

EDGE DETECTION FOR MOBILE ROBOTS ON

LUNAR SURFACE AND SURROUNDINGS
CSE400: THESIS

SUBMITTED BY:

Mehtab Iqbal

ID: 08241001

Department of Computer Science and Engineering (CSE)

BRAC University

Dhaka, Bangladesh

ii

STUDENT:

MEHTAB IQBAL (08241001)

SUPERVISOR:

DR KHALILUR RAHMAN

iii

EDGE DETECTION FOR MOBILE ROBOTS IN

LUNAR SURFACE AND SURROUNDING
A THESIS BY:

Mehtab Iqbal

ID: 08241001

Bachelors in Computer Sciences (BSc) Program

The thesis is submitted to the Department of Computer Science and Engineering

(CSE), BRAC University, 66 Mohakhali, Dhaka 1212, Bangladesh, in partial

fulfillment of the requirements for the degree of:

BACHELOR IN COMPUTER SCIENCE (BSC)

Department of Computer Science and Engineering (CSE)

SUPERVISOR:

DR KHALILUR RAHMAN

Department of Computer Science and Engineering (CSE)

BRAC University

66 Mohakhali, Dhaka 1212

 Bangladesh

April 2012

iv

ACKNOWLEDGEMENT

I would like to thank my supervisor Dr. Khalilur Rahman for all the support and advice

through out this thesis.

Additionally I would like to thank the following people for their patience and faith in me

during my undergraduate program:

Professor Ziauddin Ahmed

Dr. Mumit Khan

Dr. Syed Salam

Dr. Manjur Karim

A special thanks to Dr. Peter M Cronin for his constant motivation.

Finally I would like to thank my family for all their support and Sumaiya Rahman for the

encouragement, inspiration and assistance.

v

TABLE OF CONTENTS

Acknowledgement .. iv

List of Figures .. vi

List of Algorithms .. vi

1. Abstract.. 1

2. Introduction .. 1

The Lunar Surface ... 2

3. Literature Review .. 5

4. Methodology .. 10

Our Process Flow .. 11

Additive Shadow Detection and Removal .. 12

 .. Error! Bookmark not defined.

Canny Edge Detector ... 13

5. Implementation ... 17

The Development Environment ... 17

Advantages of MATLAB ... 17

Disadvantages of MATLAB ... 18

Details of the Development Environment Unit............................ Error! Bookmark not defined.

Differences between C and MATLAB ... 18

6. Analysis ... 23

7. Discussion ... 27

Works Cited .. 28

Appendix .. 30

Literature Review Table .. 30

Codes .. 31

Canny Edge Implemented in MATLAB ... 31

Additive Shadow Removal Code in MATLAB .. 36

Script Used for Thesis Output and Comparison ... 37

vi

LIST OF FIGURES
Figure 1: Lunar Landscape ... 3

Figure 2: Derivatives of Intensity at an Edge .. 6

Figure 3: Common gradient operators of edge detection methods ... 7

Figure 4: Our Process Flow ... 11

Figure 5: Canny Edge Process Flow ... 16

Figure 6 .. 19

Figure 7: Shadow Mask ... 20

Figure 8: Canny Edge on Shadow Mask .. 20

Figure 9: Sobel Edges ... 21

Figure 10: Final Output ... 22

Figure 11 ... 24

Figure 12 ... 25

Figure 13 ... 25

Figure 14 ... 26

Figure 15 ... 26

LIST OF ALGORITHMS
Algorithm 1: Additive Shadow Removal .. Error! Bookmark not defined.

Algorithm 2: Canny Edge Operator .. 15

Algorithm 3: My Process Flow ... Error! Bookmark not defined.

file:///F:/Thesis%202012/Thesis%20Paper.docx%23_Toc321870079
file:///F:/Thesis%202012/Thesis%20Paper.docx%23_Toc321870082
file:///D:/Documents/Objective%20Literature%202326.docx%23_Toc321694226
file:///D:/Documents/Objective%20Literature%202326.docx%23_Toc321694227
file:///D:/Documents/Objective%20Literature%202326.docx%23_Toc321694228

1

1. ABSTRACT
The goal of this paper is to explore possibilities in devising a system that is able to detect

obstacles in a scene or situation where color variation is limited and environment is noisy, such

as that of the moon where there are many craters of different depths and rocks of various sizes

and shapes.

The research is premised upon the importance of space research and the dual problem of

manned missions to space finances and human survival. For space programs that involve

scouting or sample collection from planetary surfaces, it is cost-effective to make use of

autonomous or semi-autonomous robots. These robots need to overcome obstacles in lunar/

planetary surface without any hazard, such as falling over, being stuck and so on.

This paper will handle the methods and mechanism of the primary part of this system

(obstacle detection) using the moon surface as the destination. Existing algorithms for obstacle

detection dealing with edge and corner detection have been compared and modified to best

determine obstacles on the lunar surface. In particular shadow masking technique along with

edge detection has been used to discern shapes of ditches and mounds on the lunar surface.

2. INTRODUCTION
A visual system is a collection of devices that transform measurements of light into

information about spatial and material properties of a scene [2]. Humans view the three-

dimensional structure of the world with apparent ease [1], being able to discern shape and

translucency of objects, count and order objects and even identify emotions in people among

other aspects. Unfortunately, what humans and animals are able to perceive effortlessly,

computational mechanisms are error-prone in understanding even basic images [2]. Computer

vision is a discipline where research is ongoing to derive mathematical techniques that allow

computers to recover the three-dimensional shape and appearance of objects in imagery [1].

