this study. The benefits are
getting instant information, reduced outbreaks, upsurges and huge losses won’t be
threatening to the farmers anymore.

In paper [14], Deep neural networks are used to detect corn diseases. At first,
the classification of AI ( ML and DL) and also types of corn are described. Then
a camera takes the pictures of each corn type and the image is then processed,
fragmented, and fed to the AI method. As the data set gets bigger, it becomes
easier to predict diseases. The accuracy rate of ANN is thought to be about 98%
which is the highest of the other monitoring predictions.

In paper[8], CNN Approach is used to predict corn leaf diseases. Over 50 k images
are taken from various villages and then over 2000 are analyzed. After processing
and normalizing the data, it is separated into training and testing sets. The model
is then trained by this and then used to detect which leaf is healthy and which is
not. An accuracy of 98.78% can be achieved by this method.

In [2] used deep CNN. Late blight, early blight, and healthy potatoes were expected.
They had 98.33% accuracy on the same data set. Each input image has pooling,
fully connected convolutional layers. Plant Village-based CNN model. 1000 Early
Blight and Late Blight shots, 250 healthy plant photos. Classifying images utilizes
0-1 probabilities. Image collection, training and validation preprocessing, image aug-
mentation, deep CNN training, and model fine-tuning are involved. The two-step
procedure is Preprocessed CNN. Grayscale converts RGB pictures. 3-becomes-1 in
the color channel. Gaussian blur and median filter eliminate noise. All photos were
categorized after preprocessing. This design has 2 thick and 5 convolution layers.
The first layer has 1024 filters, the last layer has 3 outputs. All layers are ReLu
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and 33. Tri-MaxPooling was used. Normalizing batches accelerates learning. Adam
adjusted weights. Each batch of 32 images has 32 photos. They scored 98.33%.
Recall and F1 both equal 0.9809. The model performance confusion matrix. Deep
CNN for Potato plants reaches 98.33% accuracy, compared to RGB Imaging’s 95%.
TLNet (Tomato Leaf Net) is a convolutional neural network model for predicting
tomato leaf diseases. Model predicts 7 leaf diseases and 1 healthy class. Image-based
training, validation, and testing. Methodology includes dataset prep and Deep CNN
implementation. Normalized, enhanced, label-encoded dataset. After batch normal-
ization and max pooling[2x2], the model has 5 convolutional and 3 dense layers[3x3].
Pesticides and pharmaceutical drugs use segmentation. The 12000-photo model is
98.77% accurate. This research can find other leaf diseases. CNN is used to identify
rice diseases from leaves. Image analysis uses deep learning. Machine learning pre-
dicted 4 major rice illnesses from their leaves, improving agricultural productivity.
This CNN-based algorithm accurately forecasts rice leaf diseases. They utilized 900
images to identify diseases. Four rice diseases were identified using 10-fold cross-
validation. Image preprocessing and DCN were used. This project intended to
build a cost-effective, error-free machine learning system for recognizing rice plant
diseases.
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Chapter 2

Dataset & Data Pre-proccessing

2.1 Data Source

This dataset uses the well-known PlantVillage [9] and PlantDoc [3] datasets. 4,188
images of three different forms of maize leaf diseases as well as healthy corn leaves
are included in the dataset that was gathered. After augmentation, the number
reached 12,000 units. 8,400 files overall from those were selected for training. 1,200
for the test and 2,400 for validation. Unneeded photos were eliminated from the
dataset. The dataset was obtained from Kaggle.

2.2 Data sample

Most pictures were in jpg format and a few in JPEG format. The dimension of those
pictures was not uniform. The pictures were rescaled to achieve uniform dimensions.

Figure 2.1: Sample Data
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2.3 Resizing image:

Every image must be resized to the same size to be fed to a CNN network. In
our research, we are using InceptionResNetV2, MobileNetV2, ResNet50, VGG19,
InceptionV3, VGG16, DenseNet201 and our custom CNN model. Images are resized
according to the model. For all the pre trained model and our custom model,
images are scaled to 224 x 224 pixels. Image resizing was achieved via tensorflow’s
ImageDataGenerator library.

2.4 Normalization and scaling images:

In image processing, normalization means to bring down pixel values within 0 and
1. Pixel values range between 0 to 255. So, dividing each pixel by 255 will bring
down pixel values between 0 and 1. With small numbers for each pixel (0 to 1)
computation becomes efficient and faster. This rescaling of pixel values was achieved
by ImageDataGenerator with parameter rescale = 1 / 255.

2.5 Data augmentation:

In order to get better accuracy, enough data needs to be fed to the network. Another
reason to augment data is data imbalance. In classification problem, imbalanced
data refers to a situation where data count per class is not even. For example, in
our dataset data count for Gray leaf spot was low. Data imbalance can hamper
model accuracy. With imbalanced data, the accuracy shown might be fake. Below
is the data count before augmentation.

Figure 2.2: Initial data count
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As we can see, data count of the Gray Leaf Spot class is lower compared to other
classes. This imbalance might produce wrong results. So, data for this class must be
augmented. We used python Augmenters library to augment image within the Gray
Leaf Spot folder. Augmenters uses some techniques like flipping, rotating, skewing
existing images to produce new images.

Figure 2.3: Comparison of Data before and after augmentation

2.6 Data labels:

The dataset was divided into 4 distinct labels. Those are Blight, Common Rust,
Gray Leaf Spot, Healthy. So, there are more than 2 classes. That’s why the cate-
gorical classifier is used. Also, labels were balanced using data augmentation.

2.7 Data classification:

We trained the model using 70% of the data, validated it with 20% of data and
tested it with the remaining 10% of data.

Class Training set Validation set Testing set Total
Blight 2,100 600 300 3,000

Common Rust 2,100 600 300 3,000
Gray Leaf Spot 2,100 600 300 3,000

Healthy 2,100 600 300 3,000
Total 8,400 2,400 1,200 12,000

Table 2.1: Data classification
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2.8 Training Set:

Training data is used to update model weights for input-to-output mapping. Neural
networks learn from real-world data and solutions to generalize input-output rela-
tionships. System inputs may include algorithms or output labels. This training
phase is handled by an optimization approach that seeks weights that perform well
on the training dataset.

