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Abstract

While password-based authentication is widely used by many applications today, it
has grave vulnerabilities that can make our devices and accounts prone to malicious
attacks. 2-factor authentication (2FA) and Multi-factor authentication (MFA) were
introduced to increase the security of the generic password-based authentication
and they did enhance the security of the credential-based system by using second
or multiple factors to provide additional security. However, even though the intro-
duction of the second factor increased the security, this approach has weaknesses
as well: there are many methods through which a hacker can get access to our do-
main, such as SIM swap hacking, phishing attacks, ambush attacks during password
recoveries, or One Time Password (OTP)-based attacks. Instead of addressing the
security problems of 2FA or MFA, we aim to strengthen the security of the generic
password-based authentication system by adding a layer of security to the existing
first factor. In this process, the user will log in using their credentials and on suc-
cessful verification of the password, the blockchain-based authentication will begin.
Lastly, the Di�e- Hellman algorithm will generate a NonceUnified and HashUnified
on both the client and server sides. If the NonceUnified and HashUnified values
match on both the client and server sides, the user is authenticated and granted
access to the system. The Di�e-Hellman algorithm ensures that the user’s private
key is not transmitted over the network, further amplifying this model’s security.

Keywords: Blockchain; Authentication; Security; Hash; Nonce; Di�e-Hellman
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Chapter 1

Introduction

Daily duties are now completed online as a result of modern technological break-
throughs that have led to the rising usage of electronic devices. From stock markets
to food carts on the street, the introduction of the internet in the world wide web
has revolutionized every area of our lives. Web 2.0 and the world of e-commerce
apps have fostered a technological boom. Because of this widespread reliance on the
internet, cyber security is extremely important. The majority of websites require
user verification, termed ‘user authentication’. For instance, online banking vividly
reflects the sheer need for strong authentication systems by the providers of on-
line banking services because otherwise, unfortunate incidents like the Bangladesh
money heist will keep recurring around the world.

Password-based authentication is used by the vast majority of websites and ap-
plications that require access to verify a user’s identity. Despite serious security
drawbacks, the general method of authenticating users with passwords and email
credentials remains the primary method for verifying users’ digital identities. In
today’s world, it is very unsafe to verify only with passwords as it can be easily
cracked by brute force attacks. Moreover, users tend to sign up with easy passwords
that they can remember and use this same password in most of their accounts. This
makes them vulnerable to dictionary attacks or other guess attacks by hackers. To
make this password-based authentication more secure, it was hashed and turned
into a distorted version using an algorithm. Security is not guaranteed with only
just a password, hence two-factor authentication was introduced and it was able
to diminish the problem to some extent as it uses a centralized entity that sends
one-time passwords or hardware tokens to the users each time the system is being
attempted to be accessed by the users. Despite the additional security layer given
by two-factor authentication, its colossal drawback is its full dependency upon the
third party for providing the secret codes [1].

There are several problems associated with 2FA and MFA that can reduce their
potency. A major problem with 2FA and MFA is that they can be vulnerable
to phishing attacks, as the security token can be intercepted by attackers through
phishing emails and websites [2]. The user may unknowingly reveal their code to the
attacker, allowing them to gain access to the user’s account. Additionally, 2FA and
MFA which are based on SMS messages are susceptible to SIM swapping attacks
[3], where an attacker is able to take control of a user’s phone number, and in turn,
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receive the 2FA or MFA code sent to that phone number. These methods also incur
an extra cost for the service provider.

In recent years, Blockchain technology has become increasingly important with
many specialists highlighting its possible uses across a wide range of organizations.
Blockchain is a distributed ledger system at its core. Its architecture provides ad-
vanced security and its tamper-proof structure through distributed algorithms and
hashing makes it well-suited for comprehensive applications and enhances security,
as it is impossible to generate false records or tamper them [4].

Therefore, in this paper, we propose a device-based authentication system that will
utilize blockchain to strengthen the security of credential-based authentication on
the first factor. The hashes generated will be used to identify the particular device
when trying to log in. This idea will also utilize the Di�e-Hellman Key exchange
algorithm to unify keys and provide safer transmission.

1.1 Motivation

From a security standpoint, we believe that blockchain serves as an ideal data struc-
ture that can be integrated into an authentication system. The system is designed
to be robust allowing it to be operated in highly contested systems where there is
always the risk of malicious attacks being carried out. Blockchain’s features (with
regards to verifiability, immutability, and decentralization), when aided with other
cryptographic tools, greatly improves the security of a system as well as enhancing
it’s scalability [5]. It has already been explored in numerous contexts - data stor-
age, data provenance, identity management, crowdsourcing, and much more [6][7][8]
[9][10].

1.2 Problem Statement

While 2FA and MFA systems provide several steps in verifying one’s identity, it
also ensures protection if a user has weak credentials, reduce chances of identity
theft, shield companies from any breaches of security, save small businesses that are
prone to easy malicious attacks and provides economical means of authentication
using mobile devices that significantly enhance security without having to learn new
methods of for every application [11][12]. Even though multi-factor authentication
does provide all-around security for protecting users, organizations, and their sensi-
tive information and objects, some of the downsides of authentication is having to
own a secondary item such as another device or tokens. Mobile phone 2FA was de-
veloped to handle such problems but there is still the need to possess another device
which can be a bit costly. Also, MFA systems require users to have some tech-
nical skills when using SMS or E-mail one-time passwords. Although multi-factor
authentication reduces the risk of unauthorized access to a victim’s information by
requiring more than just a password, it is still susceptible to certain types of at-
tacks such as man-in-the-browser and man-in-the-middle attacks [13]. Therefore,
we proposed a device-based authentication security system using blockchain for a
user login application which will make the process of authentication more enhanced
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by only giving access to users if they are logging in from that particular registered
device using device-specific hashes. This will make sure even if a hacker has the user
credentials unless they are logging in from the registered device, access will not be
granted.

1.3 Research Objective

With more techniques of security measure bypass being developed, it is critical that
the authentication procedure be upgraded as well. While the generic email and
password-based credentials system has been around for a while, it has yet to be
considered the best security practice, and 2FA or MFA is also advised. Therefore,
we have come up with a model, where we are strengthening the generic credential-
based authentication by adding another layer of security in the same authentication
factor. We are incorporating Blockchain technology to generate a hash that should
be the same on both the client and server sides which will further confirm that
the credentials that the user has given are indeed authentic. However, this step
is not a 2FA/MFA replacement but rather an enhancement of the existing generic
credentials system and 2FA/MFA can be used on this model where extra security is
required. We plan to develop a blockchain-based authentication protocol that can
be used as an added layer alongside a generic credentials system.
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Chapter 2

Literature Review

Brasee’s (2009) describes secure distributed SSO, a revolutionary single sign-on
(SSO) system (SeDSSO) [13]. With a distributed authentication service, SeDSSO
o↵ers safe, fault-tolerant authentication utilizing threshold key encryption. The au-
thentication service consists of numerous servers that work together to sign messages
using a (t, n) threshold encryption technique. To sign a message, the service needs
distinct server-signed messages. In order to increase security, the system also has a
two-factor identification that employs both a username/password and a special USB
device. The approach is designed to deal with the problem of maintaining several
personal accounts and passwords, which may be di�cult for people to remember and
often leads to weak password security. The system has been evaluated via simula-
tion, demonstrating its successful performance, and it intends to outperform current
SSO solutions by being more secure and useful.

Gunson’s (2011) study examines users’ opinions on the security and usability of
single-factor and two-factor authentication techniques used in automated telephone
banking [14]. The experiment included 62 banking clients who were given the option
of utilizing a knowledge-based, single-factor authentication technique or a two-factor
strategy that included a hardware security token to produce a one-time passcode
in addition to the knowledge-based step. The two-factor version was rated as hav-
ing greater levels of security than the single-factor version, according to the results,
but this advantage was countered by lower ratings for usability, convenience, and
simplicity of use. The two-factor authentication process also required more time to
finish. The study o↵ers insightful factual proof of the trade-o↵ between automated
systems’ usability and security.

