PHONETIC ENCODING FOR BANGLA AND ITS
APPLICATION TO SPELLING CHECKER,
TRANSLITERATION, CROSS LANGUAGE INFORMATION
RETRIEVAL AND NAME SEARCHING

A Thesis
Submitted to the Department of Computer Science of
BRAC University
by
Naushad UzZaman
Student ID: 01201019

In Partial Fulfillment of the
Requirements for the Degree of

Bachelor of Science in Computer Science
May 2005

BRAC

UNIVERSITY
V/

BRAC University, Dhaka, Bangladesh



il

DECLARATION

| hereby declare that this thesis is based on the results found by myself.
Materials of work found by other researcher are mentioned by reference. This

Thesis, neither in whole nor in part, has been previously submitted for any

degree.
Signature of Signature of
Supervisor Author

Dr. Mumit Khan Naushad UzZaman



iii

ACKNOWLEDGMENTS

First of all, | would like to thank my supervisor, Dr. Mumit Khan. He gave
me not only full freedom to choose my research topic, but also extended a lot of
guidance throughout its development. | was lucky enough to work under him at
the Center for Research on Bangla Language Processing, BRAC University for
last one year. Although being extremely preoccupied with his busy schedule, he
often showed much enthusiasm and took time and lot of pain to review drafts of
my paper that enabled me to improve the contents as well as my presentation. |
learned plenty of useful things from his comments, revisions and discussions
during this period which taught me to write better research papers. Being a
undergraduate student, | got two of my papers with him accepted in International
conferences and also submitted two more with him in another International
conference, which | feel a great achievement of my under-graduation study at
BRAC University. And it was possible for me mainly because of my supervisor’'s

support.

| want to give my heartiest gratitude to all the faculty members of BRAC
University for their helping hands. Many thanks to all of my friends for being with
me and always encouraging me and special thanks to my colleagues working in
Dr. Mumit Khan’s research team, Sajib Dasgupta, Dewan Shahriar Hossain
Pavel, Asif Igbal Sarkar, Sheemam Monjel and Rowshon Jahan Nupur, who have
seen the Double Metaphone a thousand times and being patient listeners helped

me with their valuable suggestions.

| am also grateful to the reviewer of conferences, where | submitted my

papers. Their valuable reviews were very helpful for me to understand and



v

improve my paper a lot.

Finally, special thanks and love to my father for his constant guidance and
encouragement in my study and research work, my mother for her prayers and
my one and only brother for his brotherly support and love.

Last but not the least, thanks to the Almighty for helping me in every step

of this work.



To my family, friends & well-wishers



ABSTRACT

We present a phonetic encoding for Bangla that can be used by
spelling checkers, transliteration, name searching application and
cross-lingual information retrieval to drastically improve the quality.
The complex, and often inconsistent, rules of Bangla word present a
significant challenge in producing a proper phonetic code. We propose
a phonetic encoding for Bangla, taking into account the various
context-sensitive rules, including those involving the large repertoire of

conjuncts in Bangla.

vi



vii

TABLE OF CONTENT

DECLARATION ..ttt e ettt e e e e e e e e s nneeeeaeaeeeeana i
ACKNOWLEDGMENTS ...t iii
ABSTRACT ettt e e vi
TABLE OF CONTENT ..ottt e e e e e e e Vii
LIST OF TABLES ... e e e e e X
LIST OF FIGURES ...ttt e e e e e e e e e enes Xi
Chapter I: INTRODUGCTION ..ottt 1
CHAPTER 1l: PHONETIC ENCODING........coiiiiiiiiiiee e 3
2.1, Definition .o e 3
2.2.  Phonetic Encoding for English ... 3
P2 S To U Lo [ PR TPTR PP 4
2.2.2.  MetaphOne .........oi i 6
2.2.3. PRONIX ..ttt 8
2.2.4. Double MetaphOone.........coooiiiiiiiiiiie e 8

2.3. Existing Phonetic Encoding for Bangla.............ccooooiiiiii, 10
2.3.1.  Hoque and Kaykobad’s soundex type encoding [10, 11] .............. 10
2.3.1.1.  Producing simplified format / open format.............................. 12
2.3.1.2.  Producing sound-code or Bangla soundex or Bsoundex ....... 12

2.3.2. Zaman and Khan’s soundex type encoding .............cccceeeeeenennnnnn. 13

(O 1T 13

CaSE 2 e 14

CaSE 3 e 14
2.3.2.1.  Phonetic matching technique for Bangla...................cooevieeeee. 15
2.3.2.2. Summary of soundex for Bangla.................eeeuuiiiiiiiiiiiiiiiinnnns 17
2.3.2.3. Encoding reasoning for O (not coded) characters .................. 18
2.3.2.4. Example of error correction using phonetic matching ............ 19
CHAPTER 1ll: RESEARCH QUESTION ...ttt 20
3.1.  Scope Of Our Proposed ENCOAING ......cccoeeiieiiiiiiiiieee e 20
3.2. Limitation Of Previous ENCoding ... 21

1. Hoque and Kaykobad, 2002, BSoundex [10, 11] .....vveeieeeieriiiiiii. 22



viii

2. Zaman and Khan, 2004 [9], soundex type phonetic encoding.............. 23
3.3.  Why It Is Worthwhile TO ANSWET ........oiiiiiiiieeeece e 24
CHAPTER IV: PROPOSED ENCODING .......cuuuuiiiiiiiiiiiiieiieeieneeeeeaeesensnnnsnnnnnnnnes 26
4.1. Proposed phonetic encoding for words ...........ccooovveeiiiiiiiiiiiiiiiee s 26
4.1.1.  Phonetic encoding table..............ooooiiiiiiiiiiiiiiiiie 27
4.1.2. ENCoding reasoning ..........coeeeeiiiiiiiiiiiie e 31
CHAPTER V: APPLICATIONS OF PHONETIC ENCODING .........ccvvviiiiiiieeeeee. 48
5.1, Spelling CheCKEer ... 48
5.1.1.  Spelling error patterns ... 48
5.1.2. Previous spelling checking techniques ............ccooovviiiiiiiiiii e, 50
5.1.2.1.  Approximate string matching algorithm.................................. 50
Levenshtein Edit Distance[23, 24, 25]........cccooviieiiiieieeeeee e 50
Longest common substring (LCS) [26].......evvviiiiiiiiiiiiiiiiiieieieeeeeeeeeeeee 51
5.1.2.2. BB Choudhury’s Reverse dictionary method.......................... 53
Phonetically similar character error correction ...........ccccoovvviiiiiiininnn..n. 53
Reversed word dictionary ...........ooouuiii i 53

Error detection & position finding and Error correction......................... 54
Insertion and transSpoSItioN: ........cccooiiiiiiiiii e 56
Deletion and substitution: ............oooiiiiiiii e 56
5.1.2.3. Abdullah and Rahman’s Recursive simulation method [19]... 57
Algorithm: RecursiveSimulation ... 61
Sorting the suggestion list: ... 63
5.1.2.4. Hoque and Kaykobad’s soundex type encoding .................... 66
5.1.2.5. Zaman and Khan’s soundex type encoding ...................ceee.... 66
5.1.3. Performance of previous techniques............cc.ccooooviiiiiiiiiieeeneeen, 66
514, HOWO ranK. ..o 69
5.1.5. Performance of our proposed encoding ...........ccceevveeriiniiiieeeeenennns 70
5.2, Transliteration ... 73
5.21.  Whatis transliteration..............ccooooiiiiiiiiii e 73
5.2.2.  Previous transliterations.............ccoooeoiiiiiiiiiiii e 74

5.2.3. Proposed new technique for transliteration .................ccccceeeeeeennnnn. 75



X

5.2.3.1. DireCt Mapping.....cccceeeuuiieieiiie e 75
5.2.3.2. Phonetic mapping ... 78
Algorithm of phonetic mMapping.........couvviiiiiii e 78

5.2.4. Example of transliteration...............ccoooiiiiiii e 82
5241,  DireCt MappiNg ......coooeiiiiiiiiieee e e e 82
5.24.2.  Phonetic Mapping ......ccoooeieiiiiiie e 83

5.3. Cross Language Information Retrieval..............cc.oooooiiiiiiiiiii, 85
5.3.1. Whatdoesithandle .......cccoooeeeiiiiiiiiic e 85
5.3.2.  Previous WOIK...... ..o e e 85
5.3.3.  HOW dOES it WOIK.....coi i 86
5.34.  EXAMPIE ceee 87
Bangle TeXti .. e 87
Encoding of Bangla TexXt: ... 87

5.4. Name Searching and Matching ..........cooooooiiiiiii e, 89
5.4.1. Proposed name encoding for Bangla..............cccooooeiiiiiiiiiiieeeenee, 90
5.4.2. Rationale for Name encoding..........ccccouviuuiiiiiieieiieeiiicce e 96

5.4.1. Algorithm and perfomance of name searching using proposed

pPhonetic €NCOAING .......oooiiiiii 99
Algorithm for Name searching .........ccoooooioiiiiioe, 100
CHAPTER VI: CONCLUSION ...ttt 102
6.1.  Summary of contributors ..........cooorimiiiiiii 102
6.2. Future researCh ... 103
REFERENGES ...t e e e e e e e e e e -1-
APPENDICES ...ttt e e e e e e e e e e e e e e e e nnneees [
A. Bangla Alphabet ... [

B. Bangla Unicode Chart............ouiiiiiiiiiee e ii
C. [IPA (International Phonetic Alphabet) ..., Vi

D. Bangla IPA Chart ........oeeiiieiiiiiiieiieeieee e esenennee vii



LIST OF TABLES

Table 1: Soundex encoding table ... 4
Table 2: PHONIX encoding table.............ooomiiiiiiiie e, 8
Table 3: Hoque and Kaykobad’s phonetic encoding for Bangla ......................... 10
Table 4: Bangla phonetic encoding table............cccoooo i, 15
Table 5: Suggestions for misspelled Words ... 19
Table 6: Double Metaphone Phonetic Encoding table for words......................... 27
Table 7: Edit distance eXample.............ooeiiiiiiiiiiiicee e 51
Table 8: LCS @XamMPIe .....ccooeeieieiie et e e e eneee 52
Table 9: Challenges for spelling checker and performance of previous techniques
........................................................................................................................... 68
Table 10: Encoding performance.............ouuuuiiiiiiiiiiieccee e 70
Table 11: Error distribution ... 70
Table 12: Performance of proposed phonetic encoding ...........ccoovvviviiiiieeeneene. 71
Table 13: Table for direct MapPiNg .....ccoeeeeieeiieee e 75
Table 14: Modification in proposed encoding ..........cceuueiiiiiiieiiiiiiiiiiiaee e 79
Table 15: Proposed encoding for phonetic mapping ............cccoevvviiiiiiiieeeeeeeeenn, 80
Table 16: Few examples from above paragraph to make the process clear ...... 83
Table 17: English word, encoding of English word, Bangla word with the same

encoding from the teXt.............. e 87
Table 18: Proposed Name Encoding for Bangla..............ccoooooiiiiiiiiiieeeceeeeee, 90
Table 19. Example of vowels encoding ..........ccoeoeviiiiiiiiiiieee e 96
Table 20. Example Of 31 @nd B ....ccoooeiiiiiiiiceiee e 97
Table 21. EXample Of ..o 98
Table 22. One to one transformation Of <38..........cooviiiiiiiiiiii e 98
Table 23: Generating suggestions for names using name encoding and other

ENVIAl MEINOAS ..o e 100



Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

X1

LIST OF FIGURES

The Soundex algorithm ... e, 5
Flowchart of producing sound code from a given word ....................... 11
The Soundex algorithm for Bangla ... 17
Error localization by conventional and reverse dictionary.................... 55

List of phonetically similar letters...........ccccoooiiiiiiii . 58
List of vowel-symbols (known as kaar).........ccccooeeeveeeiiiiiiiiee e 58
List of consonant symbols (known as folaa & reff) ...........cccooeiiiiiinnnns 58
Circular lists of the grouped letters ..........ccooovvriiiiiiiiiie 58
Some compound letters and their formation....................cccooeeeinnl. 59

Figure 10: Some common Bangla words with their miss-spelt forms ................. 59

Figure 11: Simulated suggestion list for the word misspelled word, using

Recursive Simulation algorithm. ... 65



Chapter I: INTRODUCTION

Bangla, also known as Bengali, is the language of approximately 210
million people, the majority of whom live in Bangladesh and in the Indian state of
West Bengal, making it the 4™ most widely spoken language in the world. It
belongs to the leftmost branch, called the Aryan or Indo-lranian, of the Indo-
European family of languages, and is written in the Brahmi-derived Bangla script.
Bangla underwent a period of vigorous Sanskritization that started in the 12"
century and continued throughout the middle ages, resulting in the vast gap
between the script and the pronunciation [2]. Bangla lexicon today consists of
tatsama (Sanskrit words that have changed pronunciation, but retaining the
original spelling), tadbhava (Sanskrit words that have changed at least twice in
the process of becoming Bangla), and a fairly large number of “loan-words” from
Persian, Arabic, Portugese, English, and other languages. There are also a large
number of words of unknown etymology, which may have originated from
Dravidian, Austric or Sino-Tibetan languages. All of these contribute to the
complexity of the Bangla spelling rules, with the Sanskritization process as the
largest contributor. An additional factor is the large number of consonant clusters
or juktakkhors (typically represented as conjuncts in the written form) in Bangla,
where each consonant in the cluster except for the last one loses its inherent
vowel. One impact of this complexity can be seen in the observation that two of
the most common reasons for misspelling are (i) phonetic similarity of Bangla
characters, and (ii) the difference between the grapheme representation and the

phonetic utterances [3].

Phonetic encoding has a wide variety of applications. It was first proposed
for name searching application in census [4] but later its application extended to
spelling checker. The performance of these applications depends on how better



the code represent the pronunciation. Phonetic encoding is always a great
challenge in a language. English and other Western languages have well
established phonetic encodings [4, 5, 7, 8], but similar work for Bangla has barely
begun [9, 10]. These efforts are based mostly on Soundex [4] or other ad-hoc
methods, which cannot handle the complexity of Bangla spelling rules. This is
the primary motivation for creating a phonetic encoding that can handle such

complexity.

After Introduction, In Chapter Il, we will describe about phonetic encoding
in detail, which will include wellestablished encoding for English and also existing
encoding for Bangla as well. In Chapter Ill, we will describe the Research
question, which includes the scope of our encoding, the limitations of other
encoding and the importance of our encoding. In Chapter IV, we proposed our
encoding with reasoning. In Chapter V, we have shown how currently spelling
checker, transliteration, name searching work and how we drastically improve its
performance using phonetic encoding, we also introduced a new application for
Bangla, which is cross-lingual information retrieval for Bangla in this chapter. And
finally in conclusion, we summarized how this encoding helps in applications like
spelling checker, transliteration, cross-lingual information retrieval and name

searching.



CHAPTER Il: PHONETIC ENCODING

2.1.Definition

Code a string based on how it is pronounced. [1]

The input of a phonetic encoding or “sound-alike” algorithm is a word,
and the result is an encoded key, which should be same for all words that are

pronounced similarly, allowing for a reasonable amount of fuzziness.

For example, metaphone-encoding [5] gives the code RLS for the word
realise in English.

We know that realize and realise has the same pronunciation. Hence a
good encoding in English should be able to give the same code RLS to
realize as well.

2.2.Phonetic Encoding for English

In English, a major class of approximate string matching algorithms is
the various phonetic methods, from the eighty-year old Soundex [4], to the
more recent Metaphone [5], Double metaphone [7] and PHONIX [8]. The
basic principle behind these phonetic matching schemes is to partition the
consonants by phonetic similarity, and then use a single key to encode each
of these sets. For these particular algorithms, only the first few consonant
sounds are encoded, unless the first letter is a vowel. Metaphone for example

encodes "Stephan", “Steven”, and “Stefan” as STFN, so all three names
compare equal when encoded.