2.9 Testing Set:

Our system learns from the training set to improve real-world data. Positive test
results improve the algorithm’s confidence in the real world.

2.10 Validation Set:

Validation is sometimes considered part of the training phase. A validation set is
used to tweak models. The validation set eliminates overfitting and optimizes it.
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Chapter 3

Methodology

3.1 Research Methodology

We collected the data and pre-processed it. We augmented the data for label balanc-
ing. Pre-processing also includes splitting the dataset into train, test, and validation
folders. We trained with 70% of the data, validated with 20%, and tested with 10%.
After that, the dataset will go through several CNN architectures like InceptionRes-
NetV2, MobileNetV2, ResNet50, VGG19, InceptionV3, VGG16, DenseNet201 and
a custom model. Finally, accuracy and loss graphs for each epoch and confusion
matrix will be generated to evaluate model performance.

Figure 3.1: Flow chart of our Work
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3.2 CNN Model

We will use Convolutional neural networks (CNN) for our research purpose. It’s
basically neural networks with multiple convolutional layers for segmentation, im-
age processing, classification, and other auto-correlated data. Both hardware and
software systems for neural networks are modeled after the process of neurons inside
the human brain. CNN’s ”neurons’ ’ work approximately such as the frontal lobe of
humans and other animals that process visual signals. Standard neural networks’
fragmented image processing difficulty is avoided by organizing the layers of neurons
in such a way that they create the full central vision. We will use pre-trained mod-
els such as EfficientNetB2, Alexnet, InceptionNetV3, and a custom 22-layer CNN
model.

Figure 3.2: CNN Model architecture

12



Chapter 4

Model Implementation

4.1 Pre-trained CNN Models

4.1.1 VGG 16

One of the most efficient computer vision models available right now is the CNN
(Convolutional Neural Network) variant known as VGG16. By analyzing the net-
works and increasing the depth with an architecture that uses incredibly small (3
By 3) convolution filters, the model demonstrated a considerable improvement over
the state-of-the-art configurations. Karen Simonyan and Andrew Zisserman created
the first version of this CNN model at Oxford. Although the technique was pub-
lished in 2013, the ILSVRC ImageNet Challenge in 2014 was when it was initially
made public.They named it VGG in honor of their group, Oxford’s Visual Geometry
Group. In the VGG16 model, 16 weighted layers are indicated by the number 16.
VGG16 consists of 5 max-pooling layers, 16 weight layers, 13 convolutional layers,
and 3 dense layers, for a total of 21 layers. The total number of parameters in
VGG16 is 138 million. It’s important to remember that each of the conv kernels is
3x3, whereas the maxpool kernels are 2x2 with a 2-stride in this situation. Although
the method was released in 2013, it was first made public during the ILSVRC Ima-
geNet Challenge in 2014. The sixteen in VGG16 stands for sixteen weighted layers.
VGG16 includes a total of 21 layers, nonetheless, there are just 16 weight layers: 3
dense layers, 5 maximum pooling layers, and 13 convolutional layers.

Layer (type) Output Shape Param #

vgg16 (Functional) (None, 7, 7, 512) 14714688
flatten (Flatten) (None, 25088) 0
dense (Dense) (None, 256) 6422784
dropout (Dropout) (None, 256) 0
dense 1 (Dense) (None, 4) 1028
Total params: 21,138,500
Trainable params: 21,138,500
Non-trainable params: 0

Table 4.1: Model summary for VGG 16.
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4.1.2 VGG 19

VGG-19 is the name of a convolutional neural network with 19 layers. It has 138
million Parameters. A pre-trained version of the network that has been trained
on more than a million images is present in the ImageNet database. A number
of animals, a mouse, a keyboard, and a pencil are among the 1000 different item
categories that the pre-trained network can classify images into. As a result, the
network now includes rich feature representations for a range of images. Images
having a resolution of 224 by 224 are accepted by the network. In order to capture
up-and-down and left-and-right motion, the convolutional layers of VGG make use
of the smallest feasible receptive field. The next step is a ReLU activation method.
Since the ReLU activation function outputs the input when it is negative and returns
zero when it is positive, it is regarded as a piecewise linear activation function. After
convolution, the stride value to preserve The spatial resolution is 1 pixel.

Layer (type) Output Shape Param #

vgg19 (Functional) (None, 7, 7, 512) 20024384
flatten (Flatten) (None, 25088) 0
dense (Dense) (None, 256) 6422784
dropout (Dropout) (None, 256) 0
dense 1 (Dense) (None, 4) 1028
Total params: 26,448,196
Trainable params: 26,448,196
Non-trainable params: 0

Table 4.2: Model summary for VGG 19.

4.1.3 ResNet50

An example of a convolutional neural network is ResNet-50, which has 50 layers.
Over 23 million different parameters can be trained on it. It is possible to load a
network that has been pre-trained using more than a million images in the Ima-
geNet database. It functions as the ResNet Convolutional Neural Network (CNN)
architecture, which is a reliable conceptual framework for many computer vision
applications. A keyboard, pencil, mouse, and other animal images are among the
1000 different item categories that the pre-trained network can identify photos into.
As a result, the network has learned detailed feature representations for a range of
images. An image with 224 by 224 pixels can be uploaded to the network. ResNet
is accessible in a variety of forms, each with a distinct quantity of layers. Up to
tens of thousands of layers in a network may be trained without doubling the num-
ber of activation mistakes. ResNets and identity mapping can be used to solve the
vanishing gradient problem. Using the ImageNet database, we could import a net-
work that has already been trained on more than a million images. The previously
trained network can recognize more than a thousand other objects in addition to
keyboards, pencils, and mice. When utilizing this method, deep neural networks
with more neural layers are more effective and make fewer errors overall.Due to the
introduction of skip connections, it is now possible to train far deeper networks than
was previously allowed.
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Layer (type) Output Shape Param #

resnet50 (Functional) (None, 7, 7, 2048) 23587712
flatten (Flatten) (None, 100352) 0
dense (Dense) (None, 256) 25690368
dropout (Dropout) (None, 256) 0
dense 1 (Dense) (None, 4) 1028
Total params: 49,279,108
Trainable params: 49,225,988
Non-trainable params: 53,120

Table 4.3: Model summary for RestNet50.

