
In Quest of an Improved Algorithm for Transforming Plane
Triangulations by Simultaneous Flips

by

Annesha Chowdhury Prapty
19101453

Namira Mustafiz Pranty
19101449

Tasnova Ahmed
19101462

Tasnuba Mehnaz
19101627

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
Brac University

May 2022

© 2022. Brac University
All rights reserved.



Declaration

It is hereby declared that

1. The thesis submitted is our own original work while completing degree at Brac University.

2. The thesis does not contain material previously published or written by a third party,
except where this is appropriately cited through full and accurate referencing.

3. The thesis does not contain material which has been accepted, or submitted, for any other
degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Annesha Chowdhury Prapty

19101453

Namira Mustafiz Pranty

19101449

Tasnova Ahmed

19101462

Tasnuba Mehnaz

19101627

i



Approval

The thesis titled “In Quest of an Improved Algorithm for Transforming Plane Triangulations
by Simultaneous Flips” submitted by

1. Annesha Chowdhury Prapty (19101453)

2. Namira Mustafiz Pranty (19101449)

3. Tasnova Ahmed (19101462)

4. Tasnuba Mehnaz (19101627)

Of Spring, 2022 has been accepted as satisfactory in partial fulfillment of the requirement for
the degree of B.Sc. in Computer Science and Engineering on May 26, 2022.

Examining Committee:

Supervisor:
(Member)

Dr. Mohammad Kaykobad
Distinguished Professor

Department of Computer Science and Engineering
BRAC University

Co-Supervisor:
(Member)

M Tanvir Kaykobad
PhD Student
Department

School of Computing
Queen’s University

Head of Department:
(Chair)

Sadia Hamid Kazi,PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

ii



Abstract

In this thesis we have studied the problem of transforming one plane triangulation into another
by simultaneous flips of diagonals. A triangulation is a simple planar graph consisting of only
3-cycle (triangles) faces including outerface. In a triangulation, every edge lies on two faces
that form a quadrilateral. An edge flipping is an operation that replaces this edge which is
a diagonal of its corresponding quadrilateral with the other diagonal of the quadrilateral. A
simultaneous flip set is an edge set of a triangulation that when flipped, the resulting graph is
still a triangulation. Initially, it was proved that any two triangulations of equal order (number
of vertices of a graph) can be transformed from one to another using a finite sequence of edge
flip operations. Later on, it was observed that to complete this transformation, O(n log n)
individual flips are enough. In the continuation of the research, an algorithm was established
which states that the transformation can be done in 327.1 log(n) simultaneous flips. Lately, two
algorithms were introduced to improve the leading coefficient of this bound for transforming any
plane triangulation into another. These two algorithms lower this bound down to 85.8 log(n)
and 45.6 log(n) respectively. In this thesis, we have developed an algorithm to introduce two
dominant vertices simultaneously. Using our algorithm, any pair of vertices of the triangulation
can be made dominant. The process requires at most 60.8 log(n) simultaneous flips.
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Chapter 1

Introduction

Computational Geometry is a well-studied field of Computer Science where different algorithms
are studied to solve various geometry-based problems. In the late 1970s, it emerged from the
field of algorithm design and analysis. Computational geometry has two branches - combina-
torial computational geometry and numerical computational geometry. Graph theory, another
popular field, is intimately related to combinatorial computational geometry. The study of
graphs and their properties is known as graph theory. It is one of the most visually appealing
fields in mathematics, with a wide range of applications including the internet, web search
engines, social networks like Facebook, Whatsapp, Twitter, etc., electronic circuits, data min-
ing, image segmentation, clustering, image capturing, computer network security, GSM mobile
phone networks, map coloring and so on. Our topic is a well-studied problem related to graph
theory which is the transformation of one triangulation to another in an efficient way.

1.1 Preliminaries

A simple graph is a graph that does not have loops or parallel edges. A simple planar graph is
a graph that has an embedding on a plane such that no two edges of it will intersect each other
excluding their endpoints. A triangulation is a simple planar graph consisting of only 3-cycle
faces (triangles) including the outer face. Edge flipping is an operation that replaces one edge
with another without losing the planarity of the graph while keeping the resulting graph in the
same class as the original graph. The subject of our research is triangulation. It is known that
any triangulation can be transformed into any other of the same order by simultaneous flips
of diagonals. In a plane graph G = (V,E), every cycle defines two separate regions called -
internal region (in the interior of the cycle) and external region (in the exterior of the cycle). If
a region does not contain any vertex inside it, then it is called a face. In a triangulation, each
edge is on two distinct triangular faces. These two faces form a quadrilateral and the common
edge is the diagonal. After flipping this, we will add the other diagonal removing the previous
one.

1.2 Literature Review

Transforming one triangulation to another by simultaneous flip is a well-studied problem in
computational geometry. Wagner [3] studied the problem of transforming one triangulation to
another by diagonal flips. He was the first to introduce the idea of canonical triangulation as an
intermediate stage to make the transformation accomplished. Next, Negami [5] proved the fact
that transformation of two triangulations into each other on a sphere can be done by diagonal
flip operations if both the triangulations contain an adequately large and equal number of
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vertices. Similarly, according to Brunet, Nakamoto, and Negami [6], the transformation of any
two triangulations into each other can be done up to homomorphism via diagonal flips on the
condition that the two triangulations have the same number of vertices and belong to the same
class. Then, Komuro [7] showed that to transform an n-vertex triangulation into another one on
the sphere, it needs a maximum of 8n−54 diagonal flips where n ≥ 13 and 8n−48 diagonal flips
where n ≥ 7. Later on, Hurtado, Noy, Urrutia [8] demonstrated that any triangulation carries
no less than n−4

2
flippable edges. Mori, Nakamoto, Ota [10] proved that transformation of two

hamiltonian triangulations on the sphere having n vertices where n ≥ 5 can be accomplished
with no more than 4n− 20 diagonal flips conserving the hamiltonian cycle of the triangulation.
Using this result they came up with the result that no more than 6n − 30 diagonal flips are
required to transform one triangulation to another having n vertices. In addition, they also
proved that given a maximal outerplane graph a dominant vertex can be constructed in a linear
number of flips. However, according to Bose et al. [12], every single triangulation with order
≥ 5 has a simultaneous flip which results into a hamiltonian triangulation and this operation
requires O(n) time to be executed. Using this result, they demonstrated that there exists a
sequence of O(log n) simultaneous flips to accomplish the transformation of triangulations into
each other. The number of total flipped edges is O(n) in this sequence. Furthermore, it was
proved by Bose et al. [12] that each triangulation consists of a simultaneous flip of no less
than n−2

3
edges. On the other hand they proved that each simultaneous flip has no more than

n− 2 edges and there can be triangulations where simultaneous flip of at most 6n−2
7

edges can
exist. Along with this, Bose et al. [13] stated that any combinatorial triangulation having n
vertices can be converted into a hamiltonian triangulation by using maximum 3n−9

5
edge flips.

They also improved the upper bound of the number of flips required to transform a 4-connected
triangulation into a canonical triangulation. Furthermore, they showed that the transformation
of one triangulation to another can be done in approximately 327.1 log n simultaneous flips. De
Carufel, and Kaykobad [15] devised an algorithm leading to an improvement of the coefficient
of the upper bound previously given by Bose et al. [12] The upper bound was lowered to
approximately 85.8 log n from 327.1 log n. Kaykobad further proved that 45.6 log n simultaneous
flips are adequate to execute the transformation of one maximal outerplane graph to another.

1.3 Problem Statement

Summary of Necessary Known Results
Author
Name

Findings Improvement

Wagner [3] Transforming one triangulation to another by
diagonal flips

2n2 − 14n + 24 flips are
needed

Mori,
Nakamoto
and Ota [10]

A maximal outerplane graph a dominant vertex
can be constructed in linear time

O(n) number of flips are
enough for that

Bose et
al. [12]

If the number of simultaneous flips are equal to
the diameter, then it is enough to make a vertex
dominant in a maximal outerplane graphs

4×( 2
log 54

53

+ 2
log 6

5

) log n+2

Kaykobad[15] Improved the coefficient of the logarithm func-
tion

4×( 2
log 12

11

+ 2
log 9

7

) log n+2

Table 1.1: Result Summary

In Table 1.1, a summary of known results on the problem of transforming one triangulation
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to another is shown. For decades, researchers have been trying to improve the bound and the
process of transformation. In 1936, Wagner [3] at first showed that the transformation can be
done in O(n2) flips. In 2007, Bose et al. [12] developed an algorithm that could transform any
triangulation to any other using no more than 327.1 log(n) flips. After that, more improvements
have been done in the bound and it decreased the bound to 85.8 log(n). Since the main aim is
to decrease the number of flips as it defines the efficiency of the algorithm, so we are exploring
a way to decrease the number of flips so that the transforming process and algorithm become
more efficient. Note that, for all of the calculations of this paper, we consider the base of
logarithm to be 2.

1.4 Objective of the Thesis

In this thesis, we have studied simple and plane triangulation, simultaneous diagonal flip,
flippable set and many other terms and theorems related to our topic. Also, we are analysing
the procedure of the transformation of a plane triangulation into another plane triangulation
via simultaneous diagonal flips. Previously, a lot of research has been done in this field and
these have been discussed in literature review.
Bose et al. [12] came up with an algorithm to transform any triangulation with n vertices
into any other triangulation with same number of vertices requiring approximately 327.1 log n
simultaneous flips. In continuation, De Carufel and Kaykobad [15] have introduced another
algorithm to improve the algorithm given by Bose et al. [12] with approximately 85.8 log n
simultaneous flips. In this paper, we are trying to improve further the interlaced algorithm
devised by Kaykobad [14] requiring approximately 45.6 log n simultaneous flip. The Kaykobad
algorithm has four steps and to reach our goal, we are following the first, second and fourth
steps same as before. We are working on the third step for constructing two dominant vertices
parallelly in inner and outer subgraphs to get the canonical triangulation and trying to make
the process more efficient. For this we are making a pair of randomly pre-selected vertices
dominant in inner and outer subgraph parallelly so that the process of the transformation of
triangulation becomes more efficient.
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Chapter 2

Literature Review

In this chapter, we have discussed some basic definitions with figures and explanations related
to our problem which will help us understand the topic in a better way. In addition, some
important results are also highlighted with necessary explanations.

Definition 2.1 (Graph). A graph G = (V,E) consists of a non-empty set of vertices (or nodes),
V and a set of edges, E. Every edge e = (u, v) connects two vertices u and v. If u = v then the
edge is said to be self-loop. On the other hand if there are two edges e1 = ((u, v) and e2 = ((u, v)
they are called parallel edges. Graphs without loops and parallel edges are called simple graphs.
The number of vertices of G is considered as the order of G. Also, the number of edges of G is
considered as the size of G.

