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Abstract

The use of machine learning models has greatly enhanced the capability to rec-
ognize patterns and draw conclusions. However, due to their black-box nature, it
can be difficult to comprehend the factors that affect their decisions. XAI methods
offer transparency into these models and aid in enhancing comprehension, exami-
nation, and trust in their outcomes. In this paper, we present a study on the use
of machine learning (ML) models for intrusion detection in Windows 10 Operating
systems using the ToN-IoT dataset. We investigate the performance of different ML
models including tree-based models such as Decision Tree (DT), Random Forest
(RF), Logistic Regression (LR), and K-Nearest Neighbors (KNN) in detecting these
attacks. Furthermore, we use Explainable Artificial Intelligence (XAI) techniques
to understand how the attacks influence the processes in the Windows 10 systems
and how they can be identified and prevented. Our study highlights the importance
of using XAI techniques to make ML models more interpretable and trustworthy in
high-stakes applications such as intrusion detection. We believe that this work can
contribute to the development of more robust and secure operating systems.

Keywords: Machine Learning, Explainable Artificial Intelligence (XAI), ToN-IoT,
Windows OS, Data analysis, Intrusion detection
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Chapter 1

Introduction

Microsoft developed Windows, a widely used operating system that has undergone
several updates over the years. The latest version is Windows 11 which was released
in 2021. Windows is known for its user-friendly interface and wide range of software
and applications that are compatible with it. It is also the most widely used operat-
ing system in the world [30]. However, due to its widespread usage and complexity,
Windows is a prime target for cyber attacks for various reasons [4], including its
popularity as a target for attackers, difficulty in securing due to legacy components
and third-party software, and vulnerability caused by outdated systems and human
error.

When a process starts, there are numerous other processes that fork up [1]. As so,
it is very difficult to actually understand which processes in terms of features are
actually important in detecting an intrusion since numerous processes start when a
process begins. The main problem is that the list of features/processes is multifari-
ous and it is very hard to narrow down the important ones.

To address this, intrusion detection systems (IDS) are used [23], which come in
two primary forms: network-based and host-based. These systems can be classified
by their detection methods such as signature-based, anomaly-based, and behavior-
based detection [11]. We compared our findings with a similar paper which focused
on the network part of the ToN-IoT dataset to detect and keep intrusion away from
VANETS [14]. In this report, we aim to investigate which features and processes
are crucial for intrusion detection using machine learning and explainable artificial
intelligence (XAI) techniques.

In doing so, the following steps were implemented:

e Choosing the ToN-ToT [18] and meticulously evaluating the dataset by remov-
ing the flow identifier attributes in order to prevent any bias towards attacks
and to avoid overfitting [14].

e Making the dataset free from noise, inconsistency, and inaccuracy by fixing
imbalances in classes, categorical features, missing values, and other irrelevant
features to boost the performance of our algorithms

e Using different ML models to assess the metrics and to compare them with
other studies



e Explaining our results better by using Local Interpretable Model Agnostic
Explanation (LIME)

e Compare and contrast our findings from ML and XAI with other research and
studies

The following is the order in which the report is arranged: Chapter 2 focuses on
related works and provides the background of our research. Section 3 provides a
brief description of the ToN-IoT dataset and details the feature preparation pro-
cess. Section 4 highlights the experimental methodology setup. Section 5 presents
the results and findings of all the ML models and XAI. Lastly, Section 6 provides
the conclusion of the research.

Fig 1.1 shows the overall workflow.
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Fig 1.1: Workflow

1.1 Research Problems

With the advancement of technology over the years security against intrusion has
increased but so have the intricacies of advanced cyber attacks. While countermea-



sures are adapting, cyber attackers are also figuring out new ways to circumvent the
new security measures. As a result, it’s critical to learn about definite features and
patterns of these attacks and detect them before they cause damage. Our research
aims to identify these patterns by using machine learning models along with XAI.
This allows for finding concrete evidence to back up the results and learning which
factors have which effects. While conducting this experiment we expect to face some
challenges and these are some of the hurdles we might face.

Finding a suitable dataset with proper documentation:

Although one can find numerous botnet datasets on the inter-web. It is quite,
arduous to find a dataset that is well documented with its use cases outlined. Fur-
thermore, it is an even greater task to find a dataset used in a particular research
paper, where the dataset is pre-processed and models are run on it to prove the
hypothesis of the said research paper.

Complexity of XAI:
Many AI models, such as deep neural networks, are highly complex and difficult
to understand. It can be challenging to provide clear explanations for how these
models make decisions.

Black box nature:

Interpreting many machine learning systems can be a difficult task, even for experts,
as it is hard to understand the reasoning behind the algorithm’s decisions. When
machine learning models use ”black box” strategies, where the decision-making pro-
cess is not visible, it can cause legal, ethical, and operational problems. These
models are not easily verifiable or auditable, making it hard to ensure that they are
behaving appropriately. Furthermore, if the system makes a suboptimal decision,
it can be challenging to determine the cause and make necessary adjustments to
improve the decision.

Lack of interpretability: Many Al models are not designed to be interpretable,
which makes it difficult to generate explanations for how they work.

1.2 Research Objectives

This research aims to look into an advanced detection algorithm based on an ex-
plainable AT (XAI) model. Using ML and XAI, we seek to identify the features and
procedures that are genuinely crucial for identifying anomalies. Our objectives with
this research include:

1. Understand how each of the machine learning models and their parameters
works.

2. To preprocess the dataset in such a way, that is easy for the XAI to interpret.

3. Develop a good understanding of glass box models and black box models.



4. To deeply analyze how XAI works at interpreting models.

5. To get key insight into how each feature correlates to an intrusion.



Chapter 2

Background

Cyber attacks of every form, like DDoS, DoS, and injection attacks, aim to disrupt
the availability of a network or website by sending a huge amount of traffic or in-
jecting harmful code. These forms of attacks can have a significant negative effect
on organizations and individuals, resulting in financial losses, harm to reputation,
and disruption of services.

According to [20], DDoS attacks are still a major concern for organizations globally.
The report highlighted that the number of DDoS attacks in Q3 2021 rose by 8%
compared to the previous quarter. [15] also states that DDoS attacks are becoming
more complex and larger in scale, with an increase in volumetric attacks which are
intended to overload the network and disrupt services.

Despite Windows 10 having a variety of security features to keep it safe from in-
trusion and malware attacks, it is still a frequent target of cyber attackers. Despite
these protective measures, vulnerabilities can still be found and exploited by cyber-
criminals. A recent intrusion attack on Windows 10 is the Zerologon vulnerability
[10], which is a vulnerability in the Netlogon Remote Protocol (MS-NRPC) in Win-
dows Server that can be exploited to remotely take control of domain controllers
and gain access to the entire domain. A recent intrusion attack on Windows 10 is
the BlueKeep vulnerability [5], which is a vulnerability that allows remote execution
of arbitrary code on systems using the Remote Desktop Protocol (RDP) of Windows
Server 2008, Windows 7, and Windows Server 2008 R2. It was first identified in
May 2019 and attackers can exploit it remotely by executing code on the affected
system.

2.1 Related Works

2.1.1 Intrusion Detection using ML

The article [14] presents a method for creating an Intrusion Detection System (IDS)
for VANETSs (Vehicular Ad Hoc Networks) that utilizes Machine Learning (ML) and
is trained and tested using the ToN-IoT dataset. The dataset entails issues regarding
missing values and imbalanced classes, but it covers a wider range of attack types
than earlier datasets such as UNSW-NB15, KDD-CUP99, and NSL-KDD. The IDS
model employs preprocessing techniques, such as Chil for selecting features, which



reduces the number of features, and for balancing the class SMOTE is used to en-
hance performance. The IDS uses various ML methods and the best results were
obtained using XGBoost. In future work, the model will be deployed using Kafka
Hadoop and Apache Spark, and experiments with deep learning methods and opti-
mization algorithms for dimensionality reduction will be conducted.

