
THESIS PAPER

i

ABSTRACT

The purpose of the thesis study is to understand Single Sign On authentication

system, investigate the infrastructure of a Single Sign On based system and to implement

it on a local machine. Single Sign On gives user the ability to enter his id and password

once and log on to multiple applications within an enterprise. In the thesis study,

Shibboleth and CAS were chosen as the primary tools to understand the functionality of

Single Sign On. A Single Sign On login system was implemented in the local machine using

CAS. The implementation and analysis will serve as the basis for a detailed study and

future development of Single Sign On.

ii

TABLE OF CONTENTS

I. INTRODUCTION ... 1

A. MOTIVATION...1
B. PURPOSE OF THE STUDY ... ERROR! BOOKMARK NOT DEFINED.
C. SCOPE OF OUR WORK ... ERROR! BOOKMARK NOT DEFINED.

II. SINGLE SIGN ON SYSTEM DESCRIPTION .. 2

A. BACKGROUND INFORMATION ..2
B. WHAT IS SINGLE SIGN ON..2
C. SINGLE SIGN ON BENEFITS ..3
D. SINGLE SIGN ON ARCHITECTURE ...5
E. DIFFERENT TYPES OF SINGLE SIGN ON ..7
F. THE BENEFITS OF SINGLE SIGN ON FROM MULTIPLE VIEW ...9

III.VARIOUS TOOLS USED IN SINGLE SIGN ON IMPLEMENTATION... 10

A. SHIBBOLETH ..10
B. HOW SHIBBOLETH WORKS..13
C. METADATA, ATTRIBUTES & SAML ...15
B.CENTRAL AUTHENTICALTION SYSTEM (CAS)...17

IV.OUR IMPLEMENTATION OF A SSO SYSTEM USING CAS .. 19

A. STEPS OF THE SETUP PROCEDURE...19

V. LIST OF REFERENCES ... 31

iii

LIST OF FIGURES

FIGURE 1 : A SIMPLE SSO ARCHITECTURE IN AN ENVIRONMENT WITH A SINGLE AUTHENTICATION5
FIGURE 2. A SIMPLE SSO ARCHITECTURE IN AN ENVIRONMENT WITH A MULTIPLE AUTHENTICATION6
FIGURE 3. COMMANDS TO GENERATE THE KEYSTORE AND THE SELF-SIGNED CERTIFICATE.........................23
FIGURE 4. PARAMETERS FOR KEYSTOREFILE, KEYSTOREPASS, TRUSTSTOREFILES.....................................25
FIGURE 5. EDITED WEB.XML..27
FIGURE 6. CAS LOGIN PAGE ..29
FIGURE 7. HELLO WORLD! ...30

iv

LIST OF TABLES

TABLE 1. BASIC CAS-FILTER INIT-PARAM NAMES AND THEIR DEFINITIONS...28

v

ABBREVIATIONS AND ACRONYMS

SSO – Single Sign On

IdP – Identity Provider

SP – Service Provider

CAS – Central authentication server

JDK – Java Development Kit

JRE – Java Runtime Environment

SAML – Security Assertion Markup Language

vi

ACKNOWLEDGEMENTS

It gives us great pleasure in acknowledging the support and help of our thesis

superviser Mr. Amitabha Chakrabarty , our department chairperson Dr. Mumit Khan and

last but not the least, our senior brother Mr. Mohibuzzaman Zico. Without the help of

these persons, it wouldn’t have been possible to come this far in our thesis project.

1

I. INTRODUCTION

A. MOTIVATION

From the very first day, our intension was to work in network security. Single Sign On

is clearly a thing that matches our interest. This is an authentication process which

enhances the security system in protected or secured web based application or resources

where a third party relationship is attached.

B. RESEARCH AND GOAL

We are doing a research on Single Sign On. CAS and Shibboleth are the two software

we are using to understand the Single Sign On system. Both software implements web

based Single Sign On. In our thesis project, we have tried to implement the two softwares

in intension to find the bottlenecks of the system.

