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Abstract

In this work we will analyze control variates and baselines in policy optimization
methods in deep reinforcement learning (RL). Recently there has been a lot of
progress in policy gradient methods in deep RL, where baselines are typically used
for variance reduction. However, there has been recent progress on the mirage of
state and state-action dependent baselines in policy gradients. To this end, it is
not clear how control variates play a role in the optimization landscape of policy
gradients.

This work will dive into understanding the landscape issues of policy optimization,
to see whether control variates are only for variance reduction or whether they play
a role in smoothing out the optimization landscape. Our work will further inves-
tigate the issues of different optimizers used in deep RL experiments, and ablation
studies of the interplay of control variates and optimizers in policy gradients from
an optimization perspective.

Keywords: Optimization Landscape, Policy Optimization, Deep Reinforcement
Learning, Variance Reduction, Control Variates
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Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

Q@ step size of deviation

6] normalized direction vector

Af change in objective value with parameters 67 relative to J(6y)
Ag_ change in objective value with parameters 05 relative to J(6)
A Discount factor at time-step ¢

E, Expectation over a probability distribution of 7

7e(s, a) state-action policy parameterized by 6

0 parameter space

O optimal parameter space

J(0) Objective function generated by agent during learning

R, Reward received by agent in a state at time-step ¢

RL  Reinforcement Learning

V.(s) Adaptive baseline to estimate the baseline for a gradient update
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Chapter 1

Introduction

Reinforcement learning is a subset of Machine learning that is expanding at an expo-
nential rate. It consists of software agents who are placed in a controlled environment
where they are dealt certain tasks that they need to complete in order to maximize
some prioritized rewards. Contrary to Supervised learning algorithms which map
function from input to output, RL algorithms tend to only provide the input and do
not involve the target outputs. A basic RL algorithm has three elements; the agent
(which, in its current state, can choose to carry out a certain action), the environ-
ment (reacts to the action done by the agent and provides it with new inputs) and
lastly, the reward (cumulative mechanism returned by the environment). In the big-
ger picture, what most RL algorithms try to achieve is a balance between exploration
and exploitation but the immediate goal is to maximize the reward within a certain
trial. There are three types of RL implementations: policy-based, value-based and
model-based. Policy-based RL involves coming up with a deterministic/stochastic
strategy to maximize the reward. Value-based RL attempts to maximize an arbi-
trary value function. Model-based RL is based on creating a virtual model for a
certain environment where the agent learns to perform within the constraints of the
environment [1].

To attain an estimation efficiency, some techniques called the Variance Reduction
Techniques are used. One such technique is called the Control Variate technique
where they assume the simulation objective is to estimate the mean of a random
variable X. This method relies on one or more auxiliary random variables called
controls and utilizes their known mean to reduce the variance of the estimator for
E[X]. Therefore, the CV method can be seen as an approach to extract and transfer
information included in controls where information is interpreted broadly [2].

Baseline is a function that does not change the anticipated value when added to an
expectation but can significantly affect the variance. Baseline for policy gradient
can reduce its high variance while not changing the direction. It takes the actions
that are better than the average and increase their probability while decreasing the
probability of the actions that are worse than average. This is achieved by calculat-
ing the average reward over the trajectory and subtracting it from the reward at the
current time step. This type of baseline is called the average reward baseline [3].



1.1 Research Problem

Results of Varying Baselines: From the study on variance reduction techniques done
in [4], we have found that baselines can not only impact the optimization process
in variance reduction but can also lead to qualitatively different learning curves,
even when the variance of the gradients is the same. For example, two different
baselines with the same variance can give two different results. The more negative
baseline shifts the policy towards a deterministic one by promoting committal be-
havior whereas the more positive baseline leads to a non-committal behavior, where
the policy retains higher entropy for a longer period.

Different baselines can also affect the convergence of natural policy gradient (NPG)
such as baselines minimizing the variance can result in a convergence to a deter-
ministic, sub-optimal policy for any positive step size while baselines with larger
variance leads to a convergence to the optimal policy. This sort of behavior directly
violates the standard assumptions in optimization.