Imagery depends on three broad characteristics: a) the geometry of a scene, a change in the

shape of an object changes the image, b) the photometry (illumination and material properties

2

of an object), a skyline appears differently on a cloudy day to that of sunshine and, c) dynamics

of the environment [2]. Computer vision has explored different ways of perceiving these

characteristics to meet different ends. Simply put, artificial vision offers the potential of

relieving human of tasks that are dangerous, monotonous or unfeasible [2] such as, Optical

Character Recognition (OCR), motion capture (mocap), surveillance, face detection, visual

authentication etc. In recent times, vision-guided helicopters and aircrafts can, nowadays, take

off, fly and land.

The problem we are addressing in this paper is that of using computer vision to identify

paths for an autonomous robot to traverse through a path on a lunar surface using shadow

detection and edge detection mechanism. The robot will have a camera to capture the moon’s

surrounding and by processing those images, decide whether it is possible to move ahead on the

rocky surface or turn to avoid the hill. Although the aim is to identify or create a system, more

emphasis is placed on comparing, analyzing and combining existing methods or systems.

THE LUNAR SURFACE
The Moon is a little over one-fourth the diameter of Earth and contains less than one-

eightieth of its mass [18]. While Earth’s mountains are built by gradual sliding of one tectonic

plate over another or by volcanic eruptions, the Moon’s mountains result from the impact of

asteroids. The Moon’s landscape is made up of craters, lunar maria and bays, wrinkled ridges,

rilles and domes. Unlike Earth, the Moon has no atmosphere or surface activity that is able to

erase impact of asteroids, meteors or comets.

The craters are essentially impact sites, huge shallow holes dug on the lunar surface by

asteroids, meteoroids or comets. On the other hand, the lunar maria represent the dark

somewhat circular areas that are visible to the naked eye and are in fact, large craters covered

in lava (Figure 1: Lunar Landscape) range from small ditches to giant basins spanning hundreds

of kilometers[18]. The lunar rilles are mostly less than 2 km wide and are essentially long,

narrow valleys and gorges that crisscross the maria. In addition, the Moon has sixteen major

3

mountain ranges and large number of isolated peaks. Wrinkled ridges are the largest of the

Moon’s tectonic features and appear around the lunar maria.

Distortions to vision on the Moon are caused by the closeness of the lunar horizons and its

extreme curvature [18]. If a crater is large enough, its walls may be over the horizon – that is,

anyone standing in the center of a crater would not be able to see the towering walls around

him or her. The shorter diameter of the Moon produces the fore-shortening effect. Features

close to the North or South Pole of the Moon appear squashed in the north-south direction,

explaining why certain craters and maria appears elliptical [18].

The Moon receives all its light from the Sun. While the surface of the Moon cannot create its

own light, it can reflect light from the points where sunlight reaches it. At any given time, the

Moon is five hundred thousand times fainter than the Sun. Some features of the Moon that need

bearing for this paper [7]1:

1 The paper determines the features as the aspects that make it difficult to map impact craters. The
features were improvised for the lunar landscape.

Figure 1: Lunar Landscape

4

a) The “visibility” of impact craters in optical images depends principally on the

interaction between the illumination and incidence (view) direction, surface scattering

behavior and the atmospheric state.

b) Some geographical features such as small volcanic constructs or valleys have similar

morphological characteristics as craters.

c) Impact craters are often concentrated into clusters resulting in overlap, and in larger

craters multi-ring structures frequently occur. This means that the separation of

individual craters from their background can be very difficult to generalize.

5

3. LITERATURE REVIEW
Several methods to detect objects automatically have been developed but the inherent

limitations of imagery data and variety of objects make the task difficult [12]. Automatic

identification of objects or obstacles are often required in determining if any obstacle in a given

space hinders free and safe travel by an autonomous vehicle [14]. Some commonly used

methods of obstacle detection are: a) edge detection, b) shadow detection, c) corner detection

and d) image segmentation. Singh [14] categorized a good obstacle detection system as one

containing the following features:

 able to detect obstacle in a given space within an appropriate time,

 identifying the correct obstacles, and

 identifying and ignoring ground features that may otherwise be mistaken as

obstacles

Obstacle detection occurs in two steps. First, edge detection is performed, which is the

fundamental of low-level image processing, and the resultant usable set of edges are then used

for higher level processing required for segmentation of the objects in a scene [1].

“An edge detector can be defined as a mathematical operator that responds to the spatial

change and discontinuities in a gray-level (luminance) of a pixel set in an image[1]. An edge is

indicated by abrupt changes within an image that shows characteristic features and thus can be

categorized as a set of pixels whose surrounding intensity follows a continuous variation [11].

Edge-dividing areas in the lunar landscape can have very similar properties such as when

considering craters; but also have different aspects to it, for instance, when rilles run along a

crater, thus having too many rapid variations. Although edge detection may vary based on

output requirement, they share the need for precise edge information [1] to determine the

closed area between objects that edges bind [18].

Different Edge detectors work better under different conditions, and thus it can be surmised

that there is no one algorithm which can perform best under all circumstances [11].Boolean

function based edge detectors produce thick edges in its output and thus, are problematic in

6

images with finer details [11].On the other hand, Marr-Hildreth cannot distinguish between

weak and strong edges since it has only one threshold operator [11]. The Canny edge detector

does not perform well for heavily textured backgrounds as it draws the textures as edges [12].

The quality of edges discerned by any algorithm is dependent on the quality of image,

surface properties, [4], lighting conditions, objects with similar intensities, edge density in the

scene and noise [11]. There are algorithms to overcome specific limitations by adjusting certain

values and approximating thresholds. A very common property taken into consideration during

edge detection is the intensity variation within an image. Figure 2: Derivatives of Intensity at

an Edgeshows the relationship between the intensity variation and existence of an edge [12].

Figure 2: Derivatives of Intensity at an Edge

Edge detection methods are mainly as follows:

a) Use of Gradient Operator: The Sobel, Prewitt and Roberts [13] methods uses derivatives

on an intensity map to calculate the maximum change in the gradient at an edge [12]. Figure 3

show the common gradient operators used by these methods.

