
Virtual Teaching Assistant for Undergraduate Students Using
Natural Language Processing & Deep Learning

by

Sadman Jashim Sakib
18101635

Baktiar Kabir Joy
18301018

Zahin Rydha
18301042

Md. Nuruzzaman
18301126

Khaled Ahmmed Anik
18301083

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
Brac University

May 2022

© 2022. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is our own original work while completing degree at Brac
University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Sadman Jashim Sakib
18101635

Baktiar Kabir Joy
18301018

Zahin Rydha
18301042

Md. Nuruzzaman
18301126

Khaled Ahmmed Anik
18301083

i

Approval
The thesis project titled “Virtual Teaching Assistant for Undergraduate Students
Using Natural Language Processing & Deep Learning” is submitted by

1. Sadman Jashim Sakib (18101635)

2. Baktiar Kabir Joy (18301018)

3. Zahin Rydha (18301042)

4. Md. Nuruzzaman (18301126)

5. Khaled Ahmmed Anik (18301083)

Of Spring, 2022 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science and Engineering on May 24,
2022.

Examining Committee:

Supervisor and Program Coordinator:
(Member)

Annajiat Alim Rasel
Senior Lecturer

Department of Computer Science and Engineering
Brac University

Secondary-Supervisor:
(Member)

Matin Saad Abdullah, PhD
Professor

Department of Computer Science and Engineering
Brac University

Thesis Coordinator:
(Member)

Md. Golam Rabiul Alam, PhD
Associate Professor

Department of Computer Science and Engineering
Brac University

ii

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

iii

Abstract
Online education’s popularity has been continuously increasing over the past few
years. Many universities were forced to switch to online education as a result of
COVID-19. In many cases, even after more than two years of online instruction,
colleges were unable to resume their traditional classroom programs. A growing
number of institutions are considering a hybrid approach to education, in which
some face-to-face teaching is augmented with online learning. Nevertheless, many
online education systems are inefficient, and this results in a poor rate of student
retention. In this paper, we are offering a primary dataset, a virtual teaching assis-
tant named VTA-bot, and its system architecture. In addition, we are showing a
first implementation of the suggested system, which consists of a chatbot that can
be queried about the content and topics of the ‘Programming Language I’ course, an
introductory programming language course offered by the CSE department of Brac
University. Students in their first year of university will benefit from this strategy,
which aims to increase student participation and involvement in online education.

Keywords: Dataset, Chatbot, Tokenization,Classifier, Bag of words, Stemming,
Lemmatization, Word Embedding, Prototype, Neural Network

iv

Acknowledgement
First and foremost, we owe a debt of gratitude to the Almighty Allah, for whom our
thesis was finished without any serious setbacks.
Secondly, we would like to thank our honourable supervisor Annajiat Alim Rasel sir
and secondary supervisor Matin Saad Abdullah sir for giving us their valuable time
whenever we needed it. In the beginning, we lacked extensive expertise. But they
never turned their backs on us and provided us with complete direction at all times.
We are immensely grateful to them for their unwavering assistance.
And finally, we would like to express our gratitude to our parents. They supported
us through all of life’s ups and downs. We would not be where we are now without
their unwavering encouragement and prayers.

v

Table of Contents

Declaration i

Approval ii

Abstract iv

Acknowledgment v

Table of Contents vi

List of Figures viii

List of Tables ix

Nomenclature x

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Research Aim . 2
1.3 Research Problems . 2

2 Literature Review 4

3 Problem Statement 6

4 Dataset for VTA-Bot 7
4.1 Methodology . 7

4.1.1 Objective . 7
4.1.2 Book Selection . 8
4.1.3 Topic Selection . 9
4.1.4 Questions & Answer Selection 9
4.1.5 Tagging the Questions . 9
4.1.6 Review . 9

4.2 Data Hierarchy . 9
4.3 Scale . 11
4.4 Data Pre-processing . 12

4.4.1 Importing the Dataset from Google Sheet 12
4.4.2 Preparing Dataset for Preprocessing 12
4.4.3 Case Folding . 15
4.4.4 Punctuation Removal . 16

vi

4.4.5 Removal of Stopwords . 16
4.4.6 Stemming . 17
4.4.7 Lemmatization . 17
4.4.8 Emoji Removal . 18

4.5 Fitting dataset on basic classifiers . 18

5 System Design 26
5.1 System Architecture . 26

5.1.1 User Interface . 26
5.1.2 Backend Process . 26

5.2 Design Data Flow . 27
5.2.1 Conceptual Queries . 27
5.2.2 Factual Queries . 28
5.2.3 Predefined Questions . 28
5.2.4 Support Seeking . 28

6 Prototype Development 29
6.1 NLP Techniques . 29
6.2 The Neural Network Model . 30
6.3 Prototype Implementation . 31
6.4 Prototype Training and Testing . 32

7 Future Work 35

8 Conclusion 36

Bibliography 39

vii

List of Figures

4.1 Workflow . 8
4.2 Data Hierarchy . 10
4.3 Number of questions under the tags (%) 11
4.4 Dataset from Google-sheet . 12
4.5 Eliminate empty rows . 13
4.6 Reset row numbers after eliminating null rows 13
4.7 qSet . 14
4.8 aSet . 15
4.9 Case Folding . 16
4.10 Punctuation Removal . 16
4.11 Removal of stopwords . 17
4.12 Stemming . 17
4.13 Lemmatization . 18
4.14 Emoji Removal . 18
4.15 Classifiers accuracy on whole dataset 19
4.16 Classifiers accuracy on refactored dataset 20
4.17 Accuracy comparison between whole, refactored dataset 21
4.18 Classifiers accuracy on further refactored dataset 22
4.19 Accuracy comparison between whole, refactored and further refac-

tored dataset . 23
4.20 F1 Score on Whole Dataset . 24
4.21 F1 Score on refactored Dataset . 24
4.22 F1 Score on further refactored Dataset 25