4.1.4 MobileNetV2

The name ”MobileNet-v2” refers to a convolutional neural network with 53 layers.
There are 3.4 million of them. In the ImageNet database, there is a version of
the network that has already been trained on more than a million pictures. The
network that has already been trained can put photos into 1000 different types of
items. Because of this, the network has detailed representations of many different
pictures’ features. Images with up to 224 by 224 pixels can be sent through the
connection. Mobile Nets are a depth-wise separable convolution design that uses as
few connections as possible to reduce the size of the model and the complexity of
the channel. Both embedded and mobile applications can benefit from the method.
The expert has added the following two universally specific networks to this type of
system: This strategy finds a good balance between how well it predicts and how
long it takes. If needed, the hyperparameters can also be used to choose a good
scaled model that fits the problem’s constraints.

Layer (type) Output Shape Param #

mobilenetv2 1.00 224 (Func-
tional)

(None, 7, 7, 1280) 2257984

flatten 2(Flatten) (None, 62720) 0
dense 4 (Dense) (None, 256) 16056576
dropout 2 (Dropout) (None, 256) 0
dense 5 (Dense) (None, 4) 1028

Total params: 18,315,588
Trainable params: 18,281,476
Non-trainable params: 34,112

Table 4.4: Model summary for MobileNetV2.
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4.1.5 InceptionV3

On the ImageNet dataset, an image recognition model by the name of Inception v3
has shown greater than 78.1% accuracy. The model depicts the confluence of sev-
eral concepts created by numerous scholars over time. Some of the symmetric and
asymmetric building blocks that make up the model itself include convolutions, con-
catenations, average pooling, dropouts, max pooling, and completely linked layers.
The batch normalization method, which is used for the stimulation parameters as
well, is heavily utilized by the model. Using Softmax, the loss is calculated. One of
the most effective approaches for transfer learning is the Inception-v3 model. This
allows us to retrain the last layers of the present goods, which reduces a signifi-
cant amount of time. The ImageNet database was used to train Inception-v3, which
shows that the model can be applied to a lower dimension and provide high-precision
assessments without retraining. It has under 25 million parameters which are al-
most 24 million. The Inception Layers are a collection of layers (11 convolutional
layers, 33 convolutional layers, and 55 convolutional layers) that bring together the
result filters into a unified output value to provide the inputs for the subsequent
steps. To preserve any tangible benefits, changes to an Inception Network must be
managed carefully. Only a few of the mechanisms used in parametric convolution
comprise batch normalization, downsampling, and parallel processing. Two sets of
parameters: 5 million (V1) and 23 million (V2) (V3).

Layer (type) Output Shape Param #

inception v3 (Functional) (None, 5, 5, 2048) 21802784
flatten (Flatten) (None, 51200) 0
dense (Dense) (None, 256) 13107456
dropout (Dropout) (None, 256) 0
dense 1 (Dense) (None, 4) 1028
Total params: 34,911,268
Trainable params: 34,876,836
Non-trainable params: 34,432

Table 4.5: Model summary for InceptionV3.

4.1.6 InceptionResNetV2

Inception-ResNet-v2 is an expansion of the Inception family of architectures and in-
cludes convolution layers. It is trained using images from the ImageNet database.It
has 56 million parameters. The network, which has 164 layers and can classify
pictures into 1000 distinct sorts of items, can identify 1,000 various product classifi-
cations. As a result, the system has acquired knowledge of many complex graphical
multilayer perceptrons.With a set of 299-by-299-pixel input images, class probabil-
ities are computed.The Inception and Residual Link frameworks serve as its foun-
dation. Multiple convolutional filters and residual connections are employed in the
Inception-Resnet block. Utilizing residual blocks decreases the learning curve while
also avoiding the performance degradation brought on by deep structures. The
model reflects the routing protocols of Resnet-fundamental v2.

16



Layer (type) Output Shape Param #

inception resnet v2 (Functional) (None, 5, 5, 1536) 54336736
flatten (Flatten) (None, 38400) 0
dense (Dense) (None, 256) 9830656
dropout (Dropout) (None, 256) 0
dense 1 (Dense) (None, 4) 1028

Total params: 64,168,420
Trainable params: 64,107,876
Non-trainable params: 60,544

Table 4.6: Model summary for InceptionResNetV2.

4.1.7 DenseNet201

DenseNet-201 is the name of a convolutional neural network with 201 levels of depth.
A network that has been pre-trained with more than a million images is present in
the ImageNet database. 1000 different item categories can be used by the training
algorithm to classify images. As a result, the network has gathered thorough feature
representations for a range of images. The network can support up to 224 × 224
pixels in pictures. The principle behind DenseNet201 is that convolutional networks
may be trained to be significantly deeper, more precise, and more effective if they
have shorter connections between layers that are near the source and those that are
close to the outcome.