A brief description on each of the phonetic encoding for English is

given below.



2.2.1. Soundex

Among all the phonetic methods, Soundex method is by far the
oldest, first patented by Odell and Russel in 1918. Soundex partitions the
set of letters into seven disjoint sets, assuming that the letters in the same
set have similar sound. Each of these sets is given a unique key, except
for the set containing the vowels and the letters h, w, and y, which is
considered to be silent and is not considered during encoding. The
Soundex codes are shown in Table 1: Soundex encoding table. The
Soundex algorithm itself, shown in Figure 1: The Soundex algorithm,
transforms all but the first letter of each string into the code, and then
truncates the result to be at most four characters long. Zeros are added at
the end if necessary to produce a four-character code. For example,
Washington is coded W-252 (W, 2 for the S, 5 for the N, 2 for the G,
remaining letters disregarded), and Lee is coded L-000 (L, 000 added).

A limitation of Soundex is that it does not know the intricacies of
complex spelling rules for English, and because it works on a letter-by-
letter basis, it often does not produce the expected result. Another
limitation is that truncating the words to four-character code ignores
differences in long strings, which may not be appropriate when finding

alternatives for misspelled words.

An advantage of Soundex is the small table size and simplicity of
the letter-by-letter algorithm, which can provide significant speedup over

the other phonetic methods.

Table 1: Soundex encoding table

Code Letters
0 (not coded) AE,I,O,U H WY
1 B,F,P,V



Code Letters

2 C.G J K QS X2Z
3 D, T

4 L

5 M, N

6 R

. Capitalize all letters in the word and drop all punctuation marks. Pad the word with

rightmost blanks as needed during each procedure step.

2. Retain the first letter of the word.

3. Change all occurrence of the following letters to '0' (zero):

IAI’ El, |||’ 'O', 'U', IHI’ IWI’ IYII

. Change letters from the following sets into the digit given:

1 = IBI’ IFI, IPI’ IVI

° 2 P ICI’ IGI, IJI’ IKI, IQI’ ISI’ 'X" lZl

. 3=DT
. 4=
. 5='M/N
. 6=R

. Remove all pairs of digits which occur beside each other from the string that resulted

after step (4).

6. Remove all zeros from the string that results from step 5.0 (placed there in step 3)

7. Pad the string that resulted from step (6) with trailing zeros and return only the first

four positions, which will be of the form <uppercase letter> <digit> <digit> <digit>.

Figure 1: The Soundex algorithm



2.2.2. Metaphone
The Metaphone algorithm, proposed by Lawrence Philips, 1990, is

also a system for transforming words into codes based on phonetic
properties. However, unlike Soundex, which operates on a letter-by-letter
scheme, Metaphone analyzes both single consonants and groups of
letters called diphthongs, according to a set of rules for grouping
consonants, and then mapping groups to Metaphone codes.

Details on metaphone encoding can be found in [5, 6].
The Metaphone Rules

Metaphone reduces the alphabet to 16 consonant sounds:
BXSKJTFHLMNPROWY

That isn't an O but a zero - representing the 'th' sound.
Transformations

Metaphone uses the following transformation rules:
Doubled letters except "c" -> drop 2nd letter.

Vowels are only kept when they are the first letter.

B -> B unless at the end of a word after "m" asin  “dumb"
C-> X (sh)if-cia- or -ch-
S if -ci-, -ce- or -cy-
K otherwise, including -sch-
D-> J ifin-dge-, -dgy- or -dgi-
T otherwise
F-> F
G -> silent if in -gh- and not at end or before a vowel
in -gn- or -gned- (also see dge etc. above)
J if beforeior e ory if not double gg
K otherwise
H-> silent if after vowel and no vowel follows

H otherwise



J-> J

K-> silent if after "c"

otherwise
L ->
M ->
N ->
P-> if before "h"
otherwise

(sh) if before "h" or in -sio- or -sia-
otherwise

(sh) if -tia- or -tio-

(th) if before "h"

silent if in -tch-

9]
v
O X WX X X TV TMzZzZrr X

T otherwise

V-> F

W -> silent if not followed by a vowel
W if followed by a vowel

X-> KS

Y -> silent if not followed by a vowel
Y if followed by a vowel

Z-> S

Initial Letter Exceptions
Initial kn-, gn- pn, ac- or wr- -> drop first letter

Initial x- -> change to "s"
Initial wh- -> change to "w"



2.2.3. Phonix

PHONIX is similar to Soundex in that letters are mapped to a set of
codes. Prior to this mapping however, PHONIX applies preliminary
transformations to letter groups in order to reduce strings to a canonical
form. For example, gn, ghn, and gne are mapped to n, the sequence V
(where Vis any vowel) is mapped to chV if it occurs at the start of a string,
and x is transformed to ecs. PHONIX applies altogether about 160 of
these transformations. These transformations provide a certain degree of
context for the phonetic coding and allow, for example, ¢ and s to be
distinguished, which is not possible under Soundex. The Phonix codes are
shown in Table 2: PHONIX encoding table.

Table 2: PHONIX encoding table

Code Letters

0 (not coded) A E,H IO, U WY
1 B,P

2 C, G JKQ

3 DT

4 L

5 M, N

6 R

7 F,V

8 S, X

2.2.4. Double metaphone

Lawrence Philips, 2000, also proposed double metaphone.

Metaphone worked fine in most of the cases but there were a few cases



that metaphone cannot handle [7]. Such as,

. Bryan (BRYN) was not matched to Brian (BRN).

. MacCafferey is encoded to MKKF, an out-and-out
bug.

. Retaining Soundex's choice of preserving the first
letter (in Metaphone, only for words that started with vowels), "Otto"
for example, cannot be matched to "Auto."

. More difficult to deal with, and contributing
considerably to inelegance, are the consonants that are
pronounced differently in different words. For example, “gh” in light
and rough.

o English has a tendency to accumulate a large number
of words from non-English sources, notably French, Latin, and
Greek. When transliterating from the Greek alphabet, the letter that
is pronounced “kh” is Greek (a sound that does not exist in English
— think “chutzpah”), is spelled “ch” and pronounced “k”: “orchestra”,
“chorus”, etc.

. Most importantly, some familiar names can just as
plausibly be pronounced more than one way. Henry Kissinger and
Kim Basinger are example of that type. Basinger is pronounced in

both way as “Basin-gger” or “Basin-jer”.

These problems led Philips to propose another phonetic encoding,
Double metaphone, which perform better but not perfect. Main
improvement of this encoding is it will give two keys for words and names

that can be plausibly pronounced more than one way.

For example, in case of Kuczewski, there are two ambiguous
sounds, so "Kuczewski" now comes back as KSSK for the American
version, "Kuhzooski," as well as KXFS for "Kutchefski." (‘X' is used to

represent the "sh" sound, and ‘0", zero, to represent "th," as in original



10

Metaphone.)

2.3.Existing Phonetic Encoding for Bangla

Eighty years old technique of phonetic encoding is new in Bangla.
Hoque and Kaykobad, 2002 [10], first proposed it. After that Zaman and
Khan, 2004 [9], proposed their version of soundex type Bangla phonetic
encoding. Both of the encoding use “soundex” in their encoding name.
Reason behind it is they follow the general principal of soundex encoding, to
partition the letters in to disjoint sets.

2.3.1. Hoque and Kaykobad’s soundex type encoding [10, 11]

Using the major concepts from the soundex encoding [4], Hoque
and kaykobad’s proposed encoding maintain following rules. [10]
e Same sounding letters would have same value, e.g. NA (%)
and NNA (9)
e Same composite consonants would have single value, as if
(KA HASANT KA)— = (KA)
Their proposed encoding is given in following Table 3: Hoque and

Kaykobad'’s phonetic encoding for Bangla.
Table 3: Hoque and Kaykobad’s phonetic encoding for Bangla

Group Name Group Member
1 F, 9,0, 9,

b, % A,

5,5,T,0

©, 4,7, 4,9

A1,%F,9,9

, ¢, R

* F,

0 N o o0~ W DN

3,9, 75,4

e Vo T



11

Like Soundex [4], they only give codes to consonants. But they

consider some special cases to handle the exceptions.
Consonant @ sounds like =1, which sounds vowel like. Also, while we

pronouncing g, the airflow do not face any barrier, that implies that 2 sound

has vowel like impact. So, ¥ and z are not involved in grouping. A few

vowels are involved in the grouping because of their consonant like sound,
e.g. ¥

To suggest similar sounding words for the miss-spelled word, each
word stored in the dictionary would store sound code. The generation of
the sound-code is outlined via flow chart below.

Word All vowels {Principal vowel (except if having initial
position) and half vowels} are removed. Compound
consonants are broken into simplified form. We call the final
format as Open Format / Simplified format.

\4 Keeping initial letter unchanged, using encoding
Word in Open | table substitute consonant sound with its group
format number, If same group number exist adjacently, then
substitute them with single one. We call this final
format as Sound Code or Bangla Soundex, in short

Sound code

Figure 2: Flowchart of producing sound code from a given word



12

They did not state specifically but their following description shows
that they used the ASCIlI encoding rather than generalized Unicode

encoding for encoding the Bangla text.

2.3.1.1. Producing simplified format / open format

The word need to be simplified before generating Sound-code
or Bsoundex. According to them there exists number of character(s) or
symbol(s) in Bangla that are placed after the consonants but

-

pronounced before the consonants. For example, Ref sounds
before the sound of the consonant after which it is placed.
At first step, above-mentioned words are rearranged according

to their sounding sequences. For example,

2 x E

Word, T (F+d+7) would be
G - Al -~

convertedto ~ FT (T +7+7)

Secondly, all vowels {Principal vowel (except if having initial
position) & half vowels} are removed. Compound consonants are
broken into principal form that is member of Table 3: Hoque and
Kaykobad’s phonetic encoding for Bangla.

For example,
¥ would be converted to ¥

sitmg would be converted to sws
Tew would be converted to smee

@ would be converted to ¥

Thus, Simplified format or open format is produced.

2.3.1.2. Producing sound-code or Bangla soundex or
Bsoundex

Keeping initial letter unchanged, using Table 3: Hoque and



13

Kaykobad’s phonetic encoding for Bangla, substitution of the
decomposed or simplified component (alphabet) of word is done with
the respective group number, if the adjacent group has the same
number then only one such group is used. The final format is the
sound code or Bangla Soundex, in short Bsoundex.

For example, ¥s% will be converted to a 4 lengthen sound code

as “¥800”, with zero padding.

This is how, BSoundex encodes a word.

2.3.2. Zaman and Khan’s soundex type encoding

Zaman and Khan, 2004 [9], proposed a Soundex type encoding for
Bangla. Unlike [11], this Soundex type encoding does not follow each and
every rule of English soundex, rather than that it customizes the soundex
and based on the Bangla’s nature it proposes a encoding. This can better
handle the complex part of Bangla word, conjuncts or jukhtakkhor, where
each consonant in the cluster except for the last one loses its inherent

vowel.

There are some rules for English Soundex, but we can not use

those in Bangla. Following are the reasons for that.

Case 1: Soundex keeps the first letter of the string in the encoding.
Problem: This is in fact a general problem with Soundex. If there is

a spelling error in the first character of the word, the correct suggestion
cannot be produced using Soundex. For example, if we write 2% instead of

g%, Soundex will not be able to suggest the correct alternative, as the

incorrectly spelled word &3 will begin with o independent of the character

encoding used, Unicode or otherwise. at the beginning. Since the



14

phonetically encoded lexicon will have the word g% encoded as something
that begins with 9, the phonetic method will never produce ¥ as a

suggestion for w3. Of course, other edit-distance algorithms (e.g.,

Levenshtein [23]) are able to produce the correct suggestion in this
particular case, so a spelling checker employing other similarity measures
will produce the expected result (See [12] for a summary of the various
edit-distance algorithms).
Case 2: Soundex excludes vowels when encoding strings.
Problem: The = vowel is often used as a prefix to negate the

meaning of Bangla words, and excluding it will often produce suggestions
that are of the opposite meaning than the intended one. This may be
appropriate behavior for some applications, but not for a spelling checker.
For example, the words 2 and =712 will result in the same Soundex code,
even though we do not expect one as the suggested alternative for the
other, much like we would not expect unwell as the suggested alternative
for well .

Problem: Another problem of excluding the vowels is that words
that are not phonetically similar and have very different meanings also
produce the same code. 35 and 314, swie and sif&r. = (forest) and i for
example will produce the same code if we exclude vowels, even if these

words do not have same meaning, and in addition, are phonetically quite
different. Similarly, in the case of =& and = ife, the = from ==& and the f:

from sif& will be excluded to produce the same code, another undesired
result.

Case 3: In soundex, consecutive repetitions of the same coded
characters are eliminated.

Problem: Unicode specifies that the consonants that make up
Bangla juktakkhors are separated by hasant chraracter, which is not
coded in our algorithm (i.e., eliminated during the phonetic encoding
process). The side-effect of this decision to eliminate hasant is that, at

least for a set of juktakkhors, consecutive repetitions of the same



15

consonants will have the same code as the single instance of that
consonant. Using our algorithm, < (¢ 7) for example will have the same

code as ¥, since we exclude the hasant embedded in the Unicode
representation of the conjunct. This particular problem is not a general
Soundex problem, but rather a consequence of the way our algorithm

handles Bangla conjuncts.

2.3.2.1. Phonetic matching technique for Bangla

Table 4: Bangla phonetic encoding table shows the proposed
Bangla phonetic codes with Letter, Name (according to unicode found
at [13]) and Unicode number (from [14]) & Figure 3: The Soundex
algorithm for Bangla shows the modified Soundex algorithm using this

encoding, suitable for a Bangla spelling checker.

Table 4: Bangla phonetic encoding table

Code Letter Name Unicode
0 (zero) = Virama/Hasant “09CD”
Not i Sign O “‘09CpB”
Coded Candrabindu “0981”
“a” S AA “0986”
o Sign AA “09BE”

‘P 2 | “0987”

Ed I “0988”

f Sign | “09BF”

&l Sign Il “09C0”

‘u” g U “0989”
© uu “098A”

Sign U “09C1”

£



“D”

({1

i

¥ M 2 s Y

&

6 A £ & @ o of A g A ™ @

<l

2|

Sign UU

Sign E
Al
Sign Al
A
O
AU
Sign AU
KA
KHA
GA
GHA
MA
NGA
Anusvara
CA
CHA
YA
JA
JHA
TTA
TTHA
DDA
DDHA
Vocalic R
RA
RRA
DDHA
NA

“09C2”
“098F”
“09C7”
“0990”
“09C8”
“0985”
“0993”
“0994”

“09CC”

“0995”
“0996”
“0997”
“0998”
“09AE”
“0999”
“0982”
“099A”
“099B”
“09AF”
“099C”
“099D”
“099F”
“09A0”
“09A1”
“09A2”
“098B”
“09B0”

“09DC”

“09A2”
(509A8”

16



il NNA “09A3"

t © TA “09A4”
4 THA “09A5”

“d” w DA “09A6”
q DHA “09AT7”

“0” A PA “09AA”
T PHA “09AB”

“b’ q BA “09AC”
® BHA “09AD”

“y’ T YYA “09DF”
“ il LA “09B2”
“s” b SHA “09B6”
A7 SA “09B8”

T SSA “09B7”

“n’ 2 HA “09B9”
58 Visarga “0983”

[1] Replace all of s by its phonetic code.