According to [3], the research of performance enhancement of a Machine Learning
model is influenced by the choice of datasets and features, where the task of catego-
rizing Linux Binaries as being potentially harmful. The dataset utilizes 4 categories
of IoT files which are system, application, botnet, and general malware files. These
files are utilized for any ML model. They developed a system that was trained on
these data and outperformed earlier approaches using a set of features that include
static and dynamic network information. According to the article, training on sys-
tem files or IoT application files is no longer adequate, but priming a model on IoT
botnets can help identify zero-day assaults dramatically.

[12] conducted an experimental investigation on ml methods for DDoS intrusion de-
tection for botnets, with the algorithms examined including DecisionTree, USML,
NB, SVM, and ANN. The evaluation was performed using the KDD99 and UNBS-
NB 15 datasets. It demonstrates that in terms of Accuracy, False Alarm Rate (FAR),
Sensitivity, Specificity, MCC, FPR( False Positive Rate), and AUC, USML is very
accurate at identifying botnet and regular network traffic.

The objective of this paper [9] is to construct a classifier that can detect anoma-
lous traffic with comparatively higher general accuracy from the N_BaloT dataset.
To produce the outcome, four binary classifiers are evaluated and validated: Sup-
port Vector Machines(SVM), Random Forests, Extra Trees Classifiers, and Decision
Trees. The results show that the classifiers perform very well when all of the classi-
fiers are utilized to train and evaluate the irregularity within each device. To detect
vulnerabilities on unrelated devices, Random Forests Classifier is very efficient.

This paper [7] emphasizes the methods of optimization of Logistic regression and its
mathematical model to reduce the required time to train a large magnitude of data.
They reduced the number of iterations by defining the error function, improving the
sigmoid function as well as using gradient descent to find the regression coefficient.
This resulted in a better classification effect while keeping the accuracy the same
and less time to train. Additionally, a vehicle evaluation prediction model is de-
veloped in this article to predict whether or not buyers would approve of a certain
car. It offers a specific point of reference for the binary classification issue. After
optimizing, they concluded that, if the value of n is larger in the Sigmoid function
o(z) = 1/(1 + e™), the number of iterations that is necessary to obtain a similar
accuracy becomes smaller.

From these papers, we understand that the mentioned machine learning frameworks
are effective in terms of accurately detecting bots but require categories of dataset
files. The results are noticeably accurate compared to normal detection methods.



2.1.2 eXplainanble Artificial Intelligence (XAI)

According to [21], research done on Enhancing Cybersecurity (Intrusion detection)
by using Random Forest and Explainable Al, the need for Intrusion Detection Sys-
tems (IDS) in light of the growing vulnerability of cyber networks is growing tremen-
dously (Wali, 2021). While traditional ML-based IDS have proven effective against
standard cyber threats, they are vulnerable to adversarial attacks. As a solution, the
article suggests a new IDS framework that integrates conventional ML-based systems
with Explainable AT (XAI) to better handle adversarial attacks. This framework
uses a technique called SHAP to identify and filter out malicious network traffic
and to increase transparency and trust in the process of decision-making. The pro-
posed IDS is tested and shown to have a 98.5% and 100% accuracy rate against
the CICIDS dataset and Hop Skip Jump Attack, respectively. The results of this
comparison with conventional algorithms support the credibility of the proposed
framework and suggest that integrating regular IDS along with XAI can improve
the integrity, credibility, and availability of cyber networks.

The paper [17] highlights the rising use of machine learning models in cyber-security
applications, specifically intrusion detection systems (IDS), but also notes the diffi-
culty in interpreting these models and understanding their decision-making process
(Mahbooba, 2021). It’s stated that previous studies have primarily focused on the
accuracy of these models, but not on their explainability. The article proposes utiliz-
ing decision tree models in intrusion detection systems, along with straightforward
decision tree algorithms that imitate human thinking, to solve the problem men-
tioned. The effectiveness of this method is evaluated using a commonly used KDD
benchmark dataset, and the results are then compared to those of other advanced
algorithms.

The paper [24], talks about research done on Surveying the Use of Explainable
Artificial Intelligence in Cybersecurity and examines the application of Artificial
Intelligence (Al) in various aspects of daily life and the issue of transparency in
AT systems, which do not meet the principles of Explainable Artificial Intelligence
(XAI) (Capuano, 2022). In the field of CyberSecurity, the lack of transparency in Al
presents a risk as important decisions are made by systems that cannot explain their
actions. The article reviews various methods in the literature that aim to provide
transparency in Al results but also emphasizes the potential vulnerability of the
system to adversarial attacks. This study examines the current state of Explainable
Artificial Intelligence (XAI) in the field of CyberSecurity by examining over 300
papers. The study examines the main areas of application of XAI such as zero-day
vulnerabilities, spam and phishing detection, crypto-jacking, botnet detection, and
Intrusion Detection. The study specifically looks at the methods used to make these
systems explainable and identifies promising work and areas for further research.

2.2 Machine Learning

ML (Machine Learning) is a prominent division of Al (Artificial Intelligence), ded-
icated to building applications that work on enhancing precision by learning data



with the flow of time, despite not being rigorously programmed to do so. It is
a data-driven approach where data plays a fundamental role in constituting the
overall accuracy of the program. Machine Learning generally comes in two forms:
Supervised and Unsupervised.

Supervised Machine Learning:s

In this approach of Machine Learning, the output variable is defined, which means
labeled data is fed to the models. The model is smart enough to associate mapping
functions and map between input and output variables. Classification and Regres-
sion problems are examples of Supervised ML. Machine Learning Models used in
our Paper:

2.2.1 Logistic Regression:

The central component of Logistic Regression is the Logistic Function. The Sigmoid
Function, also known as the Logistic Function, was developed by statisticians to
identify the characteristics of population growth in ecology, which increases rapidly
and reaches a peak at the ecosystem’s carrying capacity. The S-shaped curve allows
any number in the realm of real numbers to be transformed into a value between 0
and 1. However, they can never be precisely at those ranges. Let us see an instance
where we plot a logistic transformation of the numbers between -5 and 5 into the
range of 0 and 1. In this situation, e is the base of the natural logarithm and the
value represents the specific numerical value that needs to be modified.

Logistic regression, similar to Linear Regression, represents data using an equation.
Input values (x) are incorporated with coefficient values or weights (y) (commonly
referred to as Beta which is a Greek Capital Letter) in order to predict the output
values.

For fitting logistic regression models, numerous solutions are available, including;:

Newton-Conjugate Gradient solver, abbreviated as Newton-CG.

liblinear: A fast linear solution for small datasets.

L-BFGS is an abbreviation for ”limited-memory-Broyden-Fletcher-Goldfarb-Shanno”
equation solver. This is currently the default solver

saga is a Stochastic Average Gradient solver that supports L1 regularization.
Stochastic Average Gradient solver is abbreviated as sag. [2]

It is important to note that each solution has its own set of advantages and disad-
vantages, and the choice of solver may be influenced by the individual problem and
the size of the dataset.

