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Abstract

Massive open online course (MOOC) has been around for a while, but started to
gain traction since 2012 when Coursera was established. MOOCs use pre-recorded
lectures and scheduled weekly tests to provide content and access to students over
the internet. Even though there was a high expectation that it would revolutionize
the education system, due to the mode of one-way content delivery, the goal was
too far-fetched. The flexibility in deadlines and no restrictions of classroom exams
meant students were not bound to finish on time. Hence, most students did not finish
the course and dropped out. The dataset used in our research was the KDDCUP
2015 dataset, which was publicly available by the organizers of XuetangX platform.
We used about 12 features namely browser access, navigate, average chapter delays,
server sequential etc to comprehend the possibility of dropout. In this paper, we
aim to predict dropout of a learner so that it can be prevented through manual
interaction. Additionally, we have implemented XAI to interpret our models to
suggest MOOC platforms which feature impact dropout the most. We used different
ensemble learning techniques, namely voting classifier and stacking. Our voting
classifier uses five of our best performing machine learning models. Then we evaluate
the model by using multiple metrics such as precision, recall, F1-score, ROC curve
and AUC score. Finally, we managed to obtain a recall of 97.636% with stacking
and f1-score of 91.603% with hard voting classifier.

Keywords: Machine Learning; Deep Learning; MOOC; Dropout Prediction; En-
semble Learning; Explainable Artificial Intelligence (XAI);
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Chapter 1

Introduction

1.1 Motivation

Now more than ever, education has become crucial in aiding better living standards
and reducing poverty in most developing countries. With the rapid development
of internet technology, there has been a rise of online learning sites with the aim
of delivering high quality education to the masses. To cope with the ever-changing
job requirements, such e-learning platforms have been developed to assist them in
bridging the gap between the talents that the industry requires and the skills that
they acquire at colleges and universities. MOOC was first coined in 2008 by Dave
Cormier and Bryan Alexander, which stands for Massive Open Online Courses. Due
to its online and open nature, it has become exponentially popular worldwide, as
anyone is allowed to participate in it and access state-of-the-art courses from world
leading universities.

Compared to traditional classrooms, MOOC is quite different. Firstly, it overcomes
any environmental constraints in space and time as learners can not only choose
where to study but also learn at any time according to their convenience. Each
student can progress at their own pace and can access all the resources all the time,
which previously could only be available during school hours. Contents such as video
recordings can be played repeatedly and with the help of live forum discussion they
can interact with fellow students and teachers to clear any confusion. MOOC is
based on a connectivist approach, so any knowledge is distributed over the network
to all participants. Students can study in their chosen field without restriction, pri-
marily because MOOC is free and have flexible deadlines.[22]

Since its inception, MOOCs have evolved from simple online platforms to complex
learning management platforms. Paving the way for a new era of education, several
organizations have taken their concept and established their own platforms. Later,
in early 2012, professors from Stanford University founded Coursera, an indepen-
dent for-profit company. Following their footsteps, other similar initiatives such as
Udacity, Udemy, Edx, Iversity, MiriadaX have been launched since then across the
US and Europe. With 58 million participants globally, divided across more than
7,000 courses, and more than 700 partner universities, a 2016 report from Class
Central demonstrated just how much MOOCs have contributed.[10]
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1.2 Problem Statement

Although MOOCs have greatly improved high quality education access to the masses,
there is a growing concern for their further development as a high number of students
are dropping out without completing the courses. It is becoming increasingly diffi-
cult for instructors to monitor all the students at risk at the same time and prevent
them from withdrawing. This is where machine learning comes into play, helping
us to predict dropout of students based on their interaction data with the course
materials and resources, and thus intervene them appropriately before they dropout.

According to [25], learners’ household condition or environment, earnings, and em-
ployment state (work schedule) are some of the reasons that presumably influence
the dropout of online courses. From research paper [13], it is observed that students
experiencing little to no empathy from their family members or confronting difficult
circumstances at work places are more prone to abandon e-learning in contrast to
an individual undergoing right guidance from their respective families. Hence, all
these factors play a critical impact on the dropout rate from MOOC. [18][19][8]

The research paper [11], however, expressed that e-learning finishing off numbers
may have a relation to the course duration, hence, long-lasting critical courses are
seen to have higher incompletion rates. Subsequently, the approaches adapted for
teaching a lesson, critical thinking, devotion towards the online lesson and duration
of the course work are redeemed as four criteria that have been discovered and clas-
sified under the ’course’ category. Furthermore, lack of enthusiasm among students
might be explained by the fact that the course is free, thus students are not obli-
gated to complete the online course resulting in an increased number of dropouts in
MOOC.[25]

The recent pandemic also demonstrated the necessity of MOOCs as education was
fully moved to online. A lot of schools and universities were not prepared to tackle
such difficulties, which further reinforces the idea of crucial development of MOOCs
to the point that every level of education can be serviced. Some courses of BRAC
university also require taking part in MOOCs which shows the significance of its
contribution to a student’s academic journey.

Additionally, almost all previous research works related to MOOC dropout did not
try to explain their model’s decision and find the most important factors that con-
tributes to dropout. We have implemented XAI to explain our models and suggest
improvements based on the most significant features.

According to [20] the following points show some factors affecting dropout rate:

Student related:

• Lack of motivation: Future economic gain, personal and professional identity
development, challenge and achievement, enjoyment and fun are all variables
that impact their motivation. The survey found that reasons for enrolling in
MOOC ranges from enjoyment, general interest in a topic to deciding whether

2



to pursue higher education or simply because they cannot afford formal edu-
cation.

• Lack of time: Another aspect that has a significant impact on course comple-
tion is time management. Watching all the lectures and completing all the
quizzes and assignments appears to take up far too much of a student’s time.

• Insufficient background knowledge and skills: Inadequate background knowl-
edge and lack of skills, especially mathematical expertise, are common cause
for not being able to finish a course. Reading, writing, and typing abilities are
essential in completing a course.

MOOC related:

• Course design: Course design generally consists of three parts, course content,
structure and delivery method. Among them, students complained about the
complexity and the technicality of the course contents, preventing them from
completing it. In addition, the language used were also found to be intricate
and having too many modules did not help either.

• Isolation and lack of interactivity: Surveys showed that lack of interactivity
of students in discussion with their lecturers resulted in getting poor feed-
back. Furthermore, non-existing communication between students gave them
a feeling of isolation.

• Hidden costs: Even though it is free to access the courses, there are hidden
costs involved such as paying for certificates and textbooks suggested by the
instructors, which often leads to withdrawal from the course.

Challenges of Dropout Prediction Using Machine Learning [20] :

• Managing big masses of unstructured data: Data is unstructured and in huge
amounts. As a result, during preprocessing, the data needs to be manually
cleaned. We can not work with such missing data on HMM (Hidden Markov
Model).

• Data variance and imbalance: Data variance leads to imbalance classes. The
number of dropouts is significantly higher compared to non-dropouts. So when
the model is trained on it, the prediction is biased in favour of dropout so if
tested, non-dropout students can be labelled as drop-out.

• Availability of publicly accessible dataset: The two main publicly available
dataset is the KDDCUP 2015 and the OULAD dataset. The dataset used
by other researchers was either requested by the particular scholar or taken
through polling.

• Inconsistent data structure: Dataset structure is inconsistent among MOOC
platforms. Models trained on one set of dataset can not be used on another
platform’s dataset because of these inconsistencies.

3



• Student schedule related challenges: Satisfying the different preferences of
student’s timetable is yet another challenge that needs to be addressed.

Now that we have identified a need to predict dropouts, it is also important to figure
out why that prediction is made so that we can deal with the root problem directly.
If we can find out which features are responsible for students dropping out, it would
give us a much better understanding of the underlying issue and help us to focus on
them. However, the challenge lies in the fact that machine learning and deep learn-
ing models are a kind of black box; meaning they cannot be understood simply by
looking at their parameters. This is where we need interpretability to comprehend
the decisions made by these models. In the paper [17], Miller defined interpretabil-
ity as the extent to which a human can understand the cause of a decision. In
our case of MOOC dropout problem, it is not enough to know the prediction only,
but also to know the ‘why’ behind that prediction. Recently, explainable artificial
intelligence (XAI) has established its place in AI, with advancements in explainabil-
ity and applications in areas like insurance, medicine, and others. To be relevant,
the interpretation of the system must yield information about the model’s mecha-
nisms and predictions, a representation of the model’s discrimination rules, or clues
about what can disturb the model [21]. There is a large degree of variation between
interpretability and explainability. As mentioned before, interpretability refers to
how well an attribute that the model possesses passively makes sense to a human
observer. This quality is often referred to as openness. In contrast, explainability
can be thought of as an active feature of a model, referring to everything the model
does or does not do to explain or detail its underlying workings.[23]

1.3 Objective and Contributions

This research aims to develop an architecture that can find the core reasons behind
student dropout and accurately predict MOOC dropout while also being relatively
fast.