Layer (type) Output Shape Param #

densenet201 (Functional) (None, 7, 7, 1920) 18321984
flatten (Flatten) (None, 94080) 0
dense (Dense) (None, 256) 24084736
dropout (Dropout) (None, 256) 0
dense 1 (Dense) (None, 4) 1028
Total params: 42,407,748
Trainable params: 42,178,692
Non-trainable params: 229,056

Table 4.7: Model summary for DenseNet201.
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4.2 Proposed CNN Model

4.2.1 Custom Model

Most of the pre-trained CNN models are very deep and have way too much param-
eters. Huge number of parameters causes greater computational cost and train-
ing time. For instance, InceptionResNetV2 has around 60 million parameters,
DenseNet201 has 40 million and so on. The lowest parameter count is in Mo-
bileNetV2. It has about 10 million trainable parameters So, the goal is to propose
a lightweight model with reasonable testing accuracy.
The model contains overall 6 2D convolution layers and 2 fully connected dense lay-
ers. A kernel size of 3x3 is used for all convolution layers. For pooling layers, kernel
size of 2x2 is used. The number of parameters in our model is about 4 million.
The model starts with a convolution layer with input shape 224 x 224 x 3. The
resolution is multiplied by 3 because the images are converted to RGB where each
pixel contains a combination of 3 different colors. It includes 32 feature maps with
ReLu activation. This layer is followed by the AveragePooling layer and BatchNor-
malization layer. Similar convolution layers with 64 feature maps followed by the
AveragePooling and BatchNomalization layers are used in the next layers. Filter
sizes are gradually increased and it often results in better performance. At first
MaxPooling was used after the first two convolution layers. Replacing them with
average pooling increased the validation and testing accuracy slightly.
After that convolution, BatchNormalization, MaxPooling sequence is followed 3
more times. The kernel sizes of those 3 convolution layers are 128, 256, 512 re-
spectively.
There is another convolution layer after that which is followed by the GlobalAv-
eragePooling layer. Use of GlobalAveragePooling layer significantly increased the
performance. GlobalAveragePooling layer has no parameters to optimize. Thus,
overfitting is avoided in this layer. Then it contains a dense layer which is followed
by a dropout layer with a rate of 25%. Dropout helps to reduce overfitting by dis-
carding random neurons from the network. A dense layer with softmax activation
function concludes this model.
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Layer (type) Output Shape Param #

conv2d (Conv2D) (None, 222, 222, 32) 896
average pooling2d (AveragePool-
ing2D)

(None, 111, 111, 32) 0

batch normalization (BatchNor-
malization)

(None, 111, 111, 32) 128

conv2d 1 (Conv2D) (None, 109, 109, 64) 18496
average pooling2d 1 (Average-
Pooling2D)

(None, 54, 54, 64) 0

batch normalization 1 (Batch-
Normalization)

(None, 54, 54, 64) 256

conv2d 2 (Conv2D) (None, 52, 52, 128) 73856
max pooling2d (MaxPooling2D) (None, 26, 26, 128) 0
batch normalization 2 (Batch-
Normalization)

(None, 26, 26, 128) 512

conv2d 3 (Conv2D) (None, 24, 24, 256) 295168
max pooling2d 1 (MaxPool-
ing2D)

(None, 12, 12, 256) 0

batch normalization 3 (Batch-
Normalization)

(None, 12, 12, 256) 1024

conv2d 4 (Conv2D) (None, 10, 10, 512) 1180160
max pooling2d 2 (MaxPool-
ing2D)

(None, 5, 5, 512) 0

batch normalization 4 (Batch-
Normalization)

(None, 5, 5, 512) 2048

conv2d 5 (Conv2D) (None, 3, 3, 512) 2359808
global average pooling2d (Glob-
alAveragePooling2D)

(None, 512) 0

batch normalization 5 (Batch-
Normalization)

(None, 512) 2048

flatten (Flatten) (None, 512) 0
dense (Dense) (None, 512) 262656
dropout (Dropout) (None, 512) 0
dense 1 (Dense) (None, 4) 2052

Total params: 4,199,108
Trainable params: 4,196,100
Non-trainable params: 3,008

Table 4.8: Model summary for Custom Model.
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4.2.2 Keras Visualize of our model

The architecture of a custom deep convolutional neural network model made for this
thesis to find corn leaf diseases is shown in the diagram made with Keras Visualizer.
The diagram shows how the model’s different layers connect to each other. The
diagram is made up of different blocks, and each block shows a group of layers. The
first block is the input layer, which gets an image as input. The image is then sent
through a series of convolutional layers, which are made to pull out features from
the image. Filters scan the image and pull out certain parts, like edges and textures,
from these layers. The number in the top right corner of each block shows how many
filters are in each layer.
The convolutional layers are followed by a few average pooling layers. Using these
layers, we can compress the feature maps without losing any useful information.
This improves the model’s efficiency and decreases the workload. The layers that
follow the average pooling ones are the batch normalization layers, which standardize
the activations from the preceding layers. Multiple max-pooling layers follow the
batch normalization layers. These layers help compress feature maps without losing
any useful information. It improves the model’s performance and lessens the load it
must carry as a result.
The model also features a global average pooling layer. By applying this layer,
the feature maps’ dimensionality reduction to a single number is accomplished. A
flatten layer follows this one and its purpose is to prepare the data for the fully
connected dense layers. Finally, the thick layers are utilized to produce predictions
using the information learned in earlier levels. Finally, the output layer reveals
the likelihood that the sickness will have an impact on the image we fed it. It’s
not a skintight fit because of the model’s dropout layers. In order to achieve a
desired result, dropout layers eliminate neurons at random. Because of this, the
model is less reliant on a single neuron. This schematic depicts the basic layout of
a model for a deep convolutional neural network. This model is intended to analyze
a photograph of a corn leaf and determine the presence or absence of a certain
disease. To prevent overfitting, the model employs several different types of layers,
including convolutional ones, pooling ones, batch normalization ones, max pooling
ones, global average pooling ones, flatten ones, dense ones, and dropout ones.