C. ORGANIZATION OF THESIS

This thesis is organized into five sections. In the second section we have introduced

Single Sign On. This section consists of benefits and architecture of Single Sign On. In the

third section we have introduced Shibboleth and how it works. After that, description of

CAS and its functionality is attached. Implementation of the CAS comes in the fourth

section. In the last section we have mentioned our future plans.

2

II. SINGLE SIGN ON SYSTEM DESCRIPTION

A. BACKGROUND INFORMATION

In the present world, users typically have to log into multiple systems using

different sets of credentials. It gets very difficult for a user to remember the different sets

of username and password combinations. Users tend to forget these informations easily

and make help desk calls in order to request for an account reset. System administrators

are having a tough time too. There is a huge amount of workflow involved with creating

and managing user accounts. Administrators have to manage these user’s accounts so

that they are accessed in a coordinated manner that does not affect the integrity of the

security policies.

To overcome this challenge - Single Sign On (SSO) system is introduced. In Single

Sign On, user enters his credential once and gets access to multiple applications. This

takes away the need of remembering multiple username-password combinations and

thus makes life easier for both the user and administrator.

B. WHAT IS SINGLE SIGN ON

Single Sign On is an authentication process for a client-server relationship where

the user can enter their credentials once and gain the right to access to more than one

2

application or number of resources within an organization or enterprise. Single Sign on

doesn’t require the user to re-enter the credentials for authentication for switching the

applications under the same organization.

Single Sign On gives the concept of allowing the access control to independent

systems. This method allows user to authenticate once and gain access to all systems

without needing a new login. The reversed process of Single Sign On system is Single Sign

Off. It performs a logout procedure where the user will lose all rights of access to all the

systems. The most common Single Sign On configurations involve the use of Smart Cards,

OTP tokens, and softwares like CAS, Shibboleth, and Kerberos etc.

In a single sign-on platform, the user performs a single initial (or primary) sign-on

to an identity provider trusted by the applications he wants to access. Later on, each time

he wants to access an application, it automatically verifies that he is properly

authenticated by the identity provider without requiring any direct user interaction. A

well designed and implemented single sign-on solution significantly reduces

authentication infrastructure and identity management complexity, consequently

decreasing costs while increasing security.

Usability as well as security in the domain has increased, after the introduction of

SSO. Along with this, the effort to manage the user accounts has also reduced. A system

like SSO, which provides an integration and coordination of different accounts, is

beneficiary for both the user and administrator. For example:

 Reduction of time exposure for users as they no longer have to sign-on to

different domains

 Improved usability by reducing the number of account information that a user has

to remember

3

Single Sign On enables an end-user to access other secondary security domains after

signing on to a primary domain. Between these domains there exists a trust relationship.

Therefore, the second domain obtains user credentials through the sign-on service from

the first domain where the user is already authenticated. In other words, the primary

security domain supports the other domains by the user’s credentials assumed that the

user is logged in correctly.

C. SINGLE SIGN ON BENEFITS

Some of the benefits of Single sign on are given below.

 Reduction in the time taken by users in sign-on operations to individual domains,

including reducing the possibility of such sign-on operations failing.

 Improved security through the reduced need for a user to handle and remember

multiple sets of authentication information.

 Improved security through the enhanced ability of system administrators to

maintain the integrity of user account configuration including the ability to inhibit

or remove an individual user’s access to all system resources in a co-ordinated

and consistent manner.

 Security on all levels of entry or exit or access to systems without the

inconvenience of re-prompting users.

 End to end user audit sessions to improve security reporting and auditing.

 Removes application developers from having to understand and implement

identity security in their applications.

4

 Reduces phishing success, because users are not trained to enter password

everywhere without thinking.

 Reducing password fatigue from different user name and password combinations.

 Reducing time spent re-entering passwords for the same identity.

 Can support conventional authentication such as Windows credentials (i.e., user

name/password).

 Reducing IT costs due to lower number of IT help desk calls about passwords.

 Centralized reporting for compliance adherence.