[2] Eliminate all occurrences of code O (i.e.,

eliminate hasant, candrabindu, sign O).

[3] Return the resulting string.

Figure 3: The Soundex algorithm for Bangla

2.3.2.2. Summary of soundex for Bangla

Transformations
0 (Not Coded): 3 (Hasant, Candrabindu, Sign O: ¢)
Vowels: 5 codes

Consonants: 17 codes



18

2.3.2.3. Encoding reasoning for 0 (not coded) characters

1. Name: Virama / Hasant; Unicode: 09CD; Character:

The absence of vowels between consonants can be
represented by Virama / Hasant. This is wused in the
Jukhtakhor/Conjuncts.

In our encoding, we will give it 0 (zero) code. Because hasant
means it is used to connect two or more consonants and we don't need
to keep the information of connectors (hasant) in our encoding. And
more importantly this is used to lower the sound of 1% consonant in
conjuncts. And individually has No Sound in words.

This will also reduce one extra character error. For example, if
someone misses the =, then it's basically all the same. Mean he was

trying to write some Conjuncts but missed the connector < so, if we
consider it as 0 (zero) code we can reduce this error.

Example: ag=w g

We can see that we can easily reduce the < from our encoding.

2. Name: Sign O; Unicode: 09CB; Character: ¢

¢« (Sign O) is given 0 (zero) code, because in bangla words, O
in the middle or end of word is an inherent vowel. For example, S« and
oitsl. Both sound same and even if we don't have ¢ in <=, it will
pronounce as $itsl. Because there is an inherent vowel ¢:1 in =, Rather
than adding inherent vowels in encoding we give ¢ 0 (zero) code. So,
now i< and sitet will have the same code.

3. Name: Candrabindu; Unicode: 0981; Character: <

We give > 0 (zero) code. : is used for nasal words. Our main
target is to encode the similar sounded characters in to the same code.
Similar sounded characters means which sounds similar when we read
it in our normal conversations not according to actual grammar. In

normal conversations, we don't emphasize on nasal sounds and simply



19

w

pronounce it without < most of the cases. So, we can simply omit

from our encoding.

2.3.2.4. Example of error correction using phonetic matching

Table 4 shows a set of misspelled words, their corresponding

encoded versions, and the suggested alternatives.

Table 5: Suggestions for misspelled words

Input Encoded Suggestion
e kumar RRE

7Y Dgd & (W9 <5 H)



20

CHAPTER Illl: RESEARCH QUESTION

3.1.Scope Of Our Proposed Encoding
The peculiar orthographic rules in Bangla pose a challenge when creating
a phonetic encoding for it. Some of the common cases illustrating these
unscientific spelling rules, ones that a candidate encoding must be able to
handle, are shown below:

1. There are groups of phonetically similar characters in Bangla; for
example, NA (%) and NNA (¢); SA (37), SHA () and SSA (3), etc. The

contrast between long and short vowels in the script is also in the
modern version of the spoken language.

2. Bangla has many consonant clusters or conjuncts with unusual
pronunciations (i.e., =, =, etc.): let us consider ®. ¥ = F+ +7; ¢ [KA

HASANT SSA TA] /khoto/ is pronounced as ¥w [KHA TA] /kfoto/, where

¥ does not have any sound.

3. Bangla has different uses of Phalaa’s, the cluster final form of the
semi-vowels in Bangla (BA, MA, YA, RA and LA) which are
represented using a distinct sign-form. BA phalaa for example has a
distinct pronunciation from a BA in any other position in a cluster or in
a standalone configuration.

4. Different pronunciation of letters or conjuncts in different contexts:

consider again . At the beginning of word, it is pronounced as < /kf/.
(F® — 9 /kfoto/); in the middle or at the end of a word, it is

pronounced as ¥ /kkfi/, (7% — 73¥ /dokkho/).

5. Multiple pronunciations of some letters in the same context, such as 2

20



21

with 3: According to Bangla phonological rules, 2 should be pronounced
as 8 or © and ¥ should be pronounced as ®: SIFF — WSS /aovan/.

However, most native speakers pronounce these words the same way
as it is written. For example, s is usually pronounced as wizSIH

/afiobfian/. Both pronunciations are considered correct.

Previous efforts in creating phonetic encoding for Bangla [9, 10] are based
on Soundex [4]. Soundex partitions the letters into disjoint sets, assuming the
letters within the same set have similar sound. It works on a letter-by-letter basis,
and cannot handle context-sensitive rules, such as those illustrated earlier. A
recently published encoding [9] based on Soundex is able to handle most of the
trivial cases, and those involving some of the conjuncts, but it fall far short of
producing suggestions for a large majority of the complex misspelled words.
Metaphone encoding [5] does consider the context, so it is able to handle all but
the last case above, which requires that the encoding be able to produce multiple
encoded forms of the same character sequence. Double Metaphone [7] remedies
that problem of Metaphone of not being able to produce multiple encodings from
the same string. These limitations in part led us to create a Double Metaphone
encoding for Bangla that does not suffer from the problems listed above, and in

addition, is able to the full complexity of Bangla spelling rules.

Main achievement of our phonetic encoding is, unlike any other previous
phonetic encoding either in English or Bangla, our proposed encoding not only
gives a proper phonetic encoding [1] but also this can also work as an

intermediate code in multi-lingual applications.

3.2.Limitation Of Previous Encoding
So far we have two encoding for Bangla [9, 11], both are based on
soundex. Even though they did some customization for Bangla but still

they can not encode the pronunciation of most of the words correctly.

21



22

1. Hoque and Kaykobad, 2002, BSoundex [10, 11]

It can handle:
e Phonetic similarities of some letters in Bangla:
o Hoque and Kaykobad’s encoding partitions letters into
11 disjoint groups. Table 3: Hoque and Kaykobad’s
phonetic encoding for Bangla. This partition gives the
same code to similar sounding letters.
e Some trivial case of conjuncts:
o Before producing Sound-code they generate a
simplified format or open format. This part handles the

conjunct problem in trivial cases.

It can not handle:
e Unusual pronunciation of many clusters or conjuncts:
o Described in 3.1.2.
e Different uses of Phalaa’s.
o Described in 3.1.3.
e Different pronunciation of letters or conjuncts in different
context.
o Described in 3.1.4.
e Multiple pronunciations of some letters in the same context.
o Described in 3.1.5.

More constraints:

This encoding has few extra constraints because of exactly
following the English soundex algorithm rather than customizing it
for Bangla. These are:

o Keeps the first letter of the string in encoding:
o It is a major problem in soundex encoding. And
specifically for Bangla. We miss our desired
suggestion because of keeping the first letter in the

22



23

encoding. Detail of its problem is described in 2.3.2,
case 1.
e Excluding vowels when encoding string:
o Even though English face the same problem for
excluding vowels, but it also helps them many cases.
But main thing is Soundex algorithm was proposed for
name searching in census. In case of name searching
excluding vowels is required for Bangla as well. But
this encoding was proposed for spelling checker;
hence it is not acceptable to exclude vowels.
Problems of excluding vowel are described in 2.3.2,
case 2.
e Consecutive repetitions of the same coded characters are
eliminated.
o This also poses a problem, and sometimes we get
extra irrelevant suggestion for it. Detail of its problem

is described in 2.3.2, case 3.

2. Zaman and Khan, 2004 [9], soundex type phonetic encoding

It can handle:
e Phonetic similarities of some letters in Bangla:

o Zaman and khan’s encoding partitions letters into 23
disjoint groups. Table 4: Bangla phonetic encoding
table. This partition gives the same code to similar
sounding letters.

e Conjuncts with usual pronunciation:

o Before producing Sound-code they generate a

simplified format or open format. This part handles the

conjunct problem in trivial cases.

23



3.3.

24

It cannot handle:
e Unusual pronunciation of many clusters or conjuncts:
o Described in 3.1.2.
e Different uses of Phalaa’s.
o Described in 3.1.3.
e Different pronunciation of letters or conjuncts in different
context.
o Described in 3.1.4.
e Multiple pronunciations of some letters in the same context.
o Described in 3.1.5.

We have not described the problems in detail in this section but
referred to those sections, where it has been described. These may
seems few lines here, but reading its description one would understand
how complex it can be to handle those.

This Thesis paper answer these unanswered questions, more
specifically gives a encoding that can properly encode a word

representing its sound considering all these complex cases above.

Why It Is Worthwhile To Answer
Using this proposed encoding we can develop very efficient and useful

applications that we can not otherwise.

1. Bangla does not have very good spelling checker that can
give word of same pronunciation in suggestions considering complex
Bangla rules, this encoding helps us to develop that.

2. Bangla have many transliteration applications, but all of
those give a one to one mapping. It will convert each English letter or
letters to fixed Bangla letter or letters. There are no transliterations
available where if you write in English it will give dictionary word of
same pronunciation. Using phonetic encoding we can develop that.

3. Name searching is a very useful application in census,

24



25

hospitals, educational institutes, offices, etc. There is no such name
searching application in Bangla that gives names with almost same
pronunciation in suggestion. This encoding helps to develop this
application too.

4. This encoding can work as an intermediate code in multi-
lingual information retrieval, where a user issues a query in one
language (such as English) to search a collection in a different
language (such as Bangla). More specifically, writing the pronunciation
of a word in English one can search words with same pronunciation in

a Bangla document.

25



26

CHAPTER IV: PROPOSED ENCODING

Proposing our encoding we needed to keep few things in our mind. We
need to think about phonetic similarity of letters to give them the same code and
also the keep in mind the orthographic or spelling rules, to know how letters spell
in different context, so that we can encode the letters with similar sounding letters

considering the context.

Another purpose of this encoding is to work as an intermediate code in
multi-lingual applications. We will be encoding our Bangla letters to a set of Latin
alphabets, so that it can easily work as an intermediate language to work with

English.

We assume that the Bangla text is encoded using Unicode Normalization
Form C (NFC) [13].

4.1.Proposed phonetic encoding for words

We will have two encoding, mainly one for words and a few variations
from it for names as well. This section describes about the words encoding.

Throughout the paper we termed our proposed phonetic encoding by
Double metaphone phonetic encoding or proposed phonetic encoding. To
encode Bangla words we need to consider context and also need to generate
multiple codes for the same string. These constraints can be handled in
Double metaphone algorithm, which we did for Bangla here. Hence, we

termed it as Double metaphone phonetic encoding.



27

4.1.1. Phonetic encoding table

Following Table 6: Double Metaphone Phonetic Encoding table for
words is the table of proposed Double Metaphone phonetic encoding for

words. Followed by the table there will be reasoning of each of the encoding.

Table 6: Double Metaphone Phonetic Encoding table for words

Letter Name Unicode Code Context Example
VIRAMA \u09CD Not Coded
(Hasant)
G SIGN O \u09CB Not Coded
> CANDRABINDU \u0981 Not Coded
= A \u0985 “0”
K o) \u0993 “0”
Rl AA \u0986 “a”
o SIGN AA \uO9BE “a”
3 | \u0987 ‘i
kS I \u0988 ‘P
fi SIGN | \uO9BF i
& SIGN I \u09Co i
g u \u0989 “u”
° uu \u098A “u’
SIGN U \u09C1 “u’
SIGN UU \u09C2 “u’
A E \uO98F “e”
G SIGN E \u09C7 “e”
a Al \u0990 “of"
¢ SIGN Al \u09Cs “oi”
8 AU \u0994 “ou”
e SIGN AU \u09CC “ou”
s KA \u0995 “K”
KHA \u0996 “K”

ki \u0995 \u09CD \u09B7 K’ @ the beginning = /khoto/



Letter
B

B A4 44 A

6 o of

Name

GA
GHA
NGA

ANUSVARA

CA
CHA
YA as phalaa

YA
JA
JHA
NYA

TTA
TTHA
DDA
DDHA
VOCALIC R

Unicode
\u 0995 \u09CD \u09B7

\u0997
\u0998
\u0999

\u0982

\uO99A
\u099B

X\UO9CD\UO9AF |
x\uO9CD\uO9AF \u0986

...Xy \u09CD z \u09CD \u
09AF

...Xy \u09CD \uO9AF

\uOSAF

\u099C

\u099D
\uO99E \u099A

\uO99E \u099B
\uO99E \u099C
\uO99E \u099D
\uO99A \u099E
\uO99E \u0985 |

\u099E\u0987
\u099C \u09CD \u099E

... \u099C \u09CD \u099E

\uO99E \u09CD

\uO99F
\u09A0
\uO9A1
\u09A2
\u098B

e

Not Coded

Doubles: yy

J

n

Not Coded

ge

uDu
uD!v

7]

r

Context
@ middle/end

@ the beginning
as YA phalaa

@ middle/end

with conjuncts

@ middle/end

Before CA

Before CHA
Before JA
Before JHA
After CA
Before A | |

@ the beginning

after JA
@ middle/end

after JA
With hasant

@ the beginning

28

Example

w= /dokkho/

resl /banla/

Tl /bagla/

e /backto/

J#7 /fondfa/

oWy /oddo/

e+ /oncol/

JigT /bancha/
e /onjoli/
Tl /3hionza/
[l /sacna/
@t /mia/

@S /gaeto/

e /biggeen/

F<e /non/

g /ritu/



29

Letter Name Unicode Code Context Example
x\u098B “ri” | xri @ middle/end e /bikkritd/ | g
/bikrito/
q RA as phalaa x\u09CD \u09B0 “r’ @ the beginning M /prokal/
...X\u09CD \u09B0O “r’ @ middle/end F1f@ /rattri/ | 7@ /ratri/
Kl RA \u09B0 “r’
° RRA \u09DC “r’
v DDHA \u09A2 “r’
J NA \uO9A8 “n”
°a NNA \uO9A3 “n”
© TA \u09A4 “t”
q THA \uO9A5 “t7
w DA \uO9A6 ‘d”
g DHA \uO9A7 “d”
i PA \uO9AA “p”
ki PHA \uO9AB “p”
q BA as phalaa x\uO9CD \u09AC y... Not Coded @ the beginning T [fodef/
...X\u09CD y \u09CD Not Coded  BA phalaa with ©ed /totto/
\u09AC conjuncts
... \UO9AC \u09CD \u09AC “bb” After BA as fo®s /tibbot/
conjuncts
.. \UO9AE \u09CD \u09AC “mb” After MA as =% /lombo/
conjuncts
... \u0997 \u09CD \u09AC “gb” After GA as fafafre /digbidik/
conjuncts
\u0989 \u09AG \u09CD “udb” After Ud- (U DA Srael /udbeg/
\u0O9AC BA...)
...y \u09CD \u09AC Doubles: yy @ middle/end & /biffo/
q BA \u0O9AC “b”
© BHA \u0O9AD “b”
Rl MA as phalaa x\u09CD \uO9AE... Not Coded @ the beginning =l /foron/
...X\Wu09CD y \u09CD Not Coded = MA phalaa with 7 /fukkhd/

\uO9AE conjuncts



Letter

Mo S 3 9 M M

Name

MA
YYA
LA
SHA
SA
SSA
HA

Unicode

... \u0995 \u09CD \uO9AE

... \u0997 \u09CD \u09AE

... \u0999 \u09CD \u09AE

... \u099F \u09CD \uO9AE

.. \uO9A3 \u09CD \uO9AE

.. \uO9A8 \u09CD \uO9AE

.. \UO9AE \u09CD \uOSAE

.. \u09B2 \u09CD \uO9AE

.. \u09B6 \u09CD \uO9AE

.. \u09B7 \u09CD \uO9AE

.. \u09B8 \u09CD \uO9AE

...y \u09CD \uO9AE

\uO9AE
\uO9DF
\u09B2
\u09B6
\u09B8
\u09B7
\u09B9 \u09CD \u098B

\u09B9 \u09CD \u09B0O

\u09B9 \u09CD \u09A8

Code

“Um”

gm

“ngm”

“m”

nm

nm

“mm”

nlm

“sm

“ ”

sm

“sm

Doubles: yy

nn

Context
After KA as

conjuncts
After GA as

conjuncts
After NGA as

conjuncts
After TTA as

conjuncts
After NNA as

conjuncts
After NA as

conjuncts
After MA as

conjuncts

After LA as
conjuncts
@ middle/end
with SHA
@ middle/end
with SSA
@ middle/end

with SA
@ middle/end

otherwise

HA with Vocalic

R
HA with R as

phalaa
HA with NA

30

Example

FfREaT /rukmini/

T /jugmo/

e /banmoi/

o /kutmol/

I /mrinmog/

& /fonmo/

9 /fomman/

@ /gulmo/

M /kafmir/

% /kufmando/

et /fufmita/

1 /poddd/

VT /rhiidoé/

an /rod/

2[IF /purbanno/



Letter Name Unicode Code
\u09B9 \u09CD \u09A3 “nn”
\u09B9 \u09CD \W09AE “mm”
\u09B9 \u09CD \u09AF “ii”
\u09B9 \w09CD \u09B2... “I”
... \u09B9 \u09CD \u09B2 “l”
\u09B9 \u09CD \u09AC “h” | “0”
R HA \u09B9 “h”
= VISARGA x\u0983 y... Doubles: yy
x\u0983 “h”
x\u0983

4.1.2. Encoding reasoning

Context
HA with NNA

HA with MA

HA with YA as
phalaa @
middle/end

HA with LA @
beginning

HA with LA @

middle/end
HA with BA

Otherwise
@ the middle

@ the end, strlen

=112

Not Coded Otherwise @ the

end

31

Example

1% /prannfio/

=l /bromm€a/

Ty /ujifio/

Zw /lfad/

r=Tw /allhad/

S /aovan/ | S

/afiobhan/

oA /duffomoé/

3 /ufi/, A3 /bak/

28 /puno/

Name: Virama / Hasant; Unicode: \u09CD; Letter:

The absence of vowels between consonants can be

represented by Virama /
Jukhtakhor/Conjuncts.