Figure 2.1: Graph

A graph is illustrated in Figure 2.1. A graph has two components, edge and vertex. Every
edge connects one or two vertices. A graph can be connected or disconnected. A graph G =
(V,E) is called connected if for any pair of its vertices u and v there is a sequence of edges
ei = (wi, wi+1), i = 1, ..., k such that w1 = u, wk = v for some k, and ei ∈ E,∀i = 1, ..., k − 1.
Otherwise the graph is disconnected.

Definition 2.2 (Planar Graph). Any graph is called planar graph if it can be embedded on a
plane where no pair of edges intersect each other other than at their end points.

Planar graph is basically a blueprint of a plane graph where plane graph is a graph embedded
on a plane with no intersection among the edges of the graph except their endpoints. Note that
a planar graph can have a non-planar embedding, that is an embedding where some edges may
intersect other than at the endpoints.
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Definition 2.3 (Plane Graph). If an embedding in the plane has been provided for a planar
graph such that no two edges in the given embedding intersect except at their endpoints, then
the embedded graph is called a plane graph.

Figure 2.2: fig-(a): Plane graph, fig-(b): Non plane graph

Figure 2.2(a) is a plane graph since it has an embedding on a plane so that no pair of edges
intersect each other excluding their endpoints. On the other hand, figure 2.2(b) is a non plane
graph since there is an intersection between the edges AD and BC.

Definition 2.4 (Simple Planar Graph). A graph G = (V,E) that has an embedding on a plane
such that it has no parallel edges, no self-loops and, no two edges will intersect each other
excluding at their endpoints.

Figure 2.3: fig-(a): Simple planar graph, fig-(b): Non simple planar graph

Figure 2.3(a) is a simple planar graph as it does not have any parallel edges or self loops.
Figure 2.3(a) is a simple graph as well as a planar graph since it is fulfilling the conditions of
planar graph. Contrastingly, figure 2.3(b) is a non simple planar graph since it has parallel
edge, self loop and also intersection between the edges AD and BC.

Definition 2.5 (Triangulation). Any simple planar graph G = (V,E) consisting of only 3-cycle
faces (triangles) including outer face that has an embedding on a plane such that no pair of
edges intersect each other except at their endpoints is called a triangulation.

5



Figure 2.4: Triangulation

Figure 2.4 is a triangulation since it is a simple planar graph each face of which is a triangle
incorporating the outer face.

Definition 2.6 (Region, Face ). For a plane graph G = (V,E), every cycle creates two separate
regions called - internal region (inside the cycle) and external region (outside the cycle). If a
region does not consist any vertex inside it or in other words does not consist anymore regions
inside it, it is called a face.

In Figure 2.4, ABC is a cycle, so it creates two regions such as - internal region and external
region. Here, ADE is also a cycle so it similarly creates two regions.Since ADE does not
contain any vertex in it, it is called a face.

Definition 2.7 (Seeing). For a planar graph G = (V,E) any vertex of a 3-cycle face is called
seeing its opposite edge.

Figure 2.5: Vertex A and B are two seeings of the edge DE

An illustration of seeing is shown in figure 2.5. In the figure 2.5, ADE is a 3-cycle face. As A
sees edge DE. So, A is a seeing of DE. Again, vertex B is also another seeing of DE since
DE is the diagonal of the quadrilateral ADBE, edge DE has two seeing (A and B).

Definition 2.8 (Flip). Flip is an operation where one edge gets replaced with another by adding
two seeing vertices of that edge. Also, flip is a reversible operation.
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Definition 2.9 (Diagonal Flip). In a triangulation each edge is on two distinct triangular faces.
These two faces form a quadrilateral of which the common edge is the diagonal. To flip this
edge, we delete this diagonal, and add the opposite diagonal of the same quadrilateral, provided
that:

1. The new diagonal is also in the same region as the previous one

2. The resulting graph is also a triangulation after the flip.

Figure 2.6: Edge DE is the diagonal of quadrilateral ADFE, DE has been flipped; the new
edge is AF

A diagonal flip has been shown in Figure 2.6 where ADFE is a quadrilateral and DE is one
of its diagonals. So the diagonal DE is flipped and connect AF which is the new diagonal of
the quadrilateral.

Definition 2.10 (Consecutive Edges). Two edges of a triangulation that are incident to a
common face are called consecutive edges.

Figure 2.7: AD and AE is sharing the same face ADE

Figure 2.7 shows two consecutive edges. In the figure, AD and AE are consecutive edges as
these two edge are sharing the same face ADE.

Definition 2.11 (Adjacent Faces). Two faces of a triangulation that have a common edge are
called adjacent faces.
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Figure 2.8: ADE & BDE are adjacent faces (highlighted in blue); DE their common edge

An illustration of adjacent face is presented in figure: 2.8. Here, ADE and BDE are two faces
of triangulation sharing a common edge DE. Therefore, ADE and BDE are adjacent faces.

Definition 2.12 (Bad Pair). A pair of edges form a bad pair if both of them are seen by the
same two vertices.

Figure 2.9: AF and ED form a bad pair as both are seen by B and C

An illustration of a bad pair is showed in the Figure 2.9. The two edge AF (blue) and edge
ED(blue) form a bad pair since both of the edges can be seen by the vertices B and C.

Definition 2.13 (Blocked edge, Blocking edge). Given that, G = (V,E) is a triangulation and
two edges uv, xy ∈ E. If uv is seen by both x and y then uv is a blocked edge and xy is its
blocking edge.
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Figure 2.10: DE is blocked edge and BC is blocking edge as DE is seen by both B and C

Figure 2.10 is represented blocked edge and blocking edge. As the edge DE (red) is seen by
both of the vertex B and vertex C then DE is the blocked edge and BC (blue) is the blocking
edge.

Lemma 2.14 (Lemma 2.1 of Bose et. al [12]). An arbitrary set of edges, S is called a flippable
set where

1. No pair of edges are consecutive

2. No pair of edges form a bad pair

3. If there is any blocked edge present then the blocking edge must also be present in S

Figure 2.11: Flipping consecutive edges AD (blue) and AE (blue) results into edge intersection
(red)
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Figure 2.12: Flipping bad pair CD (blue) and EF (blue) results into parallel edge AB (red)

Figure 2.13: In case of flipping blocked edge DE, the blocking edge BC must be flipped

A flippable set is defined in figure 2.11, 2.12, 2.13. In figure 2.11, by flipping two consecutive
edges AD (blue) and edge AE (blue), we get the edge BE (red) and edge CD (red) and they
intersect each other so it could not fulfill the condition of a flippable set. Again, in figure 2.12,
by flipping a bad pair CD (blue) and EF (blue) results into parallel edge AB (red) and it
also violates the condition of a flippable set. In figure 2.13, to flip edge DE (blue), blocking
edge BC also has to be flipped as only flipping DE, it creates a parallel edge BC. Note that,
Gi′ = Gi⟨Si

1⟩ notation denotes that Si
1 is a flippable set and this flippable set is being executed

on Gi and the resulting graph is Gi′ .

Definition 2.15 (Ordered Set of Simultaneous Flip). An ordered set of simultaneous flip is a
set that contains multiple edges which are flippable in that order. It is denoted by S, therefore
the resulting graph after executing S sequentially on a graph, G is denoted by G⟨S⟩.

Definition 2.16 (Dominant Vertex). Dominant vertex is a vertex of any graph that is incident
to all the vertices of the same graph. It is also known as universal vertex.
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Figure 2.14: All the vertices are connected to F (blue), F (blue) is the dominant vertex

An illustration of Dominant Vertex is presented in figure 2.14. In the figure the vertex F (blue)
is the dominant vertex as all the vertices are the incidents of F .

Definition 2.17 (Canonical Triangulation). A triangulation that contains two dominant ver-
tices is called a canonical triangulation where n ≥ 3.

Figure 2.15: ABC triangulation contains two dominant vertices B (blue), C (blue) so it is
canonical triangulation

Canonical Triangulation is presented in Figure 2.15. In the figure, the triangulation ABC has
more than one dominant vertex. B (blue) and C (blue) are two dominant vertices. So, ABC
is a canonical triangulation.

Definition 2.18 (Isomorphism). Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic
if there are bijections θ : V1 → V2, and ψ : E1 → E2 such that uv ∈ E1 ↔ θ(u)θ(v) = ψ (u v)
∈ E2.
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Figure 2.16: Graph G and graph H are isomorphic

Figure 2.16 is a demonstration of isomorphism.The vertices of graph G can be mapped to the
vertices of graph H. Similarly, the edges of Graph G can be mapped to the edges of Graph H.
The mapping is bijective. Their structure preserves the one to one correspondence between the
vertices and edges, so their basic structure is same.

2.1 Wagner’s Findings

Wagner [3] was the first to prove that with diagonal flips any two triangulations can be trans-
formed into each other. To do that he introduced the idea of canonical triangulation. He also
showed that diagonal flips can be standardized by transforming each of them into a canonical
triangulation which works as an intermediate triangulation in the transforming process.

Definition 2.19 (Maximal Outerplane Graph). Maximal Outerplane Graph is a simple plane
graph where all its vertices are on outer cycle and if any other pair of vertices are connected in
the inner cycle, it will lose its planarity.

Figure 2.17: All six vertices are on the maximal cycle

A representation of maximal outer plane graph is shown in figure 2.17 where all the vertices of
graph are on the maximal cycle of the graph.
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Definition 2.20 (Chord). An edge of a graph G which connects any two non adjacent vertices
of the cycle C is referred as the chord of the cycle. A chord is called internal chord when it
passes through the interior of the cycle and it is considered as external chord when it belongs
to the exterior of the cycle.

Figure 2.18: Chord

An illustration of chord is represented in figure 2.18. Here, the cycle C denoted by blue color
is the maximal cycle of the graph and the edges belongs to the interior region of the cycle
{IJ,DG,DI, ...} are the internal chords of the cycle. However, the edges that are associated
with the external region of the cycle {AB,HM,BM, ...} are called external chords.

Definition 2.21 (Dual Tree). A dual tree T ∗ has all its vertices in each face of its primal
graph G (except the outer face) and each edge of T ∗ connects a pair of vertices (green) if the
corresponding two faces of primal graph are adjacent.

Figure 2.19: Dual tree (green) has vertices (green) in every faces of its primal graph and every
edge connects its neighbouring pair of vertices

figure 2.19 corresponds to a dual tree. ABH is a triangulation and it contains a dual tree(green)
which has a vertex in every face of the triangulation and each of the edge of dual tree connects
a pair of vertices. For example: There are vertices in dual tree corresponding to faces ABC
and BCD and both the vertices are adjacent, that is connected with an edge.

