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1. ABSTRACT 
The goal of this paper is to explore possibilities in devising a system that is able to detect 

obstacles in a scene or situation where color variation is limited and environment is noisy, such 

as that of the moon where there are many craters of different depths and rocks of various sizes 

and shapes. 

The research is premised upon the importance of space research and the dual problem of 

manned missions to space finances and human survival. For space programs that involve 

scouting or sample collection from planetary surfaces, it is cost-effective to make use of 

autonomous or semi-autonomous robots. These robots need to overcome obstacles in lunar/ 

planetary surface without any hazard, such as falling over, being stuck and so on.  

This paper will handle the methods and mechanism of the primary part of this system 

(obstacle detection) using the moon surface as the destination. Existing algorithms for obstacle 

detection dealing with edge and corner detection have been compared and modified to best 

determine obstacles on the lunar surface. In particular shadow masking technique along with 

edge detection has been used to discern shapes of ditches and mounds on the lunar surface. 

2. INTRODUCTION 
A visual system is a collection of devices that transform measurements of light into 

information about spatial and material properties of a scene [2]. Humans view the three-

dimensional structure of the world with apparent ease [1], being able to discern shape and 

translucency of objects, count and order objects and even identify emotions in people among 

other aspects. Unfortunately, what humans and animals are able to perceive effortlessly, 

computational mechanisms are error-prone in understanding even basic images [2].  Computer 

vision is a discipline where research is ongoing to derive mathematical techniques that allow 

computers to recover the three-dimensional shape and appearance of objects in imagery [1].  

Imagery depends on three broad characteristics: a) the geometry of a scene, a change in the 

shape of an object changes the image, b) the photometry (illumination and material properties 
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of an object), a skyline appears differently on a cloudy day to that of sunshine and, c) dynamics 

of the environment [2]. Computer vision has explored different ways of perceiving these 

characteristics to meet different ends. Simply put, artificial vision offers the potential of 

relieving human of tasks that are dangerous, monotonous or unfeasible [2] such as, Optical 

Character Recognition (OCR), motion capture (mocap), surveillance, face detection, visual 

authentication etc. In recent times, vision-guided helicopters and aircrafts can, nowadays, take 

off, fly and land.  

The problem we are addressing in this paper is that of using computer vision to identify 

paths for an autonomous robot to traverse through a path on a lunar surface using shadow 

detection and edge detection mechanism. The robot will have a camera to capture the moon’s 

surrounding and by processing those images, decide whether it is possible to move ahead on the 

rocky surface or turn to avoid the hill. Although the aim is to identify or create a system, more 

emphasis is placed on comparing, analyzing and combining existing methods or systems.  

THE LUNAR SURFACE 
The Moon is a little over one-fourth the diameter of Earth and contains less than one-

eightieth of its mass [18]. While Earth’s mountains are built by gradual sliding of one tectonic 

plate over another or by volcanic eruptions, the Moon’s mountains result from the impact of 

asteroids. The Moon’s landscape is made up of craters, lunar maria and bays, wrinkled ridges, 

rilles and domes. Unlike Earth, the Moon has no atmosphere or surface activity that is able to 

erase impact of asteroids, meteors or comets.  

The craters are essentially impact sites, huge shallow holes dug on the lunar surface by 

asteroids, meteoroids or comets. On the other hand, the lunar maria represent the dark 

somewhat circular areas that are visible to the naked eye and are in fact, large craters covered 

in lava (Figure 1: Lunar Landscape) range from small ditches to giant basins spanning  hundreds 

of kilometers[18]. The lunar rilles are mostly less than 2 km wide and are essentially long, 

narrow valleys and gorges that crisscross the maria. In addition, the Moon has sixteen major 
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mountain ranges and large number of isolated peaks. Wrinkled ridges are the largest of the 

Moon’s tectonic features and appear around the lunar maria.  

 

Distortions to vision on the Moon are caused by the closeness of the lunar horizons and its 

extreme curvature [18]. If a crater is large enough, its walls may be over the horizon – that is, 

anyone standing in the center of a crater would not be able to see the towering walls around 

him or her. The shorter diameter of the Moon produces the fore-shortening effect. Features 

close to the North or South Pole of the Moon appear squashed in the north-south direction, 

explaining why certain craters and maria appears elliptical [18].  

The Moon receives all its light from the Sun. While the surface of the Moon cannot create its 

own light, it can reflect light from the points where sunlight reaches it. At any given time, the 

Moon is five hundred thousand times fainter than the Sun. Some features of the Moon that need 

bearing for this paper [7]1: 

                                                             
1 The paper determines the features as the aspects that make it difficult to map impact craters. The 
features were improvised for the lunar landscape. 