One significant difference between Logistic Regression from Linear Regression is
that, instead of modeling the output value in terms of numeric values, the output
values are simply modeled using binary values (0 or 1). As we can see in figure
2.1, Y is the expected result (x) when the single input value coefficient is bl and
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Fig 2.1: Plotting of Logistic Function Curve, [33]

the intercept. From our training set, we must learn the corresponding b coefficients
(constant real values) for each column in our input data.

LR (Logistic Regression) has one crucial benefit, that is, it enables us to examine
numerous explanatory variables by expanding the rudimentary ideas. The basic
formula:

(X) = exp(fo+ i X1+ ...+ B8Xe)  exp(XB) 1
Cltexp(fot+ AXi+ o+ BXe)  T+exp(XB) 14 exp(=Xp)

(2.1)

[27] Here, the slope (8;) determines how steep the curve is and the constant (/)
shifts the curve left and right. The Maximum Likelihood Estimation or MLE is the
most prominent method for gauging the beta parameter, or coefficient, in this model.

2.2.2 Decision Tree

Amongst the Supervised Machine Learning algorithms, the Decision Tree stands
as a quintessential instance. Omne of the most prominent, efficient, and preferred
techniques for prediction and categorization is the decision tree Here, the data is
bifurcated in a continual manner following certain parameters. In Decision Trees,
the tree can be easily explained using two entities i.e. leaves and nodes. The struc-
ture of the decision tree resembles a flowchart. Here, every leaf constitutes the class
label or node, every internal node stands for a test on an attribute and every branch
signifies an output of the test result.

Building a Decision Tree: A decision tree is created by repeatedly dividing a
dataset into smaller subsets based on a chosen feature, using a process called recur-
sive partitioning. The goal is to find the feature and split point that results in the
greatest information gain. The process continues until a stopping criterion is met,
such as reaching a maximum depth or a minimum number of samples per leaf node.
The final result is a tree structure where each internal node represents a feature and
a threshold, and each leaf node represents a prediction. Decision tree building is
useful for exploratory knowledge discovery and can handle high-dimensional data.
Additionally, decision tree classifiers are often accurate and efficient. This method
can also be used to approximate a sine curve by using a series of decision rules.
When the tree is deep, the decision criteria become more complex and the model is
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Fig 2.3: Decision Tree Regression, [32]

more accurate. Decision Tree Regression is similar to Decision Tree Classifier, where
a binary tree is used until a pure leaf node is reached. figure 2.3 is an example of
Decision Tree regression. A higher value of variance denotes higher impurity. The
decision tree results in a sine wave of the points that adhere the most to the best
condition.

2.2.3 Random Forest Classifier

Random Forest is a method of machine learning that involves utilizing a group of
decision trees for forecasting. The method constructs multiple trees during the train-
ing period and returns the predicted class or average prediction from each tree. The
randomness is introduced by randomly selecting a subset of features and data for
each tree, making the model more robust and less likely to overfit when compared
to a single decision tree. As we can see in figure 2.4, the Random Forest algorithm
generates various decision trees and combines their predictions to produce a more
precise final prediction.

Predict 1 Predict 0 Predict 1

Predict 1 Predict 1 Predict 0

== = m
3E% 2ER AR

Tally: Six 1s and Three 0s
Prediction: 1

Fig 2.4: Random Forest Classifier, [22]

The working process of a Random Forest is as follows: A random subset of data is

10



selected from the training set to create multiple decision trees. A decision tree is
built for each subset of data. At every decision node of each tree, a random subset
of features is chosen to determine the best split. The process of building decision
trees continues until the tree is fully grown or a stopping criterion is met. For a new
data point, each decision tree makes a prediction, and the final prediction is made
by taking the majority vote in case of classification or mean in case of regression of
all the predictions. Random Forest is known for its robustness and less over-fitting
problem in comparison to decision tree because of the randomness in selecting the
subset of data and features, and by combining the predictions of multiple decision
trees which reduces the chances of over-fitting. [22]

Randomness in feature selection — When creating a decision tree, a node is split
by evaluating all available features and choosing the one that creates the largest sep-
aration between the observations in the left and right nodes. In contrast, a random
forest uses a different approach where each tree in the forest can only consider a
random subset of the features. This results in less correlation between the trees and
more diversity, which ultimately leads to a more robust model.

In order for random forest to function properly,

e In order for models created utilizing those attributes to perform better than
guesswork, there must be some real signal in those features.

e Low correlations between the predictions (and thus the mistakes) of the sep-
arate trees are required.

Random Forest Random Forest
Tree 1 Tree 2

Decision Tree

Feature 2

Feature 3

Feature 4

Left Right Left Right Left Right
Node Node Node Node Node Node

Fig 2.5: Decision tree and Random Forest Classifier comparison, [22]

In figure 2.5, the typical decision tree (in blue) may choose from any of the four
attributes to choose how to split the node. Let’s walk through an example using
visuals. As it divides the data into groups that are as distinct as possible, it chooses
to use Feature 1 (black and underlined).

In random forest, when we examine Random Forest Tree 1, we see that it can
only take into account the randomly chosen Features 2 and 3. The optimal feature

for splitting, according to our conventional decision tree (in blue), is feature 1, but

11



because Tree 1 cannot see feature 1, it must choose feature 2. (black and underlined).
In contrast, Tree 2 can only view Features 1 and 3, hence it is able to pick feature
1.

Training
Sample

Training
Sample
il
Decmcn DECISIOH
T| ee T| ee

Training
Sample

l

Training Set

Decision
Tree

v

Test Set

Fig 2.6: Random Forest Classifier Training and Testing, [22]

It can be summarized into four stages:
e Select random samples from the specified dataset.

e For each sample, make a decision tree and then examine the predictions it
yields.

e Vote for each anticipated result. Shown in figure 2.6.
e The result with the most votes should be the final prediction.

The random forest has many benefits, one of which is its ability to be applied to
a wide range of tasks. It can be easily visualized to show the importance of each
feature, and it can be used for both classification and regression problems

2.2.4 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a supervised machine learning technique that can be
used for classification as well as regression. The KNN method works by locating the
k nearest data points in the feature space and predicting the output based on the
majority class or average of the nearest points.

The algorithm begins with an input (or query) and its associated output. The input-
output pair is subsequently saved in a data structure known as the training set by
the algorithm. When a new input is received, the algorithm computes the distance
between it and all of the points in the training set. The k-nearest neighbors are the
k points in the training set that is closest to the new input.

A classification problem in K-Nearest Neighbors (KNN) is a type of machine learn-

ing problem where the objective is to assign a class label to a new, unknown data
point based on its attributes. The KNN algorithm locates the k-nearest neighbors

12



in the training set using the features of the new data point and then assigns the
class label that is most prevalent among the k-nearest neighbors to the new data
point.

In contrast, a regression problem in K-Nearest Neighbors (KNN) involves forecasting
a continuous numerical value for a brand-new, unobserved data point based on its
attributes. KNN forecasts the numerical value as the average of the output values of
the k-nearest neighbors after using the features of the new data point to determine
the k-nearest neighbors in the training set.