On-policy sampling is a key factor to these convergence issues as it results in a cycle
of making bad updates which can lead to worse policies thus resulting in even worse
updates.

Committal and Non-Committal behaviors: Imagine we have a sample action ai. If
the function r(ai)-b is positive, which is more prominent when the baseline, b is small
(more negative), the update rule will increase the probability of taking the action
the agent has already taken before regardless of it being correct or not. Because the
agent is likely to choose the same actions again, we call this committal behavior.

While a smaller baseline leads to a committal behavior, a larger (more positive)
baseline makes the agent question it’s own decisions. If the function r(ai)-b is neg-
ative,which occurs when b is large, the parameter update decreases the probability
of that certain action thus reducing the probability that the agent will retake the
action it just took while increasing the probability of other actions. This can slow
down the convergence process but it makes it harder for the agent to get stuck. This
is called the non-committal behavior.

1.2 Research Objectives

This research aims to compare the results that adding a baseline/control variate has
on a reinforcement learning algorithm. Our aim is to figure out the true nature of
these with observations as there is still a fog regarding it and their nature of func-
tion in reinforcement learning. We are also going to try and find how they affect
the optimization landscape of the objective function, as that aspect of reinforcement
learning still suffers from reaching the optima and especially so from the curse of
dimensionality. The higher the state-action space becomes the more problematic
the geometry of the objective function tends to be and it can at times become a
chore to try and reach optimal policy without coming across sub-optimal policy and
stopping there.



The objectives are:

1. to understand control variates more in-depth
2. to observe their roles in variance reduction

3. to experiment and find out empirically how they aid in the success of an RL
task along with if they help in the optimization of exploration



Chapter 2

Related Works

2.1 Policy Gradient Methods

Policy gradient methods are a class of reinforcement learning algorithms which use
gradient ascent A = aVyJ(6), where Vy.J(0) is the policy gradient and « is the
learning rate to reach a local maxima of some policy objective function (J(#)) [5].
There is a lot of literature surrounding policy gradient methods and various methods
have been found throughout the research lifetime in this field, such as PPO [6] and
TRPO [7] to list a few. Our methodology aims to use the REINFORCE [8] policy
gradient algorithm to carry out the objectives of our research as stated previously.

While trust region policy optimization (TRPO) [7] methods offer robustness, they
are complex to implement. Proximal policy optimization gets rid of this problem
by keeping the robustness and stability while also being simpler to implement [6].
Proximal policy optimization methods regularize the policy updates by having a
lower bound to keep policy updates in a certain region [6]. As such, the surrogate
objective here is free to be chosen depending on the specific environment. Imple-
mentations differ from case to case but the most commonly accepted design choice
has been the “clipped objective”. This choice has been generally accepted due to the
reliable MuJoCo and Atari benchmarks. However, in recent works [9], it is seen that
while these choices for policy updates and parameterization work well in territory of
current benchmarks, they are prone to failure modes outside of it. Another recent
work [10], goes into depth regarding some of these deep policy gradient methods
and their algorithms. It has been found that a large portion of the improvement
from TRPO to PPO had come about due to small modifications in code [10]. Both
of these works delve into well established design choices or algorithms and make us
reconsider our approach to deep RL experiments. This has been an inspiration for
our work to investigate how the control variates come into play here. Whether the
belief of control variates helping in experiments is well put or not.