Figure 1: Lunar Landscape 
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a) The “visibility” of impact craters in optical images depends principally on the 

interaction between the illumination and incidence (view) direction, surface scattering 

behavior and the atmospheric state. 

b) Some geographical features such as small volcanic constructs or valleys have similar 

morphological characteristics as craters.  

c) Impact craters are often concentrated into clusters resulting in overlap, and in larger 

craters multi-ring structures frequently occur. This means that the separation of 

individual craters from their background can be very difficult to generalize. 
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3. LITERATURE REVIEW 
Several methods to detect objects automatically have been developed but the inherent 

limitations of imagery data and variety of objects make the task difficult [12]. Automatic 

identification of objects or obstacles are often required in determining if any obstacle in a given 

space hinders free and safe travel by an autonomous vehicle [14]. Some commonly used 

methods of obstacle detection are: a) edge detection, b) shadow detection, c) corner detection 

and d) image segmentation. Singh [14] categorized a good obstacle detection system as one 

containing the following features: 

 able to detect obstacle in a given space within an appropriate time, 

 identifying the correct obstacles, and 

 identifying and ignoring ground features that may otherwise be mistaken as 

obstacles 

Obstacle detection occurs in two steps. First, edge detection is performed, which is the 

fundamental of low-level image processing, and the resultant usable set of edges are then used 

for higher level processing required for segmentation of the objects in a scene [1]. 

“An edge detector can be defined as a mathematical operator that responds to the spatial 

change and discontinuities in a gray-level (luminance) of a pixel set in an image[1]. An edge is 

indicated by abrupt changes within an image that shows characteristic features and thus can be 

categorized as a set of pixels whose surrounding intensity follows a continuous variation [11]. 

Edge-dividing areas in the lunar landscape can have very similar properties such as when 

considering craters; but also have different aspects to it, for instance, when rilles run along a 

crater, thus having too many rapid variations.  Although edge detection may vary based on 

output requirement, they share the need for precise edge information [1] to determine the 

closed area between objects that edges bind [18].  

Different Edge detectors work better under different conditions, and thus it can be surmised 

that there is no one algorithm which can perform best under all circumstances [11].Boolean 

function based edge detectors produce thick edges in its output and thus, are problematic in 
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images with finer details [11].On the other hand, Marr-Hildreth cannot distinguish between 

weak and strong edges since it has only one threshold operator [11]. The Canny edge detector 

does not perform well for heavily textured backgrounds as it draws the textures as edges [12]. 

The quality of edges discerned by any algorithm is dependent on the quality of image, 

surface properties, [4], lighting conditions, objects with similar intensities, edge density in the 

scene and noise [11]. There are algorithms to overcome specific limitations by adjusting certain 

values and approximating thresholds. A very common property taken into consideration during 

edge detection is the intensity variation within an image. Figure 2: Derivatives of Intensity at 

an Edgeshows the relationship between the intensity variation and existence of an edge [12].  

 

Figure 2: Derivatives of Intensity at an Edge 

Edge detection methods are mainly as follows:  

a) Use of Gradient Operator: The Sobel, Prewitt and Roberts [13] methods uses derivatives 

on an intensity map to calculate the maximum change in the gradient at an edge [12]. Figure 3 

show the common gradient operators used by these methods. 
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Figure 3: Common gradient operators of edge detection methods 

All the above methods are both susceptible to noise and in case of homogeneous intensity 

distribution, are inaccurate. 

b) Use of Optimum Operator: The Marr-Hildreth Edge Detector uses a Gaussian smoothing 

followed by the application of a rotation invariant Laplacian,      
   

    
   

     to evaluate the 

gradient change and then denote changes that is within a specific threshold as an edge [11]. This 

provides more accurate results than the previous mentioned algorithms and thus was a widely 

acclaimed edge detection method. 

Canny [5] modelled edge detection as a signal processing problem [18] theorized that it 

should satisfy a)signal to noise ratio (SNR) criterion, b)location accuracy criterion and c)single-

edge response criterion. He improved on the Marr-Hildreth edge detector by making 

modifications to the final processing of the image by introducing a low and high threshold 

instead of a single threshold. 

Nadernejad, Sharifzadeh, &Hassanpour [11] found some good distinction between the 

abilities of various edge detections by comparing the Canny edge detector, Marr-Hildreth edge 

detector, Local Threshold and Boolean Function Based edge detector and Color edge detector 



8 
 

using Canny operator. Canny edge detector outperformed all the rest on a variety of sample 

images. Boolean function based edge detection is comparable in terms of its results but Canny 

edge’s characteristic single pixel outline makes it a more desirable choice. One interesting fact to 

note, the Color Canny edge detector seemed to be a good candidate because of its access to more 

information (three color channel instead of a single intensity map), however combining the 

three channels post processing proved to be a challenge. The vector angle/Euclidean distance 

perform poorly under inconsistent illumination and the Multi-Flash edge detector failed on 

outdoor images [11]. 

Furthermore, Canny edge is susceptible to picking up noise and unwanted features on a 

rough terrain. Agaian, Almuntashri, & Papagiannakis [1] came up with a modified Canny edge 

detector which uses a smoothing and gradient kernel matrices to detect edges from images of 

Asphalt Concrete. Their version seemed to work well on images which did not have noise 

artifacts and produced remarkable results.. However, their kernel matrices were of fixed sizes 

and proved to be a problem in case of edges that was much larger than the kernel dimension 

and thus requires manual tweaking. 

Other than noisy backgrounds and textured terrain, edge detectors also face an issue in case 

of shadows.  In case of a lot of distinct shadows in an image, edge detectors such as Canny tend 

to draw their edges. This is however undesirable, since it cuts down on movable space in case of 

an autonomous vehicles. Recent researches have delved deep into addressing this problem and 

worked on another augmented image processing phenomena for detecting shadows [8]. 