Hasant.

This is

used in the

In our encoding, we will give it 0 (zero) code. Because

hasant means it is used to connect two or more consonants and we

don't need to keep the information of connectors (hasant) in our

encoding. And more importantly this is used to lower the sound of
1% consonant in conjuncts. And individually has No Sound in words.

This will also reduce one extra character error. For example,
if someone misses the <, then it's basically all the same. Mean he



32

was trying to write some Conjuncts but missed the connector < so,
if we consider it as 0 (zero) code we can reduce this error.

Example: ag=w g

We can see that we can easily reduce the < from our
encoding.

Final code: Not Coded

Name: Sign O; Unicode: \u09CB; Letter: ¢
i (Sign O) is given 0 (zero) code, because in Bangla
words, O in the middle or end of word is an inherent vowel. For
example, ©<1 and ©ite. Both sound same and even if we don't have
¢ in o9, it will pronounce as ®itel. Because there is an inherent
vowel ¢ in ©«1. Rather than adding inherent vowels in encoding we
give «i 0 (zero) code. So, now < and sitsl will have the same

code.
Final Code: Not Coded

Name: Candrabindu; Unicode: \u0981; Letter:

We give < 0 (zero) code. < is used for nasal words. Our main
target is to encode the similar sounded characters in to the same
code. Similar sounded characters means which sounds similar
when we read it in our normal conversations not according to actual

grammar. In normal conversations, we don't emphasize on nasal

w

sounds and simply pronounce it without < most of the cases. So, we
can simply omit <: from our encoding.

Final Code: Not Coded

Name: A; Unicode: \u0985; Letter: =; IPA: /o/, /o/
Name: O; Unicode: \u0993; Letter: s; IPA: /o/

If there is a ¥ or ¥ after < then it sounds as /o/. Otherwise, in



33

most of the cases it sounds as /o/. /o/ and /o/ are very close in

pronunciation. So, we are encoding all the cases of s and s to “0”.

Final Code: “0”

Name: AA; Unicode: \u0986; Letter: =t ; IPA: /a/
Name: Sign AA; Unicode: \u0O9BE; Letter: <% ; IPA: /a/

Final Code: “a”

Name: I; Unicode: \u0987; Letter: ¥; IPA: /i/

Name: Sign I; Unicode: \u09BF; Letter: f3; IPA: /i/

Name: II; Unicode: \u0988; Letter: %; IPA: /i/

Name: Sign Il; Unicode: \u09CO; Letter: t; IPA: /i/
Final Code: 1"

Name: U; Unicode: \u0989; Letter: T; IPA: /u/

Name: Sign U; Unicode: \u09C1; Letter: :3; IPA: /u/
Name: UU; Unicode: \u098A; Letter: ©; IPA: /u/
Name: Sign UU; Unicode: \u09C2; Letter: ; IPA: /u/

Final Code: “u”

Name: E; Unicode: \u098F; Letter: «; IPA: /a/, le/
Name: Sign E; Unicode: \u09C7; Letter: ¢:; IPA: /a/, lel
9 has two sounds. One is /e/, such as in, &, &, (o&
Another one is /ae/, such as in, 4, &=, @2
In our encoding, our main target is to give closely similar

sounding word the same code. In this case, /e/ and /ee/ are very
close in pronunciation. So, we are encoding all the cases of 4 to

Final Code: “e”



34

Name: Al; Unicode: \u0990; Letter: @; IPA: /oi/
Name: SIGN Al; Unicode: \u09C8; Letter: t:; IPA: /oi/

Final Code: “oi”

Name: AU; Unicode: \u0994; Letter: 3; IPA: /ou/
Name: SIGN AU; Unicode: \u09CC; Letter: ¢3; IPA: /oul/

Final Code: “ou”

Name: KA; Unicode: \u0995; Letter: ; IPA: /k/

Name: KHA; Unicode: \u0996; Letter: ¥; IPA: /kf/
Both ¥ and ¥ are Velar. But < is Un-aspirated and ¥ is

Aspirated. So, in this case, we are giving the same code to both
letters.
Final Code: “k”

Name: Conjunct KHIYO; Unicode: \u0995 \u09CD \u09B7;
Letter: ® =33, IPA: /k/, /kf/
Case 1: At the beginning of a word, it is pronounced as ¥
/kfi/. So it is given the same code as ¥, which is “k”.
F¢ /khioto/ — ¥ — kt
Case 2: In the middle or at the end of words, it is similar to
3¢ /kkfi/, soitis encoded as “kk”.

W% /dokkho/ — ¥ — dkk

Exception: se%9 /totkhonat/ According to its pronunciation it

should be encoded as “ttknat”, but it is instead encoded as
“ttkknat”.

Name: GA; Unicode: \u0997; Letter: «; IPA: /g/



35

Name: GHA; Unicode: \u0998; Letter: T; IPA: /gfi/
Both o and ¥ are Velar. But o is Un-aspirated and 9 is

Aspirated. So, in this case, we are giving the same code to both
letters.
Final Code: “g”

Name: NGA; Unicode: \u0999; Letter: ¢; IPA: /y/
Name: ANUSVARA; Unicode: \u0982; Letter: «x; IPA: y/
¥ and <2 sounds like /ny/, so it is encoded as “ng”.
JreeT /banla/ — bangla
q1e=T /banla/ — bangla
Name: CA; Unicode: \u099A; Letter: v; IPA: /c/
Name: CHA; Unicode: \u099B; Letter: z; IPA: /cfi/

Both 5 and = are Palatal. But 5 is Affricate Un-aspirated and =

is Affricate Aspirated. So, in this case, we are giving the same code
to both letters.

Final Code: “c”

Name: YA; Unicode: \u0O9AF; Letter: 3; IPA: /y/

T as phalaa

Case 1: At the beginning of a word, and if the word is -8

/a/ or |-FE /a/, it is pronounced as /a/.

Example: Ire, @iv
At the beginning of a word, and if there is a % or € after ¥

phalaa, then it is pronounced as 4 /e/
Example: s5f2e, I5fe

We encode both /&/ and /e/ as “e”.



36

e /baekto/ — bekt
g« /dheen/ — den

T /bekti/ — bekti

Final Code: “e”
Case 2: In the middle or at the end of a word with conjuncts,

it is usually silent, and so it is Not coded.

5T /fondha/ — & — snda

%1%y /fastho/ — ¥ — sast

Final Code: Not Coded
Case 3: In the middle or at the end of a word it doubles the

attached letter, and so the code is doubled as well.

vy /oddo/ — s — odd
T4 /moddfio/ — @ — mdd

Final Code: Same as attached letter
Case 4: Otherwise when it is used normally rather than as a

phalaa, it is encoded as
Final Code: “j”

Name: JA; Unicode: \u099C; Letter: &; IPA: /j/

Name: JHA; Unicode: \u099D; Letter: 3; IPA: /jf/

Both & and 3 are Palatal. But & is Affricate Un-aspirated and
¥ is Affricate Aspirated. So, in this case, we are giving the same
code to both letters.

Final Code: j

Name: NYA; Unicode: \u099E; Letter: «s; IPA: /na/

Case 1: Usually in conjuncts if a « is added before a v, %, @,



37

¥, or after a v then it is pronounced as < /n/; in this case it is

[{Pg 1)

encoded as “n”.

Before v: Sie1 /oncol/ — S«be — oncl
Before =: q1gl /bancha/ — J9=l— banca
Before : wi&fet /onoli/ — w@@fst — onjli
Before 3 3% /fhonghia/ — TN — jnja

After v: Imadr /tacna/ — I®FI— jacna

Final Code: “n”
Case 2: If si-=w and -3 is added after a <, then it creates a

nasal sound. ¥« /mia/ — fs=it. However, since in our encoding nasal

sounds are Not Coded, it is also Not Coded.

N@el /mia/ — =1 — mia

Fif@e /nai/ — T — nai

Final Code: Not Coded
Case 3: In conjuncts after &, @ sounds as

g’ at the

beginning of the word and as “gg” in the middle or at the end of the

word. At the beginning, it is encoded as “g” and in the middle or at
the end; it is encoded as “gg”. Again, if at the beginning, =i («1)-F=
is added with @ then = (<)-¥= is pronounced as “a”, which is

encoded as “e”.
At the beginning:

@S /gaeto/ — get
T« /gaen/ — gen

Final Code: “g”
At the middle/end:

fewl« /biggan/ — biggan



38

faes /biggo/ — bigg
Final Code: “9g”
Exception: 7wt /fonga/ should be encoded as “sngga” but it is

instead encoded as “snggga”.
Case 4: Otherwise, if there is a VIRAMA/Hasant after it, then

[T 1}

it is simply encoded as “n”.

< /non/ — nn

FF /nonortthok/ — nnrttk

Final Code: “n”

Name: TTA; Unicode: \u099F; Letter: 5; IPA: /t/

Name: TTHA; Unicode: \u09AO0; Letter: 3; IPA: /tf/
Both 5 and & are Retroflex. But 5 is Un-aspirated and ¥ is

Aspirated. So, in this case, we are giving the same code to both
letters.
Final Code: “T”

Name: DDA; Unicode: \u09A1; Letter: ©; IPA: /d/

Name: DDHA; Unicode: \u09A2; Letter: 5; IPA: /df/
Both © and v are Velar. But © is Un-aspirated and v is

Aspirated. So, in this case, we are giving the same code to both
letters.
Final Code: “D”

Name: VOCALIC R; Unicode: \u098B; Letter: %; IPA: /ri/
Case 1: At the beginning Vocalic R # and Sign Vocalic R 3

are encoded as “ri”.



39

g /ritu/ — ritu

Final Code: “ri”
Case 2: According to phonological rules in [19], it doubles
the sound of the attached letter if it is in the middle or at the end.

However, since people usually pronounce it as “ri” in such cases as

well, it is encoded as both codes.
fee® /bikkrito/ — bikkrit
& /bikrito/ — bikrit

Final Code: “ri”, “xri” // x is the code of attached letter

Name: RA; Unicode: \u09BO0; Letter: 7; IPA: /r/

q as phalaa

Case 1: At the beginning of the word s-phalaa sounds like 7,
so it is encoded as “r".

A< /prokaf/ — prkas

&« /pronam/ — prnam

Final Code: “r’
Case 2: According to [19, 20, 21], in the middle or at end, it

doubles the attached letter. But if we consider the pronunciation of
these words, it is also pronounced as only 9. As a solution, we

again encode it both the codes using the Double Metaphone

approach.

fq /rattri/ — ISG — rattri
fa /ratri/ — AT — ratri
%@ /chattro/ — =9dq — cattr

®q /chatro/ — ®®F — catr

Final Code: “r’, “xr” // x is the code of attached letter



40

Case 3: Otherwise 7 is encoded as “r".

Final Code: “r”

Name: RRA; Unicode: \u09DC; Letter: ©; IPA: /1/

Name: DDHA; Unicode: \u09A2; Letter: 7; IPA: /tfi/
Both © and v are Alveolar and Flapped. So, in this case, we

are giving the same code to both letters.

Final Code: “r”

Name: NA; Unicode: \uO9AS; Letter: «; IPA: /n/

Name: NNA; Unicode: \u09A3; Letter: <; IPA: /n/

Final Code: “n”

Name: TA; Unicode: \u09A4; Letter: =; IPA: /t/

Name: DDHA; Unicode: \u0O9AS5; Letter: <; IPA: /th/
Both v and < are Dental. But @ is Un-aspirated and ¢ is

Aspirated. So, in this case, we are giving the same code to both

letters.
One debatable topic on % is Khondo-TA §, which is short

form of ©. Currently it is not in the Unicode chart and it is written as
© and . In our encoding i is Not coded, so it will automatically get

the same code “t” as =. But if later it is included in the Unicode chart

then we can simply give that letter the code “t”.
Final Code: “t”

Name: DA; Unicode: \uO9AG6; Letter: w; IPA: /d/

Name: DHA; Unicode: \u09A7; Letter: «; IPA: /df/

Both @ and ¥ are Dental. But # is Un-aspirated and « is



41

Aspirated. So, in these cases, we are giving the same code to both
letters.
Final Code: “d”

Name: PA; Unicode: \u0O9AA; Letter: =; IPA: /p/

Name: PHA; Unicode: \uO9AB; Letter: =; IPA: /ph/
Both = and ¥ are Bilabial. But # is Un-aspirated and ¥ is

Aspirated. So, in these cases, we are giving the same code to both
letters.
Final Code: “p”

Name: BA; Unicode: \u09AC; Letter: 3; IPA: /b/

Name: BHA; Unicode: \u09AD; Letter: S; IPA: /bh/
Both T and © are Bilabial. But 3 is Un-aspirated and @ is

Aspirated. So, in these cases, we are giving the same code to both
letters.

Final Code: “b”
7as phalaa

Case 1: At the beginning 3—phalaa doesn’t have any sound.
So it is Not Coded.
Fifgwra /fadfiikar/ — fgwE — sadikar

T /fodef/ — A — sdes

gl /yala/ — @ — jala

Final Code: Not Coded
Case 2: At the middle/end 3—phalaa with 3, ¥ and  that is

derived from = keeps it sound. So it is encoded as “b”.
3: fo®® /tibbot/ — tibbt

=A™ /fabbaf/ — sabbas



42

¥: &% /lombo/ — Imb
¥l /fombordfiona/ — smbrdna
o1 ffifres /digbidik/ — digbidik

Final Code: “b”
Case 3: At the beginning I—phalaa with @ that is derived from
Tn keeps it sounds. So it is encoded as “b”.