From [5] we get a general idea about the REINFORCE (Monte-Carlo policy gra-
dient) algorithm and how it works, it is a policy gradient method which utilizes
stochastic policy ascent, policy gradient theorem (according to which, AyJ(0) =
E[Aglogmy(s,a)Qf(s,a)] , for any differentiable policy my(s,a)), and using the re-
turn V; as an unbiased sample of QF(s:, a;) we get the gradient equation:



A, = aVylogmy(s, a)v (2.1)

We use this in the algorithm of Reinforce: we initialize the parameters 6 arbitrarily,
then, we loop for each episode distributed over the policy 7y, in which we loop over
every time step ¢t = 1 until 7'— 1 where we update the value of # with the equation:

Qneaxt time step — Qcm‘rent time step + Aet (22)

In the above idea we can think of A, as the reward increment, « as the non-negative
factor, Vglogma(s,a) as the offset reinforcement and v; as characteristic eligibility,
the description of a REINFORCE algorithm [8]. Considering the simplicity of the
algorithm and the problems that accompany it which also accompany other policy
gradient methods (such as high variance, optimization of exploration) this is cur-
rently considered a good choice for the implementation within our research problem.

2.2 Control Variates and Baselines

Control variates are a variance reduction technique used in Monte Carlo methods.
The main idea is such that for a function (say, F'), we have another function (say,
(), such that F' =~ G, to reduce its variance during sampling we calculate F' in such
a manner that it’s: sampled F'—sampled G+ G, as the variance of the above formula
is less than the variance of F', we will get a reduced variance by using that. Here
G can be considered the control variate [11]. A popular implementation of control
variates can be considered to be Baselines [4], [8], [12].

By now, it is common knowledge that baselines do not change the anticipated results
when used on a reinforcement learning algorithm but can affect the variance. While
this holds true for most cases, a research done by [8] proved otherwise. According to
their paper, baselines in fact do have an impact on the optimization process beyond
variance reduction and lead to qualitatively different learning curves, even when the
variance of the gradients is the same. They mention the different ways baselines can
affect the results such as negative baselines leading to a committal behaviour and
positive baselines ending in a non-committal one; baselines minimizing the variance
can result in a deterministic, sub-optimal policy while baselines with a large variance
can lead to an optimal policy; on-policy sampling that can lead to cycle of making
bad updates leading to worse policies and many more.

They proceed to experiment with different baselines to find solutions for the men-
tioned problems. Committal behaviours that lead to the agent choosing the same
action over and over can be solved by picking a baseline with a lower variance that
leads to both possible updates to be equal resulting in the agent being equally likely
to pick any two of the given options. On-policy sampling is one of the root causes



of committal behaviours as it updates at each step thus changing the policy which
in turn affects the distribution of rewards obtained. A simple solution to avoid this
issue according to the authors is to sample actions from a behaviour policy that
selects every action with sufficiently high probability. Such a policy would make it
impossible to choose the same, sub-optimal action forever.

Some other methods to solve these convergence issues can be:

» Reducing the stepsizes that might result in the policy not converging as quickly
towards a sub-optimal deterministic policy

o Adding entropy regularization to the objective which would prevent the policy
from turning into a deterministic one

e Introducing bias in the updates

« Adding exploration policies and many more.

2.3 Policy Optimization

Albeit policy based learning is an optimization problem [5], it is not exempt from
the problems mentioned previously. One such problem that arises is the issue of
Objective function exploration. In [13] the authors conducted research on the im-
plementation of baselines and their role in optimization. While they did show that
standard rules of stochastic optimization are violated for Reinforcement Learning
problems, the belief that variance reduction is the only gain from baseline imple-
mentation and that they also significantly effect optimization, they observed the
effect on optimization could not be explained in terms of the variance reduction,
another weird phenomena observed was that lower variance could prove to be dele-
terious towards reaching an optimal solution. However they did not show the effect
of baselines and variance on the optimization landscape itself which might provide
a probable answer to the relationship between variance reduction and optimization.