Result of three di↵erent methods for generating a one-time access code for two-factor
authentication: a portable keyfob, a smartcard and reader, and a mobile phone. The
portable keyfob is an inexpensive option where the user presses a button on the de-
vice and an access code is displayed. However, it does require the user to carry
around the hardware. The smartcard and reader option is a more expensive solu-
tion, but it is compatible with a Chip and PIN world. The user inserts the card into
the reader and types in a PIN, and the access code is displayed. The last method is
to use a mobile phone, where the user requests a text message containing the access
code. This is also an inexpensive option but it relies on the user having a mobile
phone and a good signal reception.
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In 2017, Isler proposed a solution that provides security against attacks such as
phishing, man-in-the-middle, honeypot, and o✏ine dictionary attacks [15]. The pa-
per emphasized how passwords are the most commonly used method of online user
authentication with the aid of a login server. It also discusses how other solutions
at the time are non-portable and are prone to many types of attacks. The solu-
tion model is known as the Threshold Single Password Authentication (Threshold
SPA) and its schemes have been developed to define fitting and real-world indistin-
guishability, and thus can be applied by the means of a browser extension or mobile
application. It makes use of multiple storage providers where the secret keys cor-
responding to the verification keys are kept with the verification keys being stored
in the login server and the secret keys being manipulated by a function of the user
passwords. Threshold SPA protocol aims to fix the issues by implementing three
types of players, users, login servers, and storage providers and has two phases, the
registration phase and authentication phase with each phase having multiple proto-
cols.

This paper focuses on how blockchain is still not widely used in education systems
but has great possibilities if implemented in Indonesia [16]. With education institu-
tions wanting to employ the latest technologies, individual profiles can be created
and their digital certificates can be issued with blockchain [17]. This can help re-
duce the manipulation of school or diploma certificates of educational organizations.
While blockchain helps improve the measure of security, using ubiquitous technol-
ogy can make security issues more complicated and harder to resolve [18]. By using
this ubiquitous method, we can authenticate these digital educational certificates
by using blockchain. These certificates can be used and retained for an extended
period of time.

While the Internet of Things (IoT) saw the usage of revolutionary devices being
used and implemented in various applications in di↵erent industries, such as smart
cities, healthcare and communities, these instruments also produce a significant
amount of sensitive and private data. These factors make protecting access to them
a di�cult task. The present methods for authentication and identification have sig-
nificant drawbacks because of their widespread usage. As a result, the protection
of such gadgets is critical to guarantee the program’s safety and e�cacy. Thus,
Joshi’s work proposed a novel blockchain based authentication system which main-
tains user privacy while maintaining security. This study provided an access control
approach along wiith a decentralized authentication for IoT which is lightweight and
for identification and secure communication with IoT devices, a blockchain system is
utilized. This model is based on blockchain technology and fog computing, and the
results of testing have shown that it outperforms other verification methods which
use blockchain. The proposed method takes advantage of blockchain’s existing ad-
vantageous properties and enhances existing authentication mediums [19].

Currently, information is a vital part of any institution that requires advanced shield-
ing as to authenticate themselves: users need to verify their identity to execute any
work [20]. Due to this, organizations want to control the roles of users in accordance
with the central authority’s rules. For this, the most popular one is Role-Based Ac-
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cess Control (RBAC) mechanism which enables assigning permissions for users and
resources based on the user’s role within the facility [21][22]. Blockchain, with its
decentralized characters has been incorporated in Kamboj’s (2017, October) paper,
where an RBAC model utilizes a smart contract based on blockchain to handle
user-role permissions in a workplace. This model utilizes the Ethereum blockchain
to manage interactions between assets and users. Before assigning roles and permis-
sions, the framework includes authentication and verification for users. With the
use of blockchain, this framework handles role-permission assignments and user-role
assignments. Two smart contracts have been developed to facilitate communication
within the organization between resource owners, users and role-issuers. The smart
contract managed by the resource owner is utlized to give permission or decline
access to the resource. To prevent attacks such as man-in-the-middle, a threat and
security model has been implemented along with an algorithm to verify the authen-
ticity of devices [23].

In the last ten years, smart home systems have become very popular because of their
ability to improve life quality and comfort. By integrating Internet of Things (IoT)
devices into actuators, these homes can securely communicate data. In contrast,
smart home systems provide the convenience of requiring each device to authenti-
cation separately using credentials. In a trusted environment, this is not needed
where sharing of same accounts can occur using various devices and if that happens,
a consent basis procedure can be followed as the authentication medium. Therefore,
with such a conventional authentication system, to evade redundant logins, there
is no central authorization mechanism. In this matter, Mukherjee et al. proposed
a system using Blockchain to give a decentralized framework for smart contract-
based applications. Secured identification of people and devices can be provided
by combining blockchain and public-key cryptography. For obtaining access in a
similar service, this solution reduces communication latency and ignores duplicate
authentication. The prominent security aims, such as confidentiality, authentica-
tion, integrity and authorization are satisfied by this model [24].

In Yazdinejad’s (2020, August) paper discusses the importance of authentication
with regards to establishing a secure channel of communication in hospital networks
and proposes a blockchain-based authentication model as blockchain is able to pro-
vide a transparent and e�cient communication platform [25]. Their system can
record data in a secure manner in a rather geographically diversified hospital net-
work. Peer to peer (P2P) communication can take place between all members of the
scheme who are also able to move easily to other a�liated hospitals present in the
network with the help of their distributed identity. The authentication system is
not restricted to device based authentication which leads to increased throughput,
reduced time overhead and energy consumption on the devices.

In 2021, Mubarakali suggested a solution: a blockchain based micro Wireless Sensor
Network (WSN) identity authentication tool which integrates blockchain decentral-
ization for decentralized delivery [26]. The paper raised the point that wireless
networks make for environments that are prone to network attacks, they require rel-
evant security measures, and that blockchain technology is the appropriate measure
as it can protect data which are being handled by and in possession of wireless sen-
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sor networks. A private blockchain framework of sensor networks is created between
cluster managers in an individual WSN, all WSN ground stations are connected to
the public blockchain, and across the whole network a hybrid blockchain system is
integrated. Within this proposed framework, the registration of a user takes place.
Upon analysis, it can be seen that the model is protective and productive, and the
experimental results reveal that the computational e�ciency and security perfor-
mance of the model are considerable.

Patwary’s (2020, August) paper sheds light on fog computing which at the time
was an emerging computing framework [27]. Fog Computing expands cloud based
computing services close to the edge of the network. The distributed ownership of
this system raises a few alarms in the security and privacy sectors. Regular forms of
authentication, such as password based, certificate based, and biometric based, are
not a good fit for the system due to the unique and complicated architecture and
features of the system, and the authors emphasizes on the fact that regular authen-
tication methods are subject to consuming larger computational resources and lead
to high latency which does not meet the requirements of the Fog. To counter this,
the author proposed a decentralised location based device to device (D2D) authen-
tication system in which Fog devices can manually verify each other within the Fog
layer with the aid of blockchain without depending on any intermediary, such as a
trusted third party. Blockchain technology is used to carry out mutual authentica-
tion processes using Ethereum smart contracts. The Fog devices only have to store
just a few keys for authentication, thus meeting the standard security requirements.
The Fog devices mutually and securely authenticate themselves in an e�cient and
e↵ective manner.

Li’s (2020, November) paper focuses on strengthening password authentication [28].
The paper discusses Password Authenticated Key Exchange (PAKE) at length.
PAKE is implemented to make password authentication more secure and prevent
password-cracking, the system can be deployed between two peer participants. The
issue with traditional PAKE is that when the remote server is compromised the
passwords are unprotected and are in plaintext. The authors’ goal is to integrate
lattice-based password-hashing schemes (PHS) into the symmetric-PAKE scheme
which requires the implementation of smooth projective hash functions (SPHF). In
doing so they are able to construct an asymmetric PAKE system which is secure
from quantum attacks. Non-interactive zero knowledge (NIZK) method proof is not
needed for this model thus reducing time complexity and making the model not as
costly. The model is able to bypass assumptions of the random oracle model as well
allowing the model to achieve quantum resistance.