5.1 System Architecture . 27
5.2 Design Data Flow . 28

6.1 Data preprocessing . 29
6.2 NLP Techniques . 30
6.3 Feed Forward Neural Network . 31
6.4 Model Training Loss Curve . 33
6.5 Accuracy Curve . 33
6.6 Conversation Between VTA-bot and Student 34

viii

List of Tables

4.1 Different Sites Containing Python Queries 7
4.2 Dataset Overview . 11

6.1 Different Libraries and Functions Used 32

ix

Nomenclature

The following list describes several symbols & abbreviation that will be later used
within the body of the document

AI Artificial Intelligence

AIML Artificial Intelligence Markup Language

aSet Answer Set

JSON JavaScript Object Notation

MLF Multi-Layer Feed-Forward Network

NLG Natural Language Generation

NLP Natural Language Processing

NLTK Natural Language Toolkit

NLU Natural Language Understanding

qSet Question Set

URL Uniform Resource Locator

V TA Virtual Teaching Assistant

x

Chapter 1

Introduction

Students are unable to grasp computer programming due to a lack of resources. To
improve the teaching of any subject, available innovations must be utilized. One of
the most important skills for the Fourth Industrial Revolution is programming[21].
The majority of students avoid programming because they perceive it to be difficult.
Additional learning and teaching techniques may be employed to aid in the learning
process. Undergraduates have less concerns about development environments, and
the majority believe that hands-on learning is more valuable than studying theory-
based subject matter [27]. Our research aims to solve the issue of a significant
number of new learners who become stuck while learning the fundamentals of the
Python programming language and may not obtain appropriate assistance through
the online-based education systems of many institutions.

1.1 Background and Motivation
With the rapid development of modern technology, the use of automated objects
is expanding exponentially. The introduction of intelligent agents is greatly facili-
tated by Artificial Intelligence (AI). NLP-based chatbot help is a subset of artificial
intelligence (AI). NLP-based chatbots are used in several areas, including health,
e-commerce, finance, and food production. Nearly 1.4 billion people use chatbots,
which may save up to 30% on operating costs, and 27% of people are enthusiastic
about artificial intelligence assistance systems [17]. Unfortunately, the education
system has still not utilized AI-based assistant technology to the extent that it
should, resulting in a scarcity of helpful tools in the area. The education system is a
promising use for Chatbots, notably if an interactive educational environment is re-
quired. Introduction to programming courses has significant dropout rates, with up
to 50% of students dropping out [3]. It is possible to use chatbots to assist students
with programming language-related questions as a partial replacement for teaching
assistants, given that programming languages are a crucial module of Data Science
and Computer Science. This paper presents an assistive teaching Chatbot that uses
NLP techniques to aid students in learning the Python programming language in a
participatory manner at any time.

1

1.2 Research Aim
Our study aims to assist a significant number of first-year students who strug-
gle with a variety of issues and oftentimes become disoriented when adapting to
programming-related concepts. Moreover, at certain universities, there may not be
enough support to assist students with the online-based education system. Thus, the
purpose of this research is to introduce a virtual teaching assistant (VTA) chatbot
that will facilitate student learning and decrease the possibility of failure. Again, due
to the shortage of adequate data in this field, we aim to create a primary dataset for
our system. So now the chatbot can automatically respond to a variety of inquiries
pertaining to fundamental programming and avoid serving as a conduit for cheat-
ing by guiding students to solve their unique challenges without providing exact
answers. We will demonstrate the chatbot’s initial implementation, which will be
developed using Natural Language Processing (NLP) and deep learning approaches
[22].

1.3 Research Problems
1. Users have a limited amount of time to get responses to their inquiries and ex-

pect lightning-fast responses. It’s challenging to build chatbots that maintain
users’ attention till the end.

2. When dealing with user input, such as slang, misspellings, tone, humour and
grammar, it is tough to get it to work successfully.

3. Another significant obstacle is chatbot testing, which accounts for the bulk
of the difficulties. Chatbots are constantly evolving as a result of advances
in natural language modeling. As a consequence, testing and operationalizing
the chatbot is vital to ensuring its correctness.

4. Students will always receive assistance from assistive bots whenever they be-
come stuck in the learning process, even during exam time. As a result, it is
a significant problem to design the system in such a manner that it does not
become a conduit for copying.

5. Finding a good dataset is also a huge problem. We couldn’t discover a dataset
that matched our system criteria in our scenario.

6. Making an appropriate dataset for our system required processing a substantial
amount of raw data.

7. Finding the right framework for our bot was a difficult decision. It was possible
to create a bot quickly using pre-built frameworks. Because of this, there are
several drawbacks, such as the loss of flexibility and complete control.

8. The annotation process is one of the most difficult components of this re-
search, since the majority of queries, whether programming-related or not,
look confusing.

9. Choosing relevant questions from a given topic proved to be a daunting prob-
lem.

2

10. Selecting books that corresponded well with the course material was challeng-
ing for us.

11. For better training, we must exclude frequent words during pre-processing;
however, most of the frequent words in our dataset are keywords. Therefore,
we do not exclude these common keywords.

12. Finding appropriate classifiers to determine the quality of our dataset based
on its characteristics.

3

Chapter 2

Literature Review

Since ELIZA [41], an early chatbot, there have been significant advancements in
chatbot technology. Using NLP and machine learning components, chatbots are
artificially intelligent systems designed to simulate interactions with a single user
or a group of users. Chatbots have both academic and commercial applications.
In addition to non-academic applications, experts at Stanford University say that
chatbots are better for students than other ways to talk [17].

The integration of education and AI will be aided by the introduction of big data, the
constant emergence of digital campuses and online learning platforms [20]. Memon
proposed an effective, simple, easy, and low-cost framework approach for designing a
text-based multi-interactive chatbot. This will support the development of a multi-
interactive chatbot’s system for an educational area using AIML 2.0. This will also
facilitate the students a personalized learning environment for their learning towards
an outcome-based education domain[14].

Numerous academic institutions have integrated AI in a variety of methods, from
online education systems to web-based virtual chatbots [12]. An example of such a
system employs natural language processing (NLP) to evaluate and retrieve student-
entered text [26]. This technology may provide students with an interactive learning
environment. As a result of the newly adopted online-based teaching technique, stu-
dents often feel disoriented when transitioning to programming principles and may
lack sufficient assistance. We have not been able to fully duplicate the formal and
informal learning that happens in person and through interactions with other people
[9].