1. To deeply understand the dropout problem of MOOCs.

2. To develop a model for MOOC dropout prediction

3. To evaluate the model.

4. To interpret our model’s decision-making to figure out which features are hav-
ing the most impact.

5. To make suggestions for how to improve MOOC platforms.
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Chapter 2

Background

2.1 Literature Review

MOOCs have modernized education by allowing anyone who chooses to learn and
build vital skills for their future for free. It is a platform where instructors can
distribute their knowledge to thousands of people. However, the alarming challenges
of preventing mass dropout of students still remain to be addressed. The ultimate
goal is to be able to learn and anticipate early withdrawal behaviour with high
accuracy while being computationally less taxing.

2.1.1 Defining Dropout for MOOCs

A proper definition of dropout is required in order to classify them using various
methods from machine learning and deep learning. Dropout is defined differently
by different scholars; some define it as failing to complete a course or failing to
receive certification. Others have based it on the students’ learning behaviour, such
as whether they have watched the lectures long enough or are still stuck on previous
weeks. Authors have also used clickstream on forum posts to determine dropout of
learners.[24][12]

2.1.2 Machine learning based dropout Architectures

For most MOOC dropout prediction, machine learning techniques have been adopted,
while deep learning models are becoming more popular as they provide more insights
to how students are headed towards that path. CNN, SVM, decision trees, logistic
regression models are seen widely in dropout research. However, deep learning tech-
niques are essential to learn how attention impacts dropout behaviour, as models
like ONet and CLSA have revealed.

2.1.3 Related Works

This section tries to critically evaluate previous relevant works on MOOC dropout.
We look at the many strategies utilized to get the prediction results and show where
there is room for improvement, such as accuracy and speed.
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According to the researchers [35], a machine learning algorithm could be imple-
mented to inform learners to complete course work they were supposed to com-
pleted in an estimated timeframe. The number of days to be evaluated may be
reckoned by comparing accuracy to days post-registration, in which the researchers
will analyse how productive or how many days it plans to operate based on the data
received after applying the algorithms. Future studies could look at more recent
data and include the pandemic scenario’s impact on student behaviour. In addition
to that, future research could also include more data to reflect the diverse effect
that Covid-19 had on the students. Python programming has been implemented
and AdaBoostClassifier (ABC), RandomForestClassifier (RFC), DecisionTreeClas-
sifier (DTC), LinearSVC(LSVC), GaussianNB (GNB) and LogisticRegression (LR)
models were used.

In light of the paper’s research [15], the study included a dropout prediction system
for MOOC platforms. The strategy aims to make use of data from MOOC platform
learning activities. They employed a two-layer cascade classifier with three machine
learning classifiers for dropout prediction: Random Forest (RF), Support Vector
Machine (SVM), and MultiNomial Logistic Regression (MLR). According to exper-
imental data, the proposed strategy improves performance in terms of precision, F1
score, AUC, and accuracy. Furthermore, the proposed technique has a lower recall
rate than discrete methods, which is acceptable. The authors will continue to de-
velop and improve the current strategy in future studies in order to achieve a higher
efficiency without diminishing recall.

In this paper [36], the model that the authors chose was an Artificial Neural Net-
work(ANN) with nine input nodes for nine features and one node as output. ANN
is used as we do not know the relation between inputs and output. The output was
normalized to give 0 or 1 as output. After testing many combinations to see which
gave the best results, they opted for two hidden layers with 8 neurons on each layer.
The author also implemented the same model with sentimental analysis on forum
posts, which was not done previously. The ANN showed a higher AUC score of 0.93
to 0.98 over several weeks while other models such as KNN, SVM, Decision Tree all
had lower scores of 0.7 to 0.9. ANN with sentimental analysis always outperformed
the simple ANN.

According to this paper [29], the authors presented an attention meta embedding
based deep temporal network to predict dropout in MOOCs based on the learning
pattern of each student. To interpret the learners’ engagement, they proposed a new
deep attention learning network (ONet). It consists of two stages: the first stage
develops an Attention Meta Embedding (AME)-based dense representation for each
time step at the day level precision. The temporal categorization of the extracted
meta embeddings, which are used as features, is the second phase of ONet. Because
of its faster and superior performance, the authors chose bidirectional GRU over
LSTM to circumvent the latter’s restricted time steps problem. In comparison to
baseline findings, their model outperformed other models on the KDD cup 2015 and
XuetangX datasets.

In the research work [31], the FWTS-CNN, a modified convolutional neural network
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model integrated feature weighting and behaviour time series, which played an es-
sential role in dropout prediction. The first phase required selecting features and
building decision trees with 7 learning behaviours. After ranking these features on
their importance, they are weighted on the basis of the raw data. Subsequently, a
two-dimensional time series matrix is formed on the weighted dataset based on the
features of the learning behaviour. After going through the CNN layer, the logistic
classifier is utilized to get the classification results that correspond to the student
behavioural characteristics. This model proved to be superior and outperformed
several other traditional machine learning models.

The authors in the research paper [33] proposed a novel model called CLSA which
practically combines CNN, LSTM networks and attention mechanisms, which was
their primary focus for a better prediction. To generate a prediction, their model
pulls local features from the original data, combines them with time series data, and
then multiplies them with feature-wise weights. The time series matrix generated
by the CNN layer is used by the LSTM layer to assess the temporal relationship
between students’ weekly behaviour characteristics and apply weights based on the
importance of the behaviour utilizing the attention mechanism. The static attention
mechanism generates the weights of each feature information and multiplies them
with the input feature information for adaptive learning. Because the data can
be represented in a vector format, the authors employed static attention to assign
greater weights to more essential information, improving the model’s efficiency.

In the following paper [30], the knowledge obtained in the field of natural language
processing(NLP) is applied in MOOC dropout prediction and the authors tried to
show the effectiveness of using attention as an alternative to LSTM and adding
conditional random field in a neural network architecture to solve the problem. To
increase its ability of representation, a feature vector is produced using statistical
features, accompanied by a linear transformation layer and a self-attention layer.
The linear transformation layer helps to map statistical features into higher dimen-
sion space, which is found to give better performance as demonstrated by NLP field.
Avoiding data leakage from the future, a separate attention strategy is applied, fol-
lowed by a masked self-attention layer. A probability model called Conditional Ran-
dom Field (CRF) is used to make better use of the information and predictions from
the past. Both of these layers overcome the encoder-decoder drawbacks and provide
a more accurate representation of the features. The output goes through the CNN
layer to generate time-unit level representation. An additional self-attention layer
prevents interference of future information after revealing the relationship between
the time series. The output is then converted to a label vector using transformation,
normalization, and SoftMax layers while avoiding the gradient-vanishing problem.
Going through another CRF layer produces the final output, which proves the su-
perior performance of the model compared to other conventional models.

Interpretability can be classified into several categories; one such criterion is whether
it is intrinsic or post hoc. Intrinsic refers to machine learning models that are inter-
pretable due to their simplicity in their structure, while post hoc refers to interpre-
tation after training of the model. The drawback with intrinsic interpretable models
is that they have poorer performance due to being restricted to only one type of
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model. Decision tree is an example of intrinsic interpretable model. The flexibility
of model-agnostic interpretation methods is a significant benefit when compared to
the specificity of model-specific interpretation methods. As a result, machine learn-
ing developers do not need to worry about using a specific model, instead, they are
free to pick their preferred model as the interpretation can be done on any type of
model. It also provides the added benefit of using any explanation form, whether it
is a linear formula or graphical representation [38]. The scope of interpretability can
be divided into parts, local and global. In local interpretation, the prediction might
merely depend on the linearity and repetitiveness of features, rather than having a
complicated relationship with them. It predicts a single instance for the given input.
On the other hand, in global interpretation, the level of interpretability required to
comprehend the reasoning behind the model’s choices by taking into account all the
features and learned parameters and weights needs the trained model, the algorithm,
and the data. The capacity to assess a model on a global scale can shed light on
the probability distribution of the conclusion we are aiming for.