Lin (2018) proposed a hierarchical model consisting of four definite layers, and it
is designed to vertically integrate inter-organizational value networks, engineering
value chains, manufacturing factories, etc., a blockchain-based framework for secure
mutual authentication, BSeIn, designed specifically for Industry 4.0 applications [5].
This is an attempt to better prepare organizations and industries for the ‘Industry
4.0’ era. The key focuses of this framework are privacy protection and anonymity,
fine-grained access control, and integrity and confidentiality. It has been highlighted
that a simple password authentication protocol is not sustainable in terms of protect-
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ing the privacy of the clients’ identities as a malicious or compromised cloud may be
able to easily identify a client or user based on their daily routine. One common way
to achieve fine-grain access control is by constructing a user-role mapping table and
role authorization table (Sandhu et al., 1996), but these tables are prone to being
attacked at the cloud-end due to the tables being mainly maintained by the semi-
trusted cloud [29]. Access history is stored by the cloud in a local database, therefore
posing a risk that the database can fall victim to unauthorized access and modifi-
cation, even the traceability and auditability of access records will be di�cult. The
proposed system takes advantage of the notable characteristics of blockchain as well
as numerous cryptographic materials to realize decentralized, privacy-preserving and
auditable solutions, and used attribute-based signatures to anonymously authenti-
cate terminals, message authentication code to expertly authenticate gateways, and
a secure certificateless multi receiver encryption to eliminate single point of failure
issue [30][31][5].
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Chapter 3

Background Analysis

3.1 Di�e-Hellman Key Exchange

Di�e–Hellman (DH) was proposed by Whitfield Di�e and Martin Hellman in 1976,
it is a mathematically reliable and secure way to exchange cryptographic keys over
a public channel via the Di�e-Hellman key exchange algorithm. In order to en-
crypt future communications using a symmetric-key cipher, two parties who will
be communicating together generate a shared secret key using an insecure chan-
nel. Di�e-Hellman ensures that the same secret message is generated between two
parties without having to share anything private over a public channel.

3.1.1 Cryptographic Explanation

The protocol implements the multiplicative group of integers modulo p and g, where
g is a primitive root modulo p, and p is a prime integer. The parameters are chosen
so as to guarantee that the output secret key will always fall between 1 and p-1,
where p is a prime number.

• Alice and Bob decide to use a modulus p=13 and base g=7

• Alice picks a secret integer a=4, and sends Bob A = ga mod p

• A = 74 mod 13 = 9

• Bob picks a secret integer b = 3, and sends Alice B = gb mod p

• B = 73 mod 13 = 5

• Alice calculates s = Ba
mod p

• s = 54 mod 13 = 1

• Bob calculates s = Ab
mod p

• s = 93 mod 13 = 1

Both Alice and Bob arrive at the same values under mod p
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Figure 3.1: Di�e-Hellman

3.2 Block Architecture

Every blockchain has the following data stored in it: nonce, timestamp, data, pre-
vious hash and hash. However, the first block, also known as the genesis block, is
the only block without the previous hash. The previous hash is set to be null in
the genesis block and that is why the genesis block or the starting block is the only
exception in the blockchain.

Figure 3.2: Genesis Block

3.3 Hash Value

Each block in a blockchain consists of several fields. To better understand what a
block is, let us first take 3 fields of a block into consideration: data, hash and previous
hash. The data field can contain anything; for instance, in bitcoin, the data consists
of a list of transactions. The hash value is like an identification number of this block
and the previous hash is the hash value of the previous block. Hence, each block is
linked to the other one using hash cryptography because the previous hash value of
this block is storing the hash value of its previous block.
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Figure 3.3: Unique Hash Value

Figure 3.4: Blockchain link created using previous hash

3.4 Hash Value Generation

The data field can store any form of document as discussed earlier- it can be in
txt, zip, obj, png, mp3, jpg, translation, etc format. The SHA256 algorithm takes
any form of data as input and the algorithm hashes that data to form the 64-bit
hexadecimal hash value of a block. The data that is being hashed is not just the
data in the data field, rather the algorithm is hashing the entire data in that block.
Therefore, data stored in each field is being used to calculate one hash value. Each
block has a unique hash value because even if the data in all the fields match with
another block, the previous hash value remains unique. Hence, when SHA256 is
taking data in all the fields as an input (which includes the previous hash value),
it is automatically generating a hash value that is strictly unique to that particular
block only. Despite the variable length of the data that SHA256 is hashing depending
on an individual block, the resulting hash value will always be a 64-bit hexadecimal
value.
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Figure 3.5: Hash Value Generation

3.5 Immutable Ledger

For simplicity, let us assume that there is a blockchain with 10 blocks. Let the hash
value of the 5th block be “G”. If an attacker changes the data in the 5th block, its
hash value will automatically change to a new one and this will ultimately break
the 5th block’s link with the 6th, 7th, 8th, 9th and 10th blocks. This is because the
6th block’s previous hash value is still “G”; however, the attacker has altered the
data in the 5th block, and the 5th block’s hash value has now changed. Therefore,
the 6th block’s previous hash value is no longer pointing to the 5th block. This,
in turn, has broken the chain and this blockchain is now invalid. Validating the
chain using software is very quick and easy as it only checks if all the previous
hash values correspond to the respective previous blocks. Furthermore, changing
the data in the 5th block is very di�cult for the attacker because he has to mine
this block. Mining a block is very di�cult due to the complicated nonce value
calculation and on top of that, if he wants to e↵ectively hack this blockchain, he will
have to simultaneously mine the 6th, 7th, 8th, 9th and 10th blocks as well in order
to maintain the cryptographic link from the 1st block to the last. Lastly, in reality,
blockchains are very long which further increases the di�culty of hacking and data
alteration.

Figure 3.6: Immutable Ledger
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3.6 Distributed Peer-to-Peer Network

In a permissioned blockchain network, it is not possible to join this network just
by anyone because only a certain number of nodes with copies of the blockchain
make up the network and new nodes are not allowed to join this network. How-
ever, in permissionless blockchain networks, for instance, bitcoin, new nodes are
allowed to join the blockchain network and hence, those newly added nodes are
allowed to keep a copy of the blockchain as well. To further explain the funda-
mental idea of distributed peer-to-peer networks (P2P), let us refer to the diagram
below. The diagram consists of 7 nodes and it is a permissioned blockchain network.
If an attacker wants to change the data in one of the nodes, as discussed earlier,
the blockchain’s immutable ledger principle makes it di�cult to do so. Addition-
ally, the distributed peer-to-peer network adds another layer of security because all
the nodes in the blockchain network communicate with each other using protocols.
Hence, even if the attacker simultaneously mines the 5th, 6th, 7th, 8th, 9th, and
10th blocks successfully (which is almost impossible because blockchains are usually
very long and mining each block is computationally very di�cult), this attacked
node is connected with 4 other nodes. Through communicating with each other, the
4 directly connected nodes identify that the attacked node’s blockchain copy does
not match theirs and since blockchain follows the majority rule, the attacked node’s
a↵ected blockchain is again updated with the original copy of the blockchain from
its neighbors and the hacked blockchain is discarded. The attacker will only be able
to change the blockchain if he can make the change in more than fifty percent of
the nodes in the network at the same time. However, breaking into half the network
at once is computationally almost impossible. Therefore, immutable ledger and dis-
tributed P2P network principles ensure very high security in blockchain technology.

Figure 3.7: Distributed P2P Network part i
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Figure 3.8: Distributed P2P Network part ii

Figure 3.9: Distributed P2P Network part iii

3.7 Block Mining

A block may consist of several fields but it will always contain nonce, timestamp,
data, previous hash and hash. Timestamp stores tiny data (serial number) that
records the exact moment in which the block has been mined and validated by
the network. The SHA256 algorithm takes nonce, timestamp, data and previous
hash as input to generate the hash value. The hash value that has been generated
must fall under the target value for the block to be mined. The diagram below
demonstrates that only the last hash value has met the criteria. The timestamp,
data and previous hash fields remained constant in all three but the value of the
nonce was changed using the trial and error method to calculate the valid hash
value. The avalanche e↵ect makes it even harder to calculate the nonce value which
makes it computationally even more di�cult and expensive to generate the nonce
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value.