2.4 Landscape Analysis

In [14] it can be observed that the authors conducted an analysis on the idea of
policy optimization based on exploration of the objective function. In their research
they have provided an effective tool to interpolate the objective function landscape
through combining Linear Interpolations with the generation of Objective function
geometry using external deviations. The idea of the second bit was such that for
an object function J around an optimal parameter space 6y would first sample di-
rections 8 uniformly on a unit ball and then would investigate how J is changing
by calculating a set of forward and backward parameters and their corresponding
Objective function values of J. From there they also calculated the change in the
surrounding landscape around the optimal parameter 6, this gave them an idea sur-
round the nature of of the landscape relative to the optimal parameter space. They
then decoupled, of the surrounding landscape, the information about the gradient
and the curvature to observe the changes in them and their nature around in the



directions d as sampled before. A conclusion of this research was the suggestion
that smoothening of the objective function could enable better learning by better
enabling exploration.



Chapter 3

Work Plan

Our research tries to not only understand the role of a control variate in reinforce-
ment learning but also to see the difference in optimization landscape with and
without the use of a control variate. To do all these, we need to take a RL algo-
rithm and run some simple tasks on it with and without a baseline/control variate
and plot the optimization landscape. Figure 1 gives a higher level overview of the
workflow.

Start: Starting the thesis.

Take reinforce algorithm.

Running it on some simple tasks using OpenAl Gym (such as CartPole). [15]
See how to plot the optimization landscapes.

Running the experiments with and without baseline/control variate.

Observe the differences between the optimization landscape WITH and WITH-
OUT baselines.

Is it possible to draw any conclusion from it - ie, can we say whether the
landscapes are smoother, and avoids local minima when we add a control
variate?

If the landscape is affected we will make notes and observations as to how they
are affected along with the results of effect of it on variance.

If the landscape is not affected we will make notes as to how the variance
affected and the nature of control variates and baselines.

End: Completion of Undergraduate Thesis.



i. We will debrief on the
conclusion

b. Take reinforce algorithm

v

¢. Add a baseline/control variate

v

d. Run it

v

e. Plot optimization landscapes

Y

f. Run experiments with and without
baseline/control variate

Y

g. Observe the differences

Y

h. Is it
possible to draw any
conclusion

NO—ps

i Note down all the
observations we have
made

Figure 3.1: Flowchart of the thesis work plan




Chapter 4

The Reinforce Algorithm

REINFORCE [8] proposed by Ronald J. Williams as a general solution of associa-
tive reinforcement learning problems implementable through a setup of Perceptron
Units (essentially Neural Networks). It is a very straightforward policy gradient al-
gorithm which uses gradient ascent by adding A#; which contains the policy gradient
(Vg logy(s, a)vy) which helps the algorithm to fit to and traverse a high dimensional
policy optimization landscape which enables us to achieve an optima for the task it
is being implemented on. The implementation of the Reinforce algorithm is as such:

1. INITIATE a differentiable policy (s, a) for the given task
2. INITIATE policy parameters 6 for the task
3. DEFINE a value for the learning rate (a), o > 0

4. FOR each episode e through n episodes:
Generate an episode of the task with a set of states (Ssi, sa,...s7),
actions (Aay, as,...ar), and rewards (Rry, 79, ...7r7) using my(s, a)

FORt=1,t<T

Qneact time step — ecurrent time step—l—Agt (where A075 = O./Vg 1Og o (87 CL)Ut)

10



Chapter 5

Adding A Baseline

As previously mentioned Baselines are a form of control variates [4], [8], [12]. It
is an excellent method of overcoming the struggle of the bias-variance tradeoff as
while implementing it, it doesn’t add any additional bias to the model [16]. A study
conducted by John Schulman in 2015 [17] showed further that adding a Baseline
yields the lowest possible variance, with the catch being that the baseline function
must also be sampled.

When adding a baseline to REINFORCE there is a subtle change in the implemen-
tation such that the following portion of the implementation presented in section
4 is changed, where the newly added portion is at the end:

enert time step — ecurrent time step + Aet (where Aet = OIVQ 10g 79('9, (Z) ('Ut - baseline(st))
(5.1)

Where in the above equation, baseline(s;) represents the baseline function. We
selected from [16] a simple implementation which is followed by [18] for our exper-
iments to run experiments mentioned in Chapter 4 and 5, V,(s) as the baseline to
criticize trajectories taken by the learning algorithm. It is in essence an Actor Critic
RL algorithm where the baseline acts as a critic, hence an implementation without
the baseline is an RL algorithm with only an actor. This gives us the ability to have
insight as to how the addition of baseline truly effects policy gradient methods.