From the above discussion, it is observed that some of the proposed hybrid models
combined several networks to achieve better accuracy for dropout prediction. How-
ever, there is still space for improvement, especially incorporating learning patterns
and attention mechanisms. Hence, to suggest a model capable of doing that while
being efficient and having less computational requirements remains a challenge.

2.2 Models and Existing Techniques

2.2.1 Libraries

To implement all the machine learning and deep learning models, we have taken
the help of scikit-learn library. Additionally, for data visualization, we used libraries
from matplotlib and seaborn. For loading the dataset and converting columns values
to usable data, we have used pandas dataframe and numpy. To solve the class
imbalance of our dataset, we have used the oversampling technique SMOTE from
SMOTETomek class.

2.2.2 Decision Trees

For classification and regression problems, Decision Tree is one of the most popular
machine learning models. It is a tree-like structure with a top-down approach. The
initial node of a decision tree is called the root, which represents a feature. The
branches from the nodes consist of the different outcomes from that feature and
finally, the leaf nodes show the labels, either 0 or 1 in the case of binary classifi-
cation. The splitting of root nodes is based on some factors such as entropy and
information gain. Entropy signifies the purity of a variable and ranges from 0 to 1.
The information gained is the net information learned from a feature, and the aim
is to maximize it. Greater information gain corresponds to a smaller entropy.[1]
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Figure 2.1: Decision Tree [39]

2.2.3 Random Forest Classifier

For categorization problems like ours, a very well-liked machine learning approach
called random forest can be applied. It is centred on ensemble learning, which in-
tegrates multiple classifiers to enhance the model’s performance. Instead of using a
single decision tree, it constructs several and averages their predictions. The theory
behind this is that since some decision trees may anticipate the incorrect outcome,
we will ultimately achieve the best result by averaging with the remaining majority
right predictions. In our example, we utilized 600 trees as a balance between perfor-
mance and computation time; the more trees, the higher the accuracy and the less
overfitting occurs.[7]

Figure 2.2: Random Forest [37]
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2.2.4 Gradient Boosting Classifier

Gradient boosting is a form of boosting machine learning technique that concen-
trates on building a strong model from weak learners after each iteration. Three
things make up gradient boosting: a loss function, a weak learner, and an addi-
tive model. In order to comprehend how accurate our model is at categorizing, the
loss function is necessary. It reduces the error by selecting a function that favours
the weaker hypothesis. Classifying our data is the weak learner’s responsibility,
but typically it is not accurate enough. However, the additive model re-trains the
wrong classification with each iteration, which causes the loss function to shrink
with time.[3]

Figure 2.3: Gradient Boosting [28]

2.2.5 Naive Bayes

Naive Bayes algorithm is built on conditional probability. In normal conditional
probability, the probability of our output is dependent on all the features combined.
To find that, we find the probability of all the features combined dependent on the
output. But the calculation is really difficult as it is near impossible to find such
a combination of values for each feature for a given output, hence the result comes
to zero. To avoid this, Naive Bayes takes a naive approach by treating each feature
as independent of one another. So instead of taking all features at a time, naive
bayes algorithm takes the probability of one feature dependent on the output, and
does this for all features and multiplies it. Now the chance of getting zero is almost
negligible. For a binary classification, the probability of both the classes are found
and normalized. The class with the higher probability is the output. [9]
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2.2.6 Support Vector Machines

Another reliable supervised learning approach that can be applied for classification
is support vector machines. The SVM algorithm’s goal is to establish the optimum
decision boundary for classifying the n-dimensional space. Now, we may categorize
fresh data based on which side of the line it lies. The extreme points that aid in
forming the boundary are referred to as support vectors, and this line is known as
the hyperplane. The margin is the distance between the two extreme examples, and
SVM aims to maximize this margin.[2]

Figure 2.4: Support Vector Machine [41]

2.2.7 Multilayer Perceptron

Multilayer perceptron is the most basic form of deep learning models. Deep Learn-
ing is a subset of machine learning which can handle complex and large datasets.
MLP consists of one layer of input perceptron, followed by one or more layers of
hidden layer perceptron and finally one layer of output perceptron. A perceptron,
also known as neuron, is an Artificial Neural Network which behaves similarly to a
biological neuron present in the human brain. It takes an input and adds weight to
it. Since there are multiple inputs so after adding all the weighted inputs, a bias is
also added and this is passed through an activation function. If the generated value
from the activation function is more than the threshold value, an output is produced.
Most common activation functions used are sigmoid, rectified linear units(ReLU),
tanh and softmax. The feedforward network feeds the output to the next layer and
this process repeats. By using backpropagation, the weights are recalibrated so that
the error is minimized. MLP adds the extra benefit of doing more complex propo-
sitional logic like Exclusive OR (XOR) which could not be done in a single layer
perceptron. If each neuron of a single layer is connected to all the neurons from
the previous layer, it is called a fully connected layer. Multilayer perceptron can be
used for both classification and regression problems.[6]
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Figure 2.5: Multilayer Perceptron [32]

2.2.8 KNN

The k-nearest neighbours algorithm is a supervised learning classifier that compares
new data with similar data points based on a region or neighbourhood. It determines
its class according to the class of samples it is closest to. Additionally, the fact that
it stores the training dataset rather than using it immediately to learn from makes
it a ”lazy learner” algorithm. When new data is received, the KNN approach simply
refers back to the information it stored during the training phase and assigns it to
a category that is very comparable to the new data. For this reason, KNN is some-
times referred to as a memory-based or instance-based learning strategy because it
relies heavily on memory to remember all of its training data. KNN algorithm has
different ways to calculate the distance to decide it classification such as Manhattan,
Euclidean, Minkowski, and Hamming.[5]

Figure 2.6: K-Nearest Neighbour [40]
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2.2.9 Ensemble Learning

Ensemble learning [34] is a powerful technique used to boost the performance of
predictions. There are mainly 4 different types of ensembling learning techniques
such as bagging, voting classifier, boosting and stacking. Bagging uses the idea of
using multiple instances of the same weak learner working in parallel with different
subsets of the dataset with replacement. In bagging, the subset of columns can be
taken as well. Random Subspace Method is when only a subset of columns is taken
with replacement. Random Patches Method is when both column and row subset
are taken with replacement. Furthermore, when bootstrap is set to false, there is
no replacement in a subset of the dataset, it is called pasting. Random Forest is an
example of bagging where the weak learner is a decision tree.

Voting classifiers are similar to bagging but defers with two small exceptions. In
the voting classifier, different weak learners are used. Also, the dataset is used
as a whole, no subset is taken. The voter classifier votes on the outcome of each
base estimator and chooses the outcome with the most votes. The voting criteria is
of two types, hard voting and soft voting. Hard voting is calculated based on the
predicted output class, whereas soft voting is calculated on the predicted probability.

Thirdly, Boosting merges the weak learners sequentially, retraining the incorrectly
classified labels. Boosting weighs the wrong classified data points heavily for the
next execution. And finally there is stacking. Stacking is similar to voting. Stack-
ing simply takes the result from the voting classifier and passes it through a final
classifier, which increases the performance of the overall model.

Ensemble method not only gives better results but also has been very successful in
decreasing the variance resulting in the overfitting to decrease. Thus, the ensemble
model performs much better on unseen data compared to the weak learners it uses.

2.2.10 LIME

Local interpretable model agnostic explanations (LIME), work by explaining the
black box model by training local surrogates, instead of a global approach. The
model internals are hidden from us. The explanations can be validated if we have
prior knowledge.

explanation(x) = argming∈GL(f, g, πx) + Ω(g) (2.1)

(2.1) shows the LIME equation

LIME makes a local approximation of the complex model for a specific input. The
complex model is represented by f, and g means a simple interpretable model that
comes from a set of interpretable models G, containing linear models and their vari-
ants. πx is the proximity of our data point x, which defines the local neighborhood.
When we feed different data into a machine learning model, LIME sees what changes
happen to the predictions. By randomly shuffling samples and the accompanying
predictions of the black box model, LIME creates a new dataset. This new dataset
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is used by LIME to train an interpretable model by adding weights between the
sampled instances and the instance of interest. Minimize the loss function by get-
ting the highest accuracy on the new dataset using a simple linear model. L is the
mean-squared error between the label from the complex model and the prediction
of the simple model, g. The proximity is added to weigh the loss according to how
close the data point is. Ω(g) is the model complexity, which is kept as simple as
possible by using a sparse linear model. They tend to produce as many zero weights
as possible. Furthermore, the fewer features, the simpler it is.[14]

2.2.11 SHAP

The concept of SHapley Additive exPlanations (SHAP) comes from cooperative
game theory. For instance, if a game is played by a team of 4 members, and they
win a certain amount of prize money, how will they split it fairly among themselves?
The answer comes from shapley values, which determine the average contribution
of each player to the payout. In machine learning, the players can be thought of as
features and the payout would be the prediction.