New data

.
s % o L
L
L LI

ClassA

L
Class B «

Fig 2.7: KNN clustering

The K-Nearest Neighbors (KNN) algorithm uses the distance metric to determine
how far a new input is from the training set’s points. The KNN algorithm’s per-
formance can be significantly impacted by the distance metric that is selected. In
KNN, a few of the most popular distance measurements include:

Euclidean Distance: This is the most widely used distance metric in KNN. It is

defined as the square root of the sum of the squares of the differences between the
coordinates of two points. It is applicable to both continuous and categorical data.

d(p.q) =

Manhattan Distance: The Manhattan distance—also referred to as the ”taxi
cab” distance—is determined as the total of the absolute differences between the
coordinates of two places. It is frequently applied to data including categorical
variables or when all of the qualities have the same unit.

d(p,q) = Z (¢ — ps) (2.3)

Minkowski Distance The p-th root of the sum of the absolute differences raised
to the power of p is what is meant by the term ”Minkowski distance,” which is a
generalization of the terms ”Euclidean distance” and ”"Manhattan distance.” It is
advantageous when certain qualities have various scales or units.
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d(z,y) =) (Jw: —wl)")? (2.4)
i=1
Cosine Similarity : This is a distance metric that is commonly used when working
with text data, it measures the cosine of the angle between two vectors.

Cos (v, y) = x -y = [|=]| * ||y]| (2.5)

The K-Nearest Neighbors (KNN) algorithm has several hyperparameters that can be
adjusted to optimize its performance, such as the number of nearest neighbors (K),
the distance metric, the weighting scheme, the algorithm used to find the k-nearest
neighbors and the data preprocessing step. The optimal value of the hyperparam-
eters can be found through techniques such as GridSearchCV, and Randomized-
SearchCV, and by using k-fold cross-validation.

2.3 eXplainable Artificial Intelligence (XAI)

2.3.1 Black-Box Model

A black-box model is a machine-learning model that is not easily interpretable by
humans. The model’s input-output relationship can be observed, but the internal
workings and decision-making process are not transparent. This makes it hard or
impossible to understand how the model arrives at its predictions or identify and
correct errors. Black-box models include deep neural networks, random forests, and
support vector machines with complex kernels. They are highly accurate and power-
ful but their lack of interpretability makes them unsuitable for certain fields such as
healthcare, finance, and other areas where interpretability is crucial. On the other
hand, white-box models are models whose internal workings can be easily under-
stood and explained by humans. Examples of white-box models include decision
trees, linear regression, and Naive Bayes.[28]

2.3.2 LIME & SHAP

Both LIME (Local Interpretable Model-Agnostic Explanations) and SHAP (SHap-
ley Additive exPlanations) are methods used to interpret and understand how the
individual features of input data contribute to a model’s prediction. LIME approxi-
mates the model locally to a specific prediction and then uses a simple interpretable
model to explain it. It’s particularly useful for models that are complex, opaque,
and hard to interpret. On the other hand, SHAP uses a game theoretical method
called Shapley values to explain the output of any model by assigning a unique
contribution score to each feature and considering the interaction of all features.
It calculates the expected value of feature importance over all possible coalitions
of features. Both LIME and SHAP are used to increase the transparency and in-
terpretability of a machine learning model which leads to better-informed decisions
based on its predictions and builds trust in the model.[29]
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2.3.3 Limitations of LIME

LIME is a useful method for explaining the predictions of machine learning models,
but it has certain limitations that should be considered. Firstly, the approximated
model generated by LIME may not be representative of the global behavior of the
original model, which can lead to inaccuracies in the explanation. Secondly, the
choice of interpretable model used in LIME can affect the outcome, and also the
results can be sensitive to the choice of parameters for this model. Thirdly, LIME
can be computationally expensive, particularly when working with large datasets
and complex models. Moreover, LIME doesn’t take into account the interaction
between features, which may lead to less accurate feature importance. Along with
that, LIME is less effective for image, text, and sequential data, where the global
structure of the data is important. Finally, LIME is less effective for models that
are already interpretable such as linear models or decision trees.

In conclusion, LIME is a powerful tool, but it should be used with care and in
combination with other interpretability techniques to provide a more complete un-
derstanding of a model’s behavior. [§]

2.3.4 Limitations of SHAP

SHAP is a useful method for explaining the predictions of machine learning mod-
els, but it has certain limitations that should be considered. Firstly, SHAP can
be computationally intensive, particularly when working with large datasets and
complex models. Secondly, SHAP relies on the assumption that feature interactions
are additive, which may not always be the case. Thirdly, the SHAP values are not
guaranteed to add up to the model’s output, which can make it hard to interpret the
overall importance of features. Fourthly, SHAP values can be difficult to interpret
for categorical variables, as they may not have a clear ordering. Additionally, SHAP
does not provide an easy way to compare explanations across different instances or
to compare different models. Along with that, SHAP is sensitive to the choice of
reference dataset used to calculate the feature importances. Finally, SHAP might
be less effective for models that are already interpretable such as linear models or
decision trees.

In conclusion, SHAP is a powerful tool, but it should be used with care and in
combination with other interpretability techniques to provide a more complete un-
derstanding of a model’s behavior. [16]

2.3.5 Why LIME instead of SHAP

We chose to use LIME in our research because it is better suited for explaining
the predictions of complex, non-linear models and large datasets. Additionally,
SHAP is more appropriate for linear models and is computationally more demanding
compared to LIME. This made LIME a more efficient choice for our research.
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Chapter 3

Dataset Description

3.1 The ToN-IoT Dataset

In order to gauge the effectiveness, efficiency, and fidelity of cybersecurity applica-
tions based on Artificial Intelligence oriented Deep Learning and ML algorithms,
a new generation of datasets was developed by Dr. Nour Moustafa, called the
TON_IoT Datasets, UNSW Research, n.d. [34]. The datasets are referred to as
"ToN IoT” since they comprise a variety of data sources including Ubuntu 18 and
14 Transport Layer Security and Network Traffic Datasets, Windows 10 and 7 oper-
ating system datasets, and telemetry datasets retrieved from IloT sensors and IoT
devices. The datasets were gathered from a large-scale, realistic network created at
the Australian Defense Force Academy’s IoT Labs Cyber Range, School of Engi-
neering and Information Technology (SEIT), UNSW Canberra (ADFA). The IoT
and Ilot networks which constitute the industrial 4.0 network have a new testbed
network. To supervise the connection between the three levels of Fog or Edge Sys-
tems and Cloud, [oT, the deployment of the testbed was done utilizing several VMs
(virtual machines) and hosts of Kali, Linux, and Windows Operating Systems. We
took decided to select the Windows 10 dataset as it had a lot of features and was
in addition a decent-sized dataset. The IoT and Linux datasets had more data as a
whole but they lacked a sufficient amount of features while the Windows 7 dataset
seemed irrelevant since a very low percentage of people use the Windows 7 operat-
ing system. After choosing the datasets we formulated a work plan to achieve the
highest accuracy and interpretability.

Windows Intrusion Detection:

The Performance Monitoring Tool was used to trace the utilization of several re-
sources like Memory, Disk, Ram, Processor, and Network of Windows 10 machines.
[31] The dataset we chose to work with was extremely rich, bearing more than 125
features and over 35,000 rows of data.