20



Figure 4.1: Keras Visualizer of Custom Model

4.3 Tuning and Hyper Parameters

4.3.1 Dropout Layer

As a mask, the Dropout layer keeps all other neurons functioning while removing
certain neurons’ contributions to the next layer. While some of the characteristics
of the input vector are deleted when a Dropout layer is applied to it, certain latent
neurons are destroyed when the Dropout layer is applied to a hidden layer. Dropout
layers play a key role in the development of CNNs as they prevent the training data
from becoming overfit. The initial batch of training dataset has a disproportionately
big influence on learning if they are not there. As a consequence, features that appear
in samples or batches after the current ones would not be started learning:

Figure 4.2: CNN Model architecture

Consider presenting a CNN 10 pictures of circles, one by one as part of the training
process. CNN will be confused if we subsequently show it a picture of a rectangle
since it doesn’t know that straight lines may exist. We may prevent these occurrences
by introducing Dropout layers into the network’s design to reduce overfitting.
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4.3.2 ReLU

Rectified linear activation function (ReLU) is a non-linear or piecewise linear func-
tion that returns the input value unmodified if the input is positive and returns
zero if the input is negative. The activation function is the one that is most often
used in neural networks, especially Convolutional Neural Networks (CNNs) as well
as Multilayered Perceptrons. Even though it is simple to use, it exceeds the tanh
and sigmoid, which were its precursors, in case of efficiency.
It may be represented mathematically as follows:

f(x) = max(0, x) (4.1)

The way that it is depicted graphically is as,

Figure 4.3: ReLU Function

4.3.3 Softmax

The softmax function is a type of mathematical function that has widespread ap-
plication in the field of machine learning, particularly when dealing with situations
involving several classes of categorized data. It is employed in the process of trans-
forming a vector of real numbers into a probability distribution in which the total
value of the vector’s components is equal to 1. After applying the exponential
function to each member of the input vector of real numbers, the softmax function
normalizes the resulting vector so that the elements of the output vector sum up to
one. The input vector of real numbers is required for the softmax function. Because
of this, the output of the softmax function can be understood as a probability distri-
bution over the various classes. When solving issues involving the categorization of
many classes, it is frequently applied as the activation function to the output layer
of a neural network. Since the softmax function can be utilized to regularize the
model, it is also capable of assisting in the prevention of overfitting.

The softmax formula is as follows:

Softmax(xi) =
exp(xi)∑
j exp(xj)

(4.2)
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4.3.4 Adam Optimizer

Adam, a distinct optimization approach, which continuously iterates ”adaptive mo-
ment estimation” to enhance neural network weights more effectively. Adam solves
non-convex problems faster and more efficiently with fewer resources than other
optimization tools using stochastic gradient descent. It works best in extremely
large data sets by maintaining ”tighter” gradients during numerous learning itera-
tions. To improve a range of neural networks, Adam combines the benefits of two
different stochastic gradient approaches, adaptive gradients and root mean square
propagation.

4.3.5 Max pooling

An example of a pooling procedure is ”max pooling,” which selects the highest
number of elements from the omitted region of the feature map. As a consequence
of this, the feature map that would be produced as an outcome for the max-pooling
layer might be one that had the most significant aspects of the previous feature map.

Figure 4.4: Example of Max pooling Layer

4.3.6 Average Pooling

The average pooling method figures out what the mean result represents for each
component in the part of the feature map for which the filter is functioning. There-
fore, maximum pooling will offer you the feature that is the most noticeable in a
certain patch of the feature map, while average pooling will give you an average of
all the features that are present in a patch.
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Figure 4.5: Example of Average pooling Layer

4.3.7 Learning Rate scheduler

Learning rate is a hyperparameter in a neural network that needs to be tested and
tuned. Learning rate regulates how fast the weights of a neural network should
be updated. It is good to decrease the learning rate gradually to achieve better
performance. We used an initial learning rate .0002 and decreased it to .0001 from
epoch 28 and finally decreased it to .00005 from epoch 46 to 60. Learning rate had
a huge impact on the model performance.
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Chapter 5

Performance Analysis

The purpose of performance analysis is to validate the novel technological applica-
tions that have been utilized to improve performance. This gives us an overview
of the entire work and shows the accomplishments and shortcomings of a specific
task, allowing us to learn new techniques and improve old ones. It can also be used
to assess the merits and shortcomings of others. The most significant parts of per-
formance evaluation are tactical and technical evaluation, movement analysis, and
data collection.

5.1 Performance Parameter

To evaluate and compare these models, the F1 score, precision, accuracy, and recall
were calculated. This was done to analyze, examine, and highlight a comparison
research of conventional and pre-trained CNN model conclusions. This part begins
with the performance indicator formulae utilized throughout the inquiry. The confu-
sion matrix gives precision, recall, f1-score, and accuracy. Total correct predictions
divided by total predictions give testing accuracy. However, each category should
calculate precision, recall, and f1-score. M is the confusion matrix and Mij is the
number (predictions) in the cell on the ith row and jth column.

Accuracy =

4∑
i=1

Mii

total predictions
(5.1)

Precisioni =

4∑
i=1

Mii

4∑
j=1

Mji

(5.2)

Recalli =

4∑
i=1

Mii

4∑
j=1

Mij

(5.3)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(5.4)
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5.2 Performance of Pre-trained Model

In our study, we showed a loss and accuracy comparison for each epoch for the
training and testing phases. It allows us to see how well our model performs in each
epoch of training and testing. It shows if the model is overfitting or underfitting.

5.2.1 VGG16:

We were able to get a testing accuracy of 98 percent using the VGG16 model. In
Figure, the accuracy and loss graphs for VGG16 are shown. We saw that the loss
decreased to a sufficient extent over time in both the training and validation loss
graphs. It encourages us to believe that regression is not taking place.

Figure 5.1: Training and validation graph of VGG16

From the confusion matrix we can see ,this VGG16 model is also confused be-
tween Blight and Gray Leaf Spot. 4.00% of Gray Leaf Spot is being identified as
Blight and 1.67% of Blight is being identified as Gray Leaf Spot.

Figure 5.2: Confusion matrix of VGG16
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5.2.2 VGG19:

We were able to get a testing accuracy of 95.25 percent using the VGG-19 model.
In Figure, the accuracy and loss graphs for VGG19 can be seen. In the training loss
graphs and validation loss graphs, we saw that the loss decreased over time with low
bias and low variance. Due to the convergence of the training and testing curves,
we can therefore estimate the acceleration and declination of VGG19. There are
irregularities in the validation curve from time to time due to the volume of data
presented.