7 that is derived from ®=;

Tzl /udbeg/ — udbeg

Sraigs /udbodhon/ — udbdn

Final Code: “b”
Case 4: At the middle of the word 3—phalaa with conjuncts

doesn’t have any sound. So it is Not coded.

G /totto/ — TES —> it
Tege /ujpol/ — Terer — ujjl

g1 /ucchaf/ — Bb=PT — uccas

Final Code: Not Coded
Case 5: At the middle/end of the word sound of I with

conjuncts doubles. So it has the same code as the previous code.

fag /ditto/ — frew — ditt
& /biffo/ — ™ — biss

Final Code: x // x is the code of attached letter

Name: MA; Unicode: \UO9AE; Letter: =; IPA: /m/

¥ as phalaa

Case 1: At the beginning of the word w-phalaa doesn’t have
any sound. So it is Not Coded.

=9l /foron/ — FF — srn



43

T /fofan/ — ™9 — ssan

Final Code: “‘m”

Case 2: At the middle of the word s—phalaa with conjuncts
doesn’t have any sound. So it is Not coded.

1% /fukkhd/ — JF¢ — sukk
=gl /lokkhon/ — =149 — lkkn

Final Code: Not Coded
Case 3: At the middle/end ¥ phalaa with =, =1, ®, 5, o, 7, ¥, =1, 3,

3, = keep its sound. So it is simply coded to “m”.
%: gl /rukmini/ — rukmini
*: I /bagmi/ — bagmi

Tl /jugmo/ — jugm
®: ey /bagmoe/ — bangmy
qre7e /banymukh/ — bangmuk
B: 34« /kutmol/ — kuTml
Zofere /kutmolito/ — kuTmlit
o: f&Fer /Aironmod/ — hirnmy
I /mrinmog&/ — mrinmy
q: 9w /unmad/ — unmad
& /yonmo/ — jnm
;. W /fomman/ — smman
e /fommoti/ — smmti
7. @9 /gulmo/ — gulm

< /bolmik/ — blmik



44

;. el /fufmita/ — susmita
T ¥ /kufmando/ — kusmand

*; I /kafmir/ — kasmir

Final Code: “m”
Case 4: Otherwise at the middle/end ¥ with conjuncts

doubles the sound of attached letter. So it encoded with the same

code of the previous character.

=] /choddd/ — = — cdd
M /poddd/ — *mw — pdd

Final Code: x // x is the code of attached letter

Name: YYA; Unicode: \u09DF; Letter: 7; IPA: /&/
Final Code: “y”

Name: LA; Unicode: \u09B2; Letter: =1; IPA: /1/
Final Code: ‘1"

Name: SA; Unicode: \u09B8; Letter: 71; IPA: /s/, /f/
Name: SHA; Unicode: \u09B6; Letter: =; IPA: /s/, /{/

Name: SSA; Unicode: \u09B7; Letter: 3; IPA: /f/

Final Code: “s”

Name: HA; Unicode: \u09B9; Letter: g IPA: /h/
z with ¥: 2 doesn’t have any sound in conjuncts with . So, it
is Not Coded.
g4 /rhidod/ — T — ridy



45

gdrsf® /rhidpindo/ — fef*@®& — ritpinD

Final Code: Not Coded
z with 9: T doesn’t have any sound in conjuncts with 3. So, it

is Not Coded.
gn /thod/ — W — rd
g™ /rhaf/ — I — ras
Final Code: Not Coded
g with 9/9: T sounds as s /nfi/ in conjuncts with /9 where f sounds
lightly. So, it is encoded as “n”.
*qiF /purbannfio/ — 9T — purbann
5% /cfinnfio/ — B9 — cinn

iR /prannfo/ — AT — prann
Final Code: “n”
z with : T sounds as I% /mfi/ in conjuncts with ¥ where f

sounds lightly. So, it is encoded as “m”.

= /bromma/ — I — brmma

g /brammo/ — NN — bramm

Final Code: “m”
Z with I: T sounds as ¥ in conjuncts with 7. So, it is encoded

T /ujiho/ — TT@— ujj
afszy/oitiyho/ — @feTT — oitijj

Final Code: “§”
z with &:  doesn’t have any sound in conjuncts with = at the

beginning. So, it is Not Coded.
Fm /lhad/ — ™ — lad



46

g sounds as ¥ in conjuncts with s /1/ in middle/end where f
“I!!.

sounds lightly. So, it is encoded as

SrETm /alliad/ — Seem — allad

Final Code: “I”
z with 3: According to grammatical rules 2 should be sounded

like ¢ or © and 3 should be sounded as .
K /aovan/ — €SN

However, most native speakers pronounce these words the
same way as it is written. For example, sr=1 is usually pronounced

as 9zelN /afiobfian/, so we encode it to two different codes for the

two different pronunciations.
PN — €SI /aovan/ — aoban

QP — RSN /ahobhan/ — ahban

Final Code: “0”, “h”

Name: VISARGA; Unicode: \u0983; Letter: <2

Case 1: In the middle of the word, ::2 gets the sound of the
character next to it.
28799 /duffomoi/ — 2oNT — dussmy
3¢ /dukkfo/ — 29 — dukk

Final Code: x // x is the code of next letter
Case 2: If z3is at the end, and the string length is 2 or 3,

then :s sounds as 2. So it is encoded as “h”.
T3 /ufi/ — %2 — uh
13 /bafi/ — AT — bah

Final Code: “h”
Case 3: If :3 is at the end, and the string length greater than



47

3, then =3 sounds as 8. However, since s is Not Coded in our

encoding, <:3 is Not Coded as well.
798 /puno/ — N — ¥ — pun
943 /adho/ — T4 — ¥ — od

Final Code: Not Coded



48

CHAPTER V: APPLICATIONS OF PHONETIC ENCODING

Proper phonetic encoding is a very good contribution for a language, but it
has no significance until it is used properly in applications. Name searching was
first such application, where phonetic encoding was used after that spelling

checker adopts this phonetic encoding technique.

We have used our phonetic encoding in many applications like spelling
checker, transliteration, cross-lingual information retrieval and name searching
for Bangla. In each case, we will first show how that application were developed
earlier, how they perform and then how phonetic encoding improves its

performance.

5.1. Spelling Checker

The problem of detecting error in words and automatically correcting
them is a great research challenge. Its solution has enormous potentials in
text and code editing, computer aided authoring, optical character recognition
(OCR), machine translation (MT), natural language processing (NLP),
database retrieval interface, speech recognition, text to speech and speech to
text conversion, communication system for the disabled (e.g. blind and deaf),
computer aided tutoring and language learning, desktop publication and pen

based computer interface. [15]

5.1.1. Spelling error patterns
The word-error can belong to one of the two distinct categories,



49

namely, non-word error and real-word error. Let a string of characters
separated by spaces or punctuation marks be called a candidate string. A
candidate string is a valid word if it has a meaning. Else, it is a non-word. By
real word error we mean a valid but not the intended word in the sentence,
thus making the sentence syntactically or semantically ill-formed or incorrect.
In both cases the problem is to detect the erroneous word and either suggest

correct alternatives or automatically replace it by the appropriate word. [15]

In Bangla so far, we do not have any very good technique that deals
with non-word errors. Real-word error can be the next step after solving this
problem. We will focus only on non-word errors in this chapter, which is the

major part in any spelling errors.

In non-word errors, there are mainly two types of errors. One is
typographical error and another is phonetic error. Description of typographical

error is as follows.

In an early study, [17] found that 80% of all misspelled words (non-
words errors) in a sample of human keypunched text were caused by single

error misspellings: a single one of the following errors:

. Substitution error: mistyping the as ther

. Deletion error: mistyping the as th

. Insertion error: mistyping the as thw

. Transposition error: mistyping the as hte [16]

These are the type of typographical errors, which occurred due to
typing mistakes, negligence, and lack of concentrations. But if computer gives
a red underline into it, then we can easily correct it without seeing the spelling
suggestions.

But scenarios of phonetic errors are not the same. Phonetic errors



50

occur when the user do not know the spelling of a word but knows the
pronunciation of the word. So, using the pronunciation the user may write a
word but in suggestion it is impossible to get the desired word in case of
Bangla, because of complex Bangla rules described in 3.1.

5.1.2. Previous spelling checking techniques

5.1.2.1. Approximate string matching algorithm

This method uses an approximate string-matching algorithm to
check the closeness of dictionary words with the misspelled word. In

suggestion it gives the words that are close to it.

Levenshtein Edit Distance[23, 24, 25]
Definition:
The edit distance of two strings, s1 and s2, is defined as the
minimum number of point mutations required to change s1 into s2,

where a point mutation is one of:

(AR eplace a letter,
Pl nsert a letter,
EElD<ete a letter,

Sl Transpose consecutive letters

Example:

e(“Virginia”, “Vermont”) = 5
Virginia

Verginia

Verminia

Vermonia



51

Vermonta
Vermont
Detail on edit distance can be found at [23, 24, 25].

BllHow edit distance can be used in spelling checker
To generate suggestion for a misspelled word we need to
generate edit distance with each of the word in the lexicon and the
misspelled word. If the edit distance is below a threshold then we can
add the word in the suggestion list.
For example, we assume our lexicon consist of following words.

U, PP, Fel, T

Our misspelled word is 7. Now when we check the dictionary

file we find that there are no such word F=1. So, it is a misspelled word

according to this dictionary. Now to generate and rank the suggestion,
we will generate the edit-distance with all the words of the dictionary.

Table 7: Edit distance example

Dictionary  Edit Distance

word with word &=
A 2
K 2
Sl 1
Rl 3

Hence, our ranked suggestion for =1 will be =, I, w4, T=

Longest common substring (LCS) [26]



52

Longest common substring is the longest substring that is
common in two strings.
For example, between “Naushad UzZaman” and “NZ”, longest

common substring is “NZ”.

LCS-Len is the length of longest common substring. In this
case, LCS-Len is 2.

e How LCS can be used in spelling checker
To generate suggestion for a misspelled word we need to
generate LCS-Len with each of the word in the lexicon and the
misspelled word. If the LCS-Len is above a threshold then we can add
the word in the suggestion list.

For example, we assume our lexicon consist of following words.

U, PP, e, Tl

Our misspelled word is 7. Now when we check the dictionary

file we find that there are no such word s=. So, it is a misspelled word

according to this dictionary. Now to generate and rank the suggestion,

we will generate the LCS-Len with all the words of the dictionary.

Table 8: LCS example

Dictionary LCS-Len with

word word ¥
Bl 1
Al 1
Sl 2
et 1



53

Hence, our ranked suggestion for =1 will be =, S, w1, T=!

5.1.2.2. BB Choudhury’s Reverse dictionary method

[15] describes a unique method for Bangla spelling checker, which
does phonetic grouping to handle trivial phonetic errors and uses a

reverse dictionary to handle the typographical error.

Phonetically similar character error correction

Bangla letters be partitioned according to phonetic similarity
(e.g., [ll, U:UU, NA:NNA, SA:SSA:SHA, etc), with each set
represented by a single code. This coding can then be applied to
Bangla dictionary to convert it to a non-homophonous one, with each

entry pointing to the set of words that correspond to this code.

For example, suppose we encountered string bAnl and wish to
check if it is a valid word. By phonetic similarity coded notation it can
be converted into bAni. In D, is the dictionary consisting of word list
and corresponding code to each of the word, there is a match of bAni.
Now its corresponding valid words are bANI and bAni, none of which
match with bAnl. So our candidate bAnl/ is a wrong word. But the

suggested corrected word is either bANI or bAni.

Reversed word dictionary

For a valid word, its reversed word is a string of characters in
reversed sequence. Thus, the reversed version of the words 'read' and
'‘copy' are the strings 'daer' and 'ypoc', respectively where the first
character of the word goes to the last position, the second character
occupies the last but one position and so on. In general, the reversed

word of a word W = x41X5 ... Xk iS W, = XgXk-q ... XoX1.



54

In a reversed word dictionary D,, the reversed version of all
dictionary words is maintained. For quick access or retrieval, the words
can be alphabetically ordered, partitioned in terms of word length and
maintained in indexed flat file or in trie structure. The dictionary
structure for our purpose can be indexed or trie depending on the
system capability. We have used trie structure for our purpose,

because it is computationally faster to access.

The purpose of reversed word dictionary is to look for match of
a string S backwards from the last character. We shall show that
search in conventional dictionary D. as well as reversed word
dictionary together helps in finding the error position in S as well as in
creating a small subset of correction candidate words which indeed
contains the intended word.

Note that both forward and reversed word dictionary can be
prepared using phonetic alphabet, as discussed in Section 3. This
helps us in tackling phonetically similar character substitution error

automatically.

Error detection & position finding and Error correction

To start with we have two assumptions.

Assumption 1: There can be only single error in the word,
which is one among insertion, deletion, substitution and transposition.

Assumption 2: The correct word is available in both the

dictionary (conventional and reversed word) files.

Finding error region:

Consider, an erroneous string S of n characters. Suppose we try



55

to match the string in conventional dictionary D. and check the
dictionary word that matches at maximum number of character
positions, say ki in a sequence starting from left. For example, let the
erroneous string be ‘forvune’ where the error has occurred at 4-th
position and the correct word is 'fortune’. In the dictionary, there are
several words with 'for...", but no word with 'forv...". Thus, here k; = 3.

ki is the length of maximum matched substring of misspelled
word with all words of dictionary Dc.

ko is the length of maximum matched substring of misspelled
reverse word with all the words of reverse dictionary D..

S is the length of maximum substring of misspelled word when
both the dictionaries are used.

Sris the length of maximum substring of misspelled word when
both the dictionaries are used.

Hence, if length of string is n, then error region can be n — S, —

S
ki
—
o SN | [ | |
4
K2
o [[ | | -
+
Error Zone
(c) | | |
s s, 5

(a) Error
(b) Error
(c) Error

used.

ion by conventional dictionary.
by reverse dictionary.
when both dictionaries are

Figure 4: Error localization by conventional and reverse

dictionary

Note that since the error is a single substitution or deletion the

correct word will lie in the dictionary words of n and n + 1 characters.



56

While searching in D; and D,, we look only for words of length n and n

+ 1.

Now after finding the error region, we need to correct the

misspelled word. Insertion and transposition will be treated in one way

and deletion and substitution will be treated another way.

Insertion and transposition:

If the error is caused due to insertion (transposition), the correct
word is deleted (transposed string).

If there are n characters in a misspelled word, we can make n
different strings by deleting one character at a time.

Xyz —xy | yz | zx

Similarly n-1 strings can be generated, by transposing one pair
of neighboring characters.

Xyz — xzy | yxz

Total, n + n — 1 = 2n — 1 strings may be checked in the
conventional dictionary and the strings that are valid words are

included in the candidate set of correct words.

Deletion and substitution:

We cannot generate suggestion for deletion and substitution
error in the same way as insertion and transposition error.

If N = alphabet size = 60 for Bangla, n = string length, then 2nN
strings needed to be generated for checking, hence it is not
economical to do it in the same way as insertion and
transposition.

For deletion and substitution reverse dictionary will be used to

find the error region.



57

e |If the error region is detected then

o If the error region is 0 but that word is not in the
dictionary then it is a deletion error. To correct this we
can just try by inserting each of the letter from alphabet
and check if it is a correct dictionary word or not.

o If the error region is 1 and the word is not in the
dictionary then it is a substitution error. To correct this we
can delete that letter from the error region and try by
inserting each of the letter from alphabet and check if it is

a correct dictionary word or not.

This is how Chaudhury’s reverse dictionary method works for

correcting a misspelled word.