Definition 2.22 (Subgraph). A graph G′ = (V ′, E ′) is called a subgraph of a graph G = (V,E)
if (V ′) ⊆ V , E ′ ⊆ E ∩ (V ′ × V ′).
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A subgraph is a part of main graph having similar vertices and edges. When some of the edges
and vertices are removed from the main graph except the endpoints of any remaining edges,
we get a smaller graph. This smaller graph is called a subgraph of the main graph.

Figure 2.20: fig: The left one is Main Graph and the right one is subgraph

A demonstration of subgraph is shown in figure 2.20. Figure 2.20(b) contains the endpoints of
its primal graph which is in figure 2.20(a) and two vertices are removed from the primal graph
to make it subgraph.

2.2 Paper by Mori, Nakamoto and Ota

Mori, Nakamoto and Ota [6] showed that a dominant vertex can be introduced in a maximal
outerplane in linear time.
In figure 2.21(a) a maximal outerplane with its dual tree is illustrated. In figure 2.21(b) edge
BE (dotted blue) is flipped and after flipping vertex A and H is connected through a new
edge(red). In figure 2.21(c), 2.21(d), 2.21(e) and 2.21(f) edge EH,EF, FD and GD are flipped
respectively.
Finally, A is the dominant vertex as all the vertices are incident to A. To make A dominant,
5 flips were needed which is equal to the diameter of its dual tree. It is the worst case where
diameter number of flips were needed. If any other vertex other than A or C was chose then it
would have taken less number of flips.
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Figure 2.21: A vertex(A) is made dominant in a maximal outerplane graph with diameter
number of flips

Definition 2.23 (K-vertex Connected). A graph G = (V,E), is called k-vertex-connected if at
least k vertices need to be deleted to make G disconnected.

Figure 2.22: fig:-(a): Main graph, fig:-(b): Disconnected graph

figure 2.22 shows a 1-vertex connected graph where figure 2.22(a) is the main graph and after
deleting one vertex F , the graph becomes disconnected which is shown in figure 2.22(b).

Definition 2.24 (Hamiltonian Cycle). Let G = (V,E) be a graph with a cycle C that contains
every vertex of G once then C is called the hamiltonian cycle of the graph.
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Figure 2.23: ABC triangulation is containing a hamiltonian cycle (A,E,B,G,D,H,C) (blue)

Figure 2.23, illustrates a hamiltonian cycle of the graph. Here, the cycle starts from vertex A,
it goes through every vertex of the cycle and returns to the same vertex by visiting each vertiex
once.

Definition 2.25 (Hamiltonian Triangulation). A triangulation that contains a hamiltonian
cycle is called a Hamiltonian triangulation.

A demonstration of hamiltonian triangulation is presented in figure 2.23 where ABC triangu-
lation is a hamiltonian triangulation as it contains a hamiltonian cycle (A,E,B,G,D,H,C)
(blue) in it.

Definition 2.26 (Matching, Perfect Matching). In a graph G = (V,E), matching is a set of
edges M where two edges are non-consecutive to each other and perfect matching is when every
vertex of G is adjacent to an edge of the M .

Figure 2.24: fig:-(a): Matching Set M = AB,EF , fig:-(b): Perfect Matchings are {AC, BG,
EF}

An illustration of Perfect Matching is shown in the Figure 2.24. Here, the figure 2.24 (a) is an
example of matching where AB and EF are matching to each other as both are non-consecutive
edges and the figure 2.24 (b) represents perfect matching. In this figure 2.24 (b), the edges AC,
BG and EF are not adjacent to each other. Thus every vertex is connected to the edge of the
matching set.
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Definition 2.27 (Separating Triangle). If deletion of all vertices of a triangle T of a connected
graph G = (V,E) transforms G into a disconnected graph, then T is called a separating triangle.

Figure 2.25: fig:-(a): Main graph, fig:-(b): Separated graph

Figure 2.25 is an illustration of separating triangle. Figure 2.25(a) is the primal graph and after
deleting one of its face JEF (blue), the graph becomes separated as in figure 2.25(b). So the
triangle JEF (blue) is the separating triangle of the primal graph.

Definition 2.28 (Edge Sub-division). The edge subdivision operation for an edge uv ∈ E of a
graph G = (V,E), is the deletion of the edge uv and adding two edges uw and vw such that w
is a new vertex in the graph. The obtained new graph after the operation is G′:= (V ′:= V ∪ w
|w /∈ V , E ′:= (E \ uv) ∪ {uw, vw}).

Figure 2.26: fig:-(a): Main graph, fig:-(b): Edge-Sub divided graph

Figure 2.23 represents an edge sub-division. In figure 2.26(a), AB is an edge and in figure
2.26(b), the vertex C divided the edge AB and created two new edges AC and CB.

Definition 2.29 (Graph Sub-division). A graph G′ = (V ′, E ′) is called a subdivision of G, if
it can be generated by a sequence of edge subdivision operations on G.
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Figure 2.27: fig:-(a): Main graph, fig:-(b): Sub-divided graph

A demonstration of graph sub-division is shown in figure 2.20. Here, figure 2.20(a) is the
main graph and by operating a sequence of edge sub-division on the main graph, it becomes
sub-divided in figure 2.20(b). In the figure 2.20(b), the vertex F divided the edge AB and
introduced two new edges AF & FB. In the same process, the vertex H splits the edge BC
and established two new edges BH & CH. Also, CD edge is separated by vertex E and two
new edges CE & DE are introduced. Similarly, BD edge is separated by vertex I and this
vertex established BI & DI two new edges.

Definition 2.30 (Complete Graph). Given a simple graph G = (V,E), if all the vertices of G
are adjacent to each other, then G is called a CompleteGraph. It is denoted by Kn.

Figure 2.28: ABCD quadrilateral is a complete graph

Figure 2.28 is an illustration of a complete graph where all the vertices of G are adjacent to
each other. Vertices A & B,B & C,C & D,D & A, A & C all are adjacent to each other.

Definition 2.31 (Dual Graph). Given a planar graph G = (V,E) with its set of faces F , the
dual graph G∗ = (V ∗, E∗) of G is also a graph with a bijection between F and V ∗, and another
bijection between E and E∗, such that for every edge e ∈ E on two faces fi, fj ∈ F there is an
edge e∗ = (v∗i , v

∗
j ) ∈ E∗, and v∗i , v

∗
j correspond to the faces fi and fj respectively.
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Figure 2.29: PQRS (Green) is a Dual Graph of ABCE

A representation of dual graph is presented in figure 2.29. Here, ABCE is the main graph
and PQRS(green) is the dual graph of it. Each face of the main graph contains a vertex of
the dual graph. The 3-cycle face ABD of the main graph contains a vertex P of the dual
graph. Similarly, vertex Q is on the ACD 3-cycle face and vertex R is on the BCD 3-cycle
face. Also, there is a vertex S on the outer face of the main graph. Besides, the total number
of edges {AB,AC,BC,AD,BD,CD,CE} of the main graph and the edges of the dual graph
{PQ,PR,QR,PS,QS,RS, SS} are same. Every face of the dual graph contains a vertex of
the main graph as well. For instance, PQR triangle contains the vertex D, also, PRS 3-cycle
face contains the vertex R, vertex C is on the QRS triangle, the self-loop face S contains the
vertex E and the vertex A is situated on the outer face of the dual graph.

Definition 2.32 (Ear). If two edges of a 3-cycle of a maximal outerplanar G = (V,E) is on
the outerface, and the remaining edge is a chord then the 3-cycle is called an ear.

Figure 2.30: Triangles AED and BCD both are Ears (blue)

An illustration of ear is presented in figure 2.30. In the figure, both AED and BCD (blue)
3-cycle faces are ears where {AE,ED} & {BC,CD} edges are on the maximal cycle of the
graph. In addition, AD & BD both edges are chords.

Theorem 2.33 (Appel and Haken[4]). Every planar graph is four-colorable.

The four color theorem above states that if the graph is planar, then its vertices can be colored
with 4 colours in such a way that no two adjacent vertices are coloured the same. Using this
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theorem, Bose et al. [12] showed that using 3-colors any planar graph edges can be colored, so
that no two edges sharing the same face have the same color.

Definition 2.34 (Independent Set). A subset of the vertex set of a simple plane graph G =
(V,E) is independent if and only if it contains no pair of adjacent vertices.

Figure 2.31: fig:-(a): {B,C, F}, fig:-(b):{C,F,G} and fig:-(c):{A,F,G} contains Independent
Set as these vertices don’t share any edges

A representation of independent set is presented in the figure 2.31. In 2.31, the vertices A,C, F
(blue) are independent as these vertices are not adjacent to each other and in 2.31, the vertices
C,F,G (blue) don’t share any faces, so they are independent as well. Similarly, A,F,G (blue)
vertices are independent for not sharing any face in 2.31.

Theorem 2.35 (Pigeon Hole Theorem ). If m items are placed among n containers, then there
must be a container with at least ⌈m/n⌉ items.

2.3 Explanation of Bose et al. [12] Algorithm

Bose et al. [12] introduced an O log(n) algorithm to transform any triangulation to any other
triangulation having the same number of vertices by simultaneous flips. Bose et al. [12] also
proved that every combinatorial triangulation of at least six vertices has a simultaneous flip
into a 4-connected triangulation. They Bose et al. [12] further proved in this paper that it needs
approximately 327.1 log n simultaneous flips to transform from one triangulation to another.
To transform one triangulation to another Bose et al. [12] showed the following steps.

1. Transforming into Hamiltonian triangulation

2. Introduce the second dominant vertex

3. Introduce the second dominant vertex

4. Do the reverse to transform to get target triangulation

2.3.1 Transforming into Hamiltonian triangulation

To accomplish the triangulation, the first step is to transform any n-vertex triangulation into
Hamiltonian triangulation. Bose et al. [12] proved that with only one simultaneous flip any
triangulation with vertex number n ≥ 6 can be converted into a hamiltonian triangulation.
Let, S be a set of edges in a triangulation G with n ≥ 6 vertices and no two edges in S occur
in a common triangle as well as every edge of S belongs to a separating triangle. Also, in every
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separating triangle T, there must be an edge which exists in S. Then in the triangulation, S is
simultaneously flippable and the new triangulation is 4-connected.
Whitney and Hassler [2] proved that every 4-connected graph is a hamiltonian triangulation. A
triangulation G can be converted into a hamiltonian triangulation with only one simultaneous
flip. For this, at first need to identify the separating triangles from the triangulation, then
flipping one edge from each separating triangle converts the triangulation into hamiltonian
triangulation. This whole process can be computed within O log(n) time.
Every edge in set S is individually flippable and no two edges are incident in a common sepa-
rating triangle. Therefore neither can they be blocked nor can they be bad pairs. Because if
one edge is from a separating triangle T1 and another one is from a different separating triangle
T2, to form a bad pair both edges from S must be seen from two distinct vertices and without
loss of generality, one vertex should be inside and the other one is outside So it means both the
edges are in the same separating triangles, that is, T1 = T2. But T1 and T2 both are different
separating triangles. So there cannot be any bad pairs and blocking edges. Therefore, S must
be flippable.