 Ability to enforce uniform enterprise authentication and/or authorization policies

across the enterprise.

Mainly with Single Sign On, users' and administrators' lives become much easier as

they will have to deal with a single digital identity for each user. User will have to provide

digital identity only once. This will increase user's productivity. The maintenance of

authentication data and enforcement of authentication policies become much easier with

Single Sign On, since authentications data will be centralized. Moreover, Single Sign On

reduces the chance that users will forget or lose their digital identities; therefore it

reduces the risk of compromising a security system.

But the sad part of the story is that Single Sign On has a disadvantage; namely the

"Key to Kingdom argument"[9]. This argument means that if attackers manage to

compromise a Single Sign On authentication data store, they will gain access to all users'

digital identities. Moreover, if attackers manage to obtain a single user's digital identity,

they will gain access to all services protected by it. Despite the Key to Kingdom argument,

Single Sign On can be made extremely secure with careful planning, implementation and

5

administration. In fact, SSO is considered a valuable and indispensable security product in

the overall IT security system nowadays.

D. SINGLE SIGN ON ARCHITECTURE

A simple Single Sign On architecture deals with a single authentication authority. In

simple SSO architectures, we can have a single authentication server with a single

credentials database as shown in Figure 1.

Figure 1 : A simple SSO architecture in an environment with a single authentication[10]

6

We can also have multiple authentication servers with multiple replicated

credentials databases as shown in Figure 2.

Figure 2. A simple SSO architecture in an environment with a multiple authentication[10]

7

It is can be seen that the second architecture provides better performance,

scalability and availability. It is notable how in both figures a user has a single set of

credentials and how he submits them to the authentication authority. The authentication

authority validates the credentials using the data stored in the credentials database. If

there is a match, the user's identity is considered authentic and he is granted access to

the resource server. Later, the authentication authority will issue a token to the user. This

token is basically an encrypted string or metadata that proves that the user was

authenticated by the authentication authority. Simple Single Sign On architectures can be

easily implemented in networks where all computers are running the same operating

system.

E. DIFFERENT TYPES OF SINGLE SIGN ON

There are three main types of single sign-on: web SSO, Legacy SSO and Federated SSO.

[11]

WEB SINGLE SIGN ON

Wed-based SSO is a widely deployed single sign-on technology, sometimes also

called as web access management. It enables a user to provide the credentials, and if

authentication succeeds it will establish a relationship of trust that will grant user the

access to all web resources for which he/she have permissions.

8

LEGACY SINGLE SIGN ON

Legacy SSO is also called Enterprise SSO. Like web SSO, legacy SSO is also a

technology designed to manage multiple login to target applications after a single

authentication event. It has a very similar structure to the web SSO. While web SSO only

manages the web-based service, legacy SSO extends the SSO functionality to the

traditional legacy applications and network resources (windows GUI based applications,

for example), typically within an enterprise’s internal network.

FEDERATED SINGLE SIGN ON

Federated SSO is similar to the web SSO but has a much broader concept. It uses

Simple Object Access Protocol (SOAP) and Security Assertion Markup Language (SAML) to

enables users to sign on once into a member of the affiliated group of organizations, then

seamlessly access all the web sites within that trusted federation without requiring re-

authentication.

The main advantage of a federated SSO is extending the SSO environment from a

user’s home domain to other foreign domains. Federated SSO allows the enterprises to

maintain the control of its local services and expose these resources to a larger class of

users not directly administered by it. Mostly, this solution is used by the businesses to

build a complete framework. The most famous federated SSO is the Liberty Alliance

Project.

9

F. THE BENEFITS OF SINGLE SIGN ON FROM MULTIPLE VIEW

 From the user view: In an SSO environment, users only need to authenticate

themselves once. This effectively solves the annoying stop-and-go problem which

is caused by multiple login requests. Best of all, the SSO solution frees users from

remembering a large number of identities and associated passwords.

 From the user view: In an SSO environment, users only need to authenticate

themselves once. This effectively solves the annoying stop-and-go problem which

is caused by multiple login requests. Best of all, the SSO solution frees users from

remembering a large number of identities and associated passwords.