7

Figure 3: Common gradient operators of edge detection methods

All the above methods are both susceptible to noise and in case of homogeneous intensity

distribution, are inaccurate.

b) Use of Optimum Operator: The Marr-Hildreth Edge Detector uses a Gaussian smoothing

followed by the application of a rotation invariant Laplacian,

 to evaluate the

gradient change and then denote changes that is within a specific threshold as an edge [11]. This

provides more accurate results than the previous mentioned algorithms and thus was a widely

acclaimed edge detection method.

Canny [5] modelled edge detection as a signal processing problem [18] theorized that it

should satisfy a)signal to noise ratio (SNR) criterion, b)location accuracy criterion and c)single-

edge response criterion. He improved on the Marr-Hildreth edge detector by making

modifications to the final processing of the image by introducing a low and high threshold

instead of a single threshold.

Nadernejad, Sharifzadeh, &Hassanpour [11] found some good distinction between the

abilities of various edge detections by comparing the Canny edge detector, Marr-Hildreth edge

detector, Local Threshold and Boolean Function Based edge detector and Color edge detector

8

using Canny operator. Canny edge detector outperformed all the rest on a variety of sample

images. Boolean function based edge detection is comparable in terms of its results but Canny

edge’s characteristic single pixel outline makes it a more desirable choice. One interesting fact to

note, the Color Canny edge detector seemed to be a good candidate because of its access to more

information (three color channel instead of a single intensity map), however combining the

three channels post processing proved to be a challenge. The vector angle/Euclidean distance

perform poorly under inconsistent illumination and the Multi-Flash edge detector failed on

outdoor images [11].

Furthermore, Canny edge is susceptible to picking up noise and unwanted features on a

rough terrain. Agaian, Almuntashri, & Papagiannakis [1] came up with a modified Canny edge

detector which uses a smoothing and gradient kernel matrices to detect edges from images of

Asphalt Concrete. Their version seemed to work well on images which did not have noise

artifacts and produced remarkable results.. However, their kernel matrices were of fixed sizes

and proved to be a problem in case of edges that was much larger than the kernel dimension

and thus requires manual tweaking.

Other than noisy backgrounds and textured terrain, edge detectors also face an issue in case

of shadows. In case of a lot of distinct shadows in an image, edge detectors such as Canny tend

to draw their edges. This is however undesirable, since it cuts down on movable space in case of

an autonomous vehicles. Recent researches have delved deep into addressing this problem and

worked on another augmented image processing phenomena for detecting shadows [8].

Shadow detection is usually done to remove the shadows from the images before further

image processing techniques such as edge detection is applied on them [3]. There are more

usages of shadows such calculating the homography of an image in order to do depth mapping

and other processing based on multi-image systems [12].

Guo, Dai and Hoiem [6] have used a method of estimating fractional shadow coefficient

using color matting. Their “pairwise” method gave better result than using simple appearance-

based model. Also the application of soft matting allowed them to restore the image without

9

shadow with sufficient accuracy. Their only problem was that the method relied on

segmentation which in case of certain illumination tend to group soft shadow regions with non-

shadow regions causing a problem in the presence of orientation discontinuities such as a

building or a wall [6].

Another way of looking at shadows can be through modeling energy [8]. Images with

colorful backgrounds can be accounted for by increasing the energy intensity at the shadow

points by the mean energy level on the image. This method allowed for the removal of large

percentage of foreground shaded colors without losing pertinent image data.

Finally a simpler yet faster method of shadow removal using statistical analysis of intensity

distribution within an image was introduced in 2011 by Blajovici, Kiss, Bonus, & Varga [3]. Even

though, their method is similar to that of modelling energy function, they used three separate

channels of color to model a high light region and a low light (shadow) region. Once the gray

median is calculated from the high and low point of illumination a difference can be obtained.

The difference between the high and the low intensity of lighting is then added to the shadow

region thus removing the low points of illumination in the image [3].

Taking into consideration the results of Canny edge and the improved Canny detector

applied on the Asphalt Concrete images [1], it promises to be a good algorithm to try and detect

obstacles on the lunar surface. Additionally since the lunar surface is highly textured due to

craters with low and ambient illumination, we would like to try methods of shadow removal

before using the Canny edge detector. Since Sobel is a gradient based operator [18] it tends to

pick up texture noise without much accuracy and thus forming weak edges. We would like to try

using that relation to try and reduce the texture noise from our final output image.

10

4. METHODOLOGY
In this project we segregated lunar obstacles to be of two different types – holes and rocks.

In order to detect the aforementioned obstacles we have theorized that holes or craters are

lowest intensity points in the image intensity map while the rocks or mounds contain the

highest intensity points at the peak.

Using several edge detection methods have lead us to the conclusion that Canny Edge

detector gives the optimal result. However, due to the sensitivity and accuracy of Canny edge it

tends to perform undesirably on lunar surfaces. Lunar surface is anything but homogenous or

smooth and Canny edge tends to outline every detail on the terrain. Furthermore it is possible

to reduce the texture noise by tweaking the upper and lower threshold of the Canny operator

but that poses an inconvenience to the autonomy of a machine.

Another challenge faced by Canny algorithm is the presence of shadows on the scene. With

so many dunes and rilles, the entire surface is pock marked with shadows. We decided to either

remove the shadow altogether or use a technique to try ignoring the shadows. However, the

latter risks avoiding the ditches and craters when outlining the edges.

By using an Additive Shadow Removal model [3] we thought it might help us in determining

a shadow coefficient and also to figure out the difference between the high and low points in the

image. This seems to be a useful technique in order to eliminate ground level shadows and

retain those inside the craters.