Figure 2.32: Hamiltonian Triangulation Transformation Source: [14]

To obtain such a set of S where no edges are incident in a same separating triangle and at
least one edge belongs to a separating triangle, perfect matching is convenient. According to
Petersen [1], any graph of 3-regular or cubic which is bridgeless contains a perfect matching.
In triangulation, all the faces are triangles, so every face of G is also a triangle, which means
the dual graph of G is cubic. Again, the dual graph G∗ is 2-edge-connected or can be said
bridgeless as there is no loop in G and it is also 3-connected. Thus, dual graph G∗ has a perfect
matching that means from every face of G there is at least one edge which is the property of
S, so none of the edges are consecutives.
Here, there are 3 separating triangles T1 = (a, b, d), T2 = (b, d, i) and T3 = (e, h, f) in G and the
outermost triangles of G are T1 and T2. Next we are computing G2 := int(T1), G3 := int(T2)
& G5 := int(T3), also the outermost triangles ofG1 := G (int(T1)Uint(t2)). According to Bied
et al. [9], by doing perfect matching on separating triangles have selected the non-consecutive
edges. G2 and G3 both contain bd. Again, as T3 belongs to G3, so after computing we get
G4 := G3 int(T3) and G5 := int(T3). From G4 and G5, we get the perfect matches ih and ef .
Taking all the matched edges, established them on the graph G. After getting all the perfect
matching of G, we define S as the set of perfect matching edges that are on a separating
triangle. After flipping the edges bd & ef , we get the new edges ce & bg. Finally, we obtained
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G′ := G(S) our 4-connected or hamiltonian triangulation.

2.3.2 Introducing the First Dominant Vertex

Hamiltonian cycle separates a hamiltonian triangulation into two subgraphs. One is called
inner subgraph and the other one is called outer subgraph. Now, the target is to make one
dominant vertex in each of the subgraphs. Thus, it will be become a canonical triangulation.
Both inner and outer subgraphs are maximal outerplane graphs.

Figure 2.33: Main graph division into two subgraphs

If the number of flips required is equal to the diameter of the dual tree, then O log(n) number of
flips will be needed to make a vertex dominant. Later on, Bose et al. [12] increased the efficiency
by reducing the number of flips. If the diameter of the dual tree can be made logarithmic, it
will require much less number of flips. Also, we could spend O log(n) simultaneous flips for
transforming that outerplane graph into an outerplane graph with diameter O log(n). So, now
the target is to make the diameter logarithmic in order of the graph.
To transform the maximal outerplane graph into one whose dual tree has a diameter ofO log(n),
Bose et al. [12] used a strategy where in each iteration they transformed a fraction of the vertices
into degree 2 vertices. In a maximal outerplane graph each of these degree two vertices will
correspond to an ear. By removing the ears from the graph, the graph can be made smaller.
To reduce the degree of the vertices the following method will be followed.
At first, we need to find an independent set, I consisting of vertices with degree no more than
4. Now, we will create a flippable set, S by inserting one corresponding arbitrary chord of each
vertex from set I where these chords have at least degree 3. Here, all the vertices in set S are
non-consecutive since I is an independent set. Still, these edges can be blocked by external
chords. To solve this problem, according to the properties of flippable set both blocking and
blocked edge should be inserted in S. Again, external chords can be consecutive amongst them.
To remove this connectivity Bose et al. [12] used 3-coloring rule. The highest number of external
chords with same color will be inserted in S. At this point, S can have some blocking external
without having its corresponding blocked chords in S. Hence, we will add those blocked chords
in S. Again, there are are still some edges that are neither blocked nor blocking. We can insert
these edges in S as well so that the number of flips in one simultaneous flip becomes highest.

Theorem 2.36 (Bose et al. [11] Theorem 8). According to Bose, Dujmović, and Wood [11],

αd(OPn) ≥ d−3
3d−6

n + 2
d−2

; for all d ≥ 4 and n ≥ 5

Here, αd(OPn) is the largest cardinality of an independent set of any outerplane graph (OPn);
where n is the number of vertices
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Figure 2.34: Dominant Vertex in Inner-subgraph

According to the theorem 2.36, the cardinality of I will be at least n
6
. By using the pigeon

hole principle 2.35 , Bose et al. [12] proved that at least half the blocking chords will be in set
S, it can be assured that 1

4
of the blocking chords will be in set S. In worst case, after 1st

simultaneous flip n
18

(1
3
of n

6
vertices) vertices will have degree at most 3. Similarly, after second

simultaneous flip, repeating the process n
54

(1
3
of n

18
vertices) vertices will have degree 2. This

process ensures at least n
54

ears corresponding to distinct leaf nodes of the dual tree since every
ear has one vertex of degree two. This process leads to a maximal outer-plane graph of at most
53n
54

(n− n
54
)vertices.Here, after certain number of iterations the maximal outer-plane graph is

smaller than 6 (since all graphs with order less than 6 are isomorphic) Now from recurrence
relation we get,

2 + c2 log
53n
54

= c2 log n
→ c2 =

2
log 53

54

So, the diameter of the dual tree is c2 log n. In the smaller graph the hamiltonian cycle is
preserved and we can make any one of its vertex dominant with at most c2 log n simultaneous
flips.Then a vertex v is chosen by using following rules:

1. v is not incident to any external chord

2. v should have degree two in outer sub-graph

Now, the target is to make a dominant vertex in inner subgraph. A vertex E is chosen from
inner subgraph which has degree two in outer subgraph so that it ensures there will be no
chords of E in the outer graph. After choosing the vertex, with at most c2 log n simultaneous
flips, E will be the first dominant vertex.

2.3.3 Introducing the Second Dominant Vertex

As, outerplane subgraph is a maximal outerplane graph so it does not have any external chords.
Like before, we will create an independent set I with the cardinality n

6
.To create a flippable

set S, one arbitrary chord from each vertex of I is included.But, none of them are blocked by
external chords nor it’ll be blocking any internal chords. No bad pair can be formed since its
a maximal outerplane graph which does not contain any subdivision of K4. So, the cardinality
of S is n

6
in worst case. After two iterations, again all the vertices of I have degree no more

than two which ensures n
6
corresponded ears. After completing the process, the maximal cycle

becomes a 3-cycle Now we get,
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2 + c1 log
5n
6
= c1 log n (From recurrence relation)

→ c1 =
2

log( 5
6
)

So, the diameter of the dual tree= c1 log n To make the second dominant vertex in the other
outer plane graph, we remove the first dominant vertex with all of its incidents. So that the first
dominant vertex, E is not part of the outer sub-graph anymore as a result v cannot have any
internals chords in the outer plane graph.Again,at most c1 log n simultaneous flips will require
to make the any of its vertex dominant.

Figure 2.35: Dominant Vertex in Outer-subgraph

2.3.4 Reverse Transformation to Get to Target Triangulation

At this point,we have two dominant vertices in two sub-graph.By merging two sub-graphs we
will get our canonical triangulation with two dominant vertices. Finally, to get our target
triangulation, we can do the reverse as simultaneous flips is an reversible operation.

Figure 2.36: Target Triangulation
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2.4 Improvement of Bose et al.’s [12] algorithm by Carufel

and Kaykobad [14]

Carufel and Kaykobad [14] improved the algorithm of Bose et al. [12] based on the theorem
2.14. They improved the value of the leading coefficients c1 and c2 and lower the upper bound
to 85.8 log(n).

Definition 2.37 (Empty Cycle). Given graph G with a cycle C, if any of the regions created by
the cycle is empty (contains no vertex), then we call such cycle as an empty cycle. The empty
region is considered as local region and the other region is considered as foreign region.

A representation of empty cycle is presented in figure 2.37. Here, ADEA is an empty cycle
since its internal region does not hold any vertex inside it and is considered as local region.
The external region is the foreign region in this case. Again, ADBCEA is a Hamiltonian cycle
as well as an empty cycle since neither of its empty regions contain any vertices. Note that,
every Hamiltonian cycle is an empty cycle. Besides, every cycle of the graph which fulfills the
mentioned condition is considered as an empty cycle.

Figure 2.37: Empty Cycle

Definition 2.38 (Corner Chord). Given a graph G = (V,E), a vertex u ∈ V has three internal
chords uv, uw and ux arranged in clockwise form whereas uv and ux are considered as corner
chords.

Figure 2.38: UV and UX are corner chords
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An illustration of corner chord is given in figure 2.38. Here, the vertex U has three internal
chords UV , UW and UX which are arranged in clockwise form. Therefore, UV and UX are
corner chords (shown in blue) .

2.4.1 Summary of Improvement

To create flippable set S, By using the theorem of Bose, Dujmović, and Wood [11],we choose
an independent set I such that the cardinality of I is at least 2

9
, where the degree d ≥ 5. Now,

for each degree five vertices, two corner chords are inserted in set S and for each three and
four vertices, one of its incident internal chords are inserted in the set S. The authors then
show that S is pairwise non-consecutive and there are no blocked chords or bad pairs. So due
to Theorem 2.14 the set S is flippable and after the first flip of S, the degree of all vertices
with three and four are reduced by one and the vertices with degree five are reduced by two.
We follow the process until we get a three cycle face which is a maximal outerplane graph.
This process ensures at least 2

9
n ears which corresponding to distinct leaf nodes of the dual

tree since every ear has one vertex of degree two and the diameter of the dual tree is pre-
cisely two less than the previous one. Thus, to make the diameter of the resulting graph’s dual
tree smaller, it requires 2 logn

log 1

(1− 2
9 )

simultaneous flips and the diameter of the dual tree is c1 =
2

log 9
7

.