 From the user view: In an SSO environment, users only need to authenticate

themselves once. This effectively solves the annoying stop-and-go problem which

is caused by multiple login requests. Best of all, the SSO solution frees users from

remembering a large number of identities and associated passwords.

 From the user view: In an SSO environment, users only need to authenticate

themselves once. This effectively solves the annoying stop-and-go problem which

is caused by multiple login requests. Best of all, the SSO solution frees users from

remembering a large number of identities and associated passwords.

 Potential Increase in Security: With only one password to remember, it is more

reasonable for the user to choose a single complex and more secure password

instead of using multiple simple and insecure passwords. This potentially increases

the system security.

10

 Improve Productivity: Employee productivity is dramatically improved, with less

time users spend logging into multiple applications and recovering the forgotten

passwords.

 Reduction in Costs: “Meta Group estimates 33% reduction in help desk volume

when using an enterprise Single Sign-On solution.” By reducing the number of

passwords the user must remember, SSO effectively reduces the password-related

workload to the help desk and lowers the costs associated with managing

passwords across multiple distributed applications.

III.VARIOUS TOOLS USED IN SINGLE SIGN ON IMPLEMENTATION

A. SHIBBOLETH

In present, the whole IT world is scared of identity theft. To prevent this; the idea

of Single Sign on has emerged. To implement this, enterprises creates many softwares.

Some are commercials, some are open source and some are for only private uses.

Shibboleth is an open source software created to implement Single Sign On system most

efficiently and widely. This software's popularity gained because of its characteristics, as

its IDP section is written in JAVA and SP section is written in C and C++ (the most common

languages used in today’s world), the rich library of documentation, enhanced wiki with

the whole installation and configuration process, availability of community and

11

developers resources, it maintain the OASIS standards, faced and handled the newly

challenged problem in authentication system in SSO and many things. Actually Shibboleth

is widely used in today’s world as it has stood tall in front of all the challenges thrown by

SSO.

Actually Shibboleth System is a standard based, open source software package for

web single sign-on across or within organizational boundaries. It allows sites to make

informed authorization decisions for individual access of protected online resources in a

privacy-preserving manner (from: http://shibboleth.net/about/index.html). This system is

the mechanism which works behind the scene that allow users to access the secure sites

of the other institutes or organizations or agencies through using their own credentials

that already exists. This systems works upon two steps mainly. Firstly user may be

authenticating by their respective institutes and secondly requested institutes

authenticate and determine their access, based on the attributes released. In other hand

after user has been authenticated to one site within a federation, they can visit other

sites for which they are authorized within that federation without having to authenticate

again. This privilege lasts until users close their session or the session expires.

So, Shibboleth is a free open source implementation for identity management,

providing a web-based single sign-on mechanism across different organizational

boundaries. It is a federated system, supporting secure access to resources across

security domains. Information about a user is sent from a home identity provider (IdP) to

a service provider (SP) which prepares the information for protection of sensitive content

and use by applications. Providing a federated single sign-on and attribute exchange

framework, Shibboleth also provides extended privacy functionality allowing the browser

12

user and their home site to control the attributes released to each application. Using

Shibboleth-enabled access simplifies management of identity and permissions for

organizations supporting users and applications.

The issues that will be addressed as a challenge to overcome to implement Single Sign

On by Shibboleth specifically are given below.

 Multiple passwords required for multiple applications.

 Scaling the account management of multiple applications.

 Security issues associated with accessing third-party services

 Privacy.

 Interoperability within and across organizational boundaries.

 Enabling institutions to choose their authentication technology.

 Enabling service providers to control access to their resources.

 Facilitating the rapid and effective integration of disparate third-party services

(e.g. cloud computing applications), leveraging campus identity management and

trust services.

13

B. HOW SHIBBOLETH WORKS

Shibboleth; the web based Single Sign On system is a way of exchanging information

between an organization and a provider. By using Shibboleth, the information is

exchanged in a secure manner, protecting both the security of the data and the privacy of

the individual. Shibboleth relies on four main performers.