Figure 3.10: Block Mining

3.8 Consensus Protocol

As discussed earlier, mining a block is computationally very di�cult and the system
rewards the miner with bitcoins. If an attacker is after the bitcoins and successfully
mines a new malicious block at the end of the blockchain of a node, this new block
will propagate through the network. All the other nodes in the network will now start
verifying the content of the block which includes verification of the cryptographic
link of this new block with the previous ones and then they run a list of other tests.
Mining a new block is tough but verifying that block is fast and easy due to the
process discussed above. Therefore, after the verification process is done, the other
nodes will not accept that malicious block due to this process that is using consensus
protocol.

Figure 3.11: Consensus Protocol

3.9 Proof of Work

An example of Consensus Protocol is Proof of Work (PoW). It is one of the first of
its kind to be used in blockchain based applications. It focuses on computing hash
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values and validating transactions. It was designed for permissionless public ledgers
and makes use of the computational resources available in the systems in the node.
The transactions take the form of blocks which are fitted into a linear structure. Each
and every transaction is validated and signed using the corresponding public and
private keys that belong to the user. Bitcoin implements Proof of Work. PoW has a
relatively large energy consumption rate and low speed when it comes to verification
processes as compared to the likes of MasterCard or Visa making consumers look
towards other consensus protocols. It uses up a lot of resources and requires lots of
power and electricity to solve cryptographic puzzles.

3.10 Proof of Stake

When it comes to dealing with transactions in platforms like Bitcoin, a user has to
validate the transactions by computing the hash value with a certain number of trail-
ing zeros which helps with the allocation of the bitcoins. In Proof of Stake (PoS), a
validator is picked and assigned a block in accordance to their economic stake in the
network. The mission is to avoid the centralization of mining centers and to provide
an opportunity to validate all miners. The miner holds the responsibility of allocat-
ing a particular part of their cryptocurrency in order to start the validation process,
and if they succeed in invalidating the transaction, then they are rewarded with the
stake they had pledged initially. This is a method by which penalties are given for
bad behaviour and promotes fair behaviour. Proof of Stake is environmentally and
economically friendly as it does not consume much power and saves electricity due to
it not requiring to solve computational puzzles and special hardware isn’t required
for it as well. There are some drawbacks to PoS. An attacker would need to possess
greater than 50% of the accuracy to gain control over the network compared to 51%
in Proof of Work. One possible attack on a PoS based system network is a bribe
attack where the attacker reverses the victim’s transactions and o↵ers a bribe(s) to
the miners in an attempt to confirm the transactions.

3.11 Delegated Proof of Stake

A voting-based consensus technique called Delegated Proof of Stake (DPoS) was
developed from Proof of Stake. For instance, there are ten nodes in the network.
The nodes of the network will vote and elect the particular node who will have the
authority to validate blocks. The chosen nodes are known delegates. The money
invested in the protocol during the voting sessions is locked up in smart contracts.
The group of elected delegates who are the block producers carry out transaction
validation, block creation, network operations, and other maintenance. They are
compensated according to the amount of work they have completed. Any unfavor-
able behavior, such as collusion or a skipped turn, may lead to the removal of a
delegated node from the group of validated delegates.

When it comes to selecting who gets to verify the blocks, this consensus protocol
has a democratic theme to it, which is how a more diverse group of people are able
to participate in the process because it is based on the staker’s earned reputation
as a lawful staker rather than their overall wealth.
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The basic flaws of the PoS system, like the ”nothing-at-stake” issue, long-range
attacks, and weak subjectivity, are clarified by the DPoS mechanism [32]. Due to its
higher e�ciency and high throughput, it uses less energy. Due to the low threshold,
DPoS is recognized as the most decentralized method to consensus protocols. It
does have some drawbacks, one of which is that it has a tendency to centralize, and
participants with su�ciently substantial stakes in the network will be able to elect
themselves as validators.

3.12 Ethereum

Every Ethereum node in the Ethereum network generates a copy of the Ethereum
Virtual Machine (EVM). Users can request any computation from this computer.
When a request is broadcast, other network nodes verify, validate, and compute,
changing the EVM state and sending it to the entire network. All nodes store the
blockchain’s transaction history and EVM state [33]. Cryptographic mechanisms
prevent tampering after a transaction is verified and added to the blockchain. It
ensures all transactions are signed and executed legally.

3.13 Encryption

Suppose, Alice wants to say something to Bob. However, Trudy is trying to eaves-
drop. How can Alice ensures that nobody but Bob gets Alice’s message?
Alice’s message is: Hello
Alice now uses a mathematical algorithm to rearrange the word. For simplicity let’s
say, Alice uses a simple technique called Caesar Cipher.

Figure 3.12: Encryption
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Therefore:
H = U
E = R
L = Y
L = Y
O = B

Alice has now turned her plain text “HELLO” to some gibberish which is known as
ciphertext. The ciphertext is “URYYB”. Alice has sent the key to Bob using which
only Bob will be able to decode the ciphertext. Even if Trudy has access to it, he
can’t decode it. This is basic encryption. However, encryptions like caesar-ciphers
are way too simple in this age and can be broken down by brute force attack quite
quickly and easily. Therefore, it is important to use strong encryption algorithms.

3.14 Symmetric Key

In Symmetric Key cryptography, the key that is used is the secret key. This key is
used by both the sender and the receiver for encryption and decryption respectively.
Therefore, only one key is used in symmetric key cryptography.

Figure 3.13: Symmetric key

Suppose, there are two users. Alice and Bob. Alice’s message (plaintext) is getting
converted to ciphertext through encryption by a secret key. Bob uses the same key
to decrypt the ciphertext into the original message sent by Alice. Other people who
don’t have the secret key won’t be able to read the message as it would be encrypted.

3.15 Assymmetric Key

Asymmetric key cryptography provides better security than Symmetric cryptogra-
phy. Here, two keys are used - a public key and a private key. The receiver’s public
key is used by the user to encrypt, whilst the receiver uses their own private key to
decrypt. Rivest Shamir Adleman (RSA), Digital Signature Standard (DSS), Digital
Signature Algorithm (DSA), Elliptical Curve Cryptography (ECC) are some com-
mon examples of asymmetric encryption .

Consider those two users, Alice and Bob again. Here, Alice will use Bob’s public key
to encrypt the plaintext. The ciphertext (encrypted text) will be decrypted back
to the original text by Bob’s own private key. This private key is owned by only
Bob. Not even Alice can decrypt her own text, as she doesn’t have Bob’s private
key. However, Bob’s public key is accessible to the public, i.e. Bob’s public key will
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Figure 3.14: Assymmetric key

be available to everyone. In short, Bob’s public key will be used to encrypt the text
while Bob’s private key will be used to decrypt the text. Example: Asymmetric
encryption is also used in Bitcoin to ensure that only the owner of a money wallet
may withdraw or move funds from it.

3.16 Public Key and Private Key

Public key encrypts, private key decrypts. Sender and recipient public keys are first
shared. Suppose Alice and Bob are users who will be sharing messages between
them. Bob will get this ciphertext encrypted by Alice using his public key. Only
Bob’s private key can decipher the ciphertext. Alice cannot decipher her text. Bob
must encrypt a text using Alice’s public key to transmit it now. Alice may decode
the message using her private key. Suppose an attacker found Alice’s private key.
The attacker can read Alice’s messages.

3.17 Smart Contracts

A smart contract extends the concept of storing data in a secure ledger to include
computation. To put it another way, it’s a consensus technique for executing a
publicly defined program correctly. Users can use these smart-contract programs’
functions, subject to the program’s limits, and the function code is run in parallel by
the miners. Users may rely on the results without having to redo the calculations,
and they can develop their own programs to react to the results of other programs.
Because the algorithms in issue can manage money—own it, transfer it, destroy
it, and, in some circumstances, even print it—smart contracts are exceptionally
powerful when linked with a cryptocurrency platform. For smart contracts, Bitcoin
uses a restricted programming language. In this language, a ”standard” transaction
(one that transmits cash from one address to another) is stated as a brief script.
Ethereum provides a more flexible and powerful programming language [34].