ϕi(f, x) =
∑
z′⊆x′

|z′|!(M − |z′| − 1)!

M !
[fx(z

′)− fx(z
′\i)] (2.2)

(2.2) shows the equation for calculation shapely values

ϕi is the shapely value for feature i, where f is the blackbox model and x is the
input data point. z′ is all possible subsets of features to make sure it accounts for
the interaction between individual feature values. x′ is the simplified mapped input
data that is used in image-related data, where each pixel does not necessarily mean
a feature. Then we get the blackbox model output for the subset with and without
the feature we are interested in. For instance, in our case, a subset of features could
be access and navigate. If we are interested to find the contribution of access, then
fx(z

′) would give the output for both features together and fx(z
′/i) would give value

for only navigate. This difference is known as the marginal value. [16]

The process repeats for all possible combinations of subsets and, additionally, they
are weighted according to the number of features present in that subset. M rep-
resents the total number of features. The intuition is that the contribution of a
feature, say navigate in our case, would be weighted more if the subset already
contains many features. It tells us that the addition of this feature gives a strong
change even though several features are already included. Now, a feature cannot
be removed from a datapoint because the shape would change. SHAP solves this
problem by inserting random values from the train dataset into the features we want
to exclude. Since random values have no predictive power, the values are shuffled
in all subsets.
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Chapter 3

Dataset

3.1 Dataset Description

For our experiment, we have used the KDDCUP 2015 dataset derived from Xue-
tangX, one of the largest MOOC platform in China. It is a subset of the bigger Xue-
tangX dataset which was made publicly available. The platform offers a plethora of
courses which covers a wide range of subjects. Students have the option to enrol in
multiple courses at the same time and enjoy flexible learning schedules. The dataset
contains various activities students interact with like navigating the browser chap-
ters, video, sequential access, wiki and average chapter delays. The dataset contains
120542 rows with 141 columns which had 18 prominent features. In the end, we used
12 features after carefully selecting the most important ones, which is discussed later.

Class Description
label dropout label of 0 or 1
avg chapter delays average delays between chapters
parallel enrollments courses enrolled together
server sequential accessing servers one after another
wiki information of particular course
browser problem course assignment problems
server wiki fetching wiki data from server
access accessing other course object other

than videos and assignments
browser combined openended web pages opened indefinitely
browser access accessing the website
browser video video content of the courses
class size total enrollments of a particular course
navigate navigating other parts of the course
server problem fetching assignment problems
server chapter fetching chapter information
server navigate navigating to the server
browser sequential websites accessed sequentially
server access requiring server access from browser

Table 3.1: Dataset Description
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3.2 Data Preprocessing

An extremely important phase in machine learning is data preprocessing. Most of
the time, raw data cannot be used directly in machine learning models; therefore, it
must be cleaned and formatted before being used. Data preparation enhances the
accuracy and effectiveness of our models.

3.2.1 Reduction of Features

As mentioned before, the structure of the dataset is not ideal yet to be fed into
classification models. It contains about 141 columns in total. Our dataset contains
four types of sequential data namely activity day, activity hour, activity week day,
session in week which contributes to 67 columns. Details of the sequential columns
are shown in table 3.2. We are working with non-sequential models, hence we did
not utilize these features. As we are not dealing with that type of data, we dropped
those columns. Out of the remaining 74 columns, 55 of them have all zeros, so
we have dropped them. We removed the enrolment-id feature from the remaining
columns because it does not provide any useful information for training purposes,
leaving us with a total of 18 columns to deal with.

Class Description
act cnt day Number of student activity on a day of a particular month
act cnt hour Number of student activity every hour

act cnt week day Number of student activity on a day of a particular week
session in week Number of sessions per week

Table 3.2: Description of Sequential features

Figure 3.1: Dropping Columns with all zeros

3.2.2 Handling Null and Categorical Values

Our dataset did not contain any null values which we would have to remove. We
observed this by counting the non-null values of each column. If all 120542 rows
were non-null values, it meant there were no null values. Similarly, by checking the
data type of each column, we could say there was no need for encoding categorical
values since all the features were either integer or float type.
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Figure 3.2: Checking Null and Categorical Values

3.2.3 Recursive Feature Elimination

Feature Rank Drop
avg chapter delays 1 No
server sequential 1 No
browser problem 1 No

access 1 No
browser access 1 No
browser video 1 No

class size 1 No
navigate 1 No

server problem 1 No
server chapter 1 No
server navigate 1 No
server access 1 No

parallel enrollments 2 Yes
browser sequential 2 Yes

wiki 3 Yes
server wiki 3 Yes

browser combined openended 3 Yes

Table 3.3: Recursive Feature Elimination

Recursive Feature elimination uses an estimator, in our case it is the Random Forest
Classifier, and assigns weights to the available features. Initially it starts with 17
features and after every iteration it drops the least important features. Hence, by
working recursively, it is considering a smaller set of features in every execution. The
total number of iterations is 3 in our case. So in this experiment we are left with 12
features after 3 recursions. We experimented this process using different estimators
and found that Random Forest estimators selects the features that perform the best.
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3.2.4 Normalization

Class Before Normalization After Normalization
avg chapter delays (0.0, 5.0) (-0.44, 25.73)
server navigate (0,649) (-0.65, 49.38)
server sequential (0,3619) (-0.43, 121.95)
access (0,3659) (-0.47, 66.76)
class size (118,7310) (-1.12, 2.28)

Table 3.4: Normalization

Figure 3.3: Before Applying Standard Scalar

Figure 3.4: After Applying Standard Scalar

The key idea of normalizing is to modify the numeric values of a column to make it
uniform. The structure of the data becomes a normal distribution with even number
of data above and below the mean. For example, average chapter delays column has
values ranging from 0.0 to 5.0 whereas access has values ranging from 0 to 3659, so
this difference in range needs to be handled. We have used standard scalar technique
to normalize all our data. It scales the values by subtracting the mean from it and
then scaling it to the unit variance. Thus, it also contains negative values and the
final range is from -1 to +1 with the mean at 0.
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There are other two scalars, namely min-max scalar and robust scalar. We did not
use min-max scalar for our dataset because it reduces the range of the data as the
lowest value is 0 and highest is 1, so there is some data loss. Features like access
and class size has a wider range in as shown in table 3.4, so min-max scalar will
hamper these column values. In our MLP model, this scalar impacts the most as
the 0 values are treated as null values and hence it could affect the learning process.

On the other hand, robust scalar works by ignoring the extreme outliers for each
feature column. Furthermore, this scalar does not aggressively scale compared to
standard scalar, since it only scales using data from the 25th percentile to the 75th
percentile. However, in our dataset there is very little outliers to remove and as a
result this scalar is not suitable to use since it does not normalize the values in a
wider range like the previous two explained earlier.

From figure 3.3, we can see the difference in range of our features clearly. The class
size feature has a far wider range compared to columns like avg chapter delays and
server-navigate. So to normalize the range of data in order to make all of them
uniform with each other, we applied standard scaling. The figure 3.4 shows the
effect of scaling and how the data is distributed evenly across all the features.

3.2.5 Train-Validation-Test Splitting

Finally, we divided our dataset into train, validation and test sets in proportions of
60-20-20 respectively.

Train: Train set is used to fit our models so that they can learn the parameters of
the dataset.

Validation: The validation set is used to tune the hyperparameters of our models.
Each set of hyperparameters is run on the validation set to find out which combi-
nation of parameters gives the best results.

Test: Finally, the test set is used to evaluate the performance of our models at the
end. It only runs once, compared to the validation set. We have also stratified the
splitting process on the basis of the target variable. This ensures that the ratio of
0s to 1s in the train and test sets is the same.