 User representative Web Browser

 Access restricted contains- Resource

 Identity Providers which authenticate the user

 Single sign On process performers- Service Provider

At first the user wants to access the protected resource. Being for the first time the

user does not have the actual proper valid session. By discovering this resource sends the

user to service provider to start the Single Sign On process. Then the user comes to the

service provider who prepares the authentication request. Then service provider sends

both the authentication request along with the user to the identity provider. Now on the

arrival at the identity provider, first it checks if the user has a valid existing session. If not

the identity provider first authenticate them by prompting the desired credentials and

then checks it. After checking for validity has been done or the user has already the valid

existing session; the identity provider prepares an authentication response and sends it

along with user back to the service provider. When user arrives to the service provider

with the authentication response, it validates the response and creates a session for the

user while retrieving some information about the user from the response and makes that

available to the resource. So now the user has the valid session and he can access the

14

protected resource as the resource now knows about the user. This is how the whole

Shibboleth system works.

As for example, Let’s assume, a user wants to access a protected resource hosted in

the URL “https://www.resource- x.com”. Now, resource-x must have the „Shibboleth SP‟

software installed in its server. When the user tries to access “https://www.resource-

x.com” from his browser, the shibboleth sp software, installed in the server side of

resource-x, intercepts the request. As resource-x has no knowledge regarding the user’s

home organization, the user’s browser gets redirected to the „Discovery service‟.

Typically, the user is provided with a list of organizations with which resource-x has trust-

relationship‟. Every organization in this list, must have the „shibboleth IdP‟ installed in

their server. After the user selects his home organization, the browser first gets

redirected to resource-x first. Then, resource-x sends an authentication request to the

selected organization and submits it through the user browser to the home organization.

Now the user sees the familiar interface, where he enters his user name and password

and submits it to the home organization’s IdP. Idp checks the credentials and upon

successful authentication, it creates an assertion (SAML) containing users attributes. This

assertion is known as meta data‟. When resource-x comes into „trust-relationship‟ with

an organization, it notifies the organization regarding the attributes it needs in the meta

data. Now, the IdP of users home organization creates the meta data releasing only those

attributes, which SP of resource-x needs .After the assertion is being created, users

browser gets redirected to the prior requested resource, resource-x. Finally, SP of

resource-x checks the assertion and user gets access to the desired content.

15

C. METADATA, ATTRIBUTES & SAML

Security Assertion Markup Language (SAML) is an XML standard that allows secure web

domains to exchange user authentication and authorization data. Using SAML, an online

service provider can contact a separate online identity provider to authenticate users

who are trying to access secure content.

Attributes are specific bits of information about people. They include such things as a

person's name and email address. There are established attributes with specific names

that are used for federated identity management. Also, institutions can create their own

attributes.

Attributes can be used:

* To determine if someone is authorized to use a particular service. For example, a

particular service might be provided only to faculty members.

* To customize services for people after they have logged in. For example, once one is

logged in, a service page may greet him by name and show him a customized menu based

on what he is authorized to use.

Metadata is a document where the type of the URl for communicating between

service provider and identity provider has been written. Not only that, function needed

for communication and their various technical aspects also there. Meta data is written in

SAML.

16

The metadata for an identity provider or service provider usually contains the

following information:

 a unique identifier, known as an entity id

 a human-readable name and description

 a list of URLs to which messages should be delivered and some information about

when to use each

 cryptographic information used when creating and verifying messages

17

B.CENTRAL AUTHENTICALTION SYSTEM (CAS)

The Central Authentication Service (CAS) is a single sign-on protocol for the web. It

allows a user to access multiple applications by providing their credentials only once. It

also enables web applications to authenticate users without having to handle a user's

security credentials, such as a password. The name CAS also refers to a software package

that implements this protocol. CAS was originally created by Yale University.

The CAS protocol involves at least three parties: a client web browser, the web

application re-questing authentication, and the CAS server. It may also involve a back-end

service, such as a database server, that does not have its own HTTP interface but

communicates with a web application.