Again, to create a flippable set S for inner subgraph at first we create an independent set I.
Using the Theorem 8 of [11], we get the cardinality of I is n

6
where the degree d ≤ 4. In set I4,

the degree of all vertices is 4 and one unblocked incident internal chord of each of these vertices
will be inserted in flippable set S according to the Lemma 2 by Carufel and Kaykobad [15].
Using Lemma 3, 2, 1 of [15] all the conditions of Theorem 2.14 gets satisfied and thus S is a
flippable set.
Every three and four degree vertices of I has one remaining internal chord in the resulting
graph after performing S. All these chords are inserted to flippable set C ′ and all the blocked
chords of C ′ are inserted to A′. According to Lemma 7 of [15], we get a flippable set N ′ subset
of A′ so that |N ′| ≥ 1

2
|A′|. Now, all the blocked and unblocked chords of C ′ those have blocking

chords in N ′ is added in C ′′ and its cardinality is at least ≥ 1
2
|C ′|. As the edges of C ′′ and N ′ is

in different regions separated by hamiltonian cycle so they cannot contain any pairwise edges
which are consecutive and also C ′′ ∪N ′ pairwise non-consecutive. According to the Lemma 3
of [15],there are no bad pairs in C ′′ and N ′ and also due to the Lemma 2.5 of Bose et al. [12],
there are no bad pairs in C ′′ so that no bad pair can be formed in C ′′ ∪ N ′. Moreover, due
to the Lemma 2.5 of Bose et a. [12],C ′′ ∪ N ′ are non-blocked as each blocked chords of C ′′

has its corresponding blocking chords in N ′, all the blocking chords has been its corresponding
blocked of C ′′. Thus, C ′′ ∪N ′ become a flippable set according to the Lemma 1 by Carufel and
Kaykobad [15].Again, consecutive pair of vertices of any vertex of I gets connected to create
a new chord. So, the degree of the vertices of I will remain same. Now, we have n

12
ears that

corresponds to the vertices of I with degree two. We will follow the same process as mentioned
in Lemma 9 by Carufel and Kaykobad [15] on a new cycle excluding n

12
earing vertices. It is

ensured that the ears that has already been introduced will remain the same as we will flip the
internal chords of the empty cycle. With at most 2 logn

log 12
11

, we can get the maximal outer plane

graph and the diameter of its the dual tree is c2 =
2

log 12
11

.

Therefore, the value of leading coefficient has been decreased using the Lemma 9 and 10 by
Carufel and Kaykobad [15] in their paper. According to their improvement, any triangulation
can be transformed to another with at most with 2 + 4(c1 + c2) log n simultaneous flips where
c1 =

2
log 9

7

and c2 =
2

log 12
11

, using the similar process mentioned in the paper by Bose et al. [12]

along with stated modifications.
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2.5 Interlaced Algorithm Developed by Kaykobad [14]

In this section, the interlaced algorithm proved by Kaykobad [14] has been discussed briefly.
The interlaced algorithm has four steps which are as follow -

1. Transform the triangulation into Hamiltonian triangulation

2. Make the dual tree of both the maximal outerplane graphs defined by the Hamiltonian
cycle logarithmic in graph order

3. Create two dominant vertices to get canonical triangulation

4. Follow the steps in reverse to get the canonical triangulation to target triangulation

The first and last step of the interlaced algorithm are same as the algorithm given by Bose
et al. [12] and the second as well as the third steps were improved by Kaykobad [14] by
implementing preprocess ( preparation method) and process (making ears) to the inner and
outer subgraphs defined Hamiltonian cycle and making dominant vertices parallelly in the both
maximal outerplane graphs respectively. Some of the relevant definitions and the procedure
are discussed below.

Definition 2.39 (Earing Vertex). In a graph Gi, the vertices whose degree are decreased by 2
to convert them into ears is called earing vertices.

Definition 2.40 (Avoiding Vertex, 2-Chord). In a given graph G = (V,E) where the vertices
{m,n, o} creates an empty cycle L such that mn shares a triangulation with the vertex o and
creates the edges mo and no where o is the avoiding vertex corresponding to mn and mn is the
2-chord of the vertex o as well as the empty cycle.

Definition 2.41 (Avoiding Vertex Set). In a triangulation, the avoiding vertex set ( I iavoid) is
the set of all the avoiding vertices of the graph Gi+1

ear .

2.5.1 The Process of Making the Diameter of Dual Tree Logarithmic
to Order

The objective of making the diameter of the dual tree of both the inner and outer subgraphs
logarithmic to order O( log n) is reducing the number of flips needed to make a vertex dominant.
The process begins with a Hamiltonian triangulation GH which consists a Hamiltonian cycle H.
In every iteration, two simultaneous flips take place in the mentioned graph. At the beginning
of the i-th iteration, the graph is symbolized as Gi. The first iteration is starting with GH ,
therefore, G1 = GH . There are two empty cycles present in GH which are C1

ear and C
1
prep defined

by H. The subgraph which consists Ci
ear is considered as Gi

ear and the other subgraph Gi
prep

contains Ci
prep. In a single iteration, two different processes are being conducted parallelly:

1. Make ears in the graph Gi
ear and

2. Prepare Gi
prep for the next iteration where Gi

prep = Gi+1
ear .

An independent vertex set I iear containing the earing vertices is defined inGi
ear in every iteration.

The target is to reduce the degree of these vertices to 2 and make them ears. At the same
moment, in Gi

prep an avoiding vertex set I iprep is identified through preparation method to avoid
the vertices (without compromising the cardinality). The motive is to avoid these vertices
from making ears so that they can not create blocking chords during making ears in the next
iteration. In a single iteration two simultaneous flips Si

1 and Si
2 take place. Mainly, this Si

1
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consists Si
ear1

∪ Si
prep1

. Similarly, Si
2 consists Si

ear2
∪ Si

prep2
. The ears are created through Si

ear1

and Si
ear2

, at the same time preparation method takes place through Si
prep1

and Si
prep2

. This
clearly defines while creating ears in a subgraph Gi

ear, the other subgraph Gi
prep gets prepared

to become Gi+1
ear in the next iteration. It is important to mention that since the first iteration

doesn’t have any preparation method, the first iteration takes place in a different manner. As
we already know, maximal outerplane graph on n vertices are isomorphic where n ≤ 5, so the
flipping process needs to stop when Gi

ear has maximum 5 vertices. Hence, Si
ear is made an empty

set. After having maximum 5 vertices in both Gi
ear and G

i
prep, the process is completed and we

get the resulting graph G′
H . During this procedure, the hamiltonian cycle H is preserved in G′

H

and the dual tree of the subgraphs G′
Hinterior

& G′
Hexterior

are O( log n) . In i − th iteration, we

get Gi′ after the first simultaneous flip, Gi′ = Gi⟨Si
1⟩ and we get Gi′′ = Gi′⟨Si

2⟩ after completing
the second simultaneous flip. Gi′′ is the initial state of the following iteration, Gi+1. However,
Gi′′

prep becomes the Gi+1
ear in (i + 1)-th iteration. When we get the expected ears from Gi′′

ear, we

exclude the earing vertices ( degree−2) from the Gi′′
ear. Thus it works as the G

i+1
prep in upcoming

iteration. Therefore, the cycle Ci′′
ear after exclusion of the earing vertices is the same cycle

as Ci+1
prep in (i + 1)-th iteration. In other words, the processing and prepossessing regions are

interchanging their regions between them in every iteration.

Figure 2.39: Transforming the diameter to logarithmic

Figure 2.39 is an illustration of the process of transforming the diameter to Logarithmic. Here,
figure 2.39 ( a) is a Hamiltonian triangulation GH which is our main graph. The Hamiltonian
cycle H creates two subgraphs Gear (denoted by blue region) and Gprep (denoted by pink
region) in figure 2.39 ( b) . There is no processed region (denoted by yellow) in this figure. The
Hamiltonian cycle H along with other cycles Cx

ear and Cx
prep where 1 ≤ x ≤ i is a subgraph of

Gi+1. The figure 2.39 ( c) is the initial figure of i-th iteration of Gi along with some processed
regions and with each iteration this region covers more graph. In the figure 2.39 ( d) , Gi′′ is the
final phase of the i-th iteration as well as the preliminary state of the (i+1)-th iteration where
after the both Si

1 and S
i
2 simultaneous flips, ears (denoted by white region) has been produced.

The figure 2.39 ( e) denotes as Gi+1 whereas both regions in blue and pink swaps between
them and as a result, the blue region where before ears created has become now the Gi+1

prep

and on the contrary, the pink region has converted into Gi+1
ear . Further, the figure 2.39 ( e) is

exact same as the figure 2.39 ( d) except here the ears has been processed and transformed into
yellow region. The next figure 2.39 ( f) represent the graph G( i+1) ′′ of the ( i + 1) -th iteration
where two simultaneous flips Si+1

1 and Si+1
2 has occurred, also ears BDE and CFH has been
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generated in interior of the GH which symbolizes the blue region of the graph. Following the
final iteration Gx, the graph has processed in the figure 2.39 ( g) and the diameter of the dual
tree of both interior and exterior of Gx{H} has become O( log n) .
In every i-th iteration without the first iteration, the diameter reduces by exactly 2 from the
diameter of Gi

ear to Gi+1
prep and the order reduces by at most 5

6
times. Finally, the diameter

becomes 2 logn

log 6
5

after reducing the diameters of the dual tree in both regions.

2.5.2 Introducing Dominant Vertices

In this paper, the diameter of the dual tree of both inner and outer subgraphs are same. Thus
we need same number of simultaneous flips to make distinct dominant vertex in both of the
graphs. In the paper written by Bose et al. [12] we have seen that we nee c1 log n and c2 log n
simultaneous flips. However, Kaykobad [14] in his paper improved the leading coefficient to
make c1 and c2 equal. The researcher worked on the graphs with more than 5 vertices since the
lower order graphs already has 2 dominant vertices. After dividing the main graph into two
subgraphs according to the hamiltonian cycle we get one distinct corresponding empty cycle
in both of the the sub-graphs. Inner subgraph has inner empty cycle and outer subgraph has
outer empty cycle. Both of the cycles have minimum 2 foreign 2-chords, with one avoiding
vertex for each of them because both of the dual trees have minimum two leaf nodes. We will
chose two distinct vertices from avoiding vertices to make them dominant in inner and outer
subgraph respectively. We will remove the first candidate from the outer subgraph. Now we
need to make the vertices dominant by using simultaneous flip operation from the ordered sets
of simultaneous flip as done in the paper by Bose et al. [12].

• Inner and outer maximal outerplane subgraphs are non-overlapping and thus the edges
in the flippable are not consecutive.

• Since the the vertex chose to be dominant in inner subgraph is removed from outer
subgraph, the vertex is not a seeing for the edges of the outer subgraph. Only for the
chords inserted in the flippable set of inner subgraph, this vertex is the common seeing.

• For the same reason mentioned in point 2, two edges of the flippable sets can not block
each other.