Figure 3.5: Train-Validation-Test Split
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Chapter 4

Proposed Model

4.1 Different Ensemble Models with XAI

Our approach in predicting dropout takes the help of different ensemble models.
Taking the majority votes from five of our best performing models, it gives a more
robust and accurate outcome. The concept of voting is based on the assumption
that some models might produce inaccurate results. However, the bulk of the mod-
els would have correctly anticipated the outcome, therefore the final result would
be the correct one if we had cast our votes based on each model’s prediction. We
have implemented both hard and soft voting as well as stacking; hard voting which
calculates the result based on the predicted output class, compared to using proba-
bilities in soft voting. Stacking works similarly like hard voting with an additional
classifier at the end for the final prediction.

At first, we applied all the necessary pre-processing techniques to clean and nor-
malize our dataset. Next, we split our dataset into train, validation and test sets.
The training set is then fed into our voting classifier containing all the models. The
voting classifier creates copies of the training set for each model. Moreover, we have
used an odd number of classifiers to avoid any indecision in case of equal number
of votes from both classes. For example, if we had four models, out of which two
models gave the outcome as 0 and the other two as 1. In this case, we will not get
a concrete outcome to confidently say which one is the correct result. Using an odd
number of models solves this issue by always giving a definite result, as there is an
unequal number of 1s and 0s.

For the voting estimators, we have used gradient boosting, random forest, decision
tree, K-nearest neighbour and multilayer perceptron as these models gave the best
performance. For the final estimator in stacking, we selected gradient boosting as
the final estimator as it performed the best compared to using other final estimators.

Finally, we explained our model’s decisions of the test samples using explainable
artificial intelligence (XAI). The libraries we used for this purpose are LIME and
SHAP.
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Figure 4.1: Proposed Model
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Chapter 5

Experiment and result analysis

To access the performance of our models, we have used the following metrics: recall,
precision, f1-score, accuracy derived from the confusion matrix. In addition, we also
used ROC and AUC (area under the curve) as they have been proved to be highly
effective in past papers to judge the KDDCUP 2015 dataset. The parameters used
from the confusion matrix are TP (True positive), TN (True negative), FP (False
positive) and FN (False negative).

TP signifies the correctly identified dropout students.

TN implies the correctly identified non-dropouts.

FP indicates the wrongly identified dropouts.

FN shows the wrongly identified non-dropouts.

The following equations were used to calculate the metrics.

Recall =
TP

TP + FN

Precision =
TP

TP + FP

F1− score =
2TP

2TP + FP + FN

Accuracy =
TP + TN

TP + TN + FP + FN
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Recall is the fraction of actual positives actually labelled positive. In our research, it
is the fraction of total dropouts which are actually labelled as dropouts. According
to the recall formulae, to get a higher recall, the false negative has to be lower.
Meaning to get a higher recall, the actual dropout being labelled as non-dropouts
must be lower. Recall is used as a primary metric in cancer research, as having
low false negatives in cancer research is vital. We do not want to miss any cancer
patients while predicting.

Precision on the other hand is the fraction labelled positive which is actually positive.
In our research, it is the fraction of labelled dropouts which are actually dropouts.
According to the precision formulae, to get a higher precision, the false positive
has to be lower. Meaning to get a higher recall, the non-dropout being labelled as
dropout must be lower. Precision is widely used in detecting faulty machinery, as
having low false positives is vital.

F1-score is the harmonic mean of the recall and precision. Here we are using har-
monic mean and not actual mean or average. The reason is that the harmonic mean
is greatly influenced by the lower value, while the average will give the midpoint
between precision and recall. If we have a model where the recall is 20 and precision
is 90, average will give 55. However, the harmonic mean will give 32.73. Here it is
evident that harmonic mean gives a better representation of our model compared to
mean or average.

In majority research, accuracy has been used as the primary measure to determine
the performance of the model. However, accuracy is not a good measure when it
comes to highly unbalanced dataset. Suppose we have a dumb model which pre-
dicts a dog whenever an image is shown to it. Now let’s say in our dataset 97%
are dog images and the rest are cat images. If we use this model to classify, then
the accuracy comes to 97% as the model predicted the correct label for 97% of the
dataset.However, this is a false representation of the model, as the model did not
perform well at all. The same model will have an accuracy of 10% if 10% of the
images in the testing dataset were dog images. So for highly imbalanced dataset we
use recall, precision and f1-score as our primary evaluation metric.

The MOOC dataset we used in this research roughly contains four times as many
dropouts as non-dropouts. Here we are trying to predict dropouts. So just like
cancer research, here we need to have low false negatives. It’s vital we do not label
a dropout as a non-dropout. So recall is our primary metric. In addition, we used
precision and f1-score to get an overall idea of non-dropout as well.

In binary classification, there is only one value of accuracy for both the classes.
However, the value of precision, recall and f1-score can be different for two classes.
In this research, our main focus is to predict the dropout, so our primary point
of focus is the dropout class. Hence, for precision, recall and f1-score we took the
values from the dropout class.
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Figure 5.1: Underfitting and Overfitting

In underfitting the model is way too simple. As a result, it can not find enough con-
nections between features and the target label. This means the accuracy is low for
both training and testing phase. On the left side of the figure 5.1, we can see there is
a straight line and there are red and blue data points on either side. This shows few
data points were wrongly classified. And hence the accuracy is low. Underfitting
results in the model to have high bias. There are few ways to tackle underfitting
in the model. One way is to make the model complex by increasing the degree of
polynomials. For example, if the model is quadratic, we can make it cubic. Another
way can be to increase the number of features so that the model can learn more
parameters during the testing phase. Finally, we can reduce the regularization so
that the model has greater variance.[26]

Overfitting is the exact opposite of underfitting. Overfitting is the tendency of the
model to learn the training set too well. Overfitting makes the machine learning
model too complex. As we can see from the figure 5.1, the right graph shows the line
separating the blue datapoint to the red datapoint in the training set. If we provide
a testing set, the new datapoint can fall on the wrong side and will be mislabelled.
This results in the model having low accuracy on the unseen or training data. Over-
fitting results in the model to have high variance. There are multiple ways we can
handle overfitting. One way is to make the model simple by reducing the degree of
polynomials. For example, if the model is quadratic, we have to make it linear. An-
other way is to reduce the number of features so that the number of variables in the
equation decreases and the model has to learn fewer parameters during the training
phase. Finally, we can increase regularization to decrease the variance. The larger
the difference between training and testing accuracy, the larger is the overfitting.[26]

We performed hyperparameter tuning using nested for loops with each parameter
containing its possible values in a list. We tested every combination of parameters
and choose the set of hyperparameters that gave the highest recall and F1-score.
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5.1 Decision Trees

Figure 5.2: Confusion Matrix of Decision Tree

Set Recall Precision F1-score Accuracy
Train 95.262% 88.272% 91.634% 86.208%

Validation 95.616% 87.816% 91.551% 86.005%
Test 94.947% 87.932% 91.305% 85.660%

Table 5.1: Performance Metrics for Decision Tree

Hyperparameter Possible Values Chosen Value
Criterion [gini, entropy] gini

Max Depth [2, 3, 5, 10, 20] 10
Min Sample Leaves [5, 10, 20, 50, 100, 150] 100

Max features [auto, sqrt, log2] auto

Table 5.2: Hyperparameter for Decision Tree

The decision tree is designed to halt splitting when it gets a leaf with pure samples.
This means either all the samples are dropouts or non-dropouts. As max-depth is
10, so the decision tree will stop splitting after it reaches a depth of 10 irrespective
of it getting a pure leaf or not. When max-features is set to ‘auto’ then square root
of available features are taken into consideration for splitting. ‘Gini’ is used as a
criterion for splitting, which is computationally less demanding. Min-sample-leaf =
100 means that if there are less than 100 samples in an internal node, the node is
not further divided and hence becomes a leaf node.
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5.2 Random Forest

Figure 5.3: Confusion Matrix of Random Forest

Set Recall Precision F1-score Accuracy
Train 96.764% 89.352% 92.910% 88.290%

Validation 95.496% 88.390% 91.806% 86.482%
Test 95.360% 88.089% 91.580% 86.096%

Table 5.3: Performance Metrics for Random Forest

Hyperparameter Possible Values Chosen Value
N-estimators [200,300,400,500] 400
Criterion [gini, entropy] gini