When the client visits an application desiring to authenticate to it, the application

redirects it to CAS. CAS validates the client's authenticity, usually by checking a username

and password against a database (such as Kerberos or Active Directory).

If the authentication succeeds, CAS returns the client to the application, passing

along a security ticket. The application then validates the ticket by contacting CAS over a

secure connection and providing its own service identifier and the ticket. CAS then gives

the application trusted information about whether a particular user has successfully

authenticated.

18

The following are the main steps of authentication:

 The user attempts to access an application using its URL. The user is redirected to
the CAS login URL over an HTTPS connection, passing the name of the requested
service as a parameter. The user is presented with a username/password dialog
box.

 The user enters his credential and CAS attempts to authenticate the user. If
authentication fails, the target application won’t be loaded and it won’t have any
clue that the user was trying to access it. The user remains at the CAS server.

 If authentication succeeds, then CAS redirects the user back to the target
application, appending a parameter called a ticket to the URL. CAS then attempts
to create an in-memory cookie called a ticket-granting cookie. This is done to
allow for automatic re-authentication later. If the cookie is present, then it
indicates that the user has already successfully logged in and the user avoids
having to re-enter his username and password.

 The application then validates that this is a correct ticket and represents a valid
user by calling the CAS serviceValidate URL by opening an HTTPS connection and
passing the ticket and service name as parameters. CAS checks that the supplied
ticket is valid and is associated with the requested service. If validation is
successful, CAS returns the username to the application. [8]

Figure 3. How the CAS protocol performs authentication [8]

19

IV.OUR IMPLEMENTATION OF A SSO SYSTEM USING CAS

To implement a SSO system, we had to choose between CAS and Shibboleth. We

went for CAS because of its simplicity in structure and availability of good learning

materials.

For the setup of CAS authentication system in a local machine which is running on

windows 7 OS, we followed the guidelines provided by CAS on their official website. It can

be found on: https://wiki.jasig.org/display/CASUM/Demo .

The tutorial demonstrates how to CASify web applications, in other words how to

protect web applications with CAS. If a web application is configured to be protected by

CAS, user has to authenticate himself first to CAS to be able to view the application. Once

the user authenticates himself to CAS server, user needs no further sign-ins to visit all the

other applications within the same domain. This behavior replicates Single Sign On.

In our setup, we have used Java sdk 1.6 (update 33), tomcat 5.5 and CAS server

release version 3.3.5.

A. STEPS OF THE SETUP PROCEDURE

These are the steps of the whole setup procedure:

• First, Java sdk 1.6 (update 33) was downloaded from java.sun.com and then was

installed on the machine.

20

• JAVA_HOME and JRE_HOME environmental variables were pointed to the right

directories. In our case, ‘jdk’ was installed on D:\Java\jdk and ‘jre’ was installed on

D:\Java\jre directory. Environmental variables were set to their actual path .In our case,

for JAVA_HOME it was set to D:\Java\jdk and for JRE_HOME it was set to D:\Java\jre.

• This step shows how to self-author a server certificate using Java Keytool.

To guard an application with CAS it requires a secure connection or SSL.CAS Server

necessitates SSL to operate. Certificates are exchanged as part of the SSL (also called TLS)

initialization that occurs when any Browser connects to an https: Web site. A certain

number of public CA certificates are pre-installed in each Browser by Microsoft, Mozilla,

Google or who-ever else makes the Browser. The same set of certificates is installed by

Microsoft in every copy of Windows and by Sun in every copy of Java. However, no

application, system, or language comes with any certificate that one has created inside

his company or personal computer as a Certificate Authority (CA).

When a Browser connects to CAS over an https: URL, the Server identifies itself by

sending its own certificate. For CAS to function, the Browser must already have installed a

certificate identifying and trusting the CA that issued the CAS Server certificate. If the

Browser is not already prepared to trust the CAS server, then an error message pops up

saying the server is not trusted. Certificates can be purchased from various commercial

certificate authorizers like VeriSign or Thawte. We have used Java Keytool service to

generate a self-authenticated certificate.