11



Chapter 6

Landscape Analysis Methodology

In section 2.4 we discussed how the authors in [14] scanned the cost function land-
scape to attain the idea of its nature surrounding the optimal parameter cost func-
tion value. In their work they analyzed the change in Objective landscape brought
about by Entropy Regularization. For the purposes of our research we will be using
the same methodology to check the degree of change brought about by Baselines
instead. The ‘cost’ function in case of the class of learning algorithms that is Rein-
forcement Learning is the expected discounted sum of rewards given by:

J(0) = Eﬂ[i NRy (6.1)

The aim of the learning agent is to maximize J(#), making this a maximization
problem and making the objective landscape concave in nature. The purpose of the
discount factor is to make the agent focus more on the immediate rewards rather
than the ones earned previously.

After reaching the optimal 7(policy) parameterized by 6y we deviate from the pa-
rameter space and initiate landscape analysis. We apply the deviations to the pa-
rameters using « in the direction d, where g = ﬁ where 8/ ~ N(0,1) and 5 € RP
where p is equal to the amount of parameters in the parameter space of the policy
estimator neural network from [18] as it is the neural net parameterizing our policy.
Then we calculate the parameters surrounding the given parameter space with:

0F =0y +af (6.2)

05 =0 —af (63)

The equation in 6.2 and 6.3 gives us the set of forward and backward set of parameter
spaces around 6. We use these to compute J(03) and J(5) which in turn allows
us to find the change in objective due to the change in parameters for the forward
and backward points using relative to the optimal parameters using:

AT = J(0F) - J(0) (6.4)
A= J(05) — J(0) (6.5)

12



We then scan the landscape for increasing values of step size in the direction of d.
Alongside the stated conditions and combinations of Aé* and Aé’ in the aforemen-
tioned literature [14] we also find two peculiar states of these metrics, such that:

Aé‘ < OcmdAg’L ~ 0 (6.6)
AéJ“ < 0and Ag_ ~0 (6.7)

Our intuition for the geometrical conditions in both 6.6 and 6.7 is that the curve
is in transition from having a negative slope and going for some maxima that is a
plateau, since for ,relative to the reached optima, there is a negative change in one
direction there is 0 change in the other.

As they are, Af and Ag’ have information about gradient and curvature in tandem,
in [18]. To decouple them the authors used the following formulae:

Apt+ Ay (6.8)
AGY— A (6.9)

Expression 6.8 gives us information about the eigenvalue spectrum, hence informa-
tion about the curvature and expression 6.9 gives us information about the gradient
surrounding surrounding J(fy). To implement this they took ((Ag*,Ag’)) and
projected them on the diagonal then plot histograms from the resulting projection
values.

We select the seed that has the most apparent difference for the curves of rewards
over a number of episodes (decided by the difference between the no. of episodes
needed to reach optimality and the shape of the curve, as they have the highest
difference in learning dynamics) and select the optimal parameters of its policy
estimator neural network.

The code for the above mentioned steps has been taken from the research done in
[14] and modified for the implementation[18] we have used for policy gradients and
their baseline implemented counterpart.

We also modified the code in [18] for providing a function to estimate the value
of 6.1. Using the function to estimate J(6y) and the methodology explained in this
chapter previously we capture the nature of the landscape surrounding J(6y) relative
to it. By analyzing the nature of the landscape local to the optimal parameters 6,
and capturing information about the gradient and the curvature surrounding it we
can observe and understand how adding a baseline to basic policy gradients (the
reinforce algorithm) can affect the algorithms objective function landscape and get
intuition as to how the exploration of the agent leads to its result. Experimentation
and results are displayed to be analyzed in the next chapter.