Max Depth [2, 10, 20, 50,100,150] 10

Table 5.4: Hyperparameter for Random Forest

Random forest is a bagging classifier consisting of decision trees. Here we have used
400 decision trees. Normally, the splitting continues until we get a leaf with pure
samples, meaning either all of them are dropouts or non-dropouts. But by limiting
the max-depth to 10, the decision tree will stop splitting when it reaches a depth
of 10. Both of these will prevent over-fitting. We found ‘gini‘ to be the best crite-
rion. This is set as default. It works as well as entropy but is computationally less
demanding, so overall performance improves. Although Random Forest performs
better than decision tree as expected, random forest overfitting more compared to
the decision tree. This is likely because the random forest used overlapping subsets
of the dataset for each tree, which increases the variance. This is due to the fact
that bootstrap is set true by default, and we did not change it.
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5.3 Gradient Boosting

Figure 5.4: Confusion Matrix of Gradient Boosting

Set Recall Precision F1-score Accuracy
Train 97.070% 86.558% 91.513% 85.723%

Validation 96.511% 86.086% 91.001% 84.865%
Test 96.166% 85.943% 90.767% 84.487%

Table 5.5: Performance Metrics for Gradient Boosting

Hyperparameter Possible Values Chosen Value
N-estimators [200,220,240,250,270,300,320,340,350] 200
Learning Rate [0.1,0.5,1,1.5,2] 1.5

Table 5.6: Hyperparameter for Gradient Boosting

The n-estimators refers to the number of trees used in the model.Each individual
tree is generated to reduce the errors produced in each iteration. Generally, the
more trees the better the model will learn the data, however, a high number of
trees slows down the training phase considerably. So we need to find a balance
between performance and training time, which after several tuning we found to be
200. Another hyperparameter that is used in gradient boosting is the learning rate,
which determines how quickly or slowly the model fits the training data. If the
models fit quickly, it will overfit the data, so we need to set a learning rate that
allows for good learning without overfitting. In our case, a learning rate of 1.5
worked the best.
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5.4 Gaussian Naive Bayes

Figure 5.5: Confusion Matrix of Naive Bayes

Set Recall Precision F1-score Accuracy
Train 94.504% 87.619% 90.931% 85.053%

Validation 94.455% 87.753% 90.981% 85.151%
Test 94.173% 87.380% 90.650% 84.595%

Table 5.7: Performance Metrics for Naive Bayes

Here we did not tune the hyperparameters, as the available parameters give the
best results. Naive Bayes algorithm assumes that the features are independent of
one another and ignore any correlation among features while fitting the model. The
dataset we have used is from the real world MOOC platform, so it reflects the real
world phenomenon. In the real world, the features are indeed correlated with one
another and thus while fitting the model this has to be taken into consideration.
All other models that have been used take the correlation into account, so it sig-
nificantly outperforms the Naive Bayes classifier. A Gaussian Naive Bayes model
just takes the data and converts it into a normal or Gaussian distribution before
beginning the training phase. Our dataset that is being given to the model to train
is already in normal distribution from our preprocessing phase.
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5.5 Support Vector Machine

Figure 5.6: Confusion Matrix of SVM

Set Recall Precision F1-score Accuracy
Train 96.607% 86.832% 91.459% 85.693%

Validation 96.600% 86.773% 91.423% 85.628%
Test 96.338% 86.526% 91.168% 85.200%

Table 5.8: Performance Metrics for Support Vector Machine

Hyperparameter Possible Values Chosen Value
Kernel [rbf, sigmoid, linear] linear
C-Value [0.1,1,100] 0.1

Table 5.9: Hyperparameter for Support Vector Machine

SVM uses a decision boundary to separate the binary classes. In this case, one
class is dropout and the other is dropout. There are different types of decision
boundaries, such as mentioned in the table 5.9. After hypertunning we got a linear
decision boundary as our best choice. Linear decision boundary draws a straight
line and divides the two classes on either side. C is the regularization parameter.
The degree of regularization has an inverse relationship with the C value. Hence, as
the C value increases, the regularization decreases and vice versa. Here we used the
lowest possible value of C, hence the maximum possible regularization. This means
we are ignoring complexity in the model to ensure that we do not overfit.
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5.6 Multilayer Perceptron

Figure 5.7: Confusion Matrix of Multilayer Perceptron

Set Recall Precision F1-score Accuracy
Train 95.438% 88.547% 91.864% 86.595%

Validation 95.172% 88.643% 91.792% 86.503%
Test 95.386% 88.305% 91.709% 86.055%

Table 5.10: Performance Metrics for Multilayer Perceptron

Hyperparameter Possible Values Chosen Value
iteration [1,3,5,10,15,20,50,100,150] 20

Activation function [relu, tanh, logistic] relu

Table 5.11: Hyperparameter for Multilayer Perceptron

Multilayer perceptron is the most widely used deep learning algorithm. There are
multiple different activation functions to choose from, but after hypertuning we
found out that ‘relu’ gives the best result. Relu is short for Rectified Linear Unit.
This activation function is a piecewise linear function which does not have any
output if the summation of dot product between weight and sum is zero. But if
the summation is positive, relu gives the same exact positive out, as it has a linear
relation with positive input into the function. As discussed earlier, after a run, MLP
calculates the error and performs backpropagation to adjust weights. Then it runs
again and again calculates the error, followed by backpropagation to adjust weights.
This is continued a total of 20 times to get the best possible result with the least
error.

30



5.7 K-Nearest Neighbour

Figure 5.8: Confusion Matrix of K-nearest neighbour

Set Recall Precision F1-score Accuracy
Train 95.927% 88.193% 91.897% 86.587%

Validation 94.638% 88.086% 91.245% 85.599%
Test 95.308% 87.858% 91.431% 85.835%

Table 5.12: Performance Metrics for K-nearest neighbour

Hyperparameter Possible Values Chosen Value
n-neighbours [13,15,17,19,27,32,34,35,36,38,45,50,55,60,65,70] 35

Weights [uniform, distance] uniform

Table 5.13: Hyperparameter for K-nearest neighbour

The n-neighbours value of 35 means the KNN algorithm takes the nearest 35 data
points into consideration and votes to find the majority class. If the number of
dropouts is greater than non-dropouts, then it predicts dropout and vice versa. It
selected 35 and not any surrounding even number like 34 or 36, because in binary
classification, an odd number of datapoints acts as tiebreaker. If weights = “dis-
tance” parameter was used, then the further data points will have less influence
on the prediction, which is not particularly advantageous for binary classification.
KNN works best where all the features are scaled to the same level. That is the
reason we have used Standard Scalar as our normalization technique. So weights =
“uniform” is chosen.
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5.8 Comparison between Number of Features used

Number of Features Recall
17 95.737%
13 96.995%
12 97.636%
11 97.113%
10 93.875%

Table 5.14: Performance Comparison between Number of features

As we can see from the table 5.14, using a different number of features impacts the
performance. From our initial 17 features, we reduced it further by using recursive
feature elimination that ranks the important features. We have to provide the
number of features it reduces it to, so after some experimentation we found 12
features to have the best result as it gave a 97.636% recall score. Reducing the
features even more, reduces the performance. This also proves that using 12 features
reduces overfitting, as the performance improves compared to 17.

5.9 Summary of Individual Models

Model Recall Precision F1-score Accuracy
DTC 94.947% 87.932% 91.305% 85.660%
RFC 95.360% 88.089% 91.580% 86.096%
GBM 96.166% 85.943% 90.767% 84.487%
GNB 94.173% 87.380% 90.650% 84.595%
SVM 96.338% 86.526% 91.168% 85.200%
MLP 95.386% 88.305% 91.709% 86.055%
KNN 95.308% 87.858% 91.431% 85.835%

Table 5.15: Summarized Performance Metrics for all models

Figure 5.9: ROC Curve of all the models
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Overall, most of the machine learning models performed well, with a few performing
a little lower. The above table 5.15 shows that random forest performs really well
in recall score compared to decision tree. Since it is a bagging classifier, it uses
multiple weak learners, which improves its performance. On the other hand, naive
bayes performs the worst due to its assumption of features being independent and
not taking into account the correlation between them. Although gradient boosting
scored lower in precision and F1-score, it had a higher recall metric compared to
others. Since recall is our primary focus, we chose gbm as one of the voters over svm.
The reason behind is that svm gave much poorer performance when used as a voter,
and it takes significantly more time to run. SVM tries to fit the best hyperplane
with the training data, however, from the figure 5.11, we can see that our data has
a lot of overlapping samples which makes it very difficult for SVM to optimize the
hyperplane. Hence, it takes a lot of time to run. All of our models gave a higher
recall score than precision. This is due to our dataset being highly imbalanced, with
dropouts samples almost 4 times more than non-dropouts. So there is a tendency
for our models to predict non-dropouts as dropouts, giving a higher number of false
positives. With a small sample size for non-dropouts, the models cannot learn it
properly, as a result the precision score falls compared to recall.