Figure 5.3: Training and validation graph of VGG19

Figure 5.4: Confusion matrix of VGG19

From the confusion matrix, we can see that the model VGG19 is also confused
between Blight and Gray Leaf Spot, with a percentage of 15.00 Blight identified as
Gray Leaf Spot. Moreover, 2.67% of Blight is identified as Common Rust. Then
again, 1.00% of Gray leaf Spot is identified as Blight.

5.2.3 ResNet50:

The ResNet50 model achieved a testing accuracy of 96.58 percent. As for ResNet50,
Figure illustrates the accuracy and loss graphs. This graph shows subtle variations
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that represent differences between the loss value training and validation curves. The
curves also display the Resnet50 model’s accuracy throughout training and testing
as well as its loss.

Figure 5.5: Training and validation graph of ResNet50

the confusion matrix, we can see that the model ResNet50 is also confused be-
tween Blight and Gray Leaf Spot Mostly, with 7.00% of Gray Leaf Spot identified
as Blight. The confusion matrix for the true table Gray Leaf Spot shows that the
model correctly identified 279 out of 300 test images, and the rest (21) were mis-
predicted as Blight. On the other hand, 2.33% of Blight is identified as Gray Leaf
Spot. Moreover, 1.99% of Common Rust is identified as Gray Leaf Spot.

Figure 5.6: Confusion matrix of ResNet50

5.2.4 MobileNetV2:

The testing accuracy that was able to be achieved with the MobileNetV2 model in
this case was 96.58 percent. Figure illustrates the accuracy and loss graphs for Mo-
bileNetV2. The training and testing accuracy and loss of the MobileNetV2 model
are also shown in the Figure. The validation curve occasionally varies as a result of
the volume of data offered.
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Figure 5.7: Training and validation graph of MobileNetV2

From the confusion matrix, we can see that the model MobileNetV2 is mostly con-
fused between Blight and Gray Leaf Spot, with 6.00% of Gray Leaf Spot identified
as Blight. Then again, 6.00% of Blight is identified as Gray Leaf Spot.

Figure 5.8: MobileNetV2 confusion matrix
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5.2.5 InceptionV3:

The testing accuracy using the InceptionV3 model was found to be 85.17 percent.
Accuracy and loss graphs for the InceptionV3 model are shown in Figure. Despite
some small variances, the calibration and testing curves converge. As the Incep-
tionV3 model is trained and validated, the loss values decrease in a linear fashion.
The Inception V3 model’s accuracy during training and testing has dropped because
of the curves.

Figure 5.9: Training and validation graph of InceptionV3

This InceptionV3 model, like other models, erroneously distinguishes between
Gray Leaf Spot and Blight. Gray leaf spot is being classified as blight in 11.00%
of cases.

Figure 5.10: Confusion matrix of InceptionV3

5.2.6 InceptionResNetV2:

In testing, the Inception ResNetV2 model’s accuracy was 98.58 percent. The fig-
ure shows the accuracy and loss graphs for InceptionResNetV2. The differences
between the loss value training and validation curves are represented by the graph’s
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slight variations. The curves also display the InceptionResnetV2 model’s accuracy
throughout training and testing as well as its loss.

Figure 5.11: Training and validation graph of InceptionResNetV2

From the confusion matrix we can see, the InceptionResNetV2 model is mostly
confused between Blight and Gray Leaf Spot, with 3.33% of Gray Leaf Spot identified
as Blight. Moreover, 0.67% of Gray Leaf Spot is identified as Common Rust. Then
again, 0.67% of Blight is identified as Gray Leaf Spot.

Figure 5.12: InceptionResNetV2 confusion matrix
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5.2.7 DenseNet201:

Using the DenseNet201 model, a trial efficiency score of 99.17 percent was attained.
Figure depicts the DenseNet201 model’s testing and training effectiveness as well as
its cost. The differences between the loss value training and validation curves are
represented by the graph’s fluctuations. The graphs also depict the training and
testing precision as well as the loss of the DenseNet201 model.

Figure 5.13: Training and validation graph of DenseNet201

From the confusion matrix, we can see that the model DenseNet201 is confused
between Blight and Gray Leaf Spot, with 1.00% of Gray Leaf Spot identified as
Blight. Then again, 0.67% of Blight is identified as Gray Leaf Spot.

Figure 5.14: Confusion matrix of DenseNet201
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5.3 Performance of Proposed Model

5.3.1 Custom Model

The proposed model is a lightweight, high-performance model. Like pre-trained
models it also jumps to a high training accuracy very quickly. The training accu-
racy keeps increasing while the training loss keeps decreasing. On the other hand,
the validation accuracy starts with a low value, 0.2506. This is because the neural
network starts with random weights. Weights get optimized with epochs. For ex-
ample, DenseNet201 starts with a high validation accuracy because its weights are
already optimized. The validation accuracy also gets better as we run more epochs
and validation loss gradually decreases. Till epoch 27, learning rate .0002 was used
and from epoch 28 learning rate was reduced to .0001 with a lr-schedular. That is
when both the training accuracy and validation accuracy jumps to a better value.
It can be seen from the graphs also. Moreover, that is when both the training and
validation loss reached their lowest value so far (till epoch 28). The network keeps
getting better after that with few ups and downs. From epoch 46, the learning
rate was reduced to .00005. It did not immediately increase the validation accuracy
but later in epoch 54 it reached the highest validation accuracy of 98.46%. Besides
training accuracy, validation accuracy is also important. Validation accuracy de-
termines how the network will perform with new data. It is used to fine tune the
hyperparameters. To reduce overfitting, it is necessary to have a good validation
accuracy also. From the graph we can see the proposed model converges to a good
training and validation accuracy. It took an average of 38.5 seconds per epoch and
overall training time was 38 minutes. The testing accuracy of this model was 99.17