Attempting to recall code line by line is not the proper method for comprehending a
programming language [19], because students’ learning capacities vary. Heller et al.
(2005) created Freudbot, a chatbot, to collect insights from psychology students in
order to establish an environment in which students may participate and, therefore,
overcome the difficulty of responding to questions [11]. Sadhasivam presented in his
study “Implementation of Chatbot That Teach Programming Language” a chatbot
named Progbot that can educate an underused programming language easily and
intelligently [19]. Apprentices who are uncertain where to start can still inquire the
chatbot to start the lesson, and it begins with the fundamental topics and steadily
advances to additional troublesome material. The request is replied to by the sys-

4

tem’s built-in artificial intelligence. The user has to choose the invalid reply button,
which is able to alarm the system administrator [15], if they find any response that
they are not looking for. The foremost related work to our paper could be A. Goel’s
presentation of Jill Watson [16]. Though it is not a personalized system [25], Jill
Watson released the lecturers from responding to students’ inquiries. The objective
of this work is to provide a customized and intelligent virtual teaching assistant
(VTA) chatbot designed to make students’ learning experiences more fun and re-
duce the risk of failure.

The VTA in ProTracer 2.0 will figure out if a student’s answer is right or wrong
by comparing it to the teacher’s answer [28]. Responding to basic programming
queries and aiding students in overcoming obstacles will be the main capabilities of
the Chatbot. The extraction of intent and entities is a crucial stage in the process
of conversation management. Rasa NLU is an adaptive mechanism that recognizes
intent and entities in human speech [13]. The Rasa NLU model is passed to the
NLU Interpreter after training, which decodes trial intents to determine whether
NLU can correctly classify and retrieve entities [13]. A smartphone-based chatbot
system named Alpha is executed in the Python programming language and uses the
Dialog Flow framework, with a machine learning model to pull out the intents and
a cloud-based database to store data [17]. The primary objective of virtual teaching
assistants is to improve both the learning experience and the coordination mecha-
nisms in the classroom. The university’s academic cloud stores lessons for students’
mobile terminals. The VTA facilitates additional effective learner understanding
by providing feedback instantly [24]. ‘Coding Tutor’ [23], ‘e-Java’ [18], ‘ProgBot’
[19] and ‘PythonBot’ [21] are available with affiliated literature. Regardless, most
of them include extremely undersized content and concentrate on a particular pro-
gramming language. This paper is related to existing literature to some extent still
mainly focuses on support in the python programming language related courses for
first-year Undergraduate students.

5

Chapter 3

Problem Statement

Our system detects the intents of the queries as a supervised classification problem
where the set of intents, I = {“greetings”, “method”, “class”, “loop”, “if-else”.........
“goodbye”}. Given a set of question patterns, T= {t1, t2, t3, t4….tn} and their
responses, R= {r1, r2,r3, r4, ….. rn} and other metadata information, our goal is to
predict the correct intent label, Y= {y1, y2, y3, ..., yn} for generating the appropri-
ate response. After processing the input set, our system generates a probability set,
P= {p1, p2, p3, p4,....... pn} through a matching algorithm, which represents the
matching of queries with intents. The output with the maximum probability value
indicates the correct intent [2].

6

Chapter 4

Dataset for VTA-Bot

4.1 Methodology
The digital revolution has resulted in a massive increase in the amount of data that
can be stored. Various databases hold the answers to students’ questions about
the Python programming language.Stack Overflow, Stack Exchange, Python.org,
Programmers Heaven and Find-Nerd are among the question and answer sites for
professional and hobbyist programmers (Table-4.1). For the ultimate collection of
student questions and answers, there are free and open-source techniques. There
are also Python-related queries from a number of well-known programming books.
In addition, the concise note supplied by the Brac University teachers offered ad-
equate information. Models and methods for indexing, retrieving, organizing and
interacting with this data may be developed by leveraging these datasets. Again,
some available Python datasets gave the advantage to create a new dataset for the
VTA-bot. The workflow of creating the dataset is shown in Table-4.1.

Websites No. of Python Queries
Stack Overflow 1,870,130

Programmers Heaven 546
Stack Exchange 5,452,235

Python.org FAQ 1,050
FindNerd 200

Table 4.1: Different Sites Containing Python Queries

4.1.1 Objective
Initially, we intended to compile a database of 2,000 questions and answers. After
evaluating the relevant books, websites, concise notes, and accessible datasets, we
determined that 2,000 questions would approximately cover all of the course’s con-
tents. At first, our objective was to create a flowchart of our work Figure-4.1. We
started sample collection accordingly.

7

https://stackoverflow.com
https://programmersheaven.com/
https://stackexchange.com
https://docs.python.org/3/faq/index.html/
https://findnerd.com/

Figure 4.1: Workflow

4.1.2 Book Selection
We first chose ten books for the course [29], [30], [32]–[39]. We formed a group of
two members to choose books from among them. They picked the following three
books:

1. Alex Martelli’s “Python in a Nutshell” 1st Edition [37].

2. The second edition of Mark Lutz and David Ascher’s “Learning Python” [36].

3. Mark Summerfield’s “Programming in python 3: a complete introduction to
the python language” [33]

After selection, the whole group evaluated the books and agreed to gather samples.
We discovered that these three books cover almost all of the course’s content.

8

4.1.3 Topic Selection
We assigned topic selection to each member of the group. We initially compiled a
list of chapter-specific topics. Then, we eliminated all repeated topics and compiled
a list of unique ones. These topics encompass the entire course.

4.1.4 Questions & Answer Selection
This was one of the hardest tasks to select questions and answers. We first dis-
tributed the unique topics to each member of the group. Each group member then
compiled all potential questions and answers for each topic.

4.1.5 Tagging the Questions
The process of tagging the questions was one of the most challenging aspects of this
study because arranging the questions according to a similar pattern, appeared to
be perplexing. This is also a major purpose of the project, since identifying requests
as a different intent may result in wrong output, which we are trying to avoid. We
gave a tag to every similar patterned question.

4.1.6 Review
To verify the completeness of the data we obtained, we consulted a teacher’s assistant
for this course. According to the feedback we received, we modified our dataset.
We included several essential questions acquired from the students’ queries to our
dataset. After fixing all the errors in the dataset, we finally obtained our desired
dataset.