This dataset had a lot of features. In table 3.1 [18], we tried to showcase a few of
them:
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Table 3.1: Windows 10 Feature Description

ID | Feature Description
1 LogicalDisk Total The quantity of unused space on the storage device, expressed
Free_Megabytes in mega bytes.
This feature shows the amount of memory, measured in bytes,
currently being used by the part of the system’s virtual memory
9 Memory Pool Paged called the paged pool. The paged pool is used for storing objects
Resident Bytes that can be moved to disk when not in use. It should be
noted that this counter only displays the last
recorded value and is not an average.
3 Memory Committed Bytes The quantity of virtual memory that has been designated for use,
represented in terms of bytes.
This counter shows the amount of physical memory, measured in bytes,
4 Memory Standby Cache that is allocated to the core standby cache page lists. This memory is
Core Bytes used to store cached data and code that is not currently being used by
any processes, the system or the system cache.
This counter displays the amount of physical memory, measured in bytes,
Memory Standby Cache allocated to thg standby cache page lists of n.ormal priority. Th%s
5 Normal Priority Bytes memory contains cached data and code that is not Cur.rently being
used by processes, the system or the system cache. It is ready for
immediate use by a process or the system.
6 Memory Long-Term Average | Over a lengthy period, the average lifespan of the data in the standby
Standby Cache Lifetime (s) | cache is calculated.
This feature indicates the amount of physical memory, measured in bytes,
being used by the system file cache This cache stores frequently
7 Memory Cache Bytes used files for quick access. It should be noted that the counter only
displays the most recent recorded value and not an average.
Network_I This counter measures the rate at which data is being transmitted over
8 (Intel R _82574L_GNC) eac network adapter, including any additional data added for
Bytes Sent sec framing purposes.
This feature measures the speed at which a process is reading bytes
Process IO Read frorp input/f)utput operations. It tékes in‘to accognt a‘ll typfes of I/O
9 Bytes sec actions carried out by the process, including reading from files,
network, and devices. It gives a sense of how much input/output
operations are being performed by the process and at what rate.
This feature measures the rate of read and write I/O operations initiated
10 Process 10 Data by a process, including file, network and device I/Os, giving an
Operations_sec understanding of the number and frequency of the I/O operations
performed by the process.
This feature shows the amount of memory, measured in bytes, being used
by the nonpaged pool, which is a part of the system’s virtual memory
that stores objects that cannot be moved to disk and must stay in
Process_Pool . . .
11 Nonpaged Bytes physical memory as long as they are allocated. The calculation of this
: counter is different than that of the ”Process/Pool Nonpaged Bytes” so
the two might not be the same. It should be noted that this counter
only displays the last recorded value and is not an average.
12 Process_pct_ The portion of total execution time that process threads spent running
User_Time code in user mode.
. 1/0 operations to write data are being sent by the process. Including file,
13 Process.,IO,Wnte n/et‘work7 and device 1/Os, this feature tracks all I/O activity
Operations_sec
produced by the process.
Process 10 Read. Read I/0O operations are being sent.by the process. This feature
14 . records every file, network, and device I/O activity produced
Operations_sec
by the process.
15 label Marked records for normal and attacks, where 0 denotes normal and

1 denotes attacks.
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3.2 Preprocessing

The ToN IoT dataset was enormous and the data was unbalanced. There were null
values disguised as singular spaces, in addition to random unnecessary spaces before
and after a lot of the numerical entries. This made some of the columns in the
dataset a mixture of both string and numerical inputs. In order to run a tree-based
model, we first had to preprocess the dataset, so that the model could go through
the dataset without any issues and perform the computation.

3.2.1 Formating Data

The first order of business was to replace all the null values disguised as empty
strings and also get rid of all the trailing and leading spaces around the numerical
values. We noticed that the empty spaces for all the columns seemed to be in mul-
tiple columns and on the same rows. So we decided to remove those particular rows
entirely as the number of such rows was very small compared to the overall size of
the dataset.

Furthermore, the concatenated string and numerical values were dealt with by re-
moving the string values using the ‘apply map’ function with the help of the lambda
function. The resulting boolean data frame was then negated using the '~’ operator
and then used to index the original data frame, keeping only the rows where all cells
are not empty.

3.2.2 Feature Selection

Since there were a total of 127 columns, including the 'label’ of attack and the 'type’
of attack, it was imperative that we conduct feature selection before advancing fur-
ther. From the start, we removed the column which kept track of exactly ‘when’
the attack took place. Afterward, we plotted a feature importance bar chart for the
remaining features using the Random Forest Classifier model. Figure 3.2 shows the
results in the feature importance plot.
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Fig 3.2: Windows 10 all 125 feature importance rate
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From this huge feature importance map, we decided to keep around 30 features ac-
cording to their feature importance. We then plotted a heatmap to cross reference
as seen in figure 3.3.
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Fig 3.3: Windows 10 Heatmap with all the features
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From the heatmap, we realized there were some weakly correlated data to the ‘label’
column, which is our target variable.

To further narrow down our list of suitable features for our target variable, we plot-
ted to scatter plots for all the remaining columns to get a feel for the variance of the
data in each of the columns. From these scatter plots, we found that a lot of the

values in the feature columns are not evenly distributed and have quite a number of
outliers. Such a scatter plot is shown in figure 3.4.
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Fig 3.4: Feature 'Network_I(Intel R _82574L_GNC)TCP_APS’ Scatter Plot

The y-axis of the scatter plot denotes the value, while the x-axis is the row that a
particular value is in. The feature whose values resulted in this scatter plot is not
even remotely distributed equally in any range. Thus, features that have scatter
plots like this were dropped. While very few plots were perfect initially, a lot of the
features did give out plots that had consistent values at certain ranges. Such as in
figure 3.5.

This feature’s scatter plot had a high density of values from 0 to 2*¥10 8. Thus,
we took this feature, and others liked it and adjusted their range accordingly. The
above scatter plot with the new modified range is shown in figure 3.6.

After getting rid of all the high-variance columns and adjusting the range of the
relatively lower-variance columns, we were left with 14 feature columns. We then
plotted a feature importance bar chart using Random Forest Classifier to get the
final feature importance of our selected features. The chart and its corresponding
heatmap are shown in figure 3.6 and figure 3.8 respectively.
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Fig 3.7: Windows 10 Remaining Features
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Fig 3.8: Windows 10 Final Heatmap

After preprocessing was done, it was time to train our models. We used 15 folds(Stratified
Kfold) for our models across the board as it gave us the highest scores in the rela-
tively low time.

3.3 Feature Inference

From the features that were selected, it is clear that all the features except one are
host-based functions. Aside from the feature 'Network I(Intel[R] 82574L GNC)/Bytes
Sent/sec’ there are no other network-based features in the subset, the feature ba-
sically tells us how much data a particular network adapter is sending from the
device. The rest of the features are predominantly process and memory based with
one storage-related feature. But it is important to note that the network feature
does not have a negligible correlation compared to the rest of the model. So, from
this development, we can confirm that the detection being conducted here is a host-
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based detection as the features that are selected in accordance with the feature
importance bar chart are all within the system.
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Chapter 4

Experimental Methodology

4.1 Model Implementation

4.1.1 Tree-Based Models

Random Forests and Decision Trees are non-linear machine-learning models. They
are used for mainly three purposes, feature selection, regression, and classification.
In our research, we used Random forest to select the features using Feature Im-
portance and then performed classification using the RandomForestClassifier and
Decision Tree Classifier.

In a random forest, data instances are selected randomly from the data set and this
process is called bootstrapping. Furthermore, it uses several decision trees (similar
to “Forest”) to build a decision model and this process is known as the bagging
method.

The random forest classifier and the decision tree classifier have several parameters.
Depending on the dataset, the parameters vary. To determine the best parameters
for our use-case scenario, we used RandomizedSearchCV instead of GridSearchCV.
RandomizedSearchCV is superior to GridSearchCV for several reasons, one of which
is that it utilizes random sampling to select a subset of parameters for testing, which
is faster than testing all possible combinations as GridSearchCV does. Addition-
ally, RandomizedSearchCV allows for more exploration of the parameter space, and
it can handle continuous parameter distributions, whereas GridSearchCV can only
handle discrete values. Furthermore, RandomizedSearchCV can evaluate multiple
metrics simultaneously and return the best results based on the specified metric.