Shadow detection is usually done to remove the shadows from the images before further 

image processing techniques such as edge detection is applied on them [3]. There are more 

usages of shadows such calculating the homography of an image in order to do depth mapping 

and other processing based on multi-image systems [12].  

Guo, Dai and Hoiem [6] have used a method of estimating fractional shadow coefficient 

using color matting. Their “pairwise” method gave better result than using simple appearance-

based model. Also the application of soft matting allowed them to restore the image without 
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shadow with sufficient accuracy. Their only problem was that the method relied on 

segmentation which in case of certain illumination tend to group soft shadow regions with non-

shadow regions causing a problem in the presence of orientation discontinuities such as a 

building or a wall [6]. 

Another way of looking at shadows can be through modeling energy [8]. Images with 

colorful backgrounds can be accounted for by increasing the energy intensity at the shadow 

points by the mean energy level on the image. This method allowed for the removal of large 

percentage of foreground shaded colors without losing pertinent image data. 

Finally a simpler yet faster method of shadow removal using statistical analysis of intensity 

distribution within an image was introduced in 2011 by Blajovici, Kiss, Bonus, & Varga [3]. Even 

though, their method is similar to that of modelling energy function, they used three separate 

channels of color to model a high light region and a low light (shadow) region. Once the gray 

median is calculated from the high and low point of illumination a difference can be obtained. 

The difference between the high and the low intensity of lighting is then added to the shadow 

region thus removing the low points of illumination in the image [3].  

Taking into consideration the results of Canny edge and the improved Canny detector 

applied on the Asphalt Concrete images [1], it promises to be a good algorithm to try and detect 

obstacles on the lunar surface. Additionally since the lunar surface is highly textured due to 

craters with low and ambient illumination, we would like to try methods of shadow removal 

before using the Canny edge detector.  Since Sobel is a gradient based operator [18] it tends to 

pick up texture noise without much accuracy and thus forming weak edges. We would like to try 

using that relation to try and reduce the texture noise from our final output image. 
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4. METHODOLOGY 
In this project we segregated lunar obstacles to be of two different types – holes and rocks.  

In order to detect the aforementioned obstacles we have theorized that holes or craters are 

lowest intensity points in the image intensity map while the rocks or mounds contain the 

highest intensity points at the peak. 

Using several edge detection methods have lead us to the conclusion that Canny Edge 

detector gives the optimal result. However, due to the sensitivity and accuracy of Canny edge it 

tends to perform undesirably on lunar surfaces. Lunar surface is anything but homogenous or 

smooth and Canny edge tends to outline every detail on the terrain. Furthermore it is possible 

to reduce the texture noise by tweaking the upper and lower threshold of the Canny operator 

but that poses an inconvenience to the autonomy of a machine. 

Another challenge faced by Canny algorithm is the presence of shadows on the scene. With 

so many dunes and rilles, the entire surface is pock marked with shadows. We decided to either 

remove the shadow altogether or use a technique to try ignoring the shadows. However, the 

latter risks avoiding the ditches and craters when outlining the edges. 

By using an Additive Shadow Removal model [3] we thought it might help us in determining 

a shadow coefficient and also to figure out the difference between the high and low points in the 

image. This seems to be a useful technique in order to eliminate ground level shadows and 

retain those inside the craters. 

Once we manage to estimate the mean gray level in an image we can easily apply a shadow 

mask and run the Canny Operator on the resultant. Finally we used the noisy edge obtained 

from the Sobel algorithm to perform an intersection to remove all weak edges that appear to be 

disjointed from any strong edges in our Canny result. 

The entire process flow is outlined in Figure 4 below and Algorithm 1 details the steps used 

to achieve our results. 
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OUR PROCESS FLOW 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Canny Edge algorithm and an Additive Shadow detection algorithm were used 

extensively for our algorithm. The aforementioned algorithms are outlined below. 

 

 

1. compute Sobel edges from image I and store in J 

2. extract shadow mask from I using additiveShadowRemoval( I )and store 

in K 

3. extract Canny edge from the K and store in E 

4. compare edges in J and E 

5. if weak edge in J 

then remove edge from E 

6. return E 

Algorithm 1: Shadow Mask Canny Edge Detector 

Image Shadow Mask 

 

Sobel Operator 
Canny Edge 

Detection 

Intersect Canny & Sobel 

Figure 4: Our Process Flow 
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ADDITIVE SHADOW DETECTION AND REMOVAL 
Blajovici, Kiss, Bonus, & Varga [3], described the use of direct and ambient light present in 

an image to detect shadows.  Shadows are part of the image where the direct light is occluded to 

some degree. According to them the shadow model can be defined as, 

   (             )   

where,     represents each pixel in RGB image,    is the direct light and    is the 

environment light.     represents the surface reflectance,    is the angle of direct light against 

the normal to the incident plane;    denotes the attenuation factor;  

  if     then     is a spotlight region 

if      then  is in the shadow region 

The shadow coefficient is given by: 

   (       ) 

The ratio between direct and environment light is defined as: 

   
  

  
 

Thus based on the above criteria modeling, relighting the shadow region is done through the 

following equation: 

  
           

 
   

     
   

 
Algorithm 2: Additive Shadow Removal 

 

1. Convert the image to grayscale to compute a mask from the global gray 

threshold. 