5.1.2.3. Abdullah and Rahman’s Recursive simulation
method [19]

Recursive simulation method does a grouping for similar sounding
letters in Bangla. This considers letters, symbolic form of vowels and
consonants. Figure 5: List of phonetically similar letters, Figure 6: List
of vowel-symbols (known as kaar) and Figure 7: List of consonant
symbols (known as folaa & reff) are example of those grouping. Using
these grouping they create a circular lists. Each circular list contains
similar sounding letters, symbolic form of vowels and consonants. Figure

8: Circular lists of the grouped letters are the example of that list.

Set of letters Spelling
oA A R Between ‘S’ and ‘SH’
. 7 Between ‘JA’ and ‘JO’

LT 0 Between ‘RA’ and ‘RO’

] Similar to ‘ANG’

Between to ‘AA’ and ‘AQ°

Similar to ‘EE’

Between ‘UO’ and ‘YO’

Between to ‘“NA’ and ‘NO’

2| o o bl e
2| G| s |




Figure 5: List of phonetically similar letters

3111 i]f::l Syg :f::lc Spelling Position
el ! Similar to ‘AA’ After the letter
2 i Similar to ‘EE’ Before the letter
5 i Similar to ‘EE’ After the letter
© - Similar to ‘UQ’ After the letter
€ - Similar to ‘UQ’ After the letter
hd 4 Similar to ‘REE’ After the letter
4 [4 Similar to ‘E’ Before the letter
E] 3 Similar to ‘OY” Before the letter
& o Similar to ‘O’ Both sides of the
letter
3 1 Similar to ‘OU* Both sides of the
letter

Figure 6: List of vowel-symbols (known as kaar)

i - :
| ¢ O:Iszfa i SyF";:f::’c Spelling Position
g T Similar to ‘JA’ After the letter
q - Similar to ‘RA’ After the letter
q . Similar to ‘RA’ Before the letter

Figure 7: List of consonant symbols (known as folaa & reff)

e

,{; NG
o

A

i

=
Fig. 4.6. Circular list of the letters spelt as "SA” and *SHA'.

Fig. 4.4. Circular list of the letters spelt as ‘AA" (here ‘O" means null). Fig. 4.7. Circular list of the letters spelt as "RA’,

ety

Fig. 4.5. Circular list of the letters spelt as *JA". Fig. 4.8, Circular list of the letters spelt as ‘EE" (here ‘0" means null).

Figure 8: Circular lists of the grouped letters

There are 150 compound letters or conjuncts, which are formed by



59

joining two or more consonants. Some of them are as following:

Compound Formation of the Spelling
Letter Letter
=5 T+ ¥ Similar to ‘KHA’
7 & + o Similar to ‘ONGQO’
@ T+ @ Similar to ‘OKTO’
G A+ 9 Similar to ‘ONTO’
2 T+ 5 Similar to “OSHTO’
¥ T4+ 3 Similar to ‘OSHTHO’

Figure 9: Some compound letters and their formation

Now, in the following Figure 10: Some common Bangla words with
their miss-spelt forms some very commonly used Bangla words and their

miss-spelt forms are mentioned for farther analysis.

Corect | Missapelt Formor | Pronuncnton ofboth
Word the Word of the Woird
FeeE F KAAGOJ
AT P, AE, ANE SHAASHOK
HreY Tfew, wifen, s, JAATIYO
wifew
o TRE, TRHA, TeH, ANGSHO
ey, WA
29, W9, ¥e,
e AR R, R EESHOT
e, e, H7S,
ERic]
g hicnondou SHOOSHKO

Figure 10: Some common Bangla words with their miss-spelt forms

From the data mentioned in Figure 10: Some common Bangla
words with their miss-spelt forms, it can be seen that in Bangla language,
every single word may have several numbers of analogous phonetic
representations and each representation creates its own pronunciation
strictly according to its elementary letters and symbols. No word violates
the phonetic properties of its constructing letters. But in English words, it is
frequently seen that the pronunciation of the word is much different from



60

the usual phonetic properties of its elementary letters. This is the most
prominent difference in the spelling between the Western and South Asian

languages.

Since Metaphone and Double Metaphone algorithms manipulate
each letter of the alphabet and work mainly on the pronunciation of the
syllabi of any word, they are suitable for detecting suggestions in Western
languages, which have smaller alphabet of less complexity. But South
Asian languages have much bigger alphabet that is also extremely
complex. Here, in order to give appropriate suggestions, it is necessary to
simulate various representations of the miss-spelt word on the basis of the
sets of similarly spelt letters, vowel symbols, consonant symbols and
compound letters. But these algorithms are not designed to satisfy all
these requirements. Hence, the algorithms like Metaphone and Double
Metaphone are not very suitable and efficient for South Asian and many

other languages.

Under these circumstances, a new algorithm which can satisfy all
the mentioned criteria and reduce the complexity of implementation of
searching the nearest suggestions for the miss-spelt word in Bangla as
well as other South Asian languages is needed. Here, an algorithm, which
may solve this problem partially, has been proposed. This algorithm is
named RecursiveSimulation, which is still under research and
development. In this algorithm a set of circular lists has been used. Each
of the lists consists of letters that are phonetically similar. For example,

some lists are mentioned in Figure 8: Circular lists of the grouped letters.

If in the miss-spelt word, any letter exists in any of the lists, then
that letter will be replaced by all other letter of the corresponding list one
by one and then will be checked for matching in the dictionary. When any

null character will be found in the list then a word representation will be



61

formed where the position of that letter will be simply ignored.

Algorithm: RecursiveSimulation

| nput : W the mss-spelt word
S, enpty array for storing the suggestions
P, current position of the character in the
m ss-spelt word (default value is the length if W
and all external procedures always pass this
val ue)
Qut put : S, array containing the found suggestions

1. RecursiveSimulation (W, S, P)

2. C= Pth character of W
3. L = nunber of letters in al phabet that are
phonetically simlar to

C
4. T =W

5. while L > 0 do

6 M= enpty string

7 Repl aceLetter (T, M P)

8. if Mexists in the dictionary and M does not exi st
in S then

9. append Mto S

10. if P > 1 then RecursiveSinulation (M S, P - 1)
11. T =M

12. L =L -1

13. end

14. if P =1length of Wand P > 1 then do

15. W= leftnost (P — 1) characters of W

16. P=P -1

17. while Pth character of Wis any vowel -synbol or



62

any
consonant - synbol and P>0
18. do
19. W= |leftnost (P — 1) characters of W
20. P=P-1
21. end
22. RecursiveSinulation (W S, P)
23. end

1. ReplaceLetter(T, M, P)

2. M= leftnost (P - 1) characters of T

3. L =Pth character of T

4. N = next phonetically simlar character to L

5. if Nis a vowel-synbol then do

6. if Nis grammatically used before the letter then
7. if Lis a vowel-synbol then

8. if Lis grammatically used before the
letter then

9. append Nto M

10. el se

11. if P>1then insert Nat (P - 1)th
position of M

12. el se

13. if P>1then insert Nat (P - 1)th
position of M

14. el se

15. if Lis a vowel-synbol then

16. if Lis grammatically used before the
letter then

17. if P<length of T then do

18. P=P+1

19. append Pth character of T to M
20. append Nto M

21. end



63

22. el se

23. append Nto M

24. el se

25. append Nto M

26. end

27. elseif Nis a vowl then do

28. if Lis a vowel-synbol then

29. if Lis grammatically used before the
letter then

30. if P<length of T then do

31. P=P+ 1

32. append Pth character of T to M
33. append Nto M

34. end

35. el se

36. append Nto M

37. el se

38. append Nto M

39. end

40. el se

41. append Nto M

Sorting the suggestion list:

After generating the suggestion it need to be sorted. Edit distance

algorithm is used to sort the suggestions.

A simple simulation for the word is given below in Figure 11:
Simulated suggestion list for the word misspelled word, using Recursive
Simulation algorithm.



64

'
|
!
!
]
!
!
1
t
i}
!
!
!
!
!
]
}
]
!
]
]
!
1
|
1
1
1
1
1
1
1
1
!
1
1
1
1
1
1

Primary simulation tree:
-
. -
t
1---7% (feasible)

o
+-—-fw

t-—-Fm (feasible)

+onnfom

$om i

.

--,m__ - Lo e

1===* (feasible)

!

-

LR
t-==f1 (feasible)



Secondary simulation tree:

St
+omf

R
-5
---%2 (feasible)

-5

-

.
-

[y

%

-efi

l---%

I---%% (feasible)

-

Figure 11: Simulated suggestion list for the word misspelled word, using

Recursive Simulation algorithm.

65



66

5.1.2.4. Hoque and Kaykobad’s soundex type encoding

Description of this method is available in 2.3.1. For spelling
checker, we need to use an approximate string matching algorithm after

the encoding to get the suggestions.

5.1.2.5. Zaman and Khan’s soundex type encoding

Description of this method is available in 2.3.2. For spelling
checker, we need to use an approximate string matching algorithm after
the encoding to get the suggestions.

5.1.3. Performance of previous techniques

Before considering the performance, we need to find out the
challenges for a spelling checker. To find out the challenge we need to
understand the peculiar nature of Bangla language, which we need to
consider giving similar sounding word in the suggestion. None of the previous
technique handles most of the peculiar nature of Bangla and give suggestions
accordingly but unfortunately most of them does not even noticed these
peculiarities. Following are the challenges to consider when someone
generates suggestion in a Bangla spelling checker.

1. There are groups of phonetically similar characters in Bangla; for
example, NA (%) and NNA (<); SA (37), SHA () and SSA (3), etc. The
contrast between long and short vowels in the script is also in the
modern version of the spoken language.

2. Bangla has many consonant clusters or conjuncts with unusual
pronunciations (i.e., =, =, etc.): let us consider *. ¥ = F+ +7; ¢ [KA
HASANT SSA TA] /kfiato/ is pronounced as ¥© [KHA TA] /kfoto/, where
¥ does not have any sound.

3. Bangla has different uses of Phalaa’s, the cluster final form of the



langua

67

semi-vowels in Bangla (BA, MA, YA, RA and LA) which are
represented using a distinct sign-form. BA phalaa for example has a
distinct pronunciation from a BA in any other position in a cluster or in

a standalone configuration.

. Different pronunciation of letters or conjuncts in different contexts:

consider again =. At the beginning of word, it is pronounced as < /kf/.
(s — 9 /kfoto/); in the middle or at the end of a word, it is

pronounced as < /kkf/, (7% — w3 /dokkfio/).

Multiple pronunciations of some letters in the same context, such as

with 3: According to Bangla phonological rules, 2 should be pronounced
as 8 or © and 3 should be pronounced as ®©: SIFH — wgSH /aovan/.

However, most native speakers pronounce these words the same way
as it is written. For example, s« is usually pronounced as wizSIv

/afiobfan/. Both pronunciations are considered correct.

Typographical error is a trivial challenge in a spelling checker for any

ge, which can be solved by any string matching algorithms like Edit

Distance. But main challenge in a language is a phonetic error. Above, we

have described the peculiar phonetic nature of Bangla, which a spelling

checker must take in to account generating suggestion.

above.

We have 5 previous techniques, these are:
1. Approximate string matching algorithms: AS
2. BB Chaudhury’s reverse dictionary method: BB [15]
3. Abdullah and Rahman’s recursive simulation method: AR
[19]
4. Hoque and Kaykobad’s soundex type encoding: HK [10, 11]
5. Zaman and Khan’s soundex type encoding: ZK [9]
Now, we will see which method can handle the challenges described



68

Table 9: Challenges for spelling checker and performance of previous

techniques

Challenge

Mentioned it as

problem

Can Handle

There are groups of phonetically
similar characters in Bangla; for
example, NA (#) and NNA (%); SA
N, SHA (*) and SSA (3), etc. The

contrast between long and short
vowels in the script is also in the
modern version of the spoken

language.

1. BB
2. AR
3. HK
4. ZK

BB
AR
HK
ZK

LN =

Bangla has many consonant
clusters or conjuncts with unusual
pronunciations (i.e., =, =, etc.): let

us consider . ¥ = I+ +7; Fo [KA
HASANT SSA TA] /kfoto/ is

pronounced as 9 [KHA TA]
/kfioto/, where ¥ does not have any

sound.

1. ZK

None

Bangla has different uses of
Phalaa's, the cluster final form of
the semi-vowels in Bangla (BA,
MA, YA, RA and LA) which are
represented using a distinct sign-
form. BA phalaa for example has a
distinct pronunciation from a BA in
any other position in a cluster or in

a standalone configuration.

1. AR, but describes
the trivial one and
did not describe the
unusual one.

2, HK, also describe
only the trivial one
and did not notice
the unusual one.
3.ZK

1. AR:

handle the trivial

can

one only.
2. HK:
handle the trivial

can

one only.
3. can handle the

trivial one only

Different pronunciation of letters or

1. ZK

None




69

conjuncts in different contexts:
consider again . At the beginning

of word, it is pronounced as ¥ /kf/.
(e — ¥ /khoto/); in the middle or

at the end of a word, it is

pronounced as % /kkfi/, (7F — wFd

/dokkRo/).

Multiple pronunciations of some | None None

letters in the same context, such
as % with 3 According to Bangla

phonological rules, z should be
pronounced as € or & and 3 should

be pronounced as ©: IIFT — IeSN
/aovan/. However, most native

speakers pronounce these words

the same way as it is written. For
example, SIESIC] is usually

pronounced as RSN /ahobhan/.

Both pronunciations are
considered correct.

We have seen that none of the previous method can handle the
problems, but spelling checker using our proposed phonetic encoding can

handle all these problems.

5.1.4. How to rank

To rank the suggestion we used both phonetic edit distance, which is edit
distance between phonetic codes, and normal edit distance. We did not use the
average of both, but preferred for a weighted average. For example, our

score = a * phonetic_edit_distance + (1-a) * normal_edit_distance




70

where, a > (1-a).

We rank the suggestions according to the scored achieved for a word.

5.1.5. Performance of our proposed encoding

Table 10: Encoding performance shows the performance of this encoding
when it is used on 1607 commonly misspelled words found in [22]. We first apply
our encoding to both the correct and misspelled words, and then compute the
phonetic edit distance between the two encoded versions. It is considered correct
if the edit distance is 0. In our case 134 out of 1607 words do not produce an edit
distance of 0 with the correct word, which are termed as error, resulting in an
accuracy of 91.37%.

Table 10: Encoding performance

No of words 1607
Correct (Edit

Distance 0) 1473
Error 134
Rate of accuracy 91.67%
Rate of error 8.33%

The number of unmatched words fall to 107 and 27 if we consider edit
distances of 1 and 2 respectively, as shown in Table 3.

Table 11: Error distribution

Error 134
Edit Distance 1 107
Edit Distance 2 27

When we generate the suggestion list, we can easily add words to the
suggestion list when the words have Edit distance <=2. So, we can always get

our expected word in the suggestion list, and more than 91.37% times at the top



71

of the list.

We can not directly show the performance with each of the previous
method. But we have shown in previous section that previous methods can not
give us expected suggestions. In Table 12: Performance of proposed phonetic
encoding, we will show that how well this can encode the words by comparing
with other encoding and approximate string matching methods. Among the
Soundex for Bangla by “Hoque and Kaykobad” and “Zaman and Khan”, we have
shown only the “Zaman and Khan” one, since they considered Unicode encoding

like us. And they are almost similar, just the codes are different.

Table 12: Performance of proposed phonetic encoding contains (i)
traditional edit distance algorithm [23], (ii)) Soundex encoding described in
[zaman khan soundex], and (iii) our proposed encoding. For the Soundex and
Double Metaphone methods, the error (denoted by E in the table) is calculated
from the phonetic edit distance between the encoded versions. The results
clearly show that the proposed encoding performs much better than the other

existing methods.