After running the engine we got the best parameters for the Decision Tree Classifier
and Random Forest Classifier respectively:

DecisionTreeClassifier (criterion= "gini’, max_depth= 5000, min_samples_leaf= &)

Random Forest Classifier ("bootstrap’: False, ’criterion’: ’entropy’, 'max_depth’: 3,
'max_features’: 2, 'min_samples_leaf’: 2, 'n_estimators” 10).

We ran our tree-based models with the aforementioned parameters and with default
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parameters. We also ran the model without scaling and with Standard Scaling.
Tree-based models typically do not necessitate feature scaling.

The decision tree algorithm aims to assign a target value to an item by mapping
its observations. The algorithm accomplishes this by repeatedly dividing the data
into smaller groups based on one or more input features. The ultimate goal is to
create groups or subsets that have similar target values. These division or parti-
tioning decisions are represented by the nodes in the tree, and each final group or
subset is represented by a leaf of the tree. It is crucial to pay attention to overfitting
when utilizing decision tree algorithms as it can happen when the tree is overly
complex with too many branches and leaves. Thus we have tweaked the parameters
to optimize the accuracy of the model. After running the model, the decision tree
algorithm gave us the following scores:

Accuracy of Decision Tree: 95.43%
F1Score of Decision Tree: 96.0%
AUC Score of Decision Tree: 95.31%

The key factors in determining the behavior of a random forest include the num-
ber of decision trees in the forest (n_estimators), how deep each tree can grow
(max_depth), the minimum number of samples required for a split to occur at in-
ternal nodes (min_samples_split), the minimum number of samples required for a
leaf node (min_samples_leaf), and the number of features to be taken into considera-
tion when finding the best split (max_features). Additionally, other parameters can
be set such as the method used to evaluate the quality of split and bootstrapping
options, among others. In a random forest, Gini impurity and entropy are both
ways to measure the impurity of a set of data. Gini impurity is a measure of how
often a randomly selected element would be mislabeled if it were randomly labeled
according to the class labels distribution, it can be calculated by subtracting the
sum of squares of the class probabilities from one. Entropy, on the other hand, is
a measure of uncertainty or disorder in a set of data, it’s calculated by summing
the product of the probability of each class and the algorithm of the probability of
that class. The decision tree algorithm uses one of these criteria to split the data
based on feature values. Generally, Gini impurity is used for binary classification
problems, and entropy is used for multi-class classification problems. However, in
practice, the choice of Gini impurity or entropy as a criterion for splitting in a de-
cision tree may not have a significant impact on performance, as other factors such
as the number of trees, max_depth, and max_features often have a greater effect on
the overall performance of the random forest.

We ran our Random Forest Model with the aforementioned parameters found from
running RandomizedSearchCV. We also ran the model without scaling. The Ran-
dom Forest algorithm typically does not necessitate feature scaling. The method
is based on building multiple decision trees and merging them to produce a final
prediction. Each decision tree is created independently, using a random subset of
the data and a random subset of the features. As the algorithm is not based on
distance measurements, it does not require scaling and can handle data with differ-
ent scales and units. However, in certain situations, it can be advantageous to scale
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the features before using them in a random forest. For example, if one feature has
a much larger scale than the others, it can overpower the split criterion and cause
overfitting. Scaling the features can prevent this from happening and make the
interpretation of feature importance more meaningful. The accuracy of our model
with parameters from the RandomizedSearchCV was:

Accuracy of RFC: 96.26%

F1Score of RFC: 96.77%
AUC Score of RFC: 95.92%

Figure 4.1 illustrates the learning curve for the models:
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fig: 4.1: Learning Curve of Decision Tree and Random Forest

4.1.2 Logistic Regression

We have tuned the parameters of the model in order to get the best results. The
parameters of Logistic regression contain ‘C’ which is the inverse of regularization
strength, ‘penalty’ which is the type of regularization and the ‘solver’ which is the
algorithm used for the optimization. Solvers such as ”Liblinear” is a decent option
for small datasets, whereas "sag” and "saga” are quicker for large datasets. The
‘Ibfgs’ solver also known as Limited memory Broyden Fletcher Goldfarb Shannois
solver, is used for the optimization. It uses ‘L.2” and ‘none’ penalties and is good for
unscaled datasets. Most of the parameters are set as default as they are optimal for
our dataset. The class weight is tweaked to “balanced” as the outcome feature of
the dataset has imbalance sets of 0’s and 1’s.

For training and splitting the model, we have used Stratified K-Fold cross-validation
as it is good for the distribution of the target variable. The features of the dataset
were selected using the feature importance map generated for the random forest clas-
sifier. We further scaled the features by observing the scatter plot and histogram
of the features. We have also implemented a min-max Scaler for normalizing the
independent variables. Since each variable will be on the same scale, it may be
possible to avoid having any one variable have a significant influence on the model.
By making it simpler for the optimizer to locate the global minimum of the cost
function, it also aids in enhancing the performance of the logistic regression model.
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We ran our model with and without min-max Scaler and found that the best results
are when the Scaler is used.

After training and testing our model, we found the accuracy, F'1 and Cross-Validation,
and AUC scores which are given below-

Accuracy of LR: 85.15%
f1_score of LR: 87.11%
AUC Score of LR: 84.69 %

LogisticRegression Learning Curve
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Fig 4.2: Learning Curve Of Logistic Regression

We have also plotted the learning curve of our model shown in figure 4.2 from which
we could perceive that as the model is initially trained on the data, the accuracy of
logistic regression often increases rapidly at the beginning of the learning curve. The
accuracy of the model often rises slowly as additional data is supplied and finally
approaches a level when the model performs at its peak on the provided dataset.
As we can see the training accuracy is very close to the validation accuracy at the
end of the training session.

4.1.3 K-Nearest Neighbors

Since the ToN-IoT dataset is classification-based, we preprocessed our dataset ac-
cording to the requirements. Stratified k-fold cross-validation was used to evaluate
the performance of the K-Nearest Neighbors (KNN) algorithm by dividing the data
into k partitions or ”folds” and training the algorithm k-1 of the folds while testing
the remaining one, this process is repeated k times. The results are then averaged
to get an overall measure of the algorithm’s performance.

To avoid data leakage, the dataset was scaled after verifying that the data used
for training and testing were appropriately separated, and techniques such as cross-
validation were employed to guarantee that the model was not overfitting. Data
leaking is a phenomenon that occurs when information from the test set is used
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to train a model, resulting in overfitting and models that cannot generalize well to
new, unknown data. It can occur when the data used for training and testing are
not adequately segregated, or when the model is not properly validated.

If all features are equal in importance but not on the same scale, they must be
normalized; otherwise, the features with the greatest magnitude will dominate the
overall euclidean distance unless we employ the Manhattan distance. Since distances
are measured in KNN| feature scaling is a must. We used MixMaxScaler which scales
the value between 0 and 1. Both MinMaxScaler and StandardScaler gave similar
results in this dataset so either one can be used.

The value of k is often determined through experimentation, and common distance
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Fig 4.3: Finding the exact value for k

metrics include Euclidean distance, Manhattan distance, and Minkowski distance.
The weighting schemes are uniform weighting and distance weighting, and the most
common algorithm used is the brute-force algorithm. Figure 4.3 shows the illustra-
tion of error rate vs K value.