So, the three conditions of Theorem 2.14 are satisfied. So the set is flippable and the triangu-
lation can be made canonical triangulation.

2.5.3 Complexity of the Interlaced Algorithm

Bose et al. [12] claimed in his paper that only one simultaneous flip is required to transform
one triangulation to Hamiltonian triangulation. Therefore, Kaykobad [14] make the diameter
logarithmic with 4 logn

log 6
5

simultaneous flips and the diameter of the dual tree become 2 logn

log 6
5

for the

both of the inner and outer subgraph. To make two dominant vertex parallelly in both inner
and outer subgraph, at most 2 logn

log 6
5

simultaneous flips are required and same number of flips are

enough to convert the canonical triangulation to the target triangulation. Therefore, with at
most 2 × (4 logn

log 6
5

+ 2 logn

log 6
5

) ≈ 45.6 log n simultaneous flips any triangulation can be transformed

to other.
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Chapter 3

Algorithm

Before presenting our algorithm we first start with some definitions and list out the existing
lemmas and theorems we use for the proof of correctness of our algorithm.

3.1 Definitions and Necessary Lemmas

In previous chapters, we have gained some insights to improve the existing algorithms and are
in the process of establishing our algorithm. In this chapter, the process of making pre-selected
vertices dominant parallelly in inner and outer subgraphs has been described. Let us present
some of the relevant definitions which are explained below.

Definition 3.1 (Prov Chord). Given a Triangulation T with a Hamiltonian cycle H which
defines two maximal outerplane graph G1 and G2 where D1 and D2 are selected to be the
dominant vertices in G1 and G2 respectively. If any chord e except the edge of H is flipped and
the resulting chord increases the degree of D1 in G1 or D2 in G2, then that mentioned chord is
called provin or provout chord respectively.

Figure 3.1: Here, the shaded region is the inner subgraph G1 and the rest is the outer subgraph
G2. A and O are to be dominant internally and externally respectively. For A, BG is a provin
chord and AC is its corresponding obstout chord (highlighted in red)

A demonstration of prov chord is illustrated in figure 3.1. In this figure, A is to be dominant
in inner subgraph. On t-th iteration, BG is provin chord because flipping BG increases the
degree of A in inner subgraph.
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Definition 3.2 (Obst Chord). Obst chord is a blocking chord of a prov chord. The obst chord is
denominated as obstin and obstout chord when it exists in the internal subgraph and the external
subgraph respectively.

An illustration of obst chord is presented in figure 3.1. Here, A is to be dominant in inner
subgraph and BG is provin chord on t-th iteration where AC is a blocking chord of BG.
Therefore, AC is its corresponding obstout chord. Since, the obst chord AC exists in outer
subgraph, it’s called obstout chord.

Definition 3.3 (Eccentricity). Given a graph G = (V,E) where eccentricity e of a vertex
v ∈ V is the maximum distance to any other vertex u ∈ V from v. Eccentricity e(v) =
max{distance(u, v) |u ∈ V (G) }.

Figure 3.2: Here, the shaded region is the inner subgraph G1 and the rest is the outer subgraph
G2. Considering vertex 1 of G∗

1, the eccentricity is 3. The dual radius of G∗
1 is 2 due to the

vertex 2 and 3. Therefore, the center of G1 is f = {BEH,BDE}. Considering B as the target
dominant vertex, dual eccentricity for B is 2

A representation of eccentricity can be seen in figure 3.2. Here, graph G has been divided into
inner subgraph G1 and outer subgraph G2 by the Hamiltonian cycle H (highlighted in blue).
G∗

1 and G
∗
2 are the dual trees of G1 and G2 respectively. To demonstrate the eccentricity, vertex

1 of G∗
1 is being considered. The longest distance to any other vertices of G∗

1 from vertex 1 is
3. Therefore, 3 is the eccentricity of vertex 1. Note that, eccentricity of any vertex v of any
graph G can be found in similar way.

Definition 3.4 (Dual Radius). Given a maximal outerplane graph G and its dual tree G∗, the
dual radius of G is the length of the shortest longest path in amongst all vertex pairs in G∗.

An illustration of dual radius is presented in figure 3.2. Here, graph G has two maximal
outerplane graph G1 and G2 defined by Hamiltonian cycle H. G∗

1 and G∗
2 are the dual trees

of G1 and G2 respectively. Considering G∗
1, the dual radius is 2. It is the lowest eccentricity

among all the vertices of G∗
1. Similarly, the dual radius of G∗

2 is 2.

Definition 3.5 (Center). Given a maximal outerplane graph G, let f be a set of faces in G,
whose corresponding vertices have minimum eccentricity in the dual tree G∗ of G. Then we call
the set of faces f as the center of G.
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An illustration of center is presented in figure 3.2. Here, G∗
1 and G∗

2 are the dual trees of G1

and G2 respectively. Since dual radius of G∗
1 is 2 due to the vertex 2 and 3. Therefore, the set

of faces f = {BEH,BDE} is the center of G1. In similar manner, f = {AGC,GFC} is the
center of G2.

Definition 3.6 (Dual Eccentricity of a vertex). Given a maximal outerplane graph G and a
vertex v in G, let f be the set of faces that v is on, excepting the outerface. Then the dual
eccentricity of v is the maximum of all the shortest paths of the corresponding vertices of f in
the dual tree G∗.

A representation of dual eccentricity is illustrated in figure 3.2. Here, the center of G1 is f =
{BEH,BDE}. Selecting B as the target dominant vertex for G1. Therefore, dual eccentricity
for B is 2.

Definition 3.7 (Interrupted Chord). Given an ordered set of simultaneous flip set S, let e be
a chord in its t-th flipset St. Then e is an interrupted chord in St ∈ S if it is removed from St

and is inserted in St+1. When a chord is interrupted in St, we also interrupt any chord blocked
by it in St at the same time as well. An interrupted chord is called an interrupted prov chord
or an interrupted obst chord, depending on whether it is a prov chord or an obst chord.

Figure 3.3: Here, the shaded region is the inner subgraph G1 and the rest is the outer subgraph
G2. AE is an interrupted chord (shown in violet)

A demonstration of interrupted chord is represented in figure 3.3. Here, D and B are selected
to be dominant in internal and external subgraphs respectively. On t-th iteration, AE is
provin chord and FE is provout where AB is its corresponding obstin chord. AB and AE are
consecutive edges. Therefore, AE is skipped from flipping on t-th iteration and inserted in the
flip set of (t+ 1)-th iteration. Here, AE is an interrupted chord (highlighted in violet).

Definition 3.8 (Safe Chord). Let G be a triangulation with a Hamiltonian cycle H that sep-
arates the graph into two maximal outerplane graphs G1 and G2. Furthermore, let D1 and D2

be the two vertices to be made dominant in G1 and G2 respectively and S be the set of ordered
flipsets for G where we are currently flipping the set St ∈ S. Let e be a chord in St that WLOG
is present in G1. Then a corresponding safe chord e′ of e in St is a consecutive chord of e such
that e′ is not blocked in G and flipping e′ does not decrease the degree of D1 (the vertex to be
made dominant in its respective maximal outerplane graph).
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Figure 3.4: Here, the shaded region is the inner subgraph G1 and the rest is the outer subgraph
G2. MO is a safe chord (shown in green) which is consecutive to MN

A demonstration of safe chord is showed in figure 3.4. Here, O and L are selected to be domi-
nant in G1 and G2 respectively. In the t− th iteration, MN and KN are Provin and Provout
chords respectively. Moreover, MO is a safe chord of MN which is consecutive to MN and
flipping MO does not decrease the degree of L.

Now, the important lemmas given by other researchers, those have been used in our algorithm
are mentioned below.

Lemma 3.9 (Lemma 2.5 of Bose et. al [12]). Suppose that vw and xy are a bad pair in a
triangulation G, both seen by vertices p and q. Suppose that vw blocks some edge ab. Then xy
and ab are consecutive, and vw and xy are in a common triangle (amongst other properties).

Lemma 3.10 (Lemma 4.2 of Bose et. al [12]). A set S of internal edges in a maximal outerplane
graph G is flippable if and only if the corresponding dual edges S∗ form a matching in G∗.

Lemma 3.11 (Lemma 7 of Carufel and Kaykobad [15]). Let G be a triangulation with an
empty cycle C, with a set S of blocking external chords of C. Then at least half of the chords
in S can be simultaneously flipped.

3.2 Proposed Algorithm

Suppose we want to transform a triangulation Ginitial to Gtarget, we consider both maximal
outerplane graphs of a triangulation Ginitial defined by the Hamiltonian cycle H. After finishing
the process of making the diameter logarithmic proposed by Kaykobad [14], the diameter of
dual trees of both the maximal outerplane graphs are at most 2 logn

log 6
5

. We make an improvement

by introducing a process of choosing a pair of vertices randomly to be dominant simultaneously
in two subgraphs with another 4 logn

log 6
5

simultaneous flips where logn

log 6
5

is the radius of the dual

tree. The proposed algorithm consists of the following steps:

1. Transform initial triangulationGinitial into a Hamiltonian triangulation T where its Hamil-
tonian cycle H separates T into two maximal outerplane graphs G1 and G2.

2. Transform T into T ′ preserving Hamiltonian cycle H such that the diameters of the dual
tree of both G1 and G2 are O(log n).
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3. Transform T ′ into a canonical triangulation ∆n by simultaneously introducing two dom-
inant vertices, one in each of the maximal outerplane subgraphs.

4. Follow the previous three steps in reverse order to obtain the target triangulation Gtarget.

Step 1 of the proposed algorithm is done exactly as described by Bose et al. [12]. Step 2 is done
exactly as described in the paper written by Kaykobad [14]. Step 3 is explained in Section 3.3
and 3.4. Simultaneous flips are inversible operations. Thus to complete the transformation of
Ginitial to Gtarget, in step 4 we execute the inverse process of producing Ginitial → ∆n on the
canonical triangulation that is generated in Step 3.

3.3 Overview of the Algorithm

Given a triangulation T with a Hamiltonian cycleH that defines two maximal outerplane graphs
G1 andG2. We choose two arbitrary verticesD1 andD2 to be dominant in the internal subgraph
G1 and external subgraph G2 respectively from the center of the triangulation. Our algorithm
can be useful to make any arbitrary pair of vertices of the triangulation to be dominant.
However, for better efficiency we choose vertices from the center. Let, i1 and i2 denote the
dual eccentricity of D1 and D2 in G1 and G2 respectively. Since it does not require any flips to
nominate any existing face to be the outer face, for convenience of demonstrating the algorithm,
we pick the outerface of the graph such that the external region’s dual eccentricity i2 is the
larger value between i1 and i2. Thus, i1 ≤ i2. In the following algorithm, Sin = {provin, obstin}
and Sout = {provout, obstout} have been considered as the ordered set of simultaneous flip sets
of G1 and G2 respectively. The total flip set S is the union of Sin and Sout. Then, every
element of the ordered set of simultaneous flip set S consists of {provin, provout, obstin, obstout}.
In this algorithm, we will prove that S is flippable and 2 × (i1 + i2) flips are sufficient where
i = max(i1, i2) to introduce two dominant vertices in the resulting graph.