2. S = shadow matrix determined by the gray mask 

3. L = light matrix determined by 1 – gray mask 

4. Total Shadow = sum of  𝑆𝑖 

5. Total Light = sum of 𝐿𝑖 

6. Compute Mean Shadow coefficient for each (red, green and blue) channel 

7. Computer Mean Light coefficient for each (red, green and blue) channel 

8. Calculate the intensity difference for each (red, green and blue) channel 

by subtracting Mean Shadow coefficient from the Mean Light coefficient 

9. Add the intensity difference to the image 𝑙𝑖 with a convolved smoothing 

mask 
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CANNY EDGE DETECTOR 
Canny uses an optimum operator for its edge detection technique [18] and utilizes a Gray 

Scale image as an intensity matrix. 

 (   )   [

 (   )  (   )   (   )
 (   )  (   )   (   )

    
 (   )  (   )   (   )

] 

The elements in the matrix correspond to each pixel and  (   ) denote brightness value 

within a range of 0(black) to 255(white) [Zhou]. 

John Canny [5] devised a signal processing problem in order to solve the edge detection 

problem [11] by setting up three criteria corresponding to the characteristics he defined [18]: 

a) Signal to noise ratio: to avoid true negative and false positive edge detection. 

    ||
∫  (  ) ( )  

 

  

√∫    

  
( )  

 
|| 

where,  ( ) is the filter impulse response of the edge       ,  ( )is the edge function and 

 is the root mean square of Gaussian noise. 

b) Location accuracy: marked edges should be within an expected threshold of the actual 

edge. 

    ||
∫   (  )  ( )  

 

  

√∫ (  ( ))   
 

  

 
|| 

The mathematical expression shows the proximity between a drawn edge and the actual 

edge, thus the higher the value of Loc, the better the result is. 

c) Single-edge response:  the edge output should be a line no more than a single pixel thick. 

This was modeled by Canny in the following equation: 
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    ( )       ( )     [
∫ (  ( ))   

 

  

∫     

  
( )  

]

 

 

 

This criterion ensures there is one response to the single edge. 

A Gaussian filter is used on the gray-scale image to smooth the image [11][ 17] and remove 

noise. The first order Gaussian function is defined as [Agaian]: 

 (     )   
 

    
 

(
      

   )
 

Gradient vector is given by: 

   [  
  ⁄   

  ⁄ ] 

  

  
      ( 

  

   )   ( 
  

   )    ( )  ( ) 

  

  
       ( 

  

   )   ( 
  

   )    ( )  ( ) 

The Gaussian kernel is denoted by and is used for the smoothing filter. The kernel  can be 

tweaked manually for different situation to increase or decrease the level of blurring required. 

Canny edge algorithm calculates the gradient magnitude and direction once the points are 

smoothed. The first order partial derivatives of the two directions of point (   )are 

  (   )   
  (     )    (   )   (       )   (     ) 

 
 

  (   )   
  (   )    (     )   (     )   (       ) 

 
 

The gradient magnitude and direction of the point (   ) are: 

 (   )   √  
 (   )     

 (   ) 

 (   )        
  (   )

  (   )
 

Where,  (   ) is the strength of the edge and  (   ) is the direction of the gradient at the 

point. 
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The final step before applying the Canny operator is the Non-maxima Suppression on the 

gradient magnitude  (   ). All points along the gradient matrix are compared along a 2x2 

neighborhood around the center (   ) along the direction of  (   ). If (   ) is the maximum point 

in the neighborhood, it is marked as an edge, otherwise it is suppressed. 

Ultimately the Dual Threshold that characterizes the Canny operator termed as the 

“hysteresis” is carried out [18][11]. The algorithm is outlined as follows: 

 

 

 

 

The complete Canny edge detector algorithm is outlined in Error! Reference source not 

found.. 

Set 𝑇 ; 

Set 𝑇𝑙; 

if (𝑀(𝑖 𝑗)>𝑇 ) 

 Set (𝑖 𝑗) as edge 

if (𝑀(𝑖 𝑗)< 𝑇𝑙) 

 Set (𝑖 𝑗) as non-edge 

if (𝑀(𝑖 𝑗)<𝑇 &𝑀(𝑖 𝑗)> 𝑇𝑙)  

if ((𝑖    𝑗   ) is edge | (𝑖    𝑗   ) is edge | (𝑖    𝑗   ) is edge | (𝑖    𝑗   ) is edge 

| (𝑖    𝑗) is edge | (𝑖    𝑗) is edge | (𝑖 𝑗   ) is edge | (𝑖 𝑗   ) is edge) 

  Set (𝑖 𝑗) 𝑎𝑠 𝑒𝑑𝑔𝑒 

 else 

  set (𝑖 𝑗) as non edge 

Algorithm 3: Canny Edge Operator 
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Figure 5: Canny Edge Process Flow  
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5. IMPLEMENTATION 
Originally we toyed with the OpenCV library, which has a collection of very powerful image 

processing functionalities. However MATLAB also provided a good set of tools known as the 

“Image Processing Tools” which sufficed for our purpose. Furthermore, MATLAB has some built 

in image loading capabilities allowing for easy and fast loading and manipulation of images. 