5.10 Summary of Different Ensemble Models

Model Recall Precision F1-score Accuracy
Majority Voting (Soft) 96.453% 87.128% 91.554% 85.889%
Majority Voting (Hard) 95.611% 87.917% 91.603% 86.101%

Stacking 97.636% 81.847% 89.048% 80.957%

Table 5.16: Summarized Performance Metrics for different Ensemble Models

Figure 5.10: Recall comparison between Ensemble and baseline models

Our proposed model uses the different ensemble learning techniques to boost the
performance. We have done this by selecting five out of the seven models and used
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them as voting estimators. We dropped Naive bayes and SVM, since they performed
the worst overall in our ensemble models. The objective was to filter out the wrong
predictions of some models, with the majority correct predictions made by the rest.
Looking at the results, we can say that we have achieved the highest recall score in
stacking and highest F1-score in hard majority voting. Since we have an imbalanced
dataset, these metrics are important as we are trying to predict dropouts only which
label 1 in our case.

Soft voting gave a higher recall score than hard voting with 96.453% and hard vot-
ing gave us a higher precision and F1-score than soft voting. Soft voting gives more
weight to highly confident votes, which is why it can predict actual dropouts as
dropouts giving a better recall than hard voting.

Stacking uses two levels of estimators for prediction. Firstly, it uses 5 base mod-
els as voters, similar to hard voting. Then it uses an additional estimator in the
second layer for the final prediction. We used gradient boosting as the final es-
timator. From the table 5.15, we can see that gbm has the significantly higher
recall score than other models, making it an ideal choice for the final estimator in
the second layer. As a result, stacking produced the highest recall score of 97.636%
and its lower precision and F1-score is due to the lower score of gbm in those metrics.

In our research, recall is our target, so stacking would be the best model, however,
other papers gave importance to precision scores. If precision and F1-score is needed,
we will choose majority hard voting classifier as the model, but for recall, stacking
would the best choice.

5.11 Comparison with different Number of Voters

Number of Voters Recall
4 94.879%
5 95.611%
6 95.350%

Table 5.17: Performance Comparison with different number of estimators

We experimented our ensemble models with varying number of estimators to see
the difference in performance. We found that using an odd number of voters gives
a better recall score, as shown in 5.17. This is due to the fact that odd voters act as
a tiebreaker, whereas using an even number of voters would create situations where
the number of votes from both classes are equal.
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5.12 Comparison of Overfitting

Model Train-Test Difference
Average of 5 models 0.662%

Soft Voting 0.500%
Stacking 0.380%

Table 5.18: Performance Comparison of Overfitting

The difference in train and test in recall metric determines the amount of overfitting,
a higher percentage means more overfitting and vice-versa. Not only did soft voting
and stacking perform better compared to our baseline machine learning models, it
also handled overfitting well by reducing the variance. From the table 5.18, we can
see that the difference between the train and test set are lower in soft voting and
stacking compared to the average of 5 baseline models.

5.13 Comparison with and without Oversampling

One of the major problems with our dataset is the highly imbalanced labels of
dropout. We have 95581 labelled as 1 and 24961 labelled as 0, so almost four times.
So we tried to use an oversampling technique known as SMOTE (Synthetic Minor-
ity Oversampling Technique) to balance the dataset and compare how it performs
against our initial approach.

SMOTE works by randomly selecting a sample, then finding the k-nearest neigh-
bours of it and choosing one of them. Then it creates a new synthetic sample based
on the average of the selected samples. This increases the number of minority class
samples so that we have a 1:1 ratio of labels and enables our models to learn both
classes with equal importance. This approach also avoids duplication of data, which
some oversampling methods use.[27]

Model Oversampling Recall Precision F1-score Accuracy
Majority Voting (Hard) YES 91.215% 89.401% 89.977% 89.955%
Majority Voting (Hard) NO 95.611% 87.917% 91.603% 86.101%

Stacking NO 97.636% 81.847% 89.048% 80.957%

Table 5.19: Performance comparison with and without Oversampling

Using oversampling has performed worse compared to keeping the dataset imbal-
anced as we can see from the lower recall score which means it was not able to
correctly identify more true positives and instead identified more false negatives. It
means it did not correctly identify dropouts as actual dropouts, rather it identified
it as non-dropouts. We can further explore this by pairplotting some of the features
of our dataset. From the figure 5.11, we can see that there is a lot of overlapping
between the two classes, which makes it tough for SMOTE to select the correct
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neighbours of the same class. The synthetic data that is being generated is usually
placed around similar datapoints which creates further overlapping problems. Fur-
thermore, since it creates artificial data, it manipulates the original data which does
not depict a real world scenario.

Figure 5.11: Pairplot of selected features
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5.14 Comparison with previous works

Model Recall Score
CLSA 86.50%
FWTS 86.50%

DP-CNN 87.17%
C-RF 88.90%

CNN-SE-GRU 97.26%
Our model (Stacking) 97.64%

CLMS-Net 98.80%

Table 5.20: Performance Comparison with previous Models

Figure 5.12: Comparison with previous Models

We compared our stacking model with previous models that were run on the KD-
DCUP 2015 dataset. All the previous models were implemented on the time-series
dataset within KDDCUP, whereas our model is done on the non-sequential data
from the same data source. Both datasets contained data from the same students,
as the same enrolment IDs were present. Since we did not find any other previ-
ous work that dealt with the featureVectorWithLabel.csv file from KDDCUP 2015,
we believe this is the closest form of comparison. From the figure 5.12, it is clear
that our model performed better than all other models in recall score except for the
CLMS-Net which is slightly better. This proves that ensemble learning, in partic-
ular stacking, outperformed traditional machine learning and custom deep learning
models.
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Chapter 6

Model Explanation Using XAI

6.1 LIME Interpretation

6.1.1 KNN: non-dropout test sample

Figure 6.1: KNN: Prediction Probabilities of test sample

Figure 6.2: KNN: local explanation for
class dropout Figure 6.3: KNN: Fea-

ture Values of the test
sample
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This specific sample is explained through LIME based on the KNN model. We can
see that it has a non-dropout probability of 0.82 and a dropout probability of 0.18 in
figure 6.1, meaning this data point is more likely to be predicted as a non-dropout.
The features that support this decision are server-access, server-chapter, access,
server-navigate, and a few others as shown by the local explanation graph 6.2. The
values of those mentioned features in figure 6.3 are above a certain threshold that
causes them to sway in one direction. The red features are highly correlated with the
dropout label and the green features are highly correlated with the dropout label.
Since the red outweighs the green, it has a higher chance of being a non-dropout
prediction. In this example, server-access has a negative correlation value of 0.17
which is greater than the threshold value of 0.01 as explained by LIME.

6.1.2 GBM: non-dropout test sample

Figure 6.4: GBM: Prediction Probabilities of test sample

Figure 6.5: GBM: local explanation for
class dropout Figure 6.6: GBM: Fea-

ture Values of the test
sample

GBM model gives another explanation for the same test sample as in KNN. It
predicts the sample will definitely be a non-dropout, as the probability of label 0 is
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1.0 and label 1 is 0 in figure 6.4. This is due to the fact that access, browser-access,
and server-access have a high positive value which indicates that a learner is actively
using the MOOC platform since the feature values shown in figure 6.6 are measured
as frequencies. LIME justifies this result, by choosing these features as the most
contributing to a non-dropout sample.