3.18 Public Key Infrastructure

In asymmetric cryptography, the user is provided with two keys. The two sorts
of keys are the public and private keys. The issue of key management was solved
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since the public key is not a secret, but an equivalent challenge, namely the prob-
lem of authentication or name management, was presented. To solve this problem,
the public key infrastructure (PKI) was developed to facilitate public key cryptog-
raphy. Authentication refers to the practice of employing all PKIs. Certification
and validation are the most fundamental PKI operations. Certification, which legit-
imately associates the value of the public key with an entity, is the most fundamental
function of all PKIs. The second operation is validation, which is the process of de-
termining whether or not certificates are valid (still valid or not). A complete public
key infrastructure [35] includes the registration authority (RA), certificate author-
ity (CA), security policy, PKI-enabled applications, distribution mechanism, and
certificate repository.

3.19 Elliptic Curve

ECC, or elliptical curve encryption, is a second form of asymmetric encryption.
ECC is an alternative to RSA that can be utilized in its place. It is an e↵ective
cryptographic strategy. By applying the mathematics of elliptic curves, security is
generated between key pairs for public key encryption. ECC generates keys that
are more di�cult to crack mathematically. Consequently, ECC is regarded as the
future of public key cryptography and is regarded as more secure than RSA. ECC
is a plane curve formed by points satisfying the equation y2 = x3 + ax + b over a
finite field. ECC employs a smaller key size and provides a high level of security.
A 384-bit elliptic curve key provides the same level of security as a 7680-bit RSA
key. ECC is one of the most popular methods for implementing digital signatures
in cryptocurrencies. Bitcoin and Ethereum both sign transactions using the Elliptic
Curve Digital Signature Algorithm (ECDSA). Due to its shorter key length and
increased e�ciency, ECC will be adopted by the majority of online applications in
the coming years [36].
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Chapter 4

Proposed Model

The process of authentication will begin from the client side, where users will try
registering by inputting their credentials. After the credential-based registration is
successful, the Blockchain-based authentication will begin to ensure the nonce and
hash on both ends (client and server) will be the same. In order to achieve that, we
used the Di↵e-Hellman algorithm. We performed multiple mathematical operations
to get our desired output and once the nonce and hash from both sides have been
matched, the verification will be successful. When the user logs in again, they must
use the correct credentials; the system then checks the user ID to verify the user and
then a new block is mined for this log in on both the client and server sides. Since
the user was already verified using the user ID, the previous hash of this new log in
block will be the hash of the genesis block created during the registration process.

4.1 Working Procedure of the Credentials-based
Authentication

Primarily our workflow will be following 2 specific paradigms. One side is the server
side, the other is the client side. The server side is constructed using the Python flask
micro web framework whilst the client side is constructed using React JavaScript.

For our implementation of our server model, we have implemented the following
classes:

• App

• Model

• Config

• Blockchain

We will be utilizing SQLAlchemy and SQLite toolkits for creating the database in
order to store the required information from the server side. We will be creating
two tables on our database. The first table will be called the user’s table and will
be used to store the following:
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• ID

• Name

• Email

• Password

The second table will be called BlockHash which will be used to store the following:

• ID

• User ID (user ID from the User table)

• Nonce

• Hash

• Created at

The User ID of the BlockHash table will be the ID from the Users table and the
two tables will have a foreign key relationship through the User ID.

Figure 4.1: UML Diagram

We will utilize Redis to store values within the session in order to retrieve active
users’ directories using Redis session. The process will commence on the client side,
with the user first registering themselves by entering their name, email address, and
password. After which an API request will be sent to the server, which will collect
the user input value from the client end and register it in the database table entitled
user. For the request, a return value containing the id, name and email will be sent
to the client and kept in a variable named data. The user id will be assigned using
UUID, which stands for Universally Unique Identifier. It is a 128-bit label id that
has 32 digits. This will lower the predictability of our user id. The password will be
stored as a hash in the database.
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Figure 4.2: Use Case Diagram

4.2 Working Procedure of the Blockchain-based
Authentication

For our implementation of the Blockchain class on both server side and client side,
we have implemented the following method for the Blockchain class on both sides:

• CreateNewData

• ProofOfWork

• HashBlock

• CreateNewBlock

4.2.1 CreateNewData method on Client side

We will first begin with the registration process, which will create our genesis block.
For this, our previous hash will be zero. Then, we will begin with CreateNew-
Data and work our way down. We will provide the data (id, name, email, and
password) we obtained from the server along with the timestamp to the CreateNew-
Data method, which will produce an array of data (id, name, email, password and
timestamp) that will be our block data.

4.2.2 ProofOfWork method on Client Side

Following on, we will begin the ProofOfWork method phase where the method will
return a nonce value. In this method, we will produce a random number between 1-6
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with the upper bound value being the generated random number after which we will
enter a loop and begin creating hashes. The loop will be repeated until our hash value
has the upper bound leading zeros. For instance, if our random number is 4, we will
continue to generate hash values until they have four leading zeros, ’0000’. Therefore,
our hash should be 0000303030307261696d61726169333134676f6f676c6540676d6169-
6c2e636f6d in hexadecimal, and the loop will continue until a hash with a leading
four zero is formed, at which point the count value will grow. We will halt the loop
when we have a hash with four leading zeros, and the count value will be our nonce.

4.2.3 HashBlock Method on Client Side

With the data and nonce calculated, we will pass these values to our HashBlock
method on the Blockchain class. We will acquire a hash value created from our data
and nonce using the above method. The calculated nonce will be our NonceClient
and its subsequent hash will be our HashClient.

4.2.4 Api ‘/block’

Moving on to the next phase, we will send data from the client to the server using
the api ’/block’. The data will include id, name, email, password and the timestamp
when the user first registered. Subsequently, we will carry out the same procedure
as we did on the client side to generate NonceServer and HashServer on the server
side using the Blockchain class on the server side.

4.2.5 CreateNewData Method on Server Side

First, we will send the data we received through the ‘/block’ API to the create new data
method of the Blockchain class, which will produce an array of data (id, name, email,
password and timestamp) that will be our block data.

4.2.6 ProofOfWork Method on Server Side

Then we will generate the nonce using a random upper bound number between 1-6
that will be the leading zero. Using the same method of nonce generation, we will
continue generating hash until we get a hash with a leading ‘n’ number of leading
zeros, n being the random upper bound number between 1-6. As the hash is being
generated while being on a loop, the count value will continue to increase until we
find the hash with an ‘n’ number of leading zeros. The moment we get a hash with
an ‘n’ number of leading zeros the loop will stop and the count value will be our
Nonce. This will be our NonceServer.

4.2.7 HashBlock Method on Server Side

With the data and nonce server calculated, we will pass these values to our Hash-
Block method on the Blockchain class of the server side. We will obtain a hash value
created from our data and nonce using the above method. The calculated nonce
will be our NonceServer and its subsequent hash will be our HashServer.
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4.2.8 Di�e Hellman Algorithm for NonceUnified Genera-
tion

We will use the Di�e-Hellman process for the same nonce on both the client and
server sides. For the hash to be the same on both the client and server sides, all the
parameters of the hash must be the same. The parameters of the hash method are:

• Previous Hash

• Data

• Nonce

The nonce is an integral part of the generation of hash. However, it is nearly
impossible to generate the same nonce using a random upper bound on both the
client and server sides. That’s why, we will be using the Di�e-Hellman algorithm to
generate the same nonce by using two pairs of keys, one, the Public Key, that will be
exchanged between the client and server sides. Second, the private key will not be
exchanged and will be kept private within the client and server side. The goal is to
generate HashUnified on both ends- the server as well as the client; the NonceUnified
and HashUnified on each side have to match for the user to be authenticated.