Java Keytool is a key and certificate management utility. It allows users to manage

their own public/private key pairs and certificates. Java Keytool stores the keys and

certificates in a keystore. By default the Java keystore is implemented as a file. It protects

private keys with a password. A Keytool keystore contains the private key and any

21

certificates necessary to complete a chain of trust and establish the trustworthiness of

the primary certificate. [1]

Below are listed some of the most common Java Keytool commands:

Java Keytool Commands for Creating and Importing –

• Generate a Java keystore and key pair

keytool -genkey -alias domain-name -keyalg RSA -keystore keystore.jks -keysize 2048

• Generate a certificate signing request (CSR) for an existing Java keystore

keytool -certreq -alias domain-name -keystore keystore.jks -file mydomain.csr

• Import a root or intermediate CA certificate to an existing Java keystore

keytool -import -trustcacerts -alias root -file Thawte.crt -keystore keystore.jks

• Import a signed primary certificate to an existing Java keystore

keytool -import -trustcacerts -alias mydomain -file domain-name.crt -keystore

keystore.jks

22

 Generate a keystore and self-signed certificate

keytool -genkey -keyalg RSA -alias selfsigned -keystore keystore.jks -storepass password -

validity 360 -keysize 2048 [2]

Some key terms and their meaning:

 RSA is the algorithm used to generate the cryptographic keys, corresponding to

the certificate.

 Validity is the number of days the certificate will stay valid. One can enter more

than 365.

 Alias is the tool for which keytool and certificate will be generated. [3]

In our case, we typed in the commands listed below from the command prompt to

generate the keystore and the self-signed certificate:

23

Figure 3. Commands to generate the keystore and the self-signed certificate

24

 Tomcat was downloaded from http://tomcat.apache.org/download-55.cgi#5.5.2

.It was installed on D:\tomcat5. When prompted for JRE, changed default to

%JAVA_HOME%\jre (in our case – D:\Java\jdk\jre), as this should be the home of

new ‘cacerts’ – created in previous step. Environmental variable

%CATALINA_HOME% was set to D:\tomcat5

 To configure Tomcat to be SSL enabled, server.xml was opened up and connector

element for port 8443 (SSL- by default) was uncommented. Later on , the

parameters for keystoreFile, keystorePass, truststoreFile was added as shown

below :

25

s

 CAS server 3.3.5 final release zip version (cas-server-3.3.5-release.zip) was

downloaded from -http://www.jasig.org/cas/download. The zip file was extracted.

Figure 4. Parameters for keystoreFile, keystorePass, truststoreFiles
 A cas-server-webapp-3.3.5.war file was found inside the modules folder. It was

renamed to cas3.3.5.war. cas3.3.5.war was then copied to %CATALINA_HOME%\

webapps (D:\tomcat5\webapps).These deployed CAS in tomcat and a folder

26

named cas3.3.5 was created inside the %CATALINA_HOME%\ webapps

(D:\tomcat5\webapps) directory.

 Casclient-2.1.1.zip was downloaded from

http://www.java2s.com/Code/Jar/c/Downloadcasclient2111jar.htm. The zip file

was extracted and casclient-2.1.1 jar was copied to %CATALINA_HOME%\

webapps \servlets-examples \ WEB-INF\lib (D:\tomcat5\webapps\servlets-

examples\WEB-INF\lib).