K-Nearest Neighbour Learning Curve
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Fig 4.4: Learning Curve of KNN

The n_neighbor was set to 22 after detecting the best value using GridSearchCV. A
graph of the error rate was plotted which shows that as the value of k increases, the
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error rate goes down and after a certain point the values start oscillating between
a range. If the value of k is set from that range there might be a possibility that
the model might be overfitted and the accuracy will deteriorate. We chose the value
for which this model gives the best results. The distance was set as ‘Minkowski’ by
default and the value of p was chosen to be 1 considering Manhattan distance.

The accuracy came out to be:
Accuracy of KNN: 97.22%
f1_score of KNN: 97.6%

AUC Score of KNN: 96.9%

After this, we visualized the learning curve to assess the results shown in figure 4.4.
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Chapter 5

Result analysis

5.1 Scoring Metrics

The outcomes of our investigation are discussed in this chapter. Using the metrics
F1 score, accuracy, and AUC (Area Under the ROC Curve) score, we will compare
the classification methods.

The F1 score is a measure of accuracy that takes into account both recall and
precision in a confusion matrix. The proportion of true positives that our model
correctly identified may be calculated using a metric known as recall or sensitivity.
[6] Precision, on the other hand, is the quantitative measure of how close the actual
value is to the one that was anticipated. The function that establishes the F'1 Score
is a product of these two factors.

Precisi TruePositive (5 1)
recision = .
TruePositive + FalsePositive
TruePositi
Recall — ruePositive (5.2)

TruePositive + FalseNegative

F1Score — 2 x (Precision x Recall)

Precision + Recall

[25] Classification models may be compared against one another using a metric called
accuracy. It calculates a model’s accuracy rate or the proportion of its successful
predictions relative to the total number of forecasts. The equation used to determine
this is shown below.

TruePositives + TrueNegatives (5.4)

Accuracy =
4 Totalpredictions

A Receiver Operating Characteristics (ROC) curve is a graph that illustrates the
performance of a binary classifier as the threshold for classifying data points is
changed. The curve plots the true positive rate (TPR) against the false positive
rate (FPR) at various threshold values. [13] Another way to evaluate the perfor-
mance of a binary classifier is through the AUC (Area Under the Curve) score. This
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score is calculated by finding the area under the ROC curve at various threshold
settings. It is determined by plotting the TPR (sensitivity) against the FPR (1-
specificity) for different threshold values, and then finding the definite integral of
the TPR against the FPR.

In contrast to the summary information provided by measures of accuracy, the con-
fusion matrix displays the actual outcomes of the prediction. Specifically, it classifies
the outcomes as either True Positives (TP), True Negatives (TN), False Positives
(FP), or False Negatives (FN). There are two distinct types of errors that may hap-
pen [19].

1. An attack can be mispredicted as a non-attack (FN)
2. A non-attack can be mispredicted as an attack (FT)

If a false positive (FP) occurs in our data collection, where an attack that is not
happening is mistaken for happening, we would not be too affected. But it is very
risky for data if an attack is falsely anticipated as a non-attack. That is why it would
be helpful to get a count of how many times the two extremes of ”False positive”
and "False negative” occurred in the data. The following diagram illustrates the
many depictions of the various classes.

A learning curve essentially depicts how a machine learning model performs on a
dataset as the quantity of training instances grows. The model’s performance is
evaluated using this curve, which also explains how the amount of data and the
model’s capacity for learning relate to one another.[26]

5.2 Analysis Of Windows10 Dataset:

Decision Tree Confusion Matrix RandomForestClassifier Confusion Matrix
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Logistic Regression Confusion Matrix K-Nearest Neighbour Confusion Matrix
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Fig 5.01: Confusion Matrix result

The confusion matrix for the KNN, Random Forest, Decision Tree, and Logistic
Regression on the Windows 10 dataset are shown in Figure 5.01.

It’s conceivable that false negatives (missed intrusions) in an intrusion detection
dataset are perceived as more expensive than false positives (false alarms). Although
the algorithm predicted that the device had been attacked, the false positives show
that the device is not actually under attack. Therefore, even if the algorithm’s pre-
diction was incorrect, we won’t be negatively impacted by it. But it’s very risky if
an attack is falsely anticipated as a non-attack. The low amount of false negatives
also suggests that the algorithm will operate more accurately in the event of an
attack scenario. Therefore, it would be best to use the model with the lowest false
negative rate.

In the confusion matrix for the random forest, we can observe that out of a total of
414 non-attack records, 27 were incorrectly predicted as attacks (FP). Moreover, out
of a total of 549 attack records, 10 were incorrectly predicted as non-attacks (FN).
This method yields the fewest possible mistakes. When compared to the findings
from other methods, k-NN’s 4 false negative instances provide substantially good
accurate estimates too. However, k-NN would place some strain on the system;
there are a few more false positives; 21 to be exact. As a result, it can’t compete
with methods like random forest classifiers.

When compared to other classifiers, the decision tree’s accuracy is around average,
with about 27 false negatives and 23 false positives. When compared to other meth-
ods, logistic regression yields the least trustworthy results, with a high rate of false
negatives (66) and false positives (77) overall Logistic regression would put a heavy
load on the infrastructure.

It’s vital to keep in mind that having a low false negative rate is not the only ele-
ment to take into account; the model’s overall accuracy, precision, recall, and other
metrics like Fl-score, and AUC, should also be taken into account to evaluate the
model’s performance.
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Fig 5.02: All Scores

The resulting Accuracy, F1, and AUC scores from each method are shown in figure
5.02 in percentage form and in the table 5.03, allowing for easy comparison between
them. It appears that all four models have high accuracy and F1-score, which indi-
cates that all models are doing a good job of classifying the data. However, looking
at the numbers in the table, it’s clear that the K-Nearest Neighbor(KNN) algorithm
outperformed the other classifiers. The K-Nearest Neighbor(KNN) algorithm has
shown tremendous potential by exceeding all other methods on all three measures
of the matrix. It provides the highest accuracy and F1 scores among the models
given. The K-Nearest Neighbor(KNN) algorithm also has the highest AUC score
among the models.

Since the F1 score is a measure of a test’s correctness that takes into account both
the precision and the recall of the test, we will place more emphasis on the F1 score
than accuracy. It is precise and recalls harmonic mean. As a result, the lower pre-
cision or recall rating is given greater weight. This is helpful when precision and
recall need to be balanced, such as when the costs of false positives and false neg-

Table 5.03: Accuracy, F1-Score and AUC Score table

Windows 10 Accuracy | F1-Score | AUC
Random Forest 96.16 96.68 95.83
Decision Tree 94.81 95.43 94.76
k-Nearest-Neighbor | 97.22 97.6 96.9

Logistic Regression | 85.15 87.11 84.69
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atives are considerably different. Contrarily, accuracy only takes into account the
percentage of real outcomes (both true positives and true negatives) relative to the
overall number of cases.

In an intrusion detection dataset, having high accuracy and F1-score is important,
but also having a high AUC is crucial since it indicates that the model is doing a
good job in distinguishing between intrusion and non-intrusion cases. The capacity
of a model to distinguish between positive and negative classes is measured by the
AUC. It has a value between 0 and 1, with 1 designating a perfect classifier and 0.5
designating a random classifier. AUC is helpful when the cost of false positives and
false negatives fluctuate significantly, or when the class distribution is unbalanced.
It is a reliable indicator of model performance because it is unaffected by the thresh-
old that is used to translate predicted probability into class labels. AUC is another
tool for summarizing a classifier’s performance across all potential classification lev-
els. So, based on the information provided, Random Forest and k-Nearest-Neighbor
models might be a better choice for intrusion detection problems.