6.1.3 RFC: Dropout test sample

Figure 6.7: RFC: Prediction Probabilities of test sample

Figure 6.8: RFC: local explanation for
class dropout Figure 6.9: RFC: Feature

Values of the test sample

We used our RFC model to give an explanation for a dropout sample. LIME gives
a probability of 0.93 in the dropout class and 0.07 in the non-dropout class, as
highlighted by figure 6.7. The top 3 features that are behind this decision are
server-access, navigate, server-navigate, and access. We can see that these features
were also given the most priority during non-dropout explanation by KNN and GBM
models. From the feature values in figure 6.9, we can clearly see that the orange
features have negative values, indicating that this student did not interact with the
MOOC platform that much, which resulted in a dropout.
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6.1.4 MLP: Dropout test sample

Figure 6.10: MLP: Prediction Probabilities of test sample

Figure 6.11: MLP: local explanation for
class dropout

Figure 6.12: MLP: Fea-
ture Values of the test
sample

For the same dropout test sample, we used our MLP model to give an explanation
to compare with RFC. The explanation is almost identical, LIME gives a probability
of 0.92 in the dropout class and 0.08 in the non-dropout class in figure 6.10. The
features that are behind this decision are server-access, access, browser-problem,
and server-chapter as shown in figure 6.11. Class size has a strong correlation with
the non-dropout class, which was seen from KNN’s explanation. From the feature
values in figure 6.12, we can see that the magnitude of the contribution of green
features is much higher than the red ones, resulting in a prediction of dropout.
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6.1.5 Decision Tree: Mixed probability test sample

Figure 6.13: Decision Tree: Prediction Probabilities of test sample

Figure 6.14: Decision Tree: local expla-
nation for class dropout

Figure 6.15: Decision
Tree: Feature Values of
the test sample

We tested another sample, which gave us a less definitive prediction using the deci-
sion tree model. Here, LIME gave the non-dropout class a probability of 0.39 and
the dropout class a probability of 0.61 in figure 6.13. The figure 6.14 shows access
and server-access as the highest contributing factor to the non-dropout class, while
server-sequential and avg-chapter delays are positively correlated to the dropout
class. From our understanding, this should have been a non-dropout prediction and
the feature values shown by figure 6.15 are mostly positive, which suggests that the
student has used the MOOC platform. However, LIME gives a prediction in favour
of the dropout class. This type of result shows the inaccuracy of our models, which
is reflected in our recall and precision metric, which is not 100%.
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6.1.6 LIME interpretation of other models

SVM

Figure 6.16: SVM: Prediction Probabilities of test sample

Figure 6.17: SVM: local explanation for
class dropout Figure 6.18: SVM: Fea-

ture Values of the test
sample
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Naive Bayes

Figure 6.19: Naive Bayes: Prediction Probabilities of test sample

Figure 6.20: Naive Bayes: local explana-
tion for class dropout

Figure 6.21: Naive
Bayes: Feature Values of
the test sample
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Soft Voting Classifier

Figure 6.22: Soft Voting Prediction Probabilities of test sample

Figure 6.23: Soft Voting local explana-
tion for class dropout

Figure 6.24: Soft Voting
Feature Values of the test
sample

6.2 SHAP Interpretation

6.2.1 Soft Voting Classifier: kernel explainer

SHAP is another way to explain our model’s decision-making. Unlike LIME, SHAP
provides both local and global explanations. The SHAP force plot can be used to
see the effect of each feature on the prediction. The base value for the Shapely value
is the average of all predictions. Since we have 2 classes, the explainer will have 2
base values, one for label 0 and another for label 1.
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Local explanation

Figure 6.25: Soft Voting: With respect to the non-dropout class

Figure 6.26: Soft Voting: With respect to the dropout class

We used our Soft Voting Classifier to explain an instance of dropout. In the first
force plot in figure 6.25, the explanation of the observation is with respect to the
non-dropout class. The red features are driving the base value higher, whereas the
blue features are trying to bring down the base value. The model output value
is 0.11 which is lower than the base value of 0.2 for non-dropout. So it has a
lower probability of non-dropout. In the second plot in figure 6.26, we can see that
the base value for the dropout class is 0.8, and the model output value is 0.89.
This higher value suggests a greater chance of this sample being predicted as a
dropout. Features such as server-navigate, navigate and server-sequential correlate
to higher dropout probability, and features like browser-problem and access push
the predictions toward non-dropout.
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Global explanation

Figure 6.27: Soft Voting Summary plot

SHAP can use a subset or a sample of data points to give a global explanation of the
entire model. Based on 20 samples, the mean SHAP value gives the average effect of
each feature on the prediction. From the figure 6.27, we can see that server-access,
access, and browser-problem are the top 3 features that contribute the most to the
prediction.

6.2.2 KNN: Kernel explainer

Local explanation

Figure 6.28: KNN: With respect to the non-dropout class

The above plots show an explanation for a non-dropout sample using the KNN
model. In the first figure 6.28, the explanation of the observation is with respect to
the non-dropout class. The red features are driving the base value higher, whereas
the blue features are trying to bring down the base value. The model output value
is 0.55 which is higher than the base value of 0.21 for non-dropout. So it has a
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Figure 6.29: KNN: With respect to the dropout class

higher probability of non-dropout. In the second figure 6.29, we can see that the
base value for the dropout class is 0.79, and the model output value is 0.45. A lower
value suggests a lesser chance of this sample being predicted as a dropout, and in-
stead predicting it as a non-dropout. Features such as server-problem, server-access,
and server-sequential correlate to higher non-dropout probability, and features like
browser-access and server-chapter push the predictions toward the dropout class.

Global explanation

Figure 6.30: KNN Summary plot

As for the global explanation, we used 20 samples to approximate the results. Com-
pared with our voting classifier model, features like server-access and browser prob-
lem are common as the top features contributing to our prediction, as shown in
figure 6.30. KNN choose server-chapter as the most important feature, which is
ranked lower in other models’ explanations. But browser-video and server-problem
are 2 features that are ranked lower in both models.
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6.2.3 Decision Tree: Tree explainer

Local explanation

Figure 6.31: Decision Tree: With respect to the non-dropout class

Figure 6.32: Decision Tree: With respect to the dropout class

Here is another sample which has a very high probability of being a non-dropout.
The force plot in figure 6.31 shows server-access, access, and browser-problem having
the highest driving force in predicting non-dropout with a model output of 0.82
which is above the base value of 0.2071. With respect to the dropout class in
figure 6.32, we can see those same features have the driving effect of lowering the
probability of a dropout with a low model output of 0.18 which is much lower than
the base value of 0.7929 of the dropout class.

6.2.4 Global explanation of other models

Figure 6.33: Decision Tree summary plot
Figure 6.34: SVC summary plot
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Figure 6.35: RFC summary plot Figure 6.36: Naive Bayes summary plot

Figure 6.37: Stacking summary plot

From the figures 6.33, 6.34, 6.35,6.36, and 6.37 we can conclude that features like ac-
cess, server-access, and browser-problem are contributing the most to the prediction
of both classes. Similarly, features like browser-video, server-problem and class-size
are impacting the decision the least.

6.2.5 MLP: Correlation between features and classes

The figure 6.38 shows high server-access value, which means it has a strong negative
contribution to the prediction. In our case, it refers to the non-dropout class. High
values of Access and server-sequential have a positive correlation with the dropout
prediction class. Additionally, we can see that class size, avg-chapter-delays has
very little contribution to our prediction.
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Figure 6.38: MLP Summary dot plot

Figure 6.39: MLP Summary bar plot
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

MOOCs were thought to bring a new era of education that redefines the way we
learn. To create a vast platform which is open and accessible to anyone sounds
promising for people of every background. However, the extremely high rate of
dropout overshadows the benefits that MOOCs come with and is hindering its
growth. To prevent early withdrawal behaviour of students and encouraging them
to continue is a vital task that researchers are exploring. Although various mod-
els have been developed to solve this challenge, our research uses different ensemble
learning techniques to approach this problem. This method has already been proven
to outperform other baseline machine learning models in other fields of research and
competitions [4]. Therefore, this research attempts to find a solid solution that en-
ables MOOCs to avoid significant student dropout rates. From our experimental
results, we have shown this method to be effective with a recall score of 97.636%.
Furthermore, we have shown that our models were successful in reducing variance
compared to baseline models. Finally, we tried to explain our models using XAI and
find the most important features that effect dropouts.

7.2 Future Work

Our first initiative in data preprocessing and result analysis exhibited promising
scores from our models. However, we can conduct further studies on our existing
models in order to receive more optimal results. Since we have applied Explainable
AI (XAI) to comprehend the decisions made by our models, we know which features
contribute the most to dropout. We could make an AI chatbot to respond to inactive
users who have not accessed the MOOC platforms and did not interact with its
content that much. The dataset we worked on is based on China’s MOOC platform,
so we could explore other areas of the world to find out how students of different
culture behave in regard to dropout. Similarly, a potential future work could be to
study the relationship between various course subjects and dropout to see whether
any specific subject have a correlation. Another difficult area of MOOC dropout
problem is whether a learner is completely dropping out and not pursuing further
studies, or are they switching to a different platform due to not liking some aspects
of the previous MOOC platform.
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