 Tomcat comes with some default servlets. These can be found under

%CATALINA_HOME%\ webapps\servlets – examples .To Casify the default servlets

inside %CATALINA_HOME%\ webapps\servlets – examples , these lines were

added to web.xml of the servlets-examples context :

27

Figure 5. Edited web.xml

28

The table of basic CAS-filter init-param names and their definitions is given below:

init-param name usage
edu.yale.its.tp.cas.client.filter.loginUrl The URL whereat CAS offers its Login page.

e.g. https://localhost:8443/cas3.3.5/login
edu.yale.its.tp.cas.client.filter.validateUrl The URL whereat CAS offers its service ticket

or proxy ticket validation service. e.g.
https://localhost:8443/cas3.3.5/serviceValidat
e or
https://localhost:8443/cas3.3.5/proxyValidate
.

edu.yale.its.tp.cas.client.filter.serverNam
e

This parameter specifies the server name and
port of the service being filtered (not of the
CAS Server itself). E.g. localhost: 8080. Either
this parameter or the serviceUrl parameter
must be set.

edu.yale.its.tp.cas.client.filter.serviceUrl This parameter replaces the serverName
parameter above. It becomes the URL that
CAS redirects to after login. Either this
parameter or the serverName parameter
must be set.

Table 1. Basic CAS-filter init-param names and their definitions [4]
 Now that Tomcat and CAS was ready, Tomcat was stopped and all the logs were

cleared. Tomcat was restarted and all the logs were examined carefully. They

appeared normal.

 http://localhost:8080/servlets-examples gives the list of default servlets that

tomcat comes with. E.g. – Hello World, Request Info etc.

29

 http://localhost:8080/servlets-examples/servlet/HelloWorldExample was browsed
from the browser. User was redirected to the CAS login page. Similarly
http://localhost:8080/servlets-examples/servlet/RequestInfoExample also
redirected to the CAS login page.

Figure 6. CAS login page

30

 http://localhost:8080/servlets-examples/servlet/HelloWorldExample was
reloaded and redirected to the CAS login page. Any set of same username –
password combination (E.g. – Admin / Admin) was entered to login. Login was a
success and the page redirected to the original request.

Figure 7. Hello World!
 http://localhost:8080/servlets-examples/servlet/RequestInfoExample was

reloaded and it bypassed the login process to CAS, as a valid session already

existed, and loaded the original request.

This behavior replicates the one of ‘Single Sign On’. Thus CAS was successfully set up

in the local machine using Java sdk 1.6, tomcat 5 and CAS server release 3.3.5.

31

V. LIST OF REFERENCES

[1] X.509 Certificates Authentication Handler, definition of java keytool. Available at :

https://wiki.jasig.org/display/CASUM/X.509+Certificates

[2] Java Keytool Commands for Creating and Importing. Available at:

http://nl.globalsign.com/en/support/ssl+certificates/java/java+based+webserver/keytool

+commands/

[3] How to generate a digital certificate using key tool; the commonly used terms.

Available at:

http://www.digisigner.com/how_to_generate_digital_certificate.html#how_to_generate

_digital_certificate_using_keytool

[4] Using CAS filter; Required CASFilter init-params. Available at :

https://wiki.jasig.org/display/CASC/Using+CASFilter

[5] Description of keytool and certificate generation .Available at :

http://docs.oracle.com/javase/1.5.0/docs/tooldocs/solaris/keytool.html

[6] Demo CAS setup .Available at: https://wiki.jasig.org/display/CASUM/Demo

[7] Central Authentication Service .Available at:

http://en.wikipedia.org/wiki/Central_Authentication_Service

[8] CAS protocol authentication overview. Available at:
http://www.ibm.com/developerworks/web/library/wa-singlesign/

[9] Developing a Single Sign On system, A java based authentication platform aimed at
the web. Henrik Jervivad.

32

[10] J. De Clercq and G. Grillenmeier. Microsoft Windows Security Fundamentals. Elsevier,
Oxford, UK, 2007.

[11] Web Single Sign-On System -For WRL Company.Si Xiong.June 2005.

A. OTHERS

[1] How Single Sign On works .Available at: http://shibboleth.net/about/basic.html

[2] How Shibboleth works: Advanced concept. Available at:

http://shibboleth.net/about/advanced.html

[3] SAML 2.0. Available at: http://en.wikipedia.org/wiki/SAML_2.0

[4] OASIS security services. Available at: https://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=security

[5] IdP provider metadata. Available at:

https://wiki.shibboleth.net/confluence/display/SHIB2/IdPMetadataProvider

33