4.2 Data Hierarchy
Our Python programming language data collection is organized hierarchically. The
root is set to “intent”. We saved “topics” inside of “intent”. Each “topic” includes
“tags”. Again, each “tag” comprises questions of a similar kind. Lastly, each question
corresponds to a certain response.

9

Figure 4.2: Data Hierarchy

10

4.3 Scale
The dataset has been arranged according to the above procedure and is ready for
preprocessing and training-testing [31]. Currently, our dataset has a total of 214
unique tags, 1,006 questions, and 254 unique responses. Below are the percentages
of questions associated with each category [Figure-4.3]. 18.7% of all tags have two
or less questions, 18.2% contain three questions, 22.4% contain four questions, and
the remainder contain five to ten questions. On average, each tag comprises between
five and six questions.

No of Tag No of Pattern No of Response
214 1,006 254

Table 4.2: Dataset Overview

Figure 4.3: Number of questions under the tags (%)

11

4.4 Data Pre-processing

4.4.1 Importing the Dataset from Google Sheet
To begin the preprocessing of our dataset, we must first import the dataset. The
dataset was imported by copying it directly from the Google Sheet (Figure-4.4).
Therefore, we will always be able to use the most current dataset. If we do not
import our dataset, we will be compelled to do so, and every time we modify the
dataset, we will need to import it again, which will be a time-consuming procedure.
In contrast, if we loaded our dataset directly from the Google sheet, we can instantly
get the updated dataset whenever there is a change to the dataset itself. In addition,
it will save us time, which is a significant benefit.

Figure 4.4: Dataset from Google-sheet

4.4.2 Preparing Dataset for Preprocessing
After the dataset has been imported, a series of operations must be performed to
make it ready for pre-processing.

Eliminating empty rows

Our dataset contains a number of empty rows. During the process of making mod-
ifications to the data, one of the jobs that must be completed is the removal of any
null rows from the dataset. If these rows are included in the dataset, the accuracy
and performance of any machine learning system will decline. Before any machine
learning approach can be properly applied to a dataset that contains null rows, it
is essential that all null rows be deleted. This is a precondition for all machine
learning methods [4]. We began with 1026 rows prior to removing the null rows.
After removing rows containing null values from our dataset, we are left with 1006
rows (Figure-4.5).

12

Figure 4.5: Eliminate empty rows

Reseting row numbers after eliminating null rows

Following the removal of empty rows from our dataset, the row numbers in our
dataset will need to be reset. Figure - 4.5 clearly demonstrates that the index
for the very last row is 1,025. However, there are 1,006 rows overall here. After
removing the empty rows from our dataset, the row number must be reset in order
to avoid this issue. Following the resetting of the row numbers, there are 1,006 rows
remaining, with the last row having an index of 1,005 (Figure-4.6).

Figure 4.6: Reset row numbers after eliminating null rows

13

Creating Response and Pattern Set

After eliminating the null rows, we get two distinct sets for response and pattern.
This is an essential pre-processing step. We extract the pattern and its tag from the
dataset and constructed qSet (Figure-4.7). qSet will be utilized to train our model.
Using aSet (Figure-4.8), we separate the answers and its corresponding tags. This
will be implemented in the prototype.

Figure 4.7: qSet

14

Figure 4.8: aSet

4.4.3 Case Folding
Lower casing refers to the process of converting the text of a sentence or paragraph
to lowercase. In the first stage of the pre-processing phase, we will convert all the
values in our dataset to lowercase. There are no constraints on the data entry format.
The data entry field accepts both capital and lowercase characters [5]. Therefore,
if we do not use letters in the same case, the same words may sound differently,
which might create confusion. We will need to use lower case to discover a solution
to this challenge. By analysing Figure-4.9, we can get an idea of what the lowercase
version of the dataset will look like. The term “pattern_lower” will be transformed
to “pattern” after the usage of lower case. Our dataset will now adhere to the new
pattern, which is all lowercase.

15

Figure 4.9: Case Folding

4.4.4 Punctuation Removal
After the lower case conversion is complete, the punctuation marks must be re-
moved from the texts. The patterns in the collection may or may not include any
punctuation at all depending on their particular design. It is necessary to eliminate
any punctuation that may be included in the patterns in order to ensure that the
patterns do not include any punctuation [7]. When we remove the punctuation from
the patterns in Figure-4.10, we are able to observe how the patterns appeared before
and after the removal of the punctuation. After removing the punctuation, we will
now begin working with the modified patterns that we have obtained.

Figure 4.10: Punctuation Removal

4.4.5 Removal of Stopwords
After the punctuation has been eliminated, we will next eliminate the stop words.
Stop words are any words included inside a stop list that are eliminated either before
to or after the processing of natural language data[6]. There might be a large number
of stopwords in the pattern of our dataset, or none at all. Stopwords are insignificant
or almost insignificant words. Therefore, we must eliminate these words. Figure-4.11
illustrates the approach for removing stop words from the patterns contained in our
dataset.

16

Figure 4.11: Removal of stopwords

4.4.6 Stemming
Model training will be more successful if the redundant words in the patterns are
eliminated, after deleting the stop words. Text normalization can be improved
by reducing the inflection of words to their root forms using the natural language
processing approach called stemming. Typically, the term “stemming” refers to a
rudimentary heuristic procedure that removes derivational affixes from words in an
attempt to achieve this aim as accurately as possible. Consequently, stemming is
used to reduce words to their fundamental form or stem, which may or may not
be a genuine word in the language [40]. Examples include “connect” as the root
of the following words: connections, connected and connected. When it comes to
“troubl”, the root of “troubles”, “troubled” and “trouble” is not a recognized word.
The technique we use while stemming our patterns is depicted in (Figure-4.12). Our
new revised pattern will be stemmed-text when it has been stemmed.