Lemma 3.12. Given a triangulation T with a Hamiltonian cycle H that defines the two max-
imal outerplane graphs G1 and G2 where D1 and D2 are selected to be the dominant vertices
in G1 and G2 respectively. The blocking chords of the corresponding prov chords in G1 and G2

are defined as obst chords. Hence, obst chords are always flippable.

Proof. In G1 and G2, for any provin or provout chord on the t-th iteration, if there is any
corresponding blocking chords, then those blocking chords are inserted in the flippable set St

as obstin or obstout chord. According to the lemma 2.4 stated by Bose et. al [12], obst chords
are always flippable.

3.4 Algorithm

We first present the pseudocode of the algorithm, followed by an explanation of how it works.
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Algorithm 1 Process of Making Dominant Vertices

1: procedure Create-Flippable-Set
2: Let i1 and i2 be dual eccentricity from the vertex D1 and D2 respectively of G1 and G2

such that i2 ≥ i1
3: Let iterator, t = 1
4: while i2 > 0 do ▷ When i2 becomes 0, i1 must also be 0 and there must be two

dominant vertices in G
5: Let Sint = provin ∪ obstin on the t-th iteration
6: Let Soutt = provout ∪ obstout on the t-th iteration
7: Let St = Sint ∪ Soutt

8: if i1 > i2 then
9: swap G1 & G2

10: swap i1 & i2
11: swap Sin & Sout

12: end if
13: success = Flip (St)
14: if success then
15: Decrease i1 and i2 by 1
16: else
17: Decrease i2 by 1
18: end if
19: Increase t by 1
20: end while
21: end procedure
22:

23: procedure Flip(St)
24: success := True
25: if There exists two chords e1 ∈ prov chords and e2 ∈ obst chords such that e1 and e2

are consecutive then
26: Remove interrupted chords from St

27: success := False
28: Insert the interrupted chords in St+1

29: end if
30: if There exists two prov chords e1 ∈ Sin and e2 ∈ Sout such that e1 and e2 form a bad

pair then
31: if Safe chord e3 exist then
32: Replace any prov chord e ∈ {e1, e2} with e3 in St

33: else
34: Remove any prov chord e ∈ {e1, e2} from St

35: end if
36: Insert e in St+1

37: end if
38: if St contains obst chords that are consecutive then
39: Separate the edges in St into St1 and St2 such that for each pair of obst chords that

are consecutive, only one of them and their corresponding prov chord are in St1 and the
other and its corresponding prov chord are in St2 .

40: Flip St1

41: Flip St2

42: else
43: Flip St

44: end if
45: Return success
46: end procedure
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Procedure Create − Flippable − Set takes two maximal outerplane subgraphs G1 and G2

defined by Hamiltonian cycle H in a triangulation T . WLOG i2 ≥ i1 where i1 and i2 are the
dual eccentricity from the target vertices D1 and D2 respectively of G1 and G2. Next, iterator
t is initialized which is for keeping the track of the iteration number. The following procedure
keeps continuing itself until i2 = 0 because i2 becomes 0 when two dominant vertices are already
established in G. Thus, the procedure should be stopped. Sint and Soutt consist of provin, obstin
and provout, obstout chords respectively of the t-th iteration. Finally, St = Sint ∪ Soutt . After
initializing all of the stated factors, the first thing is to check that whether i1 > i2. If so, then
G1 and G2 are to be swapped along with their dual eccentricity i1 and i2. Also, flippable sets
Sin and Sout are to be swapped with each other. Afterwards the flag success is initialized, the
procedure calls another procedure Flip which is going to be explained further and the return
result is stored in success. The next thing is to check if success is True. If so, i1 and i2 are
decreased by 1, otherwise only i2 is decreased by 1. The final step is to increase t by 1 which
means one successful iteration has been completed.
Procedure Flip takes St where St is the flippable set for t-th iteration. Basically, the flips are
executed in this part according to St after being ensured that St is flippable. At first success
is made True. This flag is used to keep the track of flip penalization of G1. However, the
task is to flip St, St needs to be freed from blocked edges, consecutive edges and bad pairs.
St already contains the obst chords of the corresponding prov chords which solves the issue
of blocked edges. So, next the procedure checks if there exists any consecutivity case, then it
removes the interrupted chords from St, success is made False and the interrupted chords are
inserted in St+1. The following thing is to inspect that whether e1 and e2 form a bad pair such
that e1 and e2 are prov chords of G1 and G2 respectively. Bad Pair formation only takes place
when D1 and D2 try to get connected in the same iteration. To handle this scenario, any of
the Prov chords e ∈ {e1, e2}, is replaced with a safe chord e3 if and only if e3 exists in that
orientation. If e3 does not exist, simply e is removed from St and inserted in St+1. Finally, the
procedure checks if St contains obst chords those are consecutive then, St is split into St1 and
St2 such that each set contains only one of the obst chords and their corresponding prov chords
from the consecutive obst chord pairs. Afterwards, St1 and St2 are flipped. Otherwise, St is
flipped. Finally, the Flip procedure ends with returning the value of success. Therefore, all of
the problems that could arise in the whole process are handled through the necessary condition
and solution. Consequently, St is ensured as a flippable set.

3.5 Proof of the Algorithm

Lemma 3.13. By running Algorithm 1, when executing a simultaneous flip, the flipset does
not contain any consecutive chords.

Proof. Let us assume that there exist a pair of consecutive chords in St. Since the chords in
Gin and Gout are separated by the Hamiltonian cycle H, no chord in Gin can be consecutive to
any chords in Gout. Hence, WLOG, let us assume that the pair of consecutive chords (e1 and
e2) are in Gout.
Both e1 and e2 cannot be provout chords due to the Lemma 3.10 of Bose et al. [12]. In
Lemma 3.10, Bose et al. proved that the chords that increase the degree of the dominant
vertices in the flipset, does not contain consecutivity among them. By definition 3.1, the prov
chords increase the degree of the dominant vertices, therefore provout chords cannot be con-
secutive. Moreover, e1 and e2 can be obstout chords. To handle the situation, it is enough to
follow the method presented in the Lemma 3.11 of Carufel and Kaykobad. Due to Lemma 3.11,
we sacrifice at most half of those obst chords and their corresponding prov chords. According
to Algorithm1 line 38, St is separated into St1 and St2 where e1 and its corresponding provout
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chord are in St1 and e2 and its corresponding provout chord in St2 .

Figure 3.5: Consecutivity Analysis Case-1: At t-th iteration, XY is a provin chord (red) in G1

and its corresponding obstout chord is IZ(red) where IM is a provout chord (red) in G2. IM and
IZ are consecutive to each other. To eradicate this situation, XY is removed with IZ from the
flip set St and inserted both chords to St+1. Flipping IM results OZ (sky blue). The zigzagged
curve (blue) is a Hamiltonian cycle and shaded regions (paste) are further triangulated.

Figure 3.6: Consecutivity Analysis Case-2: IM is a provout chord (red) in G2 and XY is a
provin chord (red) and its corresponding obstin chord OZ (red) in G1 at t-th iteration. To
handle this situation, xz is eliminated from the flip set St and is inserted in St+1. Flipping IM
and OZ, results in OZ and PX (sky blue). Shaded regions are further triangulated and the
Hamiltonian cycle is drawn in blue (the zigzagged curve).

WLOG, let e1 be an obstout and e2 be a provout chord in Algorithm 1. Since we only flip prov
chords and obst chords, now we prove the final case by contradiction. Let us assume that at
iteration t, a pair of provout chord and obstout chord are consecutive in the flip set St due to
Algorithm 1 line 30. Similarly, provin chord and obstin chord can also be consecutive in St.
WLOG, in figure 3.5 let I and O be the two vertices that are selected to be dominant in G1

and G2 respectively. On the t-th iteration, the flippable set St contains provin chord XY , its
corresponding obstout chord IZ and provout chord IM . The provout chord IM and obstout chord
IZ are consecutive in G2. Thus, we cannot flip both IM and IZ at the same iteration. To
avoid this situation, provin chord xy with its corresponding obstout chord IZ is removed from
St in Algorithm1 line 26 and is inserted in St+1 in Algorithm1 line 28. On the other hand, in
figure: 3.6, on the t-th iteration, the flippable set St contains provin chord XZ, provout chord
IM and its corresponding obstin chord OZ where XZ and OZ are consecutive to each other
in G1. Here, to handle the situation, G1 is being penalized by removing the provin chord from
St and added to St+1. In both cases, the removed chords are called as interrupted chords.
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To eliminate consecutivity from St, the interrupted chords are delayed and G1 is always being
penalized. The consecutivity case can occur more than once in T and whenever this case occurs,
it is always handled by penalizing G1. Therefore, there is no consecutivity in the flip set St.
Since, {St1 , St2} ⊂ St hence St1 and St2 do not contain consecutivity as well.

Lemma 3.14. Given a Triangulation T with a Hamiltonian cycle H which defines two maximal
outerplane graphs G1 and G2 respectively where we have a pair of prov chords e1 ∈ G1 and
e2 ∈ G2 form a bad pair. Then each of e1 and e2 have a corresponding safe chord in T and safe
chord is flippable.

Proof. According to the lemma 2.14 given by Bose et. al [12] safe chord can only be flippable
if and only if it satisfies three conditions of being flippable.
A safe chord does not have any blocking chord: To Prove by contradiction, assuming in
figure 3.7, KL is a safe chord in G2 which is blocked by IN . Let, L and O are the two vertices
selected to be dominant in G1 and G2 respectively. For having a blocking chord of KL, there
must be a connection between the two vertices of the both sides of the edge LM in G1 which
is IN . Here, KN and NM form a bad pair that means both KN and NM see the vertices
O and L. As a result, NLM must be a face in G1, hence, LM must be an edge and I and
N cannot be adjacent to each other because if IN exists, it intersects LM , then T loses its
planarity. Let, KL be seen by I and N in G2. Notice that the edge LM separates I from N in
G1 and LM can not be flipped as it is connected with the dominant vertex L in G1. Therefore,
KL cannot be blocked. Again, KL cannot be a blocking chord as blocking chords are always
flippable due to the lemma 2.4 given by Bose et. al [12].