Table 12: Performance of proposed phonetic encoding

Edit Distance Soundex Double Metaphone

Misspelled  Correct Word E Misspell Correct E Misspelled Correct E

Word ed Word Word Word Word

1 /kofto/ %% /kofto/ 2 ksT ksT 0 ksT ksT 0
7®4 /dukkfio/ 734 /dukkfio/ 1 dukk  duhk 1 dukk dukk 0
T /fami/ 71 /fami/ 2 sami sbami 1 sami sami 0
ST@SIS /aitanto/ oS /attonto/ 2 ottant  otjnt 2 oftant ottnt 1
fww /rlidoi/  =W¥ /rfiidoi/ 2 ridy hrdy 2 ridy ridy 0



72

feoree /biffo/ =¥ /biffo/ 2 biss bisb

1 biss biss 0
oM /cad/ oI /Gad/ 1 cad cad 0 cad cad 0
SRR
/ostoman/ ST /ostagman/ 2 ostman ostayman 2 ostman ostayman 2
SEISEC]
/yoragirno/ S /jorairno/ 4 jbrajirn  jrajirn 1 jrajirn jrajirn = 0
waRel /torongo/  O% /torongo/ 2 trmg trmg 0 trngg trngg 0
%1 /kona/ et /kona/ 1 kna kna 0 kna kna 0
et
/mindoni&/ T /indonié/ 3 nindjniy nindniy 1 nindniy nindniy 0
v /[poddo/  *M[ /poddd/ 2 pdd pdm 1 pdd pdd 0
5 /nic/ 6 /nic/ 1 nic nic 0 nic nic 0

We have shown the use of proposed encoding in spelling checker. This
encoding encapsulates the complex spelling rules for Bangla, and in addition,
takes into account some of the dialectic pronunciation differences that are not
possible to handle otherwise. The performance results show that it easily
outperforms the current state of the art Bangla spelling checkers in producing
appropriate suggestions for not only the commonly misspelled words, but also for
the large number of “corner” cases which are currently beyond the reach of the
other existing methods.



73

5.2. Transliteration

Transliteration from English letters is particularly important for users
who are only familiar with the English keyboard layout, and hence could not
type quickly in a different alphabet even if their software would actually
support a keyboard layout for another language [27]. This is the main reason
of a Transliteration. In case of Bangla, also known as Bengali, we have
different keyboard layouts. So, it is hard for a beginner to memorize the layout
and write smoothly. Even though there are some phonetic keyboard layouts,
which is helpful to get started but we still need a very good transliteration
process. Bangla is not a very phonetic language; so orthographic rules are
not same as phonetic rules. Mean we may pronounce something but when
we write it, it is not exactly all the same. Sometime some letters are silent,
sometimes some letters get sound of another letter, and sometimes letters
sounds differently depending on context, many complexities like these. So,
even if we write something in English then it will be hard to get the correct
dictionary word with that pronunciation. In this section we described how we
could get these complex dictionary words and normal words in a

transliteration from the English pronunciation.

5.2.1. What is transliteration

Transliteration in a narrow sense is a mapping from one script into
another script. It tries to be lossless, i.e., the informed reader should be
able to reconstruct the original spelling of unknown transliterated words
[27]. This is opposed to transcription, which maps the sounds of one
language to the script of another language. Still, most transliterations map
the letters of the source script to letters pronounced similarly in the goal
script, for some specific pair of source and goal language [28]. In a more

specialized sense, a transcription is (a system of) writing the sounds of a



74

word in one language using the script of another language. If the relations
between letters and sounds are similar in both languages, a transliteration
may be (almost) the same as a transcription. In a broader sense, the word
transliteration is used to include both transliteration in the narrow sense
and transcription [27].

Considering both the challenges we will give the process of a
transliteration for Bangla from English. It is clear that there will be two
types. One will be direct mapping and another will be phonetic mapping.
Direct mapping will do what transliteration means in narrow sense. There
will be one to one mapping. Phonetic mapping will do what transliteration

means in broader sense; it will also work as transcription.

5.2.2. Previous transliterations

Transliteration for English to other languages is an important
research challenge and many researches have been done in this field. For
example, English to Japanese [29], English to Arabic [30, 31, 32, 33] and
English to Chinese [34]. These transliterations are also used in various
applications, like multi-lingual information retrieval and getting the OOV
(out of vocabulary) words of same pronunciation using statical analysis.

Main work on Bangla for transliteration was started by ITRANS [35,
36], in early 1991. Now a day this application is becoming popular and
useful. There are some word processors that support transliteration on
Bangla [38, 39, 40, 41, 42]. But these are phonetically direct mapping,
which is mapping from one script to another and will be lossless. No work
on phonetic mapping, which will give the word with same pronunciation
from dictionary, has been found so far.



75

5.2.3. Proposed new technique for transliteration

5.2.3.1. Direct mapping

It is a trivial mapping and existing Transliterations use this method.
Most popular mapping is the mapping provided by ITRANS [36]. Some
software [37, 38] exactly uses this mapping and some use their own. Still
we are giving a mapping, which we used for our direct mapping
transliteration. Since this direct mapping is still a phonetic mapping but the
difference is, it will not look up in the dictionary if it has any word with
same pronunciation. We have introduced an intermediate encoding, which
will be used to encode before converting. We need it because in some
cases it should not be converted directly, like bool pronounce as bul,
hence before mapping we convert “00” to “u”. Another thing is we will not
only consider one letter for one to one mapping, we may sometime

consider bigrams for mapping. Because, to represent some Bangla letters

phonetically in English we use those birgrams. Like for Bangla letter ¥ /kh/

we use kh.

Table 13: Table for direct mapping
English letter Intermediate Bangla
or Bigram Encoding Name letter Unicode
A A AA i \u0986
A A SIGN AA &l \uO9BE
b B BA q \uO9AC
bh Bh BHA © \uO9AD
c C CA 4 \uO99A
ch Ch CHA 7 \u099B
d D DA n \uO9A6
dh Dh DHA l \uO9A7
D D DDA ® \uO9A1



Dh

jh

kh

N
Nh

ng

Ng

o

O @ BEGIN

Dh

Ph

Gh

Jh

Kh

Nh
Ng
Ng

O

DDHA
E
SIGN E
SIGN |
PHA
GA
GHA
HA
VISARGA
I
SIGN |
I
SIGN I
YA

JA
JHA
KA
KHA
LA

MA

CANDRABIN

DU
NA
NNA
NYA

ANUSVARA

NGA
A
O

<l

5

U I A IR 3

oo

Y o9 s oy A g A Yo DM

\uO9A2
\uO98F
\u09C7
\uO9BF
\u09AB
\u0997
\u0998
\u09B9
\u0983
\u0987
\uO9BF
\u0988
\u09CO0
\uO9AF
\u099C
\u099D
\u0995
\u0996
\u09B2
\uO9AE

\u0981
\uO9A8
\uO9A3
\u099E
\u0982
\u0999
\u0985
\u0993

76



c@

MIDDLE/END O

oi

ou

0]¢}

Rh

sh

th

Th

w
x @ BEGIN

x@

Oi
Oi
ou

ou

Rh

sh

th

Th

bh

oa

j

MIDDLE/END ks

SIGN O
Al
SIGN Al
AU
SIGN AU
SIGN U
PA
PHA
KA

RA
RRA
DDHA
SA
SHA
SSA
TA
THA
TTA
TTHA
U

SIGN U
uu
SIGN UU
BHA

O AA
YA

KA SA

G

& o o 2 6 Ao B

£

&

d

e

\u09CB
\u0990
\u09C8
\u0994
\u09CC
\u09C1
\uO9AA
\uO9AB
\u0995
\u09B0
\u09DC
\u09A2
\u09B8
\u09B6
\u09B7
\u09A4
\u09A5
\uO99F
\u09A0
\u0989
\u09C1
\uO98A
\u09C2
\u09AD
\u0993
\u0986
\uO9AF
\u0995
\u09B8

77



78

y YYA T \uO9DF
] YA Nl \uO9AF
\ HASANT & \u09CD

5.2.3.2. Phonetic mapping

In phonetic mapping main idea is we will check in the dictionary if
we have the word with same pronunciation. Following is the algorithm of

phonetic mapping.

Algorithm of phonetic mapping

if there is a word with the same pronunciation in
the dictionary

then convert it to that word
else 1f there are multiple words with the same
pronunciation in the dictionary

then give suggestions for that word and the
user will select which one to use
else if there are not words with the same
pronunciation in the dictionary

then convert it using direct mapping

Now main challenge is how we can get the pronunciation of a
Bangla word to check it with an English word and understand it has the
same pronunciation. We have used the phonetic encoding for Bangla
proposed in section 4.1. That encoding encodes Bangla word in to an
English word that represents the pronunciation of a word. So, our only
challenge is to convert the English words in the same manner so that
both encoding are consistent. For example, &= is encoded in to kim.
Our main challenge will be to encode the English word in a way so that
when someone writes kolom then it is encoded to kIm. So, checking



79

the encoding we can say that it have the same pronunciation as a
dictionary word. Problem is we have to modify the proposed encoding
in very few cases, so that both of these represent to same code for the
same pronunciation. Following Table 14: Modification in proposed
encoding is the modification of proposed encoding. After that in Table
15: Proposed encoding for phonetic mapping, we propose our
encoding for English word, which will guarantee to have the same code
with the same pronunciation, Bangla word. Table 15: Proposed
encoding for phonetic mapping is almost same as Table 13: Table for
direct mapping. Differences are kept bold so that it can be easily
distinguished. In direct mapping we had to keep in mind that there
should be a one to one mapping to all Bangla letters so that every

letter can be written.

Table 14: Modification in proposed encoding

Encoding in
our proposed  Modified

Bangla letter Name Unicode one encoding
© BHA \u0O9AD “b” “bh”
7 CHA \u099B “c” “ch”
l DHA \uO9A7 “d” “dh”
v DDHA \u09A2 “d” “dh”
q GHA \u0998 “g” “gh”
A JHA \u099D 7 “jh”
4 KHA \u0996 “K” “kh”
® PHA \uO9AB “‘p” “‘ph”
4 THA \u09A5 “t “th”
s TTHA \u0O9A0 “” “Th”



Table 15: Proposed encoding for phonetic mapping

English letter

or Bigram
a

a

b

bh

ch

dh

Dh

| capital

jh

EncodingLikeB

angla
A
A
B
Bh
C
Ch
D
Dh
D
Dh

Ph

Gh

Jh

Name
AA
SIGN AA
BA
BHA
CA
CHA
DA
DHA
DDA
DDHA
E
SIGN E
SIGN |
PHA
GA
GHA
HA
VISARGA
I

SIGN |
I

SIGN I
YA

JA
JHA

Bangla
letter
Sl

ol

cl

s

YT IR T M

oo

A4 4 M D oW D oM

Unicode
\u0986
\uO9BE
\uO9AC
\uO9AD
\uO99A
\u099B
\uO9A6
\uO9A7
\uO9A1
\uO9A2
\uO98F
\u09C7
\uO9BF
\uO9AB
\u0997
\u0998
\u09B9
\u0983
\u0987
\uO9BF
\u0988
\u09CO0
\uO9AF
\u099C
\u099D

80



kh

N
Nh

ng

Ng

o

O @ BEGIN

o@
MIDDLE/END

o)

ou

0o

ph

Rh

sh

Kh
L
M

Not Coded
N

N

N

Ng

Ng

Not Coded
(0]

Not Coded
Oi
Oi
Ou
Ou

©

w 0o O A8 A8 0 X

KA
KHA
LA
MA

CANDRABIN

DU

NA

NNA

NYA
ANUSVARA
NGA

A

o

SIGN O
Al

SIGN Al
AU
SIGN AU
SIGN U
PA
PHA
KA

RA
RRA
DDHA
SA
SHA
SSA

¥ 38 s Y

5 =2 2

)

\u0995
\u0996
\u09B2
\uO9AE

\u0981
\u09A8
\u09A3
\uO99E
\u0982
\u0999
\u0985
\u0993

\u09CB
\u0990
\u09C8
\u0994
\u09CC
\u09C1
\uO9AA
\u09AB
\u0995
\u09B0
\u09DC
\u09A2
\u09B8
\u09B6
\u09B7

81



th Th
T T
Th Th
u U
u
u u
u
v Bh
w Oa
X @ BEGIN J
xX@
MIDDLE/END Ks
y Y
z J
\ Not Coded

TA

THA
TTA
TTHA

U

SIGN U
uu

SIGN UU
BHA

O AA
YA

KA SA
YYA

YA
HASANT

5.2.4. Example of transliteration

& o o s g

£

&

cl

S

\u09A4
\u09A5
\u099F
\u09A0
\u0989
\u09C1
\u098A
\u09C2
\u0O9AD
\u0993
\u0986
\uO9AF
\u0995
\u09B8
\uO9DF
\uO9AF
\u09CD

82

We have described two of our Transliteration methods. Now we will

show some examples that will make it clear.

Suppose we have written the following text.

ami bhalo achi. tomar khobor ki. ajke shondha bela tumi ki korcho. obak

bepar holo, ami ekhon bangla likhte pari iNglish diye. aro mojar bepar holo ami
dui bhabe likhte pari. ekTa DairekT arekTa phoneTik. tomar desh e koto Taka te

ek Dolar. ami ai bhabe abar juk\to bor\no likhte pari.

5.2.4.1. Direct mapping

Output in direct mapping will be following.



&3

T STen Sify, (oW AIEE . WAE N @ g @R, Sk @@
@A, S QT e ferdts #fify Txfer ., St (I @R @ET S 92 o forare
f. OFBI TIRFFG SCIF! (FIEADS. (SNF @ @ (FICS! BF (¢ qF (@R, SN A2 ST

5.2.4.2. Phonetic mapping
Output in phonetic mapping will be following.
N TR/ STE . (SN 479 F2/F/F. EF AW @@l 9N F3/[F/F F9=.
SRIF @R/ 2, S @247/ QT AeeT/Area forars #ifa/#ife Fxferr ey, sia/enea/ere
TSR @R/ T AT 92 O forite #Af7/AG. @F61 TREFE SNCTFo! (FEADS . (O
@Y @ F9/@S DIFI/OF (¢ dF/9F TAR . W W ST AR I& I990/Fel/qer ferars
A/

Table 16: Few examples from above paragraph to make the process clear

Outputin  Outputin
English direct phonetic Selected
word mapping mapping word
shondha ¢ T Al
bela Skl el Shll
bepar @A RARAAAR AR
mojar T R Rl
DairekT' — R CIRTTFE CIRTTFE
ami i RUR RUR
ek aF e/t aF
juk\to RSl Ie I
bor\no QAT FFet/Zel/ger Kot

! Not found in the dictionary. So, used direct mapping for its suggestion



We have given this Table 4 to show that how we can handle the
similar sounding multiple words in suggestion. Basically, we have to just
select our expected word among the suggestions.

84



85

5.3. Cross Language Information Retrieval

In cross language retrieval, a user issues a query in one language to
search a collection in different language. If the two languages use same alphabet
then similar sounding word can be written in the same way in two languages and
can easily be found as well. However, if two languages use two different
alphabets then it is not an easy task to issue a query in one language to search a
collection in different language. In this section, we will describe how our
proposed encoding in section 4.1 can be used to work as an intermediate code

for this cross language information retrieval.

5.3.1. What does it handle

In this cross language information retrieval between English and Bangla,
main work is to take a word in English and it will find the similar sounding word in
a Bangla document. To give the suggestion it easily handles the complex Bangla

orthographical rules, because of using our proposed phonetic encoding.