Once we manage to estimate the mean gray level in an image we can easily apply a shadow

mask and run the Canny Operator on the resultant. Finally we used the noisy edge obtained

from the Sobel algorithm to perform an intersection to remove all weak edges that appear to be

disjointed from any strong edges in our Canny result.

The entire process flow is outlined in Figure 4 below and Algorithm 1 details the steps used

to achieve our results.

11

OUR PROCESS FLOW

Canny Edge algorithm and an Additive Shadow detection algorithm were used

extensively for our algorithm. The aforementioned algorithms are outlined below.

1. compute Sobel edges from image I and store in J

2. extract shadow mask from I using additiveShadowRemoval(I)and store

in K

3. extract Canny edge from the K and store in E

4. compare edges in J and E

5. if weak edge in J

then remove edge from E

6. return E

Algorithm 1: Shadow Mask Canny Edge Detector

Image Shadow Mask

Sobel Operator
Canny Edge

Detection

Intersect Canny & Sobel

Figure 4: Our Process Flow

12

ADDITIVE SHADOW DETECTION AND REMOVAL
Blajovici, Kiss, Bonus, & Varga [3], described the use of direct and ambient light present in

an image to detect shadows. Shadows are part of the image where the direct light is occluded to

some degree. According to them the shadow model can be defined as,

 ()

where, represents each pixel in RGB image, is the direct light and is the

environment light. represents the surface reflectance, is the angle of direct light against

the normal to the incident plane; denotes the attenuation factor;

 if then is a spotlight region

if then is in the shadow region

The shadow coefficient is given by:

 ()

The ratio between direct and environment light is defined as:

Thus based on the above criteria modeling, relighting the shadow region is done through the

following equation:

Algorithm 2: Additive Shadow Removal

1. Convert the image to grayscale to compute a mask from the global gray

threshold.

2. S = shadow matrix determined by the gray mask

3. L = light matrix determined by 1 – gray mask

4. Total Shadow = sum of 𝑆𝑖

5. Total Light = sum of 𝐿𝑖

6. Compute Mean Shadow coefficient for each (red, green and blue) channel

7. Computer Mean Light coefficient for each (red, green and blue) channel

8. Calculate the intensity difference for each (red, green and blue) channel

by subtracting Mean Shadow coefficient from the Mean Light coefficient

9. Add the intensity difference to the image 𝑙𝑖 with a convolved smoothing

mask

13

CANNY EDGE DETECTOR
Canny uses an optimum operator for its edge detection technique [18] and utilizes a Gray

Scale image as an intensity matrix.

 () [

 () () ()
 () () ()

 () () ()

]

The elements in the matrix correspond to each pixel and () denote brightness value

within a range of 0(black) to 255(white) [Zhou].

John Canny [5] devised a signal processing problem in order to solve the edge detection

problem [11] by setting up three criteria corresponding to the characteristics he defined [18]:

a) Signal to noise ratio: to avoid true negative and false positive edge detection.

 ||
∫ () ()

√∫

()

||

where, () is the filter impulse response of the edge , ()is the edge function and

 is the root mean square of Gaussian noise.

b) Location accuracy: marked edges should be within an expected threshold of the actual

edge.

 ||
∫ () ()

√∫ (())

||

The mathematical expression shows the proximity between a drawn edge and the actual

edge, thus the higher the value of Loc, the better the result is.

c) Single-edge response: the edge output should be a line no more than a single pixel thick.

This was modeled by Canny in the following equation:

14

 () () [
∫ (())

∫

()

]

This criterion ensures there is one response to the single edge.

A Gaussian filter is used on the gray-scale image to smooth the image [11][17] and remove

noise. The first order Gaussian function is defined as [Agaian]:

 ()

(

)

Gradient vector is given by:

 [
 ⁄

 ⁄]

 (

) (

) () ()

 (

) (

) () ()

The Gaussian kernel is denoted by and is used for the smoothing filter. The kernel can be

tweaked manually for different situation to increase or decrease the level of blurring required.

Canny edge algorithm calculates the gradient magnitude and direction once the points are

smoothed. The first order partial derivatives of the two directions of point ()are

 ()
 () () () ()

 ()
 () () () ()

The gradient magnitude and direction of the point () are:

 () √
 ()

 ()

 ()
 ()

 ()

Where, () is the strength of the edge and () is the direction of the gradient at the

point.

15

The final step before applying the Canny operator is the Non-maxima Suppression on the

gradient magnitude (). All points along the gradient matrix are compared along a 2x2

neighborhood around the center () along the direction of (). If () is the maximum point

in the neighborhood, it is marked as an edge, otherwise it is suppressed.

Ultimately the Dual Threshold that characterizes the Canny operator termed as the

“hysteresis” is carried out [18][11]. The algorithm is outlined as follows:

The complete Canny edge detector algorithm is outlined in Error! Reference source not

found..

Set 𝑇 ;

Set 𝑇𝑙;

if (𝑀(𝑖 𝑗)>𝑇)

 Set (𝑖 𝑗) as edge

if (𝑀(𝑖 𝑗)< 𝑇𝑙)

 Set (𝑖 𝑗) as non-edge

if (𝑀(𝑖 𝑗)<𝑇 &𝑀(𝑖 𝑗)> 𝑇𝑙)

if ((𝑖 𝑗) is edge | (𝑖 𝑗) is edge | (𝑖 𝑗) is edge | (𝑖 𝑗) is edge

| (𝑖 𝑗) is edge | (𝑖 𝑗) is edge | (𝑖 𝑗) is edge | (𝑖 𝑗) is edge)

 Set (𝑖 𝑗) 𝑎𝑠 𝑒𝑑𝑔𝑒

 else

 set (𝑖 𝑗) as non edge

Algorithm 3: Canny Edge Operator

16

Figure 5: Canny Edge Process Flow

17

5. IMPLEMENTATION
Originally we toyed with the OpenCV library, which has a collection of very powerful image

processing functionalities. However MATLAB also provided a good set of tools known as the

“Image Processing Tools” which sufficed for our purpose. Furthermore, MATLAB has some built

in image loading capabilities allowing for easy and fast loading and manipulation of images.