Figure 4.3: Di�e-Hellman Implementation

4.2.9 Api ‘/pks’

The server will generate a random prime number between 1 and 50 named PublicK-
eyServer and it will be sent to the client side using an API called ‘/pks’.
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The HashClient will be converted to an integer (hexadecimal) value on the client
side, which will be the PublicKeyClient.

The NonceClient that is generated using a random upper bound on the client side
BlockChain class will be the private key for the client side. The NonceServer that
is generated using a random upper bound on the server side BlockChain class will
be the private key for the server side.

Now, the TempKeyClient will be calculated using the formula:

TempKeyClient = PublicKeyClientnonceClient mod PublicKeyServer (4.1)

4.2.10 Api ‘/tks’

Following the successful calculation of TempKeyClient, we will create an API called
‘/tks,’ which will be used to send the following values through the API as requests
to the server:

• UserID

• TempKeyClient

• HashClient

• PublicKeyServer

With every value ready, we can proceed to calculate the TempKeyServer on the
server side using the formula:

TempKeyServer = PublicKeyClientnonceServer mod PublicKeyServer (4.2)

Finally, we can calculate the NonceUnified value on the server side using the formula:

NonceUnified = TempKeyClientnonceServer mod PublicKeyServer (4.3)

4.2.11 Previous Hash Determination

On the server side, we will be using the user id to traverse through the database
to check if the user id already exists. If it does not exist, then on the server side,
we will make the previous hash zero. However, if the id already exists, we will use
the hash of the exact previous login as the previous hash from the database table.
This can be verified by filtering through the BlockHash table user id wise and we
will use the subsequent hash of that particular user id which had exactly the latest
entry. On the client side we can locate if any previous hash exists by using ‘local-
storage.getItem(Hash)’ command. In case of registration, the previous hash is set
to be zero, however, in case of login, the previous hash will be retrieved from the
local storage.
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4.2.12 Hash Unified Generation

After determining our previous hash with NonceUnified being successfully calcu-
lated, we can generate our HashUnified by passing the following information to the
HashBlock method on the Blockchain class on the server side:

• Previous Hash

• Data (id, name, email, password, timestamp)

• NonceUnified

As a return to the request of the API ‘/tks’, the server will send the value of Temp-
KeyServer which we calculated previously, to the client side.

On the client side, the NonceUnified value will be calculated using the formula:

NonceUnified = TempKeyServernonceClient mod PublicKeyServer (4.4)

With NonceUnified being successfully calculated, we can generate our HashUnified
by passing the following information to the HashBlock method on the Blockchain
class on the client side:

• Previous Hash

• Data (id, name, email, password, timestamp)

• NonceUnified

Finally, if the HashUnified are the same on both the server side and client side, only
then can we authenticate a user.

4.2.13 Hash Storage

On the client side, we are storing the HashUnified on the local storage with respect
to the user id. And on the server side, the HashUnified along with the nonce, user
id and data is stored on the database.

4.2.14 Logging in Again

On the next login, the user will have to authenticate in two steps. At first, the user
will have to use the correct credentials to log in. Secondly, the entire procedure of
NonceUnified and HashUnified will take place; although, this time the previous hash
will not be zero. Only in the case of registration, the previous hash is set to be zero,
however in the case of login, the previous hash will be the hash of the last login. On
the client side, it is retrieved from the local storage. After a new log in the previous
hash will be replaced with the new hash on the client side. However, on the server
side, as the entire block is stored permanently in the database we will retrieve it by
filtering out the exact last login’s hash. If the HashUnified comes the same on both
the server and client sides, then we can authenticate the user successfully and thus
it fulfills the motive of strengthening password-based authentication.
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4.2.15 Device Based Authentication

The idea is to build a device-based authentication system rather than a user-based
one. As discussed before, each login will create one block and each time the user logs
in, a chain of blocks is maintained in that particular device for that specific user.
The login process was a success since it was done by a registered user of this device.
We ensure that the device is a registered device by looking for the previous hash in
the local storage with respect to the user id of the client’s device. If there remains
any hash in the local storage we will be able to deduce the device as a registered
user, otherwise, the user will have to register first to be able to log in.
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Figure 4.4: Workflow Diagram
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Chapter 5

Implementation

In this paper, we created our own device-based blockchain authentication system
where a login application is implemented along with its various functionalities where
it is simultaneously communicating with the customized server end. The client-side
has been coded using Javascript and its framework React as it is a web application.
The server side has been programmed using Python and its framework Flask to
enable smooth operation between API requests from both ends.

5.1 Client-Server Model

There are two parts to our model - one is the client, another is the server which can
be further broken down into:

1. User Login Application

• Registration

• Login

• Home Page

• Home

2. API

• Client

• Server

3. Database

• User Table

• BlockHash Table

4. Blockchain Class

• Client

• Server
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5.2 User Login Application

This is a web application on port 3000 where a user will be taken to a home page
where they can either register or login.

Figure 5.1: Home Page

When the user clicks on the ‘Register’ button, they are redirected to the registration
page where they have to give their credentials: name, email, and password.

Figure 5.2: Registration Page

After the registration has been successfully completed, an API request will be sent
to the server side where it will fetch the user information, and store it in its allocated
database. An ‘ID’ will be generated, along with it, while storing the registration
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Figure 5.3: Server side database users table

credentials on the database, however, it will not store passwords in plain text but
rather in hashed form using Bcrypt.
The entire registration data along with the timestamp will be sent to the method
CreateNewData on the Blockchain class on both the server and client side to form
an array of data.

Afterward, the nonce using a random upper bound will be generated along with its
subsequent hash. We will call the generated nonce on the client side NonceClient
and the generated hash HashClient. Similarly, we will call the generated nonce on
the server side NonceServer and the generated hash HashServer.

Figure 5.4: Client side nonce and hash

Figure 5.5: Server side nonce and hash

Now we can initiate our Di�e Hellman Key Exchange for NonceUnified generation
on both the server and client side. Di�e hellman requires two pairs of keys on both
sides, in our case the client side and the server side. On the client side, the public
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key is found by finding the integer value of HashClient and the private key will be
the NonceClient. For the server side, the public key is a random prime number
(between 1-50) and the private key will be NonceServer.

Figure 5.6: Public key client side

Figure 5.7: Public key server-side

With two pairs of public key and private key, the TempKeyClient and TempKey-
Server are to be calculated.

Figure 5.8: TempKeyClient calculation

Figure 5.9: TempKeyServer calculation

The TempkeyClient and TempKeyServer are to be exchanged on both sides through
the API ‘/tks’, which eventually will be used to calculate the NonceUnified on both
the client and server sides.

34



Figure 5.10: NonceUnified calculation on the server side (python)

Figure 5.11: NonceUnified calculation on the client side (javascript)

The NonceUnified on the server side should match with the client side, which in turn
will generate the same hash on both the client and server side, known as HashU-
nified. During registration, the previous hash is used as 0 on both the client and
server sides.

Figure 5.12: NonceUnified and HashUnified on server side

Figure 5.13: NonceUnified and HashUnified on client side
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As it can be observed from the server side, the nonce and hash generated are the
same as the ones on the client side after applying the Di�e-Hellman algorithm, we
can successfully conclude that authentication is successful.

Figure 5.14: Redirected to home after successful authentication

The HashUnified generated from registration will be temporarily stored in the local
storage of the client side’s device, user-id wise. However, on the server side, the
HashUnified along with NonceUnified, User-id and its time of entry will be stored
in the database.

Figure 5.15: Client side local storage

Figure 5.16: Server side Hash table

Our model focuses on per device per blockchain. So that particular user will be able
to log in again using that same particular device, using his successfully authenticated
registration credentials.
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Figure 5.17: User logging in through the Sign In page

When logging in, the exact process of authentication, one using his credentials and
another using blockchain to generate NonceUnified and HashUnified using the pro-
cess of the Di�e-Hellman algorithm will occur. However, unlike in registration, the
previous hash will not be zero. On the client side, the hash of that particular user
id will be fetched from the local storage and on the server side, the last entry of that
user will be filtered out from the database to be used as the previous hash.