MATLAB’s “imread()” function reads images of many common formats and stores them in a 

2x2 pixel matrix for each color channel. This functionality enabled us to get right to the image 

processing work without having to develop pre-processing methods for our images. 

We used fairly modest hardware to perform our processing and even the worst case brute 

force methods turned out to take no longer than a few minutes. 

Language: MATLAB & MATLAB Image Processing Tools 

Hardware:  

Processor: Inter Core i3 M350 @ 2.27GHz x 2 (64-bit Processor) 

RAM: 8.00 GB at 1333MHz 

THE DEVELOPMENT ENVIRONMENT 
The development environment holds important bearing to the implementation of a system 

and may even alter the required output. In choosing the environment for this paper, we 

considered C and MATLAB. These tools can handle similar problems and MATLAB can even be 

interfaced with C. However, due to the complex nature of images required and the inability of 

the programming language to efficiently handle complex matrix manipulations – MATLAB was 

used. In addition, MATLAB also sports some inbuilt functions that make easier and less time 

consuming to implement certain features. 

ADVANTAGES OF MATLAB 
i. As an interpreted language, MATLAB allows the programmer greater flexibility in 

terms of coding and updating data while the program is in execution.  

ii. It is a functional-based language, making it easier to develop and document 

programs in. 
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iii. The system operates on matrices rather than scalar quantities, implying many 

mathematical operations and being especially useful for image processing. 

iv. It does not require variable type and size determination before usage. 

v. With built in features, it allows programmer to perform calculations and receive 

visual results.  

vi. MATLAB allows use of undefined values, such as division by zero. For image 

processing where features such as gradient of vertical lines tend to be undefined, 

this is a very important feature. 

DISADVANTAGES OF MATLAB 
i. C allows codes that are more efficient than MATLAB in many areas, especially 

compared to use of some embedded features of MATLAB. 

ii. Unlike C, MATLAB can be slow with slight inefficiencies in programming.  

iii. With undeclared variables, chances of programmers making errors increases. 

DIFFERENCES BETWEEN C AND MATLAB 
Some reasons considered in selecting MATLAB over C for the project are given below: 

i. Although C presents greater time-efficiency, MATLAB is preferred during 

development. 

ii. Without the need for declaring variables in advance, MATLAB allows for fast coding. 

iii. MATLAB does not have restrictions on data structures unlike C, and can perform 

certain array calculations using pre-defined commands.  

iv. MATLAB has in-built functions and libraries for reference that is more reliable than 

the many available libraries of C. 

 

SHADOW MASKED CANNY PROCESS 
Figure 6 to Figure 10 shows the full process flow output at every step. Figure 6 shows an 

image of a lunar surface. Once the image is converted to gray scale to generate the intensity 
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map, the average global gray value of the image was calculated to compute out the shadow 

mask. 

 

Figure 6 

 

Once the shadow mask was calculate are able to easily computer the Canny edge of the 

binary image. This helps reduce noise in the environment by averaging the subtle texture 

variation out of the image. Once the threshold is applied to the gray scale image to form a 

binary map, the middle gray values are lost to either black or white as shown in Figure 7. 
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Figure 7: Shadow Mask 

The resulting Canny edge is much cleaner due to the lost texture. However, some small 

granularities remain on the image as we can see in Figure 8. This is then compared with the 

Sobel edges of the original image (Figure 9).  

 

 

Figure 8: Canny Edge on Shadow Mask 
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During the comparison we check for weak edges. Every weak edge in the Sobel output is 

removed from the output shown in Figure 8. 

 

Figure 9: Sobel Edges 

Figure 10 shows the final output of our process. It can be seen that the noise is 

considerably less and the edges are very well defined for every single crater on the image 

presented in Figure 6. 
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Figure 10: Final Output 
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6. ANALYSIS 
We compared our results with three other edge detection algorithms. Canny edge 

algorithm and Marr-Hildreth Lagrange of Gaussian [11] are optimum edge detection 

algorithm [18] that was used in our comparison. Additionally Sobel edge detection was also 

compared since it is a gradient based edge detector, a different set of results were expected. 

All algorithms were either implements in MATLAB or used directly from the MATLAB 

“Image Processing Tools” library.  The results were compared based on their overall 

accuracy and noise ignoring capabilities. 

In Figure 11 our algorithm clearly out performs all the other edge detectors, both in terms 

of noise reduction and accuracy.  However, in Figure 13 and Figure 14 it suffers when there 

is a point with a spot light effect.  Even though there isn’t a single edge detector which 

performed well in that situation, Canny edge managed to give the most detailed result, even if 

unusable. 

Interestingly enough in Figure 15 we can see that Sobel’s output seems to be more 

informative than the others. However, it isn’t very useful in terms of any concrete data. 

Overall we can conclude that the Shadow Masked Canny Algorithm as implemented in 

this paper gave the best result. 
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Figure 11 
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Figure 12

 

Figure 13 
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Figure 14 

 

Figure 15 
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7. DISCUSSION 
Object detection on lunar surface using traditional edge detection methodologies posed 

two major challenges, the lack of global illumination and the high textured terrain. 

Additionally there were two general features that we decided was required for our mobile 

vehicle to detect in order for safe travel – ditches and mounds. 