Figure 4.12: Stemming

4.4.7 Lemmatization
Lemmatization is the next step after stemming. Although lemmatization is derived
from the term, its meaning is preserved. As the word’s meaning diminishes, a
predefined dictionary used by lemmatization keeps track of the word’s meaning [8].
While Lemmatization clearly recognizes “troubled” as the base form of “trouble”,
Stemming removes the “ed” element and converts it into “troubl”, which has a

17

different connotation and spelling problems. This is an illustration of the difference
between Lemmatization and Stemming. Our data is subjected to stemming and
lemmatization in order to extract all of the words’ roots. Our model training will
benefit greatly from this (Figure-4.13)

Figure 4.13: Lemmatization

4.4.8 Emoji Removal
Text pre-processing is a critical step when working with Natural Language Process-
ing (NLP). In the text cleaning phase, we must do a variety of text preprocessing
operations, such as handling stop words, special characters, emoji, emoticons, punc-
tuation, spelling correction, URL, etc. This stage involves removing emojis from
our pattern in order to make the data both clean and informative (Figure-4.14).

Figure 4.14: Emoji Removal

4.5 Fitting dataset on basic classifiers
After all of the pre-processing, we must now evaluate how well our dataset responds
to user inputs. To determine this, we utilized four distinct classifiers and compared
their respective accuracy gains. After evaluating the accuracy, we will be able to
predict the accuracy of the neural model of our prototype. Our chosen classifiers for
training and testing are the Naive Bayes Classifier, the Decision Tree Classifier, the
Linear Support Vector Machine and the Logistic Regression classifier.

18

Initially, we conducted tests on the entire dataset by dividing it 8:2 for training and
testing purposes. As input, we use the patterns to anticipate the tag. Tags are
assigned to every comparable question pattern.

Figure 4.15: Classifiers accuracy on whole dataset

After training and evaluating the models with the entire dataset, different classifiers
achieve varying degrees of accuracy. In Figure-4.15, we can see the accuracy of all
classifiers over the entire dataset. The accuracy for Naive Bayes Classifier is 21.42
percent, Decision Tree Classifier is 58.67 percent, Linear Support Vector Machine is
50 percent and Logistic Regression is 62.24 percent. On the entire data set, Logistic
Regression provides the highest level of accuracy, 62.24 percent.

19

Figure 4.16: Classifiers accuracy on refactored dataset

We are not entirely satisfied with the overall accuracy of the entire dataset. Due to
this, we omitted certain tags with less training patterns. We refactored data while
preserving the patterns of tags with at least 10 patterns. On rerunning these clas-
sifiers on the refactored data, the accuracy of each classifier improves. Figure-4.16
depicts the classification accuracy of each classifier for the refactored dataset. Now,
the accuracy of Naive Bayes Classifier is 66.67 percent, Decision Tree Classifier is
75.75 percent, Linear Support Vector Machine is 69.70 percent and Logistic Regres-
sion is 75.75 percent. On the refactored dataset, Logistic Regression and Decision
Tree Classifier get the highest accuracy, 75.75 percent.

20

Figure 4.17: Accuracy comparison between whole, refactored dataset

From the comparison in Figure-4.17, we can observe that the refactored dataset has
greater accuracy than the original dataset. For the refactored dataset the accuracy
of the Naive Bayes Classifier increases by 17.08 percent, 19.7 percent for the Linear
Support Vector Machine and 13.51 percent for the Logistic Regression algorithm.
This is because the refactored dataset contains tags with a greater number of pat-
terns, which helps classifiers train more effectively, resulting in improved accuracy.

21

Figure 4.18: Classifiers accuracy on further refactored dataset

To get a clearer idea, we rerun all four classifiers using a further refactored dataset to
determine if eliminating tags with fewer patterns yields a substantially higher degree
of precision. Now the dataset contains only tags with at least 10 patterns. We then
rerun these classifiers on the newly refactored data and observe a significant increase
in accuracy across the board. Figure-4.18 depicts the classification accuracy of all
classifiers for the refactored dataset. Now, the accuracy for Naive Bayes Classifier
is 73.91 percent, Decision Tree Classifier is 78.26 percent, Linear Support Vector
Machine is 86.95 percent, and Logistic Regression is 82.60 percent. With the further
refactored dataset, we achieve the highest accuracy with Linear Support Vector
Machine and Decision Tree Classifier, 86.95 percent and 82.60 percent, respectively.

22

Figure 4.19: Accuracy comparison between whole, refactored and further refactored
dataset

Comparing the accuracy of all classifiers on the entire dataset, the refactored dataset,
and the further refactored dataset in Figure-4.19, we can see that the more tags with
a higher number of patterns we add, the more balanced our dataset becomes. After
testing the accuracy, we can anticipate that the neural model of our prototype will
have an accuracy of more than 90 percent. Our goal is to increase the accuracy of
the entire dataset in the future by incorporating additional patterns for each tag,
with the assistance of relevant faculties, student tutors and also ourselves.

F1-Score

In model training, F1-score is one of the most important evaluation metrics. It
elegantly summarizes the predictive performance of a model by combining precision
and recall.

Initially, we test our four classifiers on the entire dataset and obtain an average
f1-score (Figure-4.20) of 0.16 for the Naive Bayes classifier, 0.56 for the Decision
Tree classifier, 0.46 for the Linear Support Vector Machine(SVM) and 0.60 for the
Logistic regression.

23

Figure 4.20: F1 Score on Whole Dataset

Second, we retest all four classifiers on the refactored dataset and obtain an average
f1-score (Figure-4.21) of 0.64 for the Naive Bayes classifier, 0.75 for the Decision
Tree classifier, 0.65 for the Linear Support Vector Machine (SVM) and 0.75 for the
Logistic regression.

Figure 4.21: F1 Score on refactored Dataset

24

When we finally retest all four classifiers on our further refactored dataset, we obtain
an average f1-score (Figure-4.22) of 0.71 for the Naive Bayes classifier, 0.82 for the
Decision Tree classifier, 0.85 for the Linear Support Vector Machine (SVM) and 0.81
for the Logistic regression classifier [10].

Figure 4.22: F1 Score on further refactored Dataset

25

Chapter 5

System Design

5.1 System Architecture
We implemented our VTA-Bot system Figure-5.1 as a web application. As a result,
students have easier access from their mobile devices and desktop browsers.