Figure 5.18: Client Side previous hash retrieval

Figure 5.19: Server-side previous hash retrieval

Upon successful login the newly generated HashUnified will replace the previous
hash on the client side, however, on the server side, the newly generated hash along
with Nonceunified and user id will be stored on a new store not replacing any pre-
vious entry.

Again, if the HashUnified and NonceUnified are the same on both the server and
client side, the login will be successful allowing the user to go to the home.
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Figure 5.20: New hash generated on the client side local storage

Figure 5.21: Server side database Hash table showing the same updated hash

Figure 5.22: Redirected to the home after successful login authentication

38



5.3 API

5.3.1 Client Side

This is an integral part of our model which actively maintains the proper flow of
work with the server side. It handles login and registration requests, pop-up mes-
sages, the blockchain mining process and the Di�e-Hellman algorithm.

Figure 5.23: The register and login API sends post requests to the server side to
register and log in respectively

During registration, the entire user data is sent as a request from the client side to
the server side to be stored in the database and as a return, a user ID is assigned to
that user. During login, the user input details are sent to the server side to verify
the credentials. If it matches, the server returns the user id along with the name to
the client side. So that after successful authentication, we can welcome the user on
the homepage by calling their name.

Figure 5.24: Authentication is successful

Figure 5.25: The ‘/block’ API sends user data to the server side to generate server
side’s NonceServer and HashServer

Figure 5.26: The ‘/pks’ receives the Public Key generated from the server side to
be used for the Di�e-Hellman algorithm on the client side
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Figure 5.27: Server Side Values

Finally, the ‘/tks’ API sends the TempKeyClient it calculated along with the Hash-
Client which is the Public Key for client-side, as well as the server’s Public Key so
that the Di�e-Hellman algorithm can start on the server side. In return, the server
returns its own TempKeyServer which is used to calculate the NonceUnified on the
client side and finally the HashUnified on the client side.

5.3.2 Server Side

Similar to the client API, the server side handles cases such as registering new users
to the server, not allowing anyone to log in with the wrong credentials or with no
accounts, verifying login sessions, storing proper information in the database, and
performing server-side Di�e-Hellman process along with blockchain mining.

The ‘/register’ and ‘/login’ routes registers and logs in users respectively accord-
ing to their credentials. The register route stores new user credentials on the User
database and the login route checks user credentials by iterating through the User
table and verifies their credentials as a form of the first layer of authentication.

The ‘/me’ route shows currently logged-in users using the redis session.

The ‘/pks’ route generates a random prime number to be used as Public Key for
the server side which is exchanged to the client side for the Di�e-Hellman algorithm.

Figure 5.28: The ‘/register’ and ‘/login’ routes

Figure 5.29: The ‘/me’ route

Figure 5.30: The ‘/pks’ route
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The ‘/block’ route takes user information from the client side and sends it to the
CreateNewData method on the server side BlockChain class to form an array of
data, as well as calls the method (ProofOfWork) for generating Nonce using random
upper bound from Blockchain class. Additionally, it also calls the method (Hash-
Block) to generate a HashServer using NonceServer.

Figure 5.31: The ‘/block’ route

The ‘/tks’ route is the most vital route for the server side as it conducts the Di�e-
Hellman algorithm on the server side. This route accepts the Public Key from the
client side and using the server-side private key and public key it generates Temp-
KeyServer which in turn is used to calculate the NonceUnified on the server side
and finally, the HashUnified. Finally, it stores the entire Blockchain data on the
BlockHash table of the database.

Figure 5.32: The ‘/tks’ route

5.4 Database

This is made on the server side where all the necessary information about users and
their corresponding blocks are stored.

In the table Users, the columns are id, name, email and password. The id is auto-
generated upon successful registration and a unique hexadecimal id is assigned to
the user. Followed by successful registration, the user’s id, name, email and pass-
word are stored in the “Users” table.

After generating the unified nonce and hash on both sides, comes the part of storing
them on the server and client side. On the server side, the foreign key relationship
will be established using the ‘id’ of the ‘Users’ table. The same user id will be used
on the BlockHash table for the column us id.

The id of the BlockHash table is an auto-increment id for every entry followed by the
columns nonce, hash and created at, which will be the nonce unified, hash unified
value for that correspondent us id. The created at is the timestamp to keep track of
the very last entry of a particular user so that we can use the immediate last hash
of the user as the previous hash for their current login session.
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Figure 5.33: Database Table Creation

5.5 Blockchain

In order to ensure the chain of information is maintained, we have used the concepts
of blockchain to make our system contain all login details of the device-used usage.

On both the client and server side, blockchain is utilized to generate the hash and
nonce. The Blockchain class contains the following four methods:

• createNewData: We pass the data (id, name, password, email and password,
timestamp) to this method which will return us its array which in turn is our
block data.

Figure 5.34: create new data method

• proofOfWork: this is what we are using to get the nonce value. Here, a leading
zero value is randomly generated where a hash generation loop will start. If
we get a hash that matches the upper bound value, the loop stops and the
nonce is the number of times the loop runs to find that particular hash.

Figure 5.35: proofOfWork method

• hashBlock: With the data and nonce calculated, this is passed to the hash-
Block method where the previous hash, nonce and data are concatenated and
converted to sha256 code to produce the hash.
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Figure 5.36: hashBlock method

• createNewBlock: Now that we have the nonce, hash, previous hash, and data,
this method creates a block every time a user logs in.

Figure 5.37: create block method

5.6 Scope For Performance Analysis

Currently, we are using our server to mine a new block as a user logs in with a regis-
tered device. Therefore, it does not extensively showcase the usage of Blockchain’s
P2P network distribution for mining a new block. On the server side, a Blockchain
networking protocol, preferably Delegated Proof of Stake (DPoS) can be used. Us-
ing DPoS, we can choose which node(s) in the network can mine or verify the next
block, for additional security on the server side.

Figure 5.38: Implementation of DPoS

Furthermore, we are storing the block hash in the localstorage of the client’s de-
vice. This can give rise to various phishing attacks or any form of malicious attacks.
Therefore, the block hash in further encrypted form is to be stored in an o✏ine
database, that can be decrypted using a key. Thus it will lower the chances of ex-
posing the entire hash in its raw format to any attacker, while verifying the device
successfully.
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Lastly, if a user forgets his password, each user has a chain of blocks in their respec-
tive registered device and the information of the entire chain can be backtracked to
traverse to a specific block’s hash, which can be used as an OTP to validate the user
who forgot their password.
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Chapter 6