MATLAB’s “imread()” function reads images of many common formats and stores them in a

2x2 pixel matrix for each color channel. This functionality enabled us to get right to the image

processing work without having to develop pre-processing methods for our images.

We used fairly modest hardware to perform our processing and even the worst case brute

force methods turned out to take no longer than a few minutes.

Language: MATLAB & MATLAB Image Processing Tools

Hardware:

Processor: Inter Core i3 M350 @ 2.27GHz x 2 (64-bit Processor)

RAM: 8.00 GB at 1333MHz

THE DEVELOPMENT ENVIRONMENT
The development environment holds important bearing to the implementation of a system

and may even alter the required output. In choosing the environment for this paper, we

considered C and MATLAB. These tools can handle similar problems and MATLAB can even be

interfaced with C. However, due to the complex nature of images required and the inability of

the programming language to efficiently handle complex matrix manipulations – MATLAB was

used. In addition, MATLAB also sports some inbuilt functions that make easier and less time

consuming to implement certain features.

ADVANTAGES OF MATLAB
i. As an interpreted language, MATLAB allows the programmer greater flexibility in

terms of coding and updating data while the program is in execution.

ii. It is a functional-based language, making it easier to develop and document

programs in.

18

iii. The system operates on matrices rather than scalar quantities, implying many

mathematical operations and being especially useful for image processing.

iv. It does not require variable type and size determination before usage.

v. With built in features, it allows programmer to perform calculations and receive

visual results.

vi. MATLAB allows use of undefined values, such as division by zero. For image

processing where features such as gradient of vertical lines tend to be undefined,

this is a very important feature.

DISADVANTAGES OF MATLAB
i. C allows codes that are more efficient than MATLAB in many areas, especially

compared to use of some embedded features of MATLAB.

ii. Unlike C, MATLAB can be slow with slight inefficiencies in programming.

iii. With undeclared variables, chances of programmers making errors increases.

DIFFERENCES BETWEEN C AND MATLAB
Some reasons considered in selecting MATLAB over C for the project are given below:

i. Although C presents greater time-efficiency, MATLAB is preferred during

development.

ii. Without the need for declaring variables in advance, MATLAB allows for fast coding.

iii. MATLAB does not have restrictions on data structures unlike C, and can perform

certain array calculations using pre-defined commands.

iv. MATLAB has in-built functions and libraries for reference that is more reliable than

the many available libraries of C.

SHADOW MASKED CANNY PROCESS
Figure 6 to Figure 10 shows the full process flow output at every step. Figure 6 shows an

image of a lunar surface. Once the image is converted to gray scale to generate the intensity

19

map, the average global gray value of the image was calculated to compute out the shadow

mask.

Figure 6

Once the shadow mask was calculate are able to easily computer the Canny edge of the

binary image. This helps reduce noise in the environment by averaging the subtle texture

variation out of the image. Once the threshold is applied to the gray scale image to form a

binary map, the middle gray values are lost to either black or white as shown in Figure 7.

20

Figure 7: Shadow Mask

The resulting Canny edge is much cleaner due to the lost texture. However, some small

granularities remain on the image as we can see in Figure 8. This is then compared with the

Sobel edges of the original image (Figure 9).

Figure 8: Canny Edge on Shadow Mask

21

During the comparison we check for weak edges. Every weak edge in the Sobel output is

removed from the output shown in Figure 8.

Figure 9: Sobel Edges

Figure 10 shows the final output of our process. It can be seen that the noise is

considerably less and the edges are very well defined for every single crater on the image

presented in Figure 6.

22

Figure 10: Final Output

23

6. ANALYSIS
We compared our results with three other edge detection algorithms. Canny edge

algorithm and Marr-Hildreth Lagrange of Gaussian [11] are optimum edge detection

algorithm [18] that was used in our comparison. Additionally Sobel edge detection was also

compared since it is a gradient based edge detector, a different set of results were expected.

All algorithms were either implements in MATLAB or used directly from the MATLAB

“Image Processing Tools” library. The results were compared based on their overall

accuracy and noise ignoring capabilities.

In Figure 11 our algorithm clearly out performs all the other edge detectors, both in terms

of noise reduction and accuracy. However, in Figure 13 and Figure 14 it suffers when there

is a point with a spot light effect. Even though there isn’t a single edge detector which

performed well in that situation, Canny edge managed to give the most detailed result, even if

unusable.

Interestingly enough in Figure 15 we can see that Sobel’s output seems to be more

informative than the others. However, it isn’t very useful in terms of any concrete data.

Overall we can conclude that the Shadow Masked Canny Algorithm as implemented in

this paper gave the best result.

24

Figure 11

25

Figure 12

Figure 13

26

Figure 14

Figure 15

27

7. DISCUSSION
Object detection on lunar surface using traditional edge detection methodologies posed

two major challenges, the lack of global illumination and the high textured terrain.

Additionally there were two general features that we decided was required for our mobile

vehicle to detect in order for safe travel – ditches and mounds.

It is noticed that while Canny edge algorithm results in highly detailed edges, it is not

desirable in a defined textured scene such as that of lunar landscape. Our method of using

Sobel operator to detect the high concentration edges made by the texture and then

subtracting it from the Canny result on the shadow optimized images provided the best result.

Due to the sensitivity of the canny edge algorithm, hard shadows were being detected as

shapes too. This isn’t always desirable unless it is a ditch. Our decision to preprocess the

image by removing all shadows or reducing the clarity of shadows other than those caused by

strong edges was fruitful. It allowed our system to notice more accurate edges on the lunar

surface.