Figure 3.7: Safe Chord Analysis: MN ia a provin chord and KN is a provout chord where KL
is a safe Chord. NLM cannot be a face, therefore, IN cannot be adjacent to each other. Thus,
a safe chord does not have any blocking chords and cannot form a bad pair. The Hamiltonian
Cycle (zigzagged curve) is shown in blue which is further triangulated.

A safe chord cannot form a bad pair: Let, L and O be the dominant vertices of G1 and
G2 respectively where KL is a safe chord in G2 and by flipping KL, I and N becomes adjacent
in G2 in figure 3.7. In G1, every prov chord increases the degree of the dominant vertex L.
As a result, there is no prov chord which connects two non-dominant vertices N and I in G1.
Therefore, a safe chord cannot form a bad pair with a prov chord. Again, KL can only form a
bad pair with any obst chord in G1, only if LM itself is an obst chord. However, LM cannot
be an obst chord as it increases the degree of L in G1. As, L is supposed to be dominant in G1,
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thus the degree of L will not be increased in G2. The degree of M in G2 will be increased only
if M were supposed to be dominant in G2. But since O is supposed to be dominant in G2, the
degree of M will not be increased in G2. Moreover, if any obst chord exist in G1 which may
form a bad pair with KL, then by flipping KL, the resulting chord must intersect LM , thus,
T does not remain planar anymore. Therefore, a safe chord cannot form a bad pair with any
obst chord either.
A safe chord does not have consecutivity with obst chord: At the t-th iteration, a safe
chord and an obst chord can be consecutive in the flippable set St. Due to Lemma 3.13, this
situation cannot happen. Thus, the safe chords in St do not have any consecutive chords in St.
Therefore, a safe chord is a flippable chord in S as it satisfies the three constraints that men-
tioned in the lemma 2.14 of being flippable given by Bose et. al [12].

Lemma 3.15. By running Algorithm 1, when flipping St1, St2 or St, the flip sets cannot have
two prov chords forming a bad pair.

Proof. In the figure: 3.8 let L and O be the two vertices that are selected to be dominant
in the G1 and G2 respectively. On the t − th iteration, two prov chords NM ∈ Sprovin and
KN ∈ Sprovout form a bad pair due to Algorithm 1 line 30 while connecting two dominant
vertices internally and externally in the same iteration. To handle this situation, between both
of the prov chords only one of them NM will be flipped and KN will be removed from the
flippable set of current iteration t due to Algorithm 1 line 34. Vice versa KN can also be
flipped and NM will be removed from St in this case. In addition, a safe chord KL which is
consecutive to KN replaces KN from the current flippable set St due to Algorithm 1 line 33.
Therefore, the inserted safe chord KL is a flippable chord due to lemma 3.14. After changing
the order of KL in S, the flippable set S is recomputed along with the prov and obst chords
based on the resulting graph. Suppose, there is no safe chord in G1 or G2 in the t− th iteration,
the prov chord KN is removed from St. Thus, some of the next flips get delayed too which
requires the flippable set S to be recomputed accordingly. Whenever there is an insertion of
any safe chord or reduction of any prov chord occurs, it still preserves the flippability of S.
Further, it is mentioned that while flipping provin and provout chords and the resulting edges
connect the dominant vertices L & O in both G1 and G2 at the same iteration, then provin
and provout chords form a bad pair. This situation can not occur more than once as to become
dominant vertices, L has the tendency to increase the degree in G1 whereas O has the tendency
to increase its degree in G2. Therefore, L and O must not get connected more than once in
the triangulation. Thus, the only chance of arising bad pair is when L and O gets connected.
Hence, there cannot be prov chords forming bad pairs the flip set St. Thus, {St1 , St2} ⊂ St

hence St1 and St2 do not have any prov chords that can form bad pair.
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Figure 3.8: Bad Pair Analysis: At t-th iteration MN is a provin chord (red) in G1 and KN
is a provout chord (red) in G2. After flipping both MN and KN , the vertices L and O gets
connected. To avoid this situation, instead of flipping KN , a safe chord KL (shown in green)
is selected in G2 and KL is inserted in St+1. The zigzagged curve (blue) is a Hamiltonian cycle
which is further triangulated.

Lemma 3.16. By running Algorithm 1, when flipping St1 , St2 or St, the flip sets cannot have
two obst chords forming a bad pair.

Proof. . In Algorithm 1 line 25 and line 38, we already deal with consecutive chords, so by line
25 and 38, St1 , St2 and St, no longer contains any consecutive chords. Due to Lemma 2.5 by
Bose et. al [12] for bad pairs to be blocked consecutivity is necessary. Thus there cannot be
obst chords forming bad pairs in St. Therefore, St1 , St2 ⊂ St hence St1 and St2 do not contain
any obst chords that can form bad pairs.

Lemma 3.17. By running Algorithm 1, when flipping St1 , St2 or St, the flip sets cannot have
a prov chord and an obst chord forming a bad pair.

Proof. WLOG let a provin chord ab and an obstout chord vw form a bad pair. Since ab is a
prov chord, it increases the degree of a dominant vertex D1 ∈ G1. On the other hand, vw is an
obst chord which connects two non-dominant vertices in G2 and thus flipping vw decreases the
degree of D1. Therefore, ab and vw cannot form bad pair as they cannot create parallel edge
in the same iteration t.

Lemma 3.18. When flipping St, St1 or St2, they form a valid simultaneously flippable set.

Proof. As a consequence of Lemmas 3.15, 3.16 and 3.17, St1 , St2 and St do not contain any
bad pair. Due to Lemma 3.12, St1 , St2 and St contain the corresponding blocking chords of all
blocked chords in St1 , St2 and St. Finally, due to Lemma 3.13, St1 , St2 and St do not contain
any consecutive edges either. Thus due to Lemma 2.14 by Bose et. al [12], St1 , St2 and St is
simultaneously flippable.

Theorem 3.19. When running Algorithm 1, let the dual eccentricity of the two vertices D1

and D2 to be made dominant be i1 and i2 respectively. Then with no more than 2(i1 + i2)
simultaneous flips, the triangulation is transformed into a canonical triangulation.
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Proof. Notice that the while loop in Algorithm 1 Procedure Create-Flippable-Set iterates until
both i1 and i2 become 0 where i1 and i2 denote the dual eccentricity of the two vertices to be
made dominant in their respective maximal outerplane graphs. On each of these iterations, one
of the following occurs:

1. The value of both i1 and i2 reduce by one.

2. Only one of i1 and i2 is reduced by one.

Hence the algorithm must terminate after at most i1+i2 iterations. On each iteration, Procedure
Flip can make at most two simultaneous flips. Thus the algorithm terminates after at most
2(i1 + i2) simultaneous flips.
Notice that, the only way the degree of D1 or D2 can be increased in their respective maximal
outerplane subgraphs is to flip their prov chords. Therefore, we do not flip any chords that
decrease the degree ofD1 orD2 in their respective maximal outerplane subgraphs. Furthermore,
when the algorithm terminates, we have flipped all the prov chords for both the dominant
vertices. Thus, when the algorithm terminates, these vertices no longer have any prov chords,
which means that they have become dominant vertices in their respective maximal outerplane
subgraphs.

3.6 Complexity Analysis

We calculate the complexity of our algorithm by determining the number of flips required in
every step mentioned in the Section 3.2.

1. According to Bose et al. [12], to transform Ginitial into a Hamiltonian triangulation T ,
only one simultaneous flip is enough.

2. Kaykobad [14] showed that 4 logn

log 6
5

+ 2 simultaneous flips are sufficient to make T ′ with
logarithmic diameter in both of the maximal outerplane graphs and the diameter becomes
2 logn

log 6
5

.

3. Due to the Theorem 3.19, at most 4 logn

log 6
5

+ 4 simultaneous flips are required to introduce

the dominant vertices in both of the maximal outerplane graphs where dual eccentricity
i1 and i2 is not more than logn

log 6
5

+1. Thus, T ′ is turned into a canonical triangulation ∆n.

4. An equal number of simultaneous flips are required to convert ∆n toGtarget as the previous
three steps combined.

Theorem 3.20. Let Ginitial and Gtarget be two triangulations with n vertices. There is a
sequence of no more than 16 logn

log 6
5

+14 ≈ 60.83 log n+14 simultaneous flips to transform Ginitial

into Gtarget.

Proof. To transform Ginitial to Gtarget atmost 2× ( 1+4 logn

log 6
5

+2+4 logn

log 6
5

+4) simultaneous flips

are required. Here, in the step 4 of complexity analysis, all the previous steps are repeated
again in reverse order thus we are multiplying the cost of previous steps with 2.
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Chapter 4

Conclusion

In this thesis, our goal was to introduce a new algorithm to transform one to triangulation to
another via simultaneous diagonal flips. The notability of this algorithm is to pick any two
vertices arbitrarily from a Hamiltonian triangulation and transform them into dominant vertices
parallelly in the internal and external subgraphs in order to make the triangulation a canonical
triangulation. Hence, there is no special conditions to select the target vertices. To accomplish
the whole procedure, 16 logn

log 6
5

+ 14 ≈ 60.83 log n+ 14 simultaneous flips are required. While this

does not yet reduce the upper bound for transforming triangulations using simultaneous flips,
we are hopeful that with further research we may make an improvement on the bound using a
similar approach. Some of our future prospects are:

1. We hope to find an effective solution to handle the problem of consecutivity between prov
chord and obst chord. On the t-th iteration, we flip St where St is a flip set and this
set contains prov chords and their corresponding obst chords for both of the subgraphs.
Although flippable sets cannot have consecutive edges, St can have prov chords and obst
chords which are consecutive shown in Figure 3.5. At present we handle this scenario by
penalizing each time the flips of inner subgraph and continue the flips of outer subgraph.
This requires (i1 + i2) simultaneous flips.

2. To handle the consecutivity between two obst chords with more efficiency. In t-th iter-
ation, St can have Obst chords of different Prov chords which are consecutive shown in
figure : 4.1. To handle this scenario, St is divided into two flip sets and the Obst chords
are equally distributed in them. So, there are two simultaneous flips St1 and St2 . In worst
case, this case can appear in every iteration and so it requires 2× (i1 + i2) simultaneous
flips.
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Figure 4.1: Here, D is selected to be dominant. On t-th iteration, AB and CE are provin
chords and their corresponding obstout chords are XD and Y D. XD and Y D are consecutive
to each other.

However, we have introduced a promising new approach in this thesis for introducing dominant
vertices which is essential for transforming triangulations using simultaneous flips.
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