Results Analysis

The past few decades have encountered numerous authentication mechanisms that
can be classified into three main categories based on the fundamental factors of
authentication- knowledge factor, inherence factor and possession factor. In knowl-
edge factor authentication, the user is required to answer some question(s) and the
system is designed in such a way, it assumes that only the valid user can answer
the question correctly. The most prevalent use of this instantiation is passwords
and Personal Identification Numbers (PINs). However, the crucial weaknesses of
this approach include the use of awfully simple passwords that are easy to guess
using brute force attack and not only has it shown success with encrypted but with
decrypted passwords well. The use of strong passwords has diminished the suc-
cess rate of brute force attack by 10% [37][38]. On the contrary, even well-crafted
passwords can be hacked through malware (Trojan), keylogging, social engineering,
packet sni�ng, remote administrative tools, etc. Another major issue is the replica-
tion of passwords across widespread accounts and one single compromised account
can make all the other accounts susceptible as well. The use of secret patterns is
not too di�cult to crack either as it leaves oily smudges on the screen which can be
retrieved using high-resolution imagery. Biometrics is one of the implementations
of inherence factor authentication as it is dependent upon behavioral or physical
biometrics. This approach usually requires an enrollment process where multiple
samples of the user’s behavioral or physical traits are recorded. Later, when the
user tries to authenticate himself, he has to provide the respective trait again and
this data will be matched with the one saved during the enrollment procedure. Face
recognition and fingerprint are the most widely used examples of biometrics. How-
ever, the main vulnerability of the fingerprint method is that this can be subverted
by collecting the victim’s fingerprint from any service that also requires his touch.
A profound shortcoming of face recognition is, it can easily be broken using the
victim’s photograph which is easy to find on the internet through a basic social
media search. Security tokens and MFA (multi-factor authentication) are the most
customary examples of possession factor authentication; this type of authentication
relies on some sort of hardware that will be in the possession of the legitimate user
and the authentication will only be a success if it is confirmed by the user through
some mechanism that he has possession of that physical hardware. OTP (one-time
password) is an excellent example of 2FA; OTP SMS sent through the network can
be intercepted and this process also increases the cost for the service provider [39].
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Our model uses knowledge factor authentication in the first step as the user initially
authenticates himself using a password. Even though we have taken the knowledge
factor approach in our model, there is flexibility to either replace this initial step
with an inherence factor or even add an inherence factor or possession factor au-
thentication as the second step for added security. Hence, our goal is to strengthen
first-factor authentication with an added layer of security. 2FA uses a second channel
where the problem of network interception (middleman attacks) and a bad network
with no access to OTP still exists. Each of the authentication methods discussed
above either requires input from the user or dependence on a third party which is
why we wanted to come up with a device-based secure method of authentication
that will take place automatically right after initial verification. This method allows
the device to recognize the authenticated user using the previous hash stored on the
client side; hence, even if the attacker knows the user’s credentials, he won’t be able
to log in from any other device. To sum up, by using a combination of email and
password credentials along with device information, the proposed solution aims to
provide a more secure and robust authentication process without involving input
from the user or third parties. The user would be granted access once the hash of
the device matches the hash stored in the blockchain server. Therefore, the tra-
ditional first-factor authentication system is strengthened. This ensures that even
if the hacker has the ability to crack the MFA like biometrics and security tokens,
they first need to break the more secure first line of defense, which is the traditional
password authentication system based on blockchain [39].

Blockchain implemented for authentication purposes has shown great potential for
user identification, smart home systems, health-care records, educational certificates
and IoT devices. One prominent usage of blockchain that has been employed for
authentication of IoT devices is Hammi et al.’s (2018, September) proposed model,
where the authors designed a novel system that is decentralized, named ‘Bubbles of
Trust’ [40]. The model addresses device authentication and identification and also
utilizes the security benefits of blockchain to establish specific zones called “bubbles”
where only trusted devices can authenticate each other. It uses smart contracts and
public blockchain to let only authenticated devices operate in these zones. How-
ever, in our proposed model we are utilizing a permissioned blockchain where only
authorized users will be allowed to use our device-based authentication system as
our model was created to facilitate the increased security of governmental organi-
zations. We are also not using any smart contracts here; that is because in smart
contracts, once a process has been validated, it is very di�cult to change it, and
the procedure is very time-consuming and costly as well. We have created our own
environment as in cases where a user needs to change their credentials, they can do
so easily without the hassle of smart contracts. The model only allows devices to
operate in specific hubs , which to an extent reduces accessibility but our model will
allow devices to operate in any place as long as it is a registered authenticated device.

Secondly, another e↵ective implementation of blockchain has been seen in two-factor
authentication (2FA). The generic two-factor authentication uses a centralized en-
tity that sends secret information (tokens) to the users each time the users attempt
to access the system. Despite the additional security layer given by two-factor au-
thentication, its colossal drawback is its full dependency upon the third party for
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providing the secret codes. However, in terms of security, this type of authentication
system is always at risk of being compromised. In this paper, the writers have pro-
posed a novel approach to strengthening the security of the traditional 2FA system
by building 2FA over a blockchain platform; the platform is distributed in nature
and fully eliminates the dependency on third parties. The model uses the concept of
a Blockchain wallet for user information encryption. When users create an account,
they will be o↵ered a public and a private key. Their public key may be shared
among other users to communicate, however, the private key is to be kept safe and
private. When the user logs in after they are authenticated, their user ID, i.e, the
public key, along with their private key will be used to authorize what they will be
able to access through their login information. To generate a pair of private keys,
they used the ECC algorithm. They will be using ECC because key generation from
ECC is mathematically more di�cult and thus becomes more di�cult to decrypt.
ECC uses less space and generates keys faster so we can manage large amounts of
key generation for users at a faster time and the key length being necessarily smaller
will help save more data, which is why ECC is a faster and more secure approach.
After the authentication, comes authorization. The categorization of entities has
been done in 3 di↵erent parts: user, sta↵ and servers.

They all have a private and public key pair; these keys contain corresponding special
Ethereum addresses that are related to them and serve as a distinctive identifier
representing these categories. First and foremost, the sta↵ will register all the
servers and users in the smart contract on the basis of their respective Ethereum
addresses. As the user is registered, that person can form a request which will give
him permission to access the smart contract’s registered servers. According to the
sta↵’s decision, these requests can be accepted or neglected. A user can generate
an arbitrary six-digit numerical OTP which will be kept in the blockchain system
if his/her request is confirmed and will be hashed with the SHA3 algorithm. This
piece of information is available in all nodes as the blockchain system is synced with
every single node, if a user later attempts to connect to a certain server via SSH and
launch into the identical OTP, the server’s PAM module queries this blockchain for
every corresponding hash tokens and searches the hash of input OTP. If identified,
user entrance is granted, otherwise, the connection is closed [1]. In our model, when
users create an account, a genesis block is mined on both the server and client
sides which contrasts with this model; that is because, in this model, the users
will be o↵ered a public and private key during the registration process. Therefore,
they have taken an encryption-based approach in the registration process while we
have used a core blockchain-based approach. Furthermore, their login system uses
generic credential-based authentication in the first factor and the encryption keys
are used in the authorization phase, unlike our model. Our login process is much
more secure because when the registered user tries to log in again, in the first step
of the credential-based authentication system the registered user is verified using
the user ID and hence the system knows that the HashUnified on the client side
for this user will be the previous hash value for the new block that is being mined
for this user upon the login. This is how a blockchain is maintained in our model
where the genesis block is the registration or the first block and the first login
block is the second block, the second login is the third block and so on. On the
other hand, our use of the Di�e-Hellman algorithm eliminated the need for sending
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sensitive information over the network but in their model, they have used the ECC
algorithm in the authentication phase but the key is being sent over the network
which makes it prone to middle-man attacks. Moreover, the implementation of
blockchain technology does not start until the authorization process in their model;
our model uses core blockchain concepts in the authentication phase instead of the
authorization. We have implemented blockchain in the first factor whereas, they
have used it in the second factor. As mentioned earlier, we have created our own
blockchain environment instead of using smart contracts and Ethereum. We have
not used Ethereum due to its issues with scaling since it has a ledger, a platform
for smart contracts, etc, all of these can lead to malfunctions, hacks and errors.
Furthermore, it is risky to invest in Ethereum as the price of ether has significantly
changed over the past. Lastly, our model o↵ers scalability because a per device per
chain approach allows each device to have its own unique chain, which can help to
prevent issues with scalability as the number of users and devices increases. Our
model is also very flexible as it allows the creation of custom chains for each device,
rather than having a single chain for all users.
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Chapter 7

Conclusion and Future Work

In this paper, we devised a model that enables a user logging into any system to
be authenticated using Blockchain methodology with full-proof security. A lot of
secured login systems exist today, but those are still prone to cyber-attacks due
to dependence on third-party applications. In order to ensure credentials are not
stolen and reduce reliance on mediators, we have developed a model where a user
login session is verified if and only if the nonce and hash from the client side and
Blockchain server side are the same. We extensively discussed how this method
works and have shown how our techniques add an enhanced layer of authentication
to an existing system in terms of reliability of proper security. We have included
fully labeled diagrams to demonstrate the flow of the procedure on how the client
and server sides are concurrently communicating with one another.

Although our model implements per device per blockchain, so one user can have
only one registered device under their credentials. However, in the future, we are
aiming to build a model where one user will be able to login on multiple devices. As
a result our model will still be per device per blockchain, but it will allow one user
to have multiple blockchains. The user data of the devices’ block will be the same
to validate the users , however, their previous hash will not be the same to maintain
separate Blockchains per device.
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