Finally the use of erosion or dilation based on the average image intensity helped us

remove the texture noise that was otherwise being drawn as shape edges. However, this

method of using four major steps could use some optimization and that leave room for further

research.

One major failure of our algorithm is in a situation where there is direct light incident at

the center of the slope of a small mound – small compared to the illuminated area. This

causes the shadow detector to ignore it and our edge detector is not able to find the base since

the illuminated area is rather large, making the gradient across it, appear flat. This leaves

scope for further research on the topic and may require a more elaborate set of input

information.

28

WORKS CITED
[1] Agaian, Sos, Almuntashri, Ali and Papagiannakis, T A, Improved Canny Edge Detection

Application for Ashpalt Concret,. San Antonio : IEEE, IEEE International Conference on

Systems, Man, and Cybernetics. pp. 3683-3687, 2009.

[2] Ahmed, M B and Choi, T S, Local Threshold and Boolean Function Based Edge Detection,

IEEE Transaction on Consumer Electronics, pp. 74-79, 1991.

[3] Blajovici, Corina; Kiss, Peter Jozsef; Bonus, Zoltan; Varga, Laszlo Shadow detection and

removal from a single image. Szeged, Hungary : SSIP , 19th Summer School on Image

Processing, 2011.

[4] Bue, Brian and Stepinski, Tomasz F Machine Detection of Martial Impact Craters From

Digital Topography Data, IEEE Transactions on Geoscience and Remote Sensing, pp. 265-

274, 2007.

[5] Canny J, Member, IEEE, A Computational Approach to Edge Detection, IEEE Trans. Pattern

Analysis and Machine Intelligence, 8(1):679-697, 1986.

[6] Guo, Ruiqi, Dai, Qieyun and Hoiem, Derek Single-Image Shadow Detection and Removal

using Paired Region,. IEEE Computer Vision and Pattern Recognition (CVPR), Colorado

Springs : IEEE, 2011.

[7] Kim, Jung Rack; Muller, Jan-Peter; Gasselt, Stephen van; Morley, Jeremy G; Neukum,

Gerhard Automated Crater Detection, A New Tool for Mars Cartography and Chronolo,

Photogrammetric Engineering & Remote Sensing, pp. 1205-1217, 2005.

[8] Kumar, Sanjeev and Kaur, Anureet Shadow Detection and Removal in Color Images Using

MATLAB, International Journal of Engineering Science and Technology, pp. 4482-4486, 201

[9] Ma, Yi. An Invitation to 3-D Vision: From Images to Geometric Models. s.l. : Springer, 2004.

29

[10] Mead, Aram. Development of a Vision Enhancement System for Use on the Lunar Surface. s.l. :

ProQuest, 2008.

[11] Nadernejad, Ehsan, Sharifzadeh, Sara and Hassanpour, Hamid, Edge Detection

Techniques: Evaluations and Comparison, Applied Mathematical Sciences, pp. 1507-1520,

2008.

[12] Rahman, Syedur. Obstacle Detection for Mobile Robots Using Computer Vision (Thesis).

s.l. : University of York, March 2005.

[13] Roberts L, Machine perception of three-dimensional solids, Optical and electrooptical

information processing, Massachusetts, MIT Press, 1965.

[14] Singh, S. and Keller, P Obstacle Detection for High Speed Autonomous Navigation..

Proceedings of International Conference on Robotics and Automation, s.l. : IEEE, 1992.

[15] Szeliski, Richard. Computer Vision: Algorithms and Applications. s.l. : Springer, 2010.

[16] Wlasuk, Peter. Observing the Moon. s.l. : Springer, 2000.

[17] Yuan, Y B A fast algorithm for determining the gaussian filtered mean line in surface

metrology, Precision Engineering, pp. 62-69, 2000.

[18] Zhou, Ping; Ye, Wenjun; Xia, Yaojie; Wang, Qi, An Improved Canny Algorithm for Edge

Detection, Journal of Computational Information Systems, pp. 1516-1523, 2011.

30

APPENDIX

LITERATURE REVIEW TABLE
Author (Date) Concept Camera Subject model Key Finding Limitation

Rahman(2005
)

Planar homography,
Epipolar geometry,
Edge detection

Stereoscopic
Indoor setting,
boxes and
wooden planks.

Suitable for environments with little
noise. Sufficient camera movement
and minimum background texture
detected.

Based on threshold, either ground is detected or
object of decent heights are not detected at all.
Excessive texture on object and not on ground may
be detected. Epipolar lines may be inaccurate due
to matrix limitations. Color similarity between
object and ground leads to segmentation failure.

Nadernejad,
Sharifzadeh,
&
Hassanpour(2
008)

Canny Edge Detection, Marr-
Hildreth Edge Detector and Local
Threshold, Boolean Function
Based Edge Detection, Color
Edge Detection using Canny
Operator

Single Image
Indoor and
Outdoor images

Canny Edge detector has the best
results. It out performs the Boolean
function based edge detector
because of the single pixel edges it
produces. Canny color edge
detector has good prospects since it
has more information access.

The vector angle/Euclidian distance detector

misses fine grained details.

The color canny edge faces a challenge in proper
combining of the three channels.

Blajovici, Kiss,
Bonus, Varga
(2011)

Shadow removal using statistical
analysis of intensities related to
illumination.

Single image Simple images Overall very smooth output
Only highly textured images are not smooth.

Kumar, Kaur
(2010)

Energy function (shadow
removal)

Single color
image

Images with
different colored
backgrounds

Removal of large percentage of
shaded colors without losing
pertinent image data.

Guo, Dai,
Hoiem (2011)

Matting to estimate fractional
shadow coefficient.

Single color
image

Various outdoor
images

Pairwise method performs better
than the simple appearance-based
model. Application of soft matting
results in better lighting conditions
on the result.