13



Chapter 7

Running REINFORCE with and
without Baseline on simple tasks

Unlike Supervised and Unsupervised learning, Reinforcement Learning is a Machine
Learning Methodology that uses experience to understand how to adapt to an envi-
ronment successfully. We will be running the Reinforce Algorithm with and without
baseline and try to analyze the results on these two tasks, CartPole [19] (a classic
control task) and LunarLander [20] (a Box2D task). We have chosen implemen-
tations on these tasks that have used Neural Networks as the Policy and Baseline
function approximators, as Reinforce was proposed with the use of Neural Networks
in mind [8], and also because of the fact that they follow the law of Universal Ap-
proximation [21].

7.1 CartPole

The CartPole problem (also known as the Inverted Pendulum problem) is basically
an environment consisting of a cart with a pole attached to it at its center using a
single joint. The pole begins at an upright position but can fall left or right due to
gravity. The job of the agent is to apply a force of +1 or -1 on the cart to move
it right or left respectively on a frictionless track so as to keep the pole upright.
Based on how long the agent can balance the pole, it will receive a reward of +1
for each timestep. An episode will terminate if the pole tilts more than 15 degrees
from its vertical position and/or the cart moves more than 2.4 units from its central
position. [19]

Figure 7.1: Ideal state of the cartpole

14



7.1.1 Code implementation related to CartPole

For experimenting on Reinforce over the Cartpole environment, we used the im-
plementation written by [18]. This implementation provides the code for both im-
plementing Reinforce with and without a baseline. The implementation with and
without baseline is not too different in code. For baseline, another neural network is
created for the value function and the baseline loss is calculated in the Agent class,
under the ‘train” method. Additionally, the actor loss and value function loss is also
calculated there. The need for this is explained in section 5, “Adding a Baseline”.

7.1.2 Results through CartPole

The hyperparameters setup of this implementation is: number episodes = 1000,
actor learning rate = 0.002, value function learning rate = 0.002. We ran the test
5 times with different seeds. To observe how the model performs on average we ran
the model 5 times, for both with and without baselines. The results can be found
in Figure 7.2 and Figure 7.3.

In the graphs the orange lines represent the data-points plotted, and the blue lines
represent a smoothed running average of 10 episodes. On average it seems that Pol-
icy Estimation with a baseline reaches optimal solution faster and there can be seen
more drastic dips for the estimation without baseline. The tests without baseline
also took longer on average to end. If we look at the raw iterations themselves it
can be observed that for iterations using baseline the algorithm reached the optimal
solution of 200 points as early as less than 300 episodes into runtime and also being
able to retain it, enabling an early stop. There can also be seen more variance for
the tests without baseline.

7.1.3 Observations for landscape analysis for cartpole

For cartpole we take 4000 samples around the optimal parameters in direction 3 for
both reinforce policy gradient without and with baseline function.

As it can be observed in 7.5 even for very large step-sizes (until step size = 30),
Af ~ 0 and Ag_ ~ 0, meaning according to [14], almost all the points lie on an
almost flat region indicating that the curve is in such a position that is essentially
a plateau. In comparison to that in 7.5 we can see minuscule deviations at a step
size as early as 10, for when a baseline is implemented to the reinforce gradient
update. For step sizes larger than 30 we can see there is significant deviation of
the points relative to the optima. From what can be seen at step size 30 . For
implementation without baseline in 7.4 however it begins to deviate from step size
= 10 and deviates greatly throughout the rest of the step sizes. From plotting the
histograms about gradient and curvature we can in 7.7 and 7.8 and comparing them
with their baseline added update counterparts in 7.9 we can see that the gradient
and the eigenvalue spectra is much more scattered for the implementation without
the baseline update than the one for with baseline update indicating that relative
to the optima at @ the local landscape around that point still has its curvature and
gradient value closely bounded near the optimal parameters even further away for
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an added baseline, whereas for no baseline it deviates heavily as we go further away
introducing steep and unsafe valleys on the objective function landscape making it
harder to converge which would explain the difference in learning curves for same
seed setup.
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18