5.1.1 User Interface
The user interface is designed with only the most essential functions. There is an
input field for users to enter their queries and an output field to receive the system’s
response. There is also a decision module for users to select the desired functionality.
They can select between conceptual and factual queries. This is essential for guiding
the user in the right direction.

5.1.2 Backend Process
All processing and matching to generate a response is performed in the system’s
backend.

Pre-Processing

In the backend of our system, received data is preceded by preprocessing. As users
can provide any type of unwanted data as input, we will need to process these inputs
and extract only the required data. We perform pre-processing on user input by first
tokenizing it, then removing stop words, and finally stemming and lemmatizing all
remaining inputted values.

Tier-2 Processing

After preprocessing is complete, we do the word-embedding and place it in a bag of
words. We call it tier-2 processing.

Matching and extracting data from server

Using our neural network model, we compare the processed data with our dataset
stored on the database server following all processing.

26

Generating Output

After comparing the processed data to our dataset, we produce the most optimally
matched output. This output is then displayed on the user interface.

Figure 5.1: System Architecture

5.2 Design Data Flow
VTA-bot has a different support mechanism. To begin, students will choose ei-
ther course-related support or mentorship-related support. The mentorship support
will provide basic course guidelines, suggestions for further courses and live sup-
port appointments(Figure-5.2). On the contrary, the course-related section has four
subsections:

5.2.1 Conceptual Queries
VTA-bot provides sequential concept-related support through conversation with the
flexibility of choosing a particular concept or subsequent concept or redirecting to
the dedicated live support appointment.

27

5.2.2 Factual Queries
This section contains all deadlines, faculty or TA contact information, quizzes and
assignment marks.

5.2.3 Predefined Questions
Frequently asked questions with solutions are included, as well as instructions for
setting up a live-support session.

5.2.4 Support Seeking
Dedicated support area to schedule live discussions with faculty or TA.

Figure 5.2: Design Data Flow

28

Chapter 6

Prototype Development

6.1 NLP Techniques
We cannot just feed the input phrase to the neural network in its existing form. We
need to translate the pattern strings into numbers that the network can interpret
in some way. This is accomplished by transforming each statement into a “bag of
words”. To do this, we collected training words, or all the terms in the training
data that our VTA-bot can look at. The bag of words for each new sentence was
then calculated using all of these keywords. A bag of words has the same size as
the “all words” array (Figure-6.1), and each slot contains a 1 if the word appears in
the incoming phrase, or a 0 if it does not. Prior to calculating the bag of words, we
used two more natural language processing techniques: Tokenization and Stemming
(Figure-6.2).

• Tokenization: It splits a string into meaningful units (e.g. words, punctua-
tion characters, numbers)

• Stemming: It creates the word’s root form. It is an imprecise heuristic that
removes the endings of words.

Figure 6.1: Data preprocessing

29

Figure 6.2: NLP Techniques

6.2 The Neural Network Model
A MLF neural network consists of neurons that are ordered into layers (Figure-6.3).
The first layer is called the input layer, the last layer is called the output layer,
and the layers between are hidden layers. A Feed Forward Neural Net (Figure-6.3)
with two hidden layers is used to create our neural network model.Training and
prediction are the two modes of operation supported by the Feed Forward neural
network. Two data sets are required for the training and prediction of this neural
network: the training set and the set to be predicted (test set). It takes the input,
passes it through various layers one by one, and then finally gives the output. This
feed-forward Neural Network is constructed using the “torch.nn” package. The
“torch.nn” is a python package provided by “PyTorch” that assisted us in developing
and training the neural network.

30

Figure 6.3: Feed Forward Neural Network

6.3 Prototype Implementation
Our VTA-bot is developed utilizing the Python programming language and deep
learning algorithms. We started by installing PyTorch (6.1) and NLTK (6.1). We
then prepared a JSON file containing a training data set. Afterwards, we constructed
the NLP Pipeline utilizing the NLTK package of python. For this, the NLTK module
was utilized. We implemented the model of a Neural Network. The torch.nn module
offered by PyTorch aided in the creation and training of the neural network model [1].
Then, we designed the Training Pipeline, which is comprised of a series of sequential
phases that cover everything from data gathering and data pre-processing through
training the model and distribution. We developed the virtual teaching assistant
(VTA-bot) by loading the learned model and predicting new phrases. According to
the course materials, we may alter the JSON dataset file with potential patterns
and replies and rerun the training.

31

Libraries And Function Operations
PyTorch An open source machine learning framework that accelerates the path from research prototyping to production deployment.
Torch.nn help us in creating and training of the neural network.
Nltk a toolkit build for working with NLP in Python.
nn.ReLU() the activation function is responsible for transforming the summed weighted input from the node into the activation of the node or output for that input.
optimizer.zero_grad() clears old gradients from the last step.
criterion(outputs, labels) expects a class index (1 to the number of class) as target when calling forward(input, target) and backward(input, target).
loss.backward() the whole graph is differentiated w.r.t. the loss, and all Variables in the graph will have their . grad Variable accumulated with the gradient.

Table 6.1: Different Libraries and Functions Used

6.4 Prototype Training and Testing
We load the dataset, which is in JSON format and after performing proper NLP
techniques we generate the bag words for every pattern in the dataset . We trained
our model with the updated data. We set the batch size to 8 and the number of
epochs to 1,000. Then we calculated the loss and accuracy in each 100 epoch. The
number of epochs is a hyper-parameter that controls how many times the learning
algorithm runs over the whole training dataset. Loss is the error over the training
set. A loss function takes the (output, target) pair of inputs and computes a value
that estimates how far away the output is from the target. Throughout the training
loop, in every epoch the loss is decreasing and the accuracy is increasing. In the
Figure-6.4 we can see that, in the first iteration the loss was 1.1089. After our train-
ing concluded, our loss was effectively reduced to 0.0007. Again, in the Figure-6.5
, we can see the accuracy increased to 95%. Training the network is repeated for a
large number of training set examples until the network finds a stable state. The
most typical strategy for avoiding over-fitting is stopping early. Early stopping is
based on separating data into training and validation sets and computing the val-
idation error regularly during training. Training is terminated when the number
of validation errors begins to rise. In the Figure-6.6 we can see our VTA-bot is
assisting a student.