It is noticed that while Canny edge algorithm results in highly detailed edges, it is not 

desirable in a defined textured scene such as that of lunar landscape. Our method of using 

Sobel operator to detect the high concentration edges made by the texture and then 

subtracting it from the Canny result on the shadow optimized images provided the best result. 

Due to the sensitivity of the canny edge algorithm, hard shadows were being detected as 

shapes too. This isn’t always desirable unless it is a ditch. Our decision to preprocess the 

image by removing all shadows or reducing the clarity of shadows other than those caused by 

strong edges was fruitful. It allowed our system to notice more accurate edges on the lunar 

surface. 

Finally the use of erosion or dilation based on the average image intensity helped us 

remove the texture noise that was otherwise being drawn as shape edges. However, this 

method of using four major steps could use some optimization and that leave room for further 

research. 

One major failure of our algorithm is in a situation where there is direct light incident at 

the center of the slope of a small mound – small compared to the illuminated area. This 

causes the shadow detector to ignore it and our edge detector is not able to find the base since 

the illuminated area is rather large, making the gradient across it, appear flat. This leaves 

scope for further research on the topic and  may require a more elaborate set of input 

information. 
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APPENDIX 

LITERATURE REVIEW TABLE 
Author (Date) Concept Camera Subject model Key Finding Limitation 

Rahman(2005
) 

Planar homography, 
Epipolar geometry, 
Edge detection 

Stereoscopic 
Indoor setting, 
boxes and 
wooden planks. 

Suitable for environments with little 
noise. Sufficient camera movement 
and minimum background texture 
detected. 

Based on threshold, either ground is detected or 
object of decent heights are not detected at all. 
Excessive texture on object and not on ground may 
be detected. Epipolar lines may be inaccurate due 
to matrix limitations. Color similarity between 
object and ground leads to segmentation failure. 

Nadernejad, 
Sharifzadeh, 
& 
Hassanpour(2
008) 

Canny Edge Detection, Marr-
Hildreth Edge Detector and Local 
Threshold, Boolean Function 
Based Edge Detection, Color 
Edge Detection using Canny 
Operator 

Single Image 
Indoor and 
Outdoor images 

Canny Edge detector has the best 
results. It out performs the Boolean 
function based edge detector 
because of the single pixel edges it 
produces. Canny color edge 
detector has good prospects since it 
has more information access. 

The vector angle/Euclidian distance detector 

misses fine grained details. 

The color canny edge faces a challenge in proper 
combining of the three channels. 

Blajovici, Kiss, 
Bonus, Varga 
(2011) 

Shadow removal using statistical 
analysis of intensities related to 
illumination. 

Single image Simple images Overall very smooth output 
Only highly textured images are not smooth. 
 

Kumar, Kaur 
(2010) 

Energy function (shadow 
removal) 

Single color 
image 

Images with 
different colored 
backgrounds 

Removal of large percentage of 
shaded colors without losing 
pertinent image data. 

 

Guo, Dai, 
Hoiem (2011) 

Matting to estimate fractional 
shadow coefficient. 

Single color 
image 

Various outdoor 
images 

Pairwise method performs better 
than the simple appearance-based 
model. Application of soft matting 
results in better lighting conditions 
on the result. 

Detection relies on segmentation which may group 
soft shadows with non-shadow regions. This does 
not account for shading due to orientation 
discontinuities such as building walls. 

Agaian, 
Almuntashri, 
&Papagianna
kis(2009) 

Altered Canny edge detector 
with a modified Gaussian 
smoothing kernel and gradient 
kernel 

Single 
grayscale 
image 

Asphalt Concrete 
Images 

The concept of fusing Sobel with 
the improved Canny algorithm 
provides better output for noisy 
terrain than the original Canny 
algorithm 

The kernel matrices are of fixed sizes. This causes 
an issue in case of large disparity between the size 
of the subject and the kernel dimension. 
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CODES 
 

CANNY EDGE IMPLEMENTED IN MATLAB 
 

function out = cannyEdge(originalImg) 

originalImg = rgb2gray(originalImg); 

[h, w] = size(originalImg); 

originalImg = im2double(originalImg); 

 

derivativeX=zeros(h,w); 

derivativeY=zeros(h,w); 

 

sigma = 0.8; 

maxHysteresisThresh = 1.5; 

minHysteresisThresh = 0.05; 

 

sizeOfKernel = 6*sigma+1; 

 

adjust = ceil(sizeOfKernel/2); 

yGaussian = zeros(ceil(sizeOfKernel), ceil(sizeOfKernel)); 

xGaussian = zeros(ceil(sizeOfKernel), ceil(sizeOfKernel)); 

 

for i = 1:sizeOfKernel 

 for j = 1:sizeOfKernel 

  yGaussian(i, j) = -((i - ((sizeOfKernel-1)/2) - 1) / (2 * pi * sigma^3)) * exp(-((i - ((sizeOfKernel 

- 1) / 2) - 1)^2 + (j - ((sizeOfKernel - 1) / 2) - 1)^2) / (2 * sigma^2)); 

 end 

end 
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for i = 1:sizeOfKernel 

 for j = 1:sizeOfKernel 

  xGaussian(i, j) = -((j - ((sizeOfKernel - 1) / 2) - 1) / (2 * pi * sigma^3)) * exp(-((i - 