The performance of a binary classifier system as the discrimination threshold is
changed is depicted graphically by the ROC curve. The true positive rate (TPR)
against the false positive rate (FPR) at various threshold values are plotted on the
ROC curve.
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Fig 5.04: ROC curve of Decision tree and Random Forest

From Figure 5.05, we can see that the ROC curve of the K-Nearest Neighbor(KNN)
indicates that the classifier has a very high ability to distinguish between positive and
negative classes. In this case, the AUC of 0.969 for the K-Nearest Neighbor(KNN)
is very close to 1, which means that the classifier is able to correctly classify a high
proportion of positive and negative cases. The ROC curve is likely to be close to
the top-left corner of the plot, which represents a high true positive rate (TPR)
and a low false positive rate (FPR) at various threshold settings. It means that the
K-Nearest Neighbor(KNN) is able to identify most of the positive cases as positive
and most of the negative cases as negative. With the exception of Logistic regression

35



1.0 { —— windows 10 Ir (auc = 0.847) 104

0.8 4 0.8

o
o
.

0.6

e
ES

0.4

True Positive Rate —->
True Positive Rate —>

0.2 021

0.0 0.0 —— Windows 10 knn (auc = 0.969)

T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate > False Positive Rate -->

Fig 5.05: ROC curve of Logistic Regression and KNN

Classification, all of the models have produced a nearly ideal ROC curve. Again,
the best ROC curve was produced by K-Nearest Neighbor(KNN).

5.3 XAI Obeservations

We ran LIME on all our machine-learning models and then plotted the correlation
bar charts of 200 observations. It is important to note that LIME by default only
shows the 10 most correlated features per observation. The observations included
the actual value, the predicted value, and the residue. The residue was the difference
between the actual value and the predicted value. So, if the actual value was 1 and
the predicted value was 1, then the residue would be 0 and vice versa. Features that
are on the left (colored blue) are denying the prediction while features that are on
the right (colored orange) are approving the prediction.

We took a subset of observations and then looked at multiple instances for when
the model accurately predicted 1 and 0. Then we looked at the ten most correlated
feature correlations for those instances. We made sure to look at multiple instances
of correct observations and made sure to look out for any biased features(features
whose correlation changed little to none, even when the output has changed). Below
are some of the lime observations for each model.
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5.3.1 LIME (Decision Tree)
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Fig 5.06: Decision Tree 0 observation
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Fig 5.07: Decision Tree 1 observation

As we can see from above figure 5.06, the particular values of ’Memory Standby
Cache Core Bytes’, 'Process_10 Read Bytes_sec’, and 'Memory Committed Bytes’
are on the left side and in essence against the predicted value.

Whereas in figure 5.07, when it is 1, the same parameters are seen to be on the
left side or the positive side. This indicates that these parameters are positively
correlated to output 1.

5.3.2 LIME (Random Forest Classifier)
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Fig 5.08: Random Forest Classifier 0 observation
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LogicalDisk(_Total) Free Megabytes (166920.00)

Network_I(Intel R _82574L_GNC) Bytes Sent sec (7757.29)
Process_IO Data Operations_sec (22.80)

Memory Pool Paged Resident Bytes (114937856.00)

Memory Long-Term Average Standby Cache Lifetime (s) (4977.00)
Process_I0 Read_Operations_sec (13.60)

Memory Committed Bytes (3591086080.00)

Memory Standby Cache Core Bytes (176762880.00)

Process_Pool Nonpaged Bytes (3052576.00)

Process_pct_ User_Time (55.62)

Intercept I
I
I
[
|
|
|
| |
|

-0.4 -0.2 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Fig 5.09: Random Forest Classifier 1 observation

From the above Figure 5.08, we can see that when it is observed 0, the values of the
features 'LogicalDisk(_Total) Free Megabytes’, and 'Memory Committed Bytes’, are
some of the features that are on the left side, signifying they are against the predic-
tion while "Process_Pool Nonpaged Bytes’ can be observed to be for the prediction.

But in figure 5.09, when the observation is 1, both the features 'LogicalDisk(_Total)
Free Megabytes’, and ’Memory Committed Bytes” with their corresponding values
become highly skewed to the right and thus for the prediction. But, the feature
"Process_Pool Nonpaged Bytes’ can be observed to be still positive but with a much
lower correlation. Hence, it can be concluded that this feature has a slight bias.

5.3.3 LIME (KNearest Neighbour)
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Fig 5.10: KNN 0 observation
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Fig 5.11: KNN 1 observation

Similarly in figure 5.10, for the KNN model, we can see all the features except the
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feature "Process Pool NonPaged Bytes” with its corresponding value are all on the
left side of the prediction, indicating they are against the prediction.

But in figure 5.11, when the prediction is 1, it is important to note that some of
the features such as 'LogicalDisk(_Total) Free Megabytes’ are now on the right side,
further confirming that it is for the predicted output 1.

5.3.4 LIME (Logistic Regression)
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Fig 5.12: Logistic Regression 0 observation
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Fig 5.13: Logistic Regression 1 observation

Again in Figures 5.12 and 5.13, a similar trend of negative and positive correlations
can be seen for the model of logistic regression as well. But one thing to note is that
model has given a lot of weight to a feature 'Network I(Intel R 82574L, GNC)TCP
APS’, something all the other models have not done.

In summary, a complete picture of how each feature interacts with each model can
not be painted with an XAl such as LIME, as it can only interpret local observations.
But, some patterns among certain features can clearly be seen from the figures above.
It is important to note that LIME only displays the 10 most correlated features for
each observation. Hence, if some features were present when it was predicted to be
1, the same features will not always be present when observing the features when it
is predicted to be 0.
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Chapter 6

Conclusion

Machine Learning (ML) and Explainable Artificial Intelligence (XAI) are two crucial
fields of research that are shaping the future of technology. ML has the potential
to revolutionize various industries by providing highly accurate predictions and au-
tomating decision-making processes. However, the black-box nature of many ML
models can make them difficult to interpret and trust, which is where XAl comes in.
XAI aims to make ML models more transparent and accountable, which is crucial
in high-stakes applications such as healthcare, finance, and autonomous vehicles.
Achieving this goal is challenging, but ongoing research in XAl is making progress
in creating more interpretable and explainable ML models. Future research should
focus on developing methods that can balance interpretability, accuracy, and com-
plexity, as well as addressing privacy concerns and the potential for bias in ML
models.

In the paper we referred to [14], the Chi-square (Chi2) method was utilized for fea-
ture selection, and the Synthetic Minority Oversampling Technique (SMOTE) was
employed for class balancing. XGBoost was the most effective among all boosting
algorithms that were tested, achieving an accuracy rate of over 0.979. Due to the
class imbalance issue in ToN-IoT, an additional evaluation method was conducted
using the SMOTE technique. Both XGBoost and kNN achieved the best result with
an accuracy of 99%. On the other hand, we employed the in-built module of the Ran-
dom Forest classifier and after preprocessing, our data was no longer imbalanced, so
no class balancing techniques such as SMOTE were used. In our experimentation,
we discovered that KNN achieved superior results in terms of accuracy (97.22%),
F1 score (97.6%), and precision when compared to other models. Random Forest
was second-best, with results very similar to KNN, specifically 96.05% .

Our research findings align with previous studies, making it useful for comprehending
how intrusion happens in Windows 10 and providing a foundation for future versions
of both newer and older operating systems. We intend to improve the accuracy of
the models by adjusting the parameters further and aim for over 98% accuracy in
future works. After that, an intrusion detection system (IDS) could be created based
on our findings.
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