Detection relies on segmentation which may group
soft shadows with non-shadow regions. This does
not account for shading due to orientation
discontinuities such as building walls.

Agaian,
Almuntashri,
&Papagianna
kis(2009)

Altered Canny edge detector
with a modified Gaussian
smoothing kernel and gradient
kernel

Single
grayscale
image

Asphalt Concrete
Images

The concept of fusing Sobel with
the improved Canny algorithm
provides better output for noisy
terrain than the original Canny
algorithm

The kernel matrices are of fixed sizes. This causes
an issue in case of large disparity between the size
of the subject and the kernel dimension.

31

CODES

CANNY EDGE IMPLEMENTED IN MATLAB

function out = cannyEdge(originalImg)

originalImg = rgb2gray(originalImg);

[h, w] = size(originalImg);

originalImg = im2double(originalImg);

derivativeX=zeros(h,w);

derivativeY=zeros(h,w);

sigma = 0.8;

maxHysteresisThresh = 1.5;

minHysteresisThresh = 0.05;

sizeOfKernel = 6*sigma+1;

adjust = ceil(sizeOfKernel/2);

yGaussian = zeros(ceil(sizeOfKernel), ceil(sizeOfKernel));

xGaussian = zeros(ceil(sizeOfKernel), ceil(sizeOfKernel));

for i = 1:sizeOfKernel

 for j = 1:sizeOfKernel

 yGaussian(i, j) = -((i - ((sizeOfKernel-1)/2) - 1) / (2 * pi * sigma^3)) * exp(-((i - ((sizeOfKernel

- 1) / 2) - 1)^2 + (j - ((sizeOfKernel - 1) / 2) - 1)^2) / (2 * sigma^2));

 end

end

32

for i = 1:sizeOfKernel

 for j = 1:sizeOfKernel

 xGaussian(i, j) = -((j - ((sizeOfKernel - 1) / 2) - 1) / (2 * pi * sigma^3)) * exp(-((i -

((sizeOfKernel - 1) / 2) - 1)^2 + (j - ((sizeOfKernel - 1) / 2) - 1)^2) / (2 * sigma^2));

 end

end

gradient = zeros(h, w);

nonMax = zeros(h, w);

postHysteresis = zeros(h, w);

for i = 1 + ceil(sizeOfKernel / 2):h - ceil(sizeOfKernel / 2)

 for j = 1 + ceil(sizeOfKernel / 2):w - ceil(sizeOfKernel / 2)

 referenceRow = i - ceil(sizeOfKernel / 2);

 referenceColumn = j - ceil(sizeOfKernel / 2);

 for yyy = 1:sizeOfKernel

 for yyyColumn = 1:sizeOfKernel

 derivativeX(i, j) = derivativeX(i, j) + originalImg(referenceRow + yyy - 1,

referenceColumn + yyyColumn - 1) * xGaussian(yyy, yyyColumn);

 end

 end

 end

end

for i = 1 + ceil(sizeOfKernel / 2):h - ceil(sizeOfKernel / 2)

 for j = 1 + ceil(sizeOfKernel / 2):w - ceil(sizeOfKernel / 2)

 referenceRow = i - ceil(sizeOfKernel / 2);

 referenceColumn = j - ceil(sizeOfKernel / 2);

 for yyy = 1:sizeOfKernel

33

 for yyyColumn = 1:sizeOfKernel

 derivativeY(i, j) = derivativeY(i, j) + originalImg(referenceRow + yyy -

1, referenceColumn + yyyColumn - 1) * yGaussian(yyy, yyyColumn);

 end

 end

 end

end

for i = 1 + ceil(sizeOfKernel / 2):h - ceil(sizeOfKernel / 2)

 for j = 1 + ceil(sizeOfKernel / 2):w - ceil(sizeOfKernel / 2)

 gradient(i, j) = sqrt(derivativeX(i, j)^2 + derivativeY(i, j)^2);

 end

end

nonMax = gradient;

for i = 1 + ceil(sizeOfKernel / 2):h - ceil(sizeOfKernel / 2)

 for j = 1 + ceil(sizeOfKernel / 2):w - ceil(sizeOfKernel / 2)

 if(derivativeX(i, j) == 0) tangent = 5;

 else tangent = (derivativeY(i, j) / derivativeX(i, j));

 end

 if(-0.4142 < tangent & tangent <= 0.4142)

 if(gradient(i,j) < gradient(i, j + 1) | gradient(i, j) < gradient(i, j - 1))

 nonMax(i, j)=0;

 end

 end

 if(0.4142 < tangent & tangent <= 2.4142)

 if(gradient(i, j) < gradient(i - 1, j + 1) | gradient(i, j) < gradient(i + 1, j - 1))

34

 nonMax(i, j)=0;

 end

 end

 if(abs(tangent) > 2.4142)

 if(gradient(i, j) < gradient(i - 1, j) | gradient(i, j) < gradient(i + 1, j))

 nonMax(i, j) = 0;

 end

 end

 if(-2.4142 < tangent & tangent <= -0.4142)

 if(gradient(i, j) < gradient(i - 1, j - 1) | gradient(i, j) < gradient(i + 1,j + 1))

 nonMax(i, j)=0;

 end

 end

 end

end

postHysteresis = nonMax;

for i = 1 + ceil(sizeOfKernel / 2):h - ceil(sizeOfKernel / 2)

 for j = 1 + ceil(sizeOfKernel / 2):w - ceil(sizeOfKernel / 2)

 if(postHysteresis(i, j) >= maxHysteresisThresh) postHysteresis(i, j) = 1;

 end

 if(postHysteresis(i, j) < maxHysteresisThresh & postHysteresis(i, j) >= minHysteresisThresh)

postHysteresis(i, j) = 1;

 end

 if(postHysteresis(i, j) < minHysteresisThresh) postHysteresis(i, j) = 0;

 end

 end

35

end

edgeFlag = 1;

while(edgeFlag == 1)

 edgeFlag = 0;

 for i = 1 + ceil(sizeOfKernel / 2):h - ceil(sizeOfKernel / 2)

 for j = 1 + ceil(sizeOfKernel / 2):w - ceil(sizeOfKernel / 2)

 if(postHysteresis(i, j) > 0)

 if(postHysteresis(i, j) == 2)

 if(postHysteresis(i - 1, j - 1) == 1 | postHysteresis(i - 1, j) == 1 |

postHysteresis(i - 1, j + 1) == 1 | postHysteresis(i, j - 1) == 1 | postHysteresis(i, j + 1) == 1 | postHysteresis(i +