((sizeOfKernel - 1) / 2) - 1)^2 + (j - ((sizeOfKernel - 1) / 2) - 1)^2) / (2 * sigma^2)); 

 end 

end 

 

gradient = zeros(h, w); 

nonMax = zeros(h, w); 

postHysteresis = zeros(h, w); 

 

for i = 1 + ceil(sizeOfKernel / 2):h - ceil(sizeOfKernel / 2) 

 for j = 1 + ceil(sizeOfKernel / 2):w - ceil(sizeOfKernel / 2) 

  referenceRow = i - ceil(sizeOfKernel / 2); 

  referenceColumn = j - ceil(sizeOfKernel / 2); 

  for yyy = 1:sizeOfKernel 

   for yyyColumn = 1:sizeOfKernel 

    derivativeX(i, j) = derivativeX(i, j) + originalImg(referenceRow + yyy - 1, 

referenceColumn + yyyColumn - 1) * xGaussian(yyy, yyyColumn); 

   end 

  end 

  end 

end 

 

for i = 1 + ceil(sizeOfKernel / 2):h - ceil(sizeOfKernel / 2) 

 for j = 1 + ceil(sizeOfKernel / 2):w - ceil(sizeOfKernel / 2) 

  referenceRow = i - ceil(sizeOfKernel / 2); 

  referenceColumn = j - ceil(sizeOfKernel / 2); 

   for yyy = 1:sizeOfKernel 
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    for yyyColumn = 1:sizeOfKernel 

     derivativeY(i, j) = derivativeY(i, j) + originalImg(referenceRow + yyy - 

1, referenceColumn + yyyColumn - 1) * yGaussian(yyy, yyyColumn); 

    end 

   end 

 end 

end 

 

for i = 1 + ceil(sizeOfKernel / 2):h - ceil(sizeOfKernel / 2) 

 for j = 1 + ceil(sizeOfKernel / 2):w - ceil(sizeOfKernel / 2) 

  gradient(i, j) = sqrt(derivativeX(i, j)^2 + derivativeY(i, j)^2); 

 end 

end 

 

nonMax = gradient; 

 

for i = 1 + ceil(sizeOfKernel / 2):h - ceil(sizeOfKernel / 2) 

 for j = 1 + ceil(sizeOfKernel / 2):w - ceil(sizeOfKernel / 2) 

  if(derivativeX(i, j) == 0) tangent = 5; 

  else tangent = (derivativeY(i, j) / derivativeX(i, j)); 

  end 

  if(-0.4142 < tangent & tangent <= 0.4142) 

   if(gradient(i,j) < gradient(i, j + 1) | gradient(i, j) < gradient(i, j - 1)) 

    nonMax(i, j)=0; 

   end 

  end 

  if(0.4142 < tangent & tangent <= 2.4142) 

   if(gradient(i, j) < gradient(i - 1, j + 1) | gradient(i, j) < gradient(i + 1, j - 1)) 
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    nonMax(i, j)=0; 

   end 

  end 

  if(abs(tangent) > 2.4142) 

   if(gradient(i, j) < gradient(i - 1, j) | gradient(i, j) < gradient(i + 1, j)) 

    nonMax(i, j) = 0; 

   end 

  end 

  if(-2.4142 < tangent & tangent <= -0.4142) 

   if(gradient(i, j) < gradient(i - 1, j - 1) | gradient(i, j) < gradient(i + 1,j + 1)) 

    nonMax(i, j)=0; 

   end 

  end 

 end 

end 

 

postHysteresis = nonMax; 

 

for i = 1 + ceil(sizeOfKernel / 2):h - ceil(sizeOfKernel / 2) 

 for j = 1 + ceil(sizeOfKernel / 2):w - ceil(sizeOfKernel / 2) 

  if(postHysteresis(i, j) >= maxHysteresisThresh) postHysteresis(i, j) = 1; 

  end 

  if(postHysteresis(i, j) < maxHysteresisThresh & postHysteresis(i, j) >= minHysteresisThresh) 

postHysteresis(i, j) = 1; 

  end 

  if(postHysteresis(i, j) < minHysteresisThresh) postHysteresis(i, j) = 0; 

  end 

 end 
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end 

 

 

edgeFlag = 1; 

while(edgeFlag == 1) 

 edgeFlag = 0; 

 for i = 1 + ceil(sizeOfKernel / 2):h - ceil(sizeOfKernel / 2) 

  for j = 1 + ceil(sizeOfKernel / 2):w - ceil(sizeOfKernel / 2) 

   if(postHysteresis(i, j) > 0) 

    if(postHysteresis(i, j) == 2) 

     if(postHysteresis(i - 1, j - 1) == 1 | postHysteresis(i - 1, j) == 1 | 

postHysteresis(i - 1, j + 1) == 1 | postHysteresis(i, j - 1) == 1 | postHysteresis(i, j + 1) == 1 | postHysteresis(i + 