32

Figure 6.4: Model Training Loss Curve

Figure 6.5: Accuracy Curve

33

Figure 6.6: Conversation Between VTA-bot and Student

34

Chapter 7

Future Work

This paper proposed a dataset and an architecture for a VTA-bot capable of offer-
ing several services to students enrolled in online and on-site courses, with “assisted
learning” as the ultimate goal. In addition, a first implementation of such a system
was introduced, consisting of a chatbot able to respond to the inquiries of students
enrolled in “Programming Language I”. This chatbot is only a small portion of the
VTA system we are proposing, and we are already developing other services for
the system. By monitoring the interactions between students and the VTA-bot us-
ing knowledge extraction methods, we plan to continue refining and enhancing the
model even after it has been deployed. We also intend to add student engagement:
by analyzing student behavior, the VTA-bot will be able to determine which stu-
dents are facing trouble with the course contents and which are dissatisfied with
the response; it may then act proactively or send a warning to a human teacher.
Again, the addition of new courses is something we want to do in the near future.
Lastly, ongoing research is centered on the prospect of personalizing learning ma-
terials by recommending various contents based on the student’s interactions with
the VTA-bot.

35

Chapter 8

Conclusion

Students are sometimes hesitant to contact with strangers, and due to the newly
established online-based education system, they get disoriented when transitioning
to new programming concepts and lack adequate supervision. Our goal in writing
this paper was to introduce our VTA-bot as a medium of learning to make their
educational experiences more enjoyable and reduce their chances of failing. Along
with answering core python programming questions, our VTA-bot will be able to
assist students with course-related concerns and provide real-time assistance from
their teachers. We demonstrated a preliminary implementation, which consists of a
Chatbot that will assist and support students through the use of artificial intelligence
(AI) technologies, including natural language processing (NLP). To help students
even more, we intend to continue working on improving our system in the years to
come, hoping for a revolution in our education sector.

36

Bibliography

[1] F. A. R. lab (FAIR). “Pytorch.” (), [Online]. Available: https://pytorch.org/.
(accessed: 15.10.2021).

[2] G. Cloud. “Intents.” (), [Online]. Available: https://cloud.google.com/dialogflow/
es/docs/intents-overview. (accessed: 15.10.2021).

[3] D. Jovic. “The future is now - 37 fascinating chatbot statistics.” (), [On-
line]. Available: https://www.smallbizgenius.net/by-the-numbers/chatbot-
statistics/. (accessed: 15.10.2021).

[4] N. Kumar. “Data wrangling: Removing null values from dataset in python
using pandas library.” (), [Online]. Available: http ://theprofessionalspoint .
blogspot.com/2019/03/data-wrangling-removing-null-values.html. (accessed:
9.3.2022).

[5] S. R. Kumar. “Getting started with text preprocessing.” (), [Online]. Available:
https://www.kaggle.com/code/sudalairajkumar/getting-started-with-text-
preprocessing/notebook?fbclid=IwAR2YkpAEgIVtPuNa5543LU4IlLjeFEY8kzk--
6SbT8zk0Rvi1LeuZSkFtZs. (accessed: 9.3.2022).

[6] U. Malik. “Removing stop words from strings in python.” (), [Online]. Avail-
able: https://stackabuse.com/removing-stop-words-from-strings-in-python/.
(accessed: 10.3.2022).

[7] V. Rani. “Nlp tutorial for text classification in python.” (), [Online]. Available:
https://medium.com/analytics-vidhya/nlp-tutorial-for-text-classification-in-
python-8f19cd17b49e. (accessed: 9.3.2022).

[8] “Stemming & lemmatization.” (), [Online]. Available: https://nlp.stanford.
edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html. (ac-
cessed: 4.3.2022).

[9] Wikipedia. “Apprenticeship learning.” (), [Online]. Available: https : / / en .
wikipedia.org/wiki/Apprenticeship_learning. (accessed: 15.10.2021).

[10] J. Cabero-Almenara, F. D. Guillén-Gámez, J. Ruiz-Palmero, and A. Palacios-
Rodrı́guez, “Teachers’ digital competence to assist students with functional
diversity: Identification of factors through logistic regression methods,” British
Journal of Educational Technology, vol. 53, no. 1, pp. 41–57, 2022.

[11] N. N. P. Anh and H. T. Ngan, “Artificial intelligence in mathematics edu-
cation: An empirical study of using chatbot in teaching and learning mathe-
matics at vietnamese high schools,” 5th ASIA PACIFIC International Modern
Sciences Congress, 2021.

[12] V. GAUR et al., “Chat-bot system project based on the natural languahge,”
2021.

37

https://pytorch.org/
https://cloud.google.com/dialogflow/es/docs/intents-overview
https://cloud.google.com/dialogflow/es/docs/intents-overview
https://www.smallbizgenius.net/by-the-numbers/chatbot-statistics/
https://www.smallbizgenius.net/by-the-numbers/chatbot-statistics/
http://theprofessionalspoint.blogspot.com/2019/03/data-wrangling-removing-null-values.html
http://theprofessionalspoint.blogspot.com/2019/03/data-wrangling-removing-null-values.html
https://www.kaggle.com/code/sudalairajkumar/getting-started-with-text-preprocessing/notebook?fbclid=IwAR2YkpAEgIVtPuNa5543LU4IlLjeFEY8kzk--6SbT8zk0Rvi1LeuZSkFtZs
https://www.kaggle.com/code/sudalairajkumar/getting-started-with-text-preprocessing/notebook?fbclid=IwAR2YkpAEgIVtPuNa5543LU4IlLjeFEY8kzk--6SbT8zk0Rvi1LeuZSkFtZs
https://www.kaggle.com/code/sudalairajkumar/getting-started-with-text-preprocessing/notebook?fbclid=IwAR2YkpAEgIVtPuNa5543LU4IlLjeFEY8kzk--6SbT8zk0Rvi1LeuZSkFtZs
https://stackabuse.com/removing-stop-words-from-strings-in-python/
https://medium.com/analytics-vidhya/nlp-tutorial-for-text-classification-in-python-8f19cd17b49e
https://medium.com/analytics-vidhya/nlp-tutorial-for-text-classification-in-python-8f19cd17b49e
https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
https://en.wikipedia.org/wiki/Apprenticeship_learning
https://en.wikipedia.org/wiki/Apprenticeship_learning

[13] A. N. Mathew, J. Paulose, et al., “Nlp-based personal learning assistant for
school education.,” International Journal of Electrical & Computer Engineer-
ing (2088-8708), vol. 11, no. 5, 2021.