1, j - 1) == 1 | postHysteresis(i + 1, j) == 1 | postHysteresis(i + 1, j + 1) == 1)

 postHysteresis(i, j) = 1;

 edgeFlag == 1;

 end

 end

 end

 end

 end

end

for i = 1 + ceil(sizeOfKernel / 2):h - ceil(sizeOfKernel / 2)

 for j = 1 + ceil(sizeOfKernel / 2):w - ceil(sizeOfKernel / 2)

 if(postHysteresis(i, j) == 2)

 postHysteresis(i, j) == 0;

 end

 end

end

36

out = postHysteresis;

imwrite(originalImg, 'originalImage.bmp');

imwrite(derivativeX,'derivativeX.bmp');

imwrite(derivativeY,'derivativeY.bmp');

imwrite(gradient,'gradient.bmp');

imwrite(nonMax,'nonMax.bmp');

imwrite(postHysteresis,'postHysteresis.bmp');

ADDITIVE SHADOW REMOVAL CODE IN MATLAB

function out = additiveShadowRemoval(img)

imgSize = size(img);

gray = rgb2gray(img);

mask = 1 - double(im2bw(gray, graythresh(gray)));

strel = [0 1 1 1 0; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 0 1 1 1 0];

shadow = imerode(mask, strel);

light = imerode(1-mask, strel);

shadowSum = 0;

lightSum = 0;

smoothMask = conv2(mask, strel/21, 'same');

37

shadowMeanRed = sum(sum(img(:,:,1).* shadow)) / sum(sum(shadow));

shadowMeanGreen = sum(sum(img(:,:,2).* shadow)) / sum(sum(shadow));

shadowMeanBlue = sum(sum(img(:,:,3).* shadow)) / sum(sum(shadow));

lightMeanGreen = sum(sum(img(:,:,2).*light)) / sum(sum(light));

lightMeanRed = sum(sum(img(:,:,1).*light)) / sum(sum(light));

lightMeanBlue = sum(sum(img(:,:,3).*light)) / sum(sum(light));

out = img;

intensityDiffRed = lightMeanRed - shadowMeanRed;

intensityDiffGreen = lightMeanGreen - shadowMeanGreen;

intensityDiffBlue = lightMeanBlue - shadowMeanBlue;

 out(:, :, 1) = img(:, :, 1) + smoothMask * intensityDiffRed;

 out(:, :, 2) = img(:, :, 2) + smoothMask * intensityDiffGreen;

 out(:, :, 3) = img(:, :, 3) + smoothMask * intensityDiffBlue;

imwrite(out, 'shadowRemoved.bmp');

SCRIPT USED FOR THESIS OUTPUT AND COMPARISON

function out = thesisOut(img)

imgSize = size(img);

38

gray = rgb2gray(img);

imwrite(gray, 'gray.bmp');

tradCan = edge(gray, 'canny');

imwrite(tradCan, 'Canny.bmp');

sob = edge(gray, 'sobel');

imwrite(sob, 'sobel.bmp');

marrHildreth = edge(gray, 'log');

imwrite(sob, 'marrHildreth.bmp');

mask = 1 - double(im2bw(gray, graythresh(gray)));

imwrite(mask, 'greyMask.bmp');

maskCan = edge(mask, 'canny');

imwrite(maskCan, 'shadowMaskCanny.bmp');

strel = [0 1 1 1 0; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 0 1 1 1 0];

shadow = imerode(mask, strel);

imwrite(shadow, 'shadowMap.bmp');

shadowCan = edge(shadow, 'canny');

imwrite(shadowCan, 'shadowCanny.bmp');

39

light = imerode(1-mask, strel);

imwrite(light, 'lightmap.bmp');

lightCan = edge(light, 'canny');

imwrite(lightCan, 'lightCanny.bmp');

shadowSum = 0;

lightSum = 0;

smoothMask = conv2(mask, strel/21, 'same');

shadowMeanRed = sum(sum(img(:,:,1).* shadow)) / sum(sum(shadow));

shadowMeanGreen = sum(sum(img(:,:,2).* shadow)) / sum(sum(shadow));

shadowMeanBlue = sum(sum(img(:,:,3).* shadow)) / sum(sum(shadow));

lightMeanGreen = sum(sum(img(:,:,2).*light)) / sum(sum(light));

lightMeanRed = sum(sum(img(:,:,1).*light)) / sum(sum(light));

lightMeanBlue = sum(sum(img(:,:,3).*light)) / sum(sum(light));

out = img;

intensityDiffRed = lightMeanRed - shadowMeanRed;

intensityDiffGreen = lightMeanGreen - shadowMeanGreen;

intensityDiffBlue = lightMeanBlue - shadowMeanBlue;

 out(:, :, 1) = img(:, :, 1) + smoothMask * intensityDiffRed;

 out(:, :, 2) = img(:, :, 2) + smoothMask * intensityDiffGreen;

40

 out(:, :, 3) = img(:, :, 3) + smoothMask * intensityDiffBlue;

imwrite(out, 'shadowRemoved.bmp');

cannyEdge(out);