1, j - 1) == 1 | postHysteresis(i + 1, j) == 1 | postHysteresis(i + 1, j + 1) == 1) 

      postHysteresis(i, j) = 1; 

      edgeFlag == 1; 

     end 

    end 

   end 

  end 

 end 

end 

 

for i = 1 + ceil(sizeOfKernel / 2):h - ceil(sizeOfKernel / 2) 

 for j = 1 + ceil(sizeOfKernel / 2):w - ceil(sizeOfKernel / 2) 

  if(postHysteresis(i, j) == 2) 

   postHysteresis(i, j) == 0; 

  end 

 end 

end 
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out = postHysteresis; 

 

imwrite(originalImg, 'originalImage.bmp'); 

imwrite(derivativeX,'derivativeX.bmp'); 

imwrite(derivativeY,'derivativeY.bmp'); 

imwrite(gradient,'gradient.bmp'); 

imwrite(nonMax,'nonMax.bmp'); 

imwrite(postHysteresis,'postHysteresis.bmp'); 

 

ADDITIVE SHADOW REMOVAL CODE IN MATLAB 
 

function out = additiveShadowRemoval(img) 

 

imgSize = size(img); 

 

gray = rgb2gray(img); 

mask = 1 - double(im2bw(gray, graythresh(gray))); 

 

strel = [0 1 1 1 0; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 0 1 1 1 0]; 

 

shadow = imerode(mask, strel); 

light = imerode(1-mask, strel); 

 

shadowSum = 0; 

lightSum = 0; 

 

smoothMask = conv2(mask, strel/21, 'same'); 
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shadowMeanRed = sum(sum(img(:,:,1).* shadow)) / sum(sum(shadow)); 

shadowMeanGreen = sum(sum(img(:,:,2).* shadow)) / sum(sum(shadow)); 

shadowMeanBlue = sum(sum(img(:,:,3).* shadow)) / sum(sum(shadow)); 

 

lightMeanGreen = sum(sum(img(:,:,2).*light)) / sum(sum(light)); 

lightMeanRed = sum(sum(img(:,:,1).*light)) / sum(sum(light)); 

lightMeanBlue = sum(sum(img(:,:,3).*light)) / sum(sum(light)); 

 

 

out = img; 

 

intensityDiffRed = lightMeanRed - shadowMeanRed; 

intensityDiffGreen = lightMeanGreen - shadowMeanGreen; 

intensityDiffBlue = lightMeanBlue - shadowMeanBlue; 

 

  out(:, :, 1) = img(:, :, 1) + smoothMask * intensityDiffRed; 

  out(:, :, 2) = img(:, :, 2) + smoothMask * intensityDiffGreen; 

  out(:, :, 3) = img(:, :, 3) + smoothMask * intensityDiffBlue; 

 

imwrite(out, 'shadowRemoved.bmp'); 

 

SCRIPT USED FOR THESIS OUTPUT AND COMPARISON 
 

function out = thesisOut(img) 

 

imgSize = size(img); 
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gray = rgb2gray(img); 

imwrite(gray, 'gray.bmp'); 

 

tradCan = edge(gray, 'canny'); 

imwrite(tradCan, 'Canny.bmp'); 

 

sob = edge(gray, 'sobel'); 

imwrite(sob, 'sobel.bmp'); 

 

marrHildreth = edge(gray, 'log'); 

imwrite(sob, 'marrHildreth.bmp'); 

 

mask = 1 - double(im2bw(gray, graythresh(gray))); 

imwrite(mask, 'greyMask.bmp'); 

 

maskCan = edge(mask, 'canny'); 

imwrite(maskCan, 'shadowMaskCanny.bmp'); 

 

strel = [0 1 1 1 0; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 0 1 1 1 0]; 

 

shadow = imerode(mask, strel); 

imwrite(shadow, 'shadowMap.bmp'); 

 

shadowCan = edge(shadow, 'canny'); 

imwrite(shadowCan, 'shadowCanny.bmp'); 
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light = imerode(1-mask, strel); 

imwrite(light, 'lightmap.bmp'); 

 

lightCan = edge(light, 'canny'); 

imwrite(lightCan, 'lightCanny.bmp'); 

 

shadowSum = 0; 

lightSum = 0; 

 

smoothMask = conv2(mask, strel/21, 'same'); 

 

shadowMeanRed = sum(sum(img(:,:,1).* shadow)) / sum(sum(shadow)); 

shadowMeanGreen = sum(sum(img(:,:,2).* shadow)) / sum(sum(shadow)); 

shadowMeanBlue = sum(sum(img(:,:,3).* shadow)) / sum(sum(shadow)); 

 

lightMeanGreen = sum(sum(img(:,:,2).*light)) / sum(sum(light)); 

lightMeanRed = sum(sum(img(:,:,1).*light)) / sum(sum(light)); 

lightMeanBlue = sum(sum(img(:,:,3).*light)) / sum(sum(light)); 

 

 

out = img; 

 

intensityDiffRed = lightMeanRed - shadowMeanRed; 

intensityDiffGreen = lightMeanGreen - shadowMeanGreen; 

intensityDiffBlue = lightMeanBlue - shadowMeanBlue; 

 

  out(:, :, 1) = img(:, :, 1) + smoothMask * intensityDiffRed; 

  out(:, :, 2) = img(:, :, 2) + smoothMask * intensityDiffGreen; 
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  out(:, :, 3) = img(:, :, 3) + smoothMask * intensityDiffBlue; 

 

imwrite(out, 'shadowRemoved.bmp'); 

 

cannyEdge(out); 