2000 1

1750 1

1500 1

1230 1

1000 4

Count

750 1

500 1

350

T T T T T T
-01 00 01 02 03 04 05
Gradient value

2000 1

1750 1

1500 1

500 1

350 1

U T T T T
=05 -04 -03 02 -01 00
Curvature value

Figure 7.6: Cartpole Histogram
Step 20 without baseline

19



Count

Count

Figure 7.7: Cartpole Histogram Step

1200 1

1000 1

800 1

£00 1

400 1

2001

1400

1200 1

1000 1

800 1

600 1

400 1

200 1

04
-06 -04 -02 00 02

Gradient value

04 06

-10 08
C

A T |

06 -04
urvature value

40 without baseline

-02 00

£00 1

500 1

400 1

Count

300 1

2001

100 1

|]_
-06 -04 -02 00 02 04 06

Gradient value

£00 1

500 1

400 1

Count

3001
2001

100 1

Lo el

-10 -08 -06 -04 -02 00
Curvature value

Figure 7.8: Cartpole Histogram Step
50 without baseline

20



I I I
—-04 -02 0.0 0.2
Gradient value

0.4

0.6

I] I I

I
—0.8 —0.6 —0.4 —0.2

Curvature value

Figure 7.9: Cartpole Histogram Step 40 with baseline

21

0.0



10040
8O0
600 1

Count

400 +
200 -

0 - | E— "'—r
06 -04 =02 00 0.2 0.4 0.6
Gradient value

1000 -

0 = | — T T
-10 -08 -0& -04 =02 0.0
Curvature value

Figure 7.10: Cartpole Histogram Step 50 with baseline

22



7.2 LunarLander

Lunar Lander problem is a task where the solution is to properly land the lander
on the landing pad. The lander slowly descends automatically and its position can
be altered using the fire orientation engine. The LunarLander-v2 environment by
OpenAl-Gym [16] is the discrete version of the problem. The position of the landing
pad does not change and is constant at the coordinates (0,0). The state vector’s first
two coordinates are these coordinates determining the position of the lander. There
are four actions the agent can take in this environment: fire the right orientation
engine, fire the left orientation engine, fire the main engine and do nothing. If the
lander successfully lands on the landing pad, it gets rewards and if it does not, it
loses rewards. The rewards defer depending on whether the lander lands completely
within the pad or partially in the pad. For example, each leg coming in contact with
the ground is 410 reward. Similarly, the rewards for firing the left and right engines
are -0.03 and firing the main engine is -0.3. An episode ends when the lander lands
or crashes and this results in additional rewards between -100 and 100. The reward
for solving the problem is 200.

7.2.1 Code implementation related to LunarLander

We also used the same implementation [18] of Reinforce for the LunarLander envi-
ronment. This implementation includes the algorithm with and without baseline,
making it easier to see the difference between the usage of using and not using a
baseline. The implementation with and without baseline does not differ too much
in code. For baseline, another neural network is created for the value function and
the baseline loss is calculated in the Agent class, under the ‘train’ method. Addi-
tionally, the actor loss and value function loss is also calculated there. The need for
this is explained in section 5, “Adding a Baseline”. Due to the complexity of the
LunarLander task being much higher than that of CartPole, it has a greater time
complexity to be solved as well. Given this, with LunarLander, we are also looking
at the episode length to check how adding baseline affects the episode length. There
is also a condition to end the test early given the average results from the past 10
episodes is greater than 190. This will also help us investigate how fast the algorithm

Episode 2

Figure 7.11: A render of LunarLander
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converges with and without a baseline.