Figure 5.15: Training and validation graph of Custom Model

A confusion matrix is generated for each model where the row defines the actual
label and the column defines the predicted label. Each cell of the matrix has num-
ber of samples along with the percentage. For example, the cell in row Blight and
Column Blight has a number 296 and a percentage 98.67. It means 296 samples
identified as Blight are actually Blight. The percentage can be found by divid-
ing 296 by the total number of samples which is 300 for Blight. From the confu-
sion matrix, it can be said that the model is finding Blight & Gray Leaf Spot the
most difficult to identify. On the other hand, identification for healthy leaves is
100% like most other models. The model is mostly confused in identifying Blight
& Gray Leaf Spot. 1.33% of Gray Leaf Spot is identified as Blight.
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Figure 5.16: Confusion matrix of Custom Model

In our thesis, we used the sklearn library to generate a classification report for
our custom deep convolutional neural network model for the detection of corn leaf
diseases. The report includes several metrics, including precision, recall, and F1
score.

Figure 5.17: Classification Report of Custom Model

5.4 Result comparison:

We tried 8 models: InceptionResNetV2, MobileNetV2, ResNet50, VGG19, Incep-
tionV3, VGG16, DenseNet201 and Custom model. Among these, DenseNet201 and
our proposed Custom Model both have the highest accuracy of 99.17%. Though
the DenseNet201 also has the same accuracy as the Custom Model, the Custom
model will perform better as it is lightweight and has a lower number of parame-
ters. The Custom Model has been fed only the precise and relevant datasets, so it
has become a lightweight model. Furthermore, the parameters of DenseNet201 and
Custom Model are 42, 178,692, and 4,196,100, respectively. Because there are fewer
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parameters in the Custom Model, the accuracy will be higher. According to Table,
even though DenseNet201 has the same accuracy, the proposed custom model is the
most performant architecture among the designs tested so far in this study.

Figure 5.18: Accuracy Comparison

From the table, we can observe that our proposed Custom Model has a lower number
of trainable parameters in comparison to other pre-trained models. As a result, our
custom model can provide higher accuracy and better performance among all of
them.

Architecture Total Param-
eters

Trainable Pa-
rameters

Non Trainable
Parameters

VGG16 26,448,196 26,448,196 0
VGG19 21,138,500 21,138,500 0
ResNet50 49,279,108 49,225,988 53,120
MobileNetV2 21,138,500 21,138,500 0
InceptionV3 34,911,268 34,876,836 34,432
InceptionResNetV2 64,168,420 64,107,876 60,544
DenseNet201 42,407,748 42,178,692 229,065
Custom Model 4,199,108 4,196,100 3,008

Table 5.1: Number of Parameters

Precision is a measure of how many correctly predicted outcomes there are (true
positives). We can notice that there are just slight changes when we compare the
precision rates of Custom Model with DenseNet201. The rate can occasionally
be slightly greater than the DenseNet201. For instance, the Custom Model has a
rate of 99.03%, which is extremely close to the precision rate of Common Rust for
DenseNet201 at 99.01%. However, when it comes to Healthy, both models have the
same rate.
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Architecture Blight Common Rust Gray Leaf Spot Healthy
VGG16 95.42 98.68 97.95 100.0
VGG19 98.41 97.4 86.84 100.0
ResNet50 92.33 98.98 95.55 99.67

MobileNetV2 93.65 99.34 93.67 99.67
InceptionV3 87.06 97.59 87.58 98.68

InceptionResNetV2 96.13 99.33 98.97 100.0
DenseNet201 98.34 99.01 99.33 100.0
Custom Model 97.05 99.33 99.32 100.0

Table 5.2: Precision

Recall is a measure that expresses the proportion of positive cases correctly predicted
by the classifier out of all positive examples in the data. When we compare the recall
rates of the Custom Model with DenseNet201, we can see that there are only very
few differences similar to precision rates. For example, the recall rate of Gray Leaf
Spot for DenseNet201 is 98.67%, whereas the rate of the Custom Model is 98.0%,
which is very similar to it. Custom Model got 100% of recall rate in the category of
Healthy, compared to DenseNet201’s 99.67%.

Architecture Blight Common Rust Gray Leaf Spot Healthy
VGG16 97.33 99.0 95.67 100.0
VGG19 82.33 99.67 99.0 100.0
ResNet50 96.33 97.01 93.0 100.0

MobileNetV2 93.33 99.34 93.67 100.0
InceptionV3 89.67 94.35 87.0 99.67

InceptionResNetV2 99.33 99.0 96.0 100.0
DenseNet201 99.0 99.34 98.67 99.67
Custom Model 98.67 99.0 98.0 100.0

Table 5.3: Recall

F1 score is balancing precision and recall on the positive class. It is a measure-
ment that combines recall and precision. Again, we can see that there is only
very little difference, when we compare the F1 Score rates of Custom Model with
DenseNet201.Both the models, Custom Model and DenseNet201 have the same rate
for Common Rust which is 99.17%.
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Architecture Blight Common Rust Gray Leaf Spot Healthy
VGG16 96.37 98.84 96.8 100.0
VGG19 89.66 98.52 92.52 100.0
ResNet50 94.29 97.99 94.26 99.83

MobileNetV2 93.49 99.34 93.67 99.83
InceptionV3 88.34 95.95 87.29 99.17

InceptionResNetV2 97.7 99.17 97.46 100.0
DenseNet201 98.67 99.17 99.0 99.83
Custom Model 97.85 99.17 98.66 100.0