[14] Z. Memon, H. Aghian, M. S. Sarfraz, et al., “Framework for educational
domain-based multichatbot communication system,” Scientific Programming,
vol. 2021, 2021.

[15] A. Roy, D. Singh, and S. Sahana, “Educational assistance bot,” in Journal of
Physics: Conference Series, IOP Publishing, vol. 1797, 2021, p. 012 062.

[16] Q. Wang, K. Saha, E. Gregori, D. Joyner, and A. Goel, “Towards mutual
theory of mind in human-ai interaction: How language reflects what students
perceive about a virtual teaching assistant,” in Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems, 2021, pp. 1–14.

[17] S. Abdelhamid and A. Katz, “Using chatbots as smart teaching assistants for
first-year engineering students,” in 2020 First-Year Engineering Experience,
2020.

[18] S. H. M. Daud, N. H. I. Teo, and N. H. M. Zain, “Ejava chatbot for learning
programming language: A post-pandemic alternative virtual tutor,” Interna-
tional Journal, vol. 8, no. 7, pp. 3290–3298, 2020.

[19] M. A. Jayakumar Sadhasivam, A. B. Amitava Mazumdar, B. J.M, and V.
Kumar, “Implementation of chatbot that teach programming language,” Xi’an
University of Architecture & Technology, vol. 12, 2020.

[20] Y. Liang, Y. Yu, and W. Ouyang, “Intelligent chat robot in digital campus
based on deep learning,” in Journal of Physics: Conference Series, IOP Pub-
lishing, vol. 1629, 2020, p. 012 079.

[21] C. W. Okonkwo and A. Ade-Ibijola, “Python-bot: A chatbot for teaching
python programming.,” Engineering Letters, vol. 29, no. 1, 2020.

[22] L. Benedetto, P. Cremonesi, and M. Parenti, “A virtual teaching assistant for
personalized learning,” arXiv preprint arXiv:1902.09289, 2019.

[23] S. Hobert, “Say hello to ‘coding tutor’! design and evaluation of a chatbot-
based learning system supporting students to learn to program,” 2019.

[24] V. Fernoagă, G.-A. Stelea, C. Gavrilă, and F. Sandu, “Intelligent education
assistant powered by chatbots,” in The International Scientific Conference
eLearning and Software for Education, ” Carol I” National Defence University,
vol. 2, 2018, pp. 376–383.

[25] A. K. Goel and L. Polepeddi, “Jill watson: A virtual teaching assistant for
online education,” Georgia Institute of Technology, Tech. Rep., 2016.

[26] M. Al Emran and K. Shaalan, “A survey of intelligent language tutoring sys-
tems,” in 2014 International Conference on Advances in Computing, Commu-
nications and Informatics (ICACCI), IEEE, 2014, pp. 393–399.

[27] R. Ahmed, “Elabmate: A tool for delivering programming courses effectively,”
International Journal of Advanced Corporate Learning (iJAC), vol. 5, no. 3,
pp. 6–11, 2012.

38

[28] C.-Y. Chou, B.-H. Huang, and C.-J. Lin, “Complementary machine intelli-
gence and human intelligence in virtual teaching assistant for tutoring program
tracing,” Computers & Education, vol. 57, no. 4, pp. 2303–2312, 2011.

[29] P. Barry, Head first Python: A brain-friendly guide. ”O’Reilly Media, Inc.”,
2010.

[30] P. Barry and D. Griffiths, Head First Programming: A Learner’s Guide to
Programming Using the Python Language. ” O’Reilly Media, Inc.”, 2009.

[31] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in 2009 IEEE conference on computer
vision and pattern recognition, Ieee, 2009, pp. 248–255.

[32] M. L. Hetland, Beginning Python: from novice to professional. Apress, 2008.
[33] M. Summerfield, Programming in Python 3: a complete introduction to the

Python language. Addison-Wesley Professional, 2008.
[34] W. Chun, Core python programming. Prentice Hall Professional, 2007.
[35] D. M. Beazley, Python essential reference. Addison-Wesley Professional, 2006.
[36] D. Ascher and M. Lutz, Learning Python. O’Reilly, 2004.
[37] A. Martelli, Python in a Nutshell. ” O’Reilly Media, Inc.”, 2003.
[38] M. L. Hetland, Practical Python. Citeseer, 2002, vol. 648.
[39] A. Martelli, A. Ravenscroft, and D. Ascher, Python cookbook. ” O’Reilly Media,

Inc.”, 2002.
[40] J. B. Lovins, “Development of a stemming algorithm.,” Mech. Transl. Comput.

Linguistics, vol. 11, no. 1-2, pp. 22–31, 1968.
[41] J. Weizenbaum, “Eliza—a computer program for the study of natural language

communication between man and machine,” Communications of the ACM,
vol. 9, no. 1, pp. 36–45, 1966.

39

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Background and Motivation
	Research Aim
	Research Problems

	Literature Review
	Problem Statement
	Dataset for VTA-Bot
	Methodology
	Objective
	Book Selection
	Topic Selection
	Questions & Answer Selection
	Tagging the Questions
	Review

	Data Hierarchy
	Scale
	Data Pre-processing
	Importing the Dataset from Google Sheet
	Preparing Dataset for Preprocessing
	Case Folding
	Punctuation Removal
	Removal of Stopwords
	Stemming
	Lemmatization
	Emoji Removal

	Fitting dataset on basic classifiers

	System Design
	System Architecture
	User Interface
	Backend Process

	Design Data Flow
	Conceptual Queries
	Factual Queries
	Predefined Questions
	Support Seeking

	Prototype Development
	NLP Techniques
	The Neural Network Model
	Prototype Implementation
	Prototype Training and Testing

	Future Work
	Conclusion
	Bibliography