7.2.2 Results through LunarLander

For our experiments with LunarLander, we went with the following parameters:
episodes = 2000, actor learning rate = 0.002, value function learning rate = 0.002.
We ran the test 5 times with different seeds. The orange lines represent the data-
points plotted and the blue lines represent a smoothed running average over 10
episodes.

From the graphs, we can see that they are mostly similar. However, there’s one
iteration that ended early at 1653 number episode. On the other hand, most tests
with baseline included ended significantly early with there being an exception. One
of these ended at around only 500 episodes. The average stopping episode for tests
with baseline comes at around 1000 episodes. Another significant difference between
the tests with and without baseline is in the episode length. We can see that for
tests without baseline, the average episode length is vastly higher than the tests
with baseline. Each episode takes much less time to finish with a baseline. This
shows how adding a baseline can greatly help an algorithm reach convergence early
and with less time taken.

7.2.3 Observations for landscape analysis for Lunar Lander:

For lunar lander we take 100 samples around the optimal parameters for the baseline
implementation and the one without baseline.

In diagrams 7.16and 7.17 the points are scattered all over the place for baseline
implementation yet interestingly enough it is concentrated more towards transition
from minima to plateau for one without baseline at step size = 1. This might indicate
that in the case of reinforce without baseline the optima reached by the learning
algorithm is at a non-smooth saddle point. For step size = 10 to step size = 30
both implementations seem, the nature of the surrounding curve at those points
relative to the optima seem to have smoothen towards a saddle point the points
on the scatterplot approach (0,0) Af < 0 and Ag_ > 0 or (0,0) AZJ“ > 0 and
Aé‘ < 0. Points for step size = 40 and 50 seem to get scattered over Ag+ < 0 and
Ag’ < 0 indicating a highly positioned valley of the aforementioned conditioned
points relative to optima for no baseline. This indicates a sudden drop in curvature
around those points, yet however even at step size 40 and 50 the points relative to the
optima seem to retain a smooth saddle overall. Gradient and curvature analysis in
7.18 to 7.27 reinforces our observations as overall, the curvature around the optimal
point reaches for 0 over increasing step sizes for baseline added gradient update but
the one without any baseline implemented does not.
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Chapter 8

Conclusion and Future works

The progress in Reinforcement Learning experiments have been significant over the
years. We have seen several works reconsidering already well established choices
and algorithms and producing great results [9], [10]. Our work will dive deep into
control variates and baselines and investigate how they affect the experiments. An
issue already solved by the implementation of control variates is high variance. One
such implementation of control variates are baselines [4], [8], [12]. Optimization
Landscape of Reinforcement Learning algorithms is another issue to tackle when it
comes to reaching optimal solution of the problem, hence policy optimization. Our
aim is to find out the overall degree of effect and the nature of it on Reinforcement
Learning problems by applying it using the REINFORCE [8] algorithm and also
try and find out if it applies any degree of significant change to the optimization
landscape of the learning algorithm. The novelty that our research aims to provide
is to shed new light onto the affects of baselines and variance reduction techniques
in the field of reinforcement learning by analyzing the change in the objective land-
scape generated by the learning algorithm with and without the implementations of
these variance reduction techniques. From our experiments and the results of the
landscape analysis done in chapter 7 we have observed that baselines do prove some
length of an effect onto the Objective function landscape generated during learning.,
but the nature of it isn’t the same. Perhaps the nature of the environment and the
policy gradient algorithm used in tandem also play an effect. What is confirmed
however that overall the landscape does experience a smoothing effect due to base-
lines and that might be a contributing factor to faster learning and reaching optimal
or potentially suboptimal policy for a policy gradient algorithm. We chose a simple
reinforcement learning tasks with a simple Actor Critic algorithm based on Rein-
force with an adaptive state value baseline based on research in [14] to be able to
understand the change on a more simpler scale. Going further we will also analyze
the effect on landscapes of the learning agent’s objective function by observing for
learning methods such as TRPO and PPO and also State and Action dependent
value baselines using other MDPs such as Gridworld, Atari games and MUJOCO
tasks.
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