Table 5.4: f1-score

5.5 Accuracy Comparison on Related Work

In the table that follows, a comparison has been made that is supported by the
level of correctness that these thesis papers achieved. They were able to detect
maize leaf disease in the first article with an accuracy of 98.06% using an improved
dense convolutional neural network model. In the second paper, we can find that
upgraded deep convolutional neural networks can identify maize leaf illnesses with
an accuracy of about 98.8%. For real-time disease detection in maize plants, the
third paper employed Deep Convolutional Neural Network approach and attained
an accuracy of 88.46%. The following article discusses a maize disease identification
technique based on upgraded ResNet50 that has a 98.52% accuracy rate. In the
following article, CNN demonstrated the accuracy of 97.01% using a mix of data
augmentation and transfer learning. An 84% accurate forward chaining approach
was used in the sixth article. In the seventh publication, they assessed deep transfer
modeling for maize leaf disease detection, which had the best accuracy rate of about
99.16%. The following article uses deep neural networks to identify maize diseases
with an accuracy of 98% in order to support agricultural productivity. The final
entry in the table discusses CNN’s approach to digital agricultural systems support
for disease detection in maize leaves.
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Approaches Methods Accuracy
Our Paper Custom Model 99.17%
“An optimized dense convolu-
tional. . . .in corn leaf” [11]

Custom densenet 98.06%

“Identification of maize
leaf. . . convolutional neural
networks”[1]

GoogLeNet 98.8%

“Deep convolutional neural
network. . . corn plant disease
recognition”[6]

Deep Convolutional
Neural Network

88.46%

“Research on maize dis-
ease. . . improved resnet50”[13]

ResNet50 98.52%

“The identification of corn
leaf. . . data augmentation”[5]

CNN based on a
combination of data
augmentation and
transfer learning

97.01%

“Implementation of forward
chaining. . .muara tami dis-
trict”[15]

Forward chaining
method

84%

“Corn disease detection. . . the
crop yield”[14]

ANN 98%

“A cnn approach
for. . . agricultural system”[8]

CNN 98.78%

Table 5.5: Comparison on related work

In contrast, our custom model has been used to build deep convolutional neural net-
work methods for identifying maize leaf illnesses, and it has an accuracy of 99.17%,
which is greater than any other similar papers above. The better accuracy rate of
this model shows that, due to its portability and lightweight, it can quickly and
reliably identify any corn disease. This model can assure to do better in case of
results than the others at disease detection.

5.6 Application of our Proposed Model

We made an app with flutter framework. We have chosen flutter because it is cross-
platform. We have a client-server architecture to let the server do the heavy lifting
while the client UI can go smoothly. We have an api built with python FastApi
library. FastApi is a lightweight, no batteries included python library. We used
keras save model to save the model into .h5 format. And load it into the FastApi
server instance. The model is loaded only once and will be used in subsequent api
calls. There are two endpoints one endpoint is for welcome message and another is
for uploading corn leaf pictures. HTTP POST method should be used to call the
prediction endpoint. The server will get the image from POST and preprocess it
just like it was done with the training images. Converting it to RGB and rescale
it to 224x224. Then the server will call the predict function and get probabilities
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for each category. The server will reply with a JSON containing class names and
probabilities.

The frontend is made with flutter where images can be uploaded from files or
from camera. It interacts with the server and shows the result in a good UI.

Figure 5.19: Mobile App prediction
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Chapter 6

Conclusion

6.1 Conclusion

Corn is one of the most important and demanded crops in today’s world. However,
the production of this crop is decreasing day by day because of excessive diseases of
corn and corn leaves. In some cases, identifying the primary disease is becoming a
challenge for the researchers. In this paper, we aim to identify the diseases of corn
leaves using computer vision, machine learning, deep learning and image process-
ing.We have used a deep CNN model that can predict 3 classes of corn leaf diseases
along with 1 healthy class in this research. The 3 classes include Blight, Common
Rust, Gray Leaf Spot. The model included almost 12000 augmented images and
performed well by achieving the highest accuracy of 99.17% using our proposed
model. Our proposed methodology can provide a systematic, practical, and efficient
way of corn leaf disease identification which will lead the way towards creating an
efficient digital agricultural system. This paper also illustrates the importance of
tuning hyperparameters like learning rate. Moreover, an lightweight model with low
number of parameters is presented in this paper. With some changes, this model
might be successful in identifying other leaf diseases.

6.2 Future Work

Our thesis research and development on corn leaf disease detection using deep convo-
lutional neural networks yielded encouraging results. However, there are some areas
where further work may be done to increase the model’s accuracy and resilience.
Expanding the dataset used to train the model will be one of the most important
areas of future endeavor. The existing dataset of 12,000 photos is restricted in terms
of illness representation and image diversity. The algorithm can be trained to detect
a wider range of diseases by collecting additional photos that include a wider range
of diseases and differences in leaf appearance.
The program is currently trained to detect only three distinct illnesses of maize
leaves. However, many additional diseases can harm corn leaves, and it would be
good to broaden the model’s detection capabilities to detect a broader spectrum of
diseases. This can be accomplished by gathering more photos of various diseases
and fine-tuning the model to detect them.
Another topic of future research will be to investigate various neural network de-
signs. This thesis’ model made advantage of pre-trained architectures that were
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fine-tuned for our specific goal. Other topologies, such as recurrent neural networks
or graph neural networks, may be more suitable for this task.
In addition, we will attempt to boost the variety of the training dataset via GAN-
based augmentation. Generative Adversarial Networks (GANs) can be used to create
new images that are similar to the original dataset but have different leaf attributes.
This can aid in improving the model’s capacity to generalize to new images and
preventing overfitting.

6.3 Challenges

As we did research and worked on our thesis, we ran into a number of problems.
One of the biggest problems was that there wasn’t enough computing power.
Deep convolutional neural networks, like the ones our model uses, take a lot of
computing power to train and run. The fact that there were 12,000 images added
to the amount of work that had to be done. We had to use powerful hardware,
like GPUs, to keep up with the amount of computing work. But this was still hard
to do because the training process took a long time and needed a lot of computer
resources.
Finding the best hyperparameters for the model was also hard and took a lot of trial
and error.
Lastly, making a mobile app that is easy to use, accessible, and user-friendly was a
challenge in and of itself. We had to make sure that the app’s user interface was
easy to understand and that it worked well on a vast variety of devices.
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