5.3.2. Previous work

There are no such efforts given in this type of application for Bangla so far.
But in many languages it is solved by first transliteration of one language to
another language, after that we can easily search that transliterated word in the

document.

For example, we want to search Bangla word S99 /banan/ in a Bangla

document. We issue a query in English by “banan”. So, in trivial method by

transliteration “banan” will be converted to JI9I¥ /banan/ first, and then 99

/banan/ will be searched in the Bangla document, which is a trivial task.



86

This method is used in languages, where we have a good transliteration,
such as [29, 30, 31, and 34]. [33] uses this method for Arabic to English cross

language information retrieval.

5.3.3. How does it work

In this cross-lingual information retrieval, our proposed phonetic encoding
works as an intermediate code. We code Bangla by our proposed code to
Roman alphabets, which represent the pronunciation of the word. Now our main
challenge is to encode the English word in the same way, so that its
pronunciation can be represented by that code. So, rather than the original word
we can operate on the code and find the word of similar pronunciation. For
example, in our proposed encoding, ¥ is encoded in to kim. Our main
challenge was to encode the English word in a way so that when someone

searches with kolom then it is converted to kim.

Our limitation is we can not actually handle complex English words, but if
someone writes Bangla using English then they write it in simple English. So, we

can easily handle these cases.

It operates almost similarly to our proposed transliteration in phonetic
mapping, described in 5.2.3.2. In this section we will refer to some of the tables
of that section.

Challenge is we have to modify the proposed encoding in very few cases,
so that both of these represent to same code for the same pronunciation. Table
14: Modification in proposed encoding is the modification of proposed encoding.
After that in Table 15: Proposed encoding for phonetic mapping, we propose our
encoding for English word, which will guarantee to have the same code with the

same pronunciation, Bangla word.



87

5.3.4. Example

Following is an example of a Bangla text. We will try to retrieve few words

from this text by issuing queries in English.

Bangle Text:

S St Wiy, (IR 3 . e F51 @@ N F F9=. O[@F 1207 2@, SN 924 iy
forare onfa Fferr e, <t WEE WA T SN 93 o fodre e, 6T TIRERe AEHO!
(FIADS . S (¥ @ F© DI (O UF T . SN S Yee o ferars Aifq

Encoding of Bangla Text:

ami bhal achi. tmar khbr ki. ajke shndha bela tumi ki krch. obak bepar hl, ami
ekhn bangla likhte pari english diye. ar mjar bepar hl ami dui bhabe likhte pari. ekta
DairekT arekta phnetik. tmar desh e kt Taka te ek Dlar. ami abar jukt brn likhte pari.

Following Table 17: English word, encoding of English word, Bangla word
with the same encoding from the text contains the English word, which we used
to search in a Bangla text; encoding of English word from Table 15: Proposed
encoding for phonetic mapping; and Bangla word with same encoding generated
by proposed encoding with modification from Table 14: Modification in proposed

encoding.

Table 17: English word, encoding of English word, Bangla word with the
same encoding from the text
Bangla word with same
Queries in English word Encoding of English word encoding in the text
Shondha shndha T
Bela bela Skl
Bepar bepar A



88

Mojar mjar e
DairekT? DairekT CIRTES
Ami ami wify

Ek ek a
juk\to jukt I&
bor\no brn Sl

Hence, we get our desired Bangla word from Bangla text by issuing a

query in English.

This is how our encoding work as an intermediate code in multi-lingual
information retrieval, where a user issues a query in one language (such as
English) to search a collection in a different language (such as Bangla). More
specifically, writing the pronunciation of a word in English one can search words

with same pronunciation in a Bangla document.

% Not found in the dictionary. So, used direct mapping for its suggestion



89

5.4. Name Searching and Matching

Names are quite often spelled in a variety of different ways, with all
variants considered equivalent. This creates a challenge when searching for and
matching names in databases, and linking records among different data sources.
The situation is quite complex in Bangla because of its archaic and complex
orthographic rules, arising in part from the large gap between the script and
pronunciation in Bangla. The Bangla language had gone through a vigorous
process of Sanskritization during the 12" century, continuing throughout the
middle ages, and this process in large part contributed to this gap. In addition,
non-indigenous Bangla names are often derived from a variety of different origins
— from Sanskrit, Perso-Arabic languages, Portuguese, and other Western
languages. Most of the imported names have gone through at least one
significant change in both spelling and pronunciation from the original, and have
evolved as names with multiple equivalent spellings in both Bangla and English.
However, the spelling variants of most of these names have one thing in

common — phonetic similarity — a feature that can be used to match these names

with each other. For example, the Istere /murtoja/ and =& /mortuja/ are

common spelling variants of the same name. The similarity of the two names will
be obvious to any native Bangla speaker because of the phonetic similarity along
with some knowledge of Bangla name-spelling rules, but may be difficult for an
algorithm because of the two character mismatches in two different positions.
One solution is to encode the names using a phonetic encoding that
encapsulates Bangla orthographic rules along with the peculiarities of the name-
spelling rules, and then match the resulting encoded versions. With a variation to
the encoding of 4.1 we can propose a phonetic encoding for names that is
capable of matching most of the common names in all spelling variants, and in

addition, providing the correct suggestion in case of a misspelled name, where



90

the spelling error is a phonetic one.

While there are well-established phonetic similarity encodings and
algorithms available for English and other Western languages, similar work for
Bangla, despite it being the 4™ largest language by population, is still in its
infancy. Most of the recent efforts in Bangla phonetic similarity algorithm are
based on Soundex [9, 10], which cannot encode the sound of complex Bangla
words; the Double Metaphone encoding in described in section 4.1, tailored for
spelling checking application, encapsulates the entire range of orthographic
rules, including those involving the large repertoire of conjuncts in Bangla. We
base our proposed name encoding on section 4.1, and extend it to support the
name-spelling peculiarities in Bangla. We can use this encoding to match similar
sounding names in a database, and then use other metrics to rank the match (or
the suggestion in the case of a spelling checker).

5.41. Proposed name encoding for Bangla

Table 18: Proposed Name Encoding for Bangla details the proposed
name encoding for Bangla, followed by the rationale for the various mapping
rules. Since any word in Bangla can be name, a fair number of the rules are
inherited from the spelling encoding described in section 4.1, and so we describe
the rationale for only those that are specifically for names. We assume that the

Bangla text is encoded using Unicode Normalization Form C (NFC) [13].

Table 18: Proposed Name Encoding for Bangla

No Letter Name Unicode Code Context Example
1 o SIGN \u09CD Not Coded e /abdul/
VIRAMA  /
Hasant
2 CANDRABIN \u0981 Not Coded et /chadni/
DU
Al A \u0985 Not Coded
4 Al AA \u0986 Not Coded
o SIGN AA \uO9BE Not Coded




No

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25

26
27
28

29

30
31
32

33

34

Letter

S

2

Name

[

Il

SIGN |
SIGN I
u

uu
SIGN U
SIGN UU
]

SIGN O
E

SIGN E
Al

SIGN Al
AU
SIGN AU
KA

KHA

GA
GHA
NGA

ANUSVARA

CA
CHA
SHA

SA

SSA

Unicode
\u0987
\u0988
\uO9BF
\u09C0
\u0989
\uO98A
\u09C1
\u09C2
\u0993
\u09CB
\u098F
\u09C7
\u0990
\u09C8
\u0994
\u09CC
\u0995
\u0996
\u0995 \u09CD
\u09B7
\u 0995 \u09CD
\u09B7
\u0997
\u0998
\u0999

\u0982

\uO99A
\u099B
\u09B6

\u09B8

\u09B7

Code

Not Coded
Not Coded
Not Coded
Not Coded
Not Coded
Not Coded
Not Coded
Not Coded
Not Coded
Not Coded
Not Coded
Not Coded
Not Coded
Not Coded
Not Coded
Not Coded
“«"

“«

“«

“ kkn

Context

91

Example

@ the beginning

% /khoto/

@ middle/end

W= /dokkho/

e /banla/

Tl /bagla/

v /fadman/

S /famin/




No
35

36

37

38
39
40
41

42

43

44

45

46

47

48

49

50
51
52
53
54

55

56

Letter
T

5 4 g A

d o o

Name

Unicode

YA as phalaa x\uO9QCD\u09AF

YA
JA
JHA
NYA

TTA

TTHA

DDA

DDHA
VOCALIC R

RA as phalaa x\u09CD \u09B0

...Xxy \u09CD z
\uO9CD \u 09AF

...xy \u09CD
\UO9AF

\uO9AF
\u099C
\u099D
\uO99E \u099A

\uO99E \u099B
\uO99E \u099C
\uO99E \u099D
\uO99A \uO99E

\uO99E \u0985 |
\u099E\u0987
\u099C \u09CD
\uO99E

... \u099C \u09CD

\uO99E
\uO99E \u09CD

\uO99F
\u09A0
\uO9A1
\u09A2
\u098B

x\u098B

Code
Not Coded

Not Coded

Doubles: yy

Not Coded

“ge”

“9g”

n

“T”
“Tu
uDH

“ri?

“ri” | xri

“ rn

92

Context Example

@ the beginning st /faemay/

as YA phalaa

@ middle/end w901 /fondfa/

with conjuncts

@ middle/end Te3fErs /fottoyit/

Before CA 7 /oncol/

Before CHA 1%t /bancha/

Before JA g /monju/

Before JHA T2t /yfionga/

After CA A /facna/

Before A | | fir<er /mid/

@ the beginning  |ere /gaeto/

after JA

@ middle/end i@ /biggen/

after JA

With hasant q< /non/

@ the beginning Ag /ritu/

@ middle/end e /bikkrito/ |
e /bikrito/

@ the beginning e /prokay/




No
57

58
59
60
61
62
63
64
65
66
67
68
69

70

71

72

73

74

75

76
77
78

79

Letter

-6l

x 5 & 6 =2 2 -

A 4

dl

Name

RA
RRA
DDHA
NA
NNA
TA
THA
DA
DHA
PA
PHA

Unicode
...xX\u09CD \u09B0O

\u09BO
\u09DC
\u09A2
\uO9A8
\uO9A3
\u09A4
\u09A5
\uO9AG6
\u09A7
\uO9AA
\uO9AB

BA as phalaa xX\u09CD \u09AC

BA
BHA
MA
phalaa

y...
...x\u09CD y
\u09CD \u09AC

... \UO9AC \u09CD
\u09AC

... \UO9AE \w09CD
\u09AC

... \u0997 \u09CD
\u09AC

\u0989 \u09AG
\u09CD \u09AC
...y \u09CD \u09AC

\u09AC
\u09AD

as xX\u09CD \u09AE...

...x\u09CD y
\u09CD \uO9AE

Code

Not Coded

Not Coded

ubb”

“mb”

“gb”

uudb!v

Doubles: yy

07
0"
Not Coded

Not Coded

Context

93

Example

@ middle/end

M@ /rattri/ | =ifa

/ratri/

@ the beginning

Tl /fopna/

BA phalaa with

conjuncts

©g /totto/

After BA as

conjuncts

fow /tibbot/

After MA as

conjuncts

% /lombo/

After GA as

conjuncts

/digbidik/

After Ud- (U DA
BA...)

=l /udbeg/

@ middle/end

frfers, /biffoyit/

@ the beginning

9 /foron/

MA phalaa with
conjuncts

1 /fukkho/




No Letter
80

81

82

83

84

85

86

87

88

89

90

91

92 ki
93 il

94 =
95

96

97

Name

MA
YYA

LA
HA

Unicode
...\u0995 \u09CD
\uO9AE

...\u0997 \u09CD
\uUO9AE

...\u0999 \u09CD
\uUO9AE

... \uO99F \u09CD
\UO9AE

... \UO9A3 \u09CD
\UO9AE

... \UO9A8 \u09CD
\uUO9AE

... \UO9AE \u09CD
\uO9AE

... \u09B2 \u09CD
\uO9AE

... \u09B6 \u09CD
\uUO9AE

... \u09B7 \u09CD
\uUO9AE

... \u09B8 \u09CD
\uO9AE

...y \u09CD \uO9AE Doubles: yy

\uO9AE
\uO9DF

\u09B2
\u09B9 \u09CD
\u098B
\u09B9 \u09CD
\u09B0O
\u09B9 \u09CD
\uO9A8

Code

“m’

“gm

ngm

utm

nm

nm

“mm”

“sm

sm

“sm”

“m

Not Coded

“an

Context

94

Example

After KA as

conjuncts

et /rukmini/

After GA as
conjuncts

T /jugmo/

After NGA as
conjuncts

A /bagmoi/

After TTA as

conjuncts

5 /kutmol/

After NNA as

conjuncts

I /mrinmog/

After NA as

conjuncts

e /fonmo/

After MA as

conjuncts

=< /rumman/

After LA as

conjuncts

@ middle/end
with SHA

@ middle/end
with SSA

@ middle/end
with SA

@ middle/end
otherwise

HA with Vocalic R

HA with R as
phalaa

HA with NA

@] /gulmo/

= /kafmir/

TAE
/kufmando/

st /fufmita/

I /roffe/

S /mia/,

AT /saiém/

24w /rfiidoi/

2w /rod/

71 /purbanno/




No
98

99

100

101

102

103

104
105

106

107

108

Letter

The transformation or rules described in Table 18:

Name

HA

Visarga

Unicode

\u09B9 \u09CD
\uO9A3

\u09B9 \u09CD
\uO9AE

\u09B9 \u09CD
\uOSAF

\u09B9 \u09CD
\u09B2...

... \u09B9 \u09CD
\u09B2

\u09B9 \u09CD
\u09AC

\u09B9

One to one

Transformations

x\u0983 y...

x\u0983

x\u0983

Code

“an”

“h | “0”

Not Coded
Encode
using rest of
the rules
after
transformati
on

Doubles: yy

uhn

Not Coded

Context

HA with NNA

HA with MA

HA with YA as
phalaa

HA with LA @
beginning

HA with LA @
middle/end

HA with BA

Otherwise

@ the middle

@ the end strlen
==1]2

Otherwise @ the

end

95

Example

1% /prannfio/

=l /brommhAa/

Ty /uihio/

Zw /lhad/

<r=Tv /allfiad/

IS /aovan/ |

== /afiobhan/

/mohammod/

Q3N
/duffomoé/

T3 /ufi/, A3 /bak/

72 /puno/

Proposed Name

Encoding for Bangla were derived from a large set of names in the literature [43,

44, 45], which include both common and uncommon names, and of different

origins. We describe the rationale for the name-encoding transformations below.



96

5.4.2. Rationale for Name encoding

Transformations 1, 2: Reason why SIGN VIRAMA (Hasant) and
CANDRABINDU are to be Not Coded can be found in section 4.1.

Transformations 3 — 21: In our encoding, vowels are Not Coded. This is
to account for pronunciation differences from person to person, or region-to-
region, where the differences are due to vowels.

The following is an example of a name, which is spelled (and pronounced)

differently by native speakers:
Tage /mortuza/, JFCOIE /murtoja/, IFCSTE /mortoa/, (NS /mortuja/
In our encoding, all of these variants are encoded as “mrtj’, and can be

matched against each other regardless of spelling variation. Table 2 shows a few
more such examples justifying the decision to mark vowels as Not Coded.

Table 19. Example of vowels encoding

Similarly pronounced names Encoding

2T /naim/, T /noim/ “pm”

=zl /nahleen/, 2R /nehleen/

“nln” 3

Fe<™ /noofad/, MeAM /naofad/ o4

A /fumin/, GTITSE /fomen/ o

smn
M /rafed/, IR /rofid/ “psd”
I /mustofa/, (BT /mostofa/ “mstp”

Transformations 22-29: Names are just words, so the rationale is the
same as for words, see section 4.1 for its reasoning.

Transformations 30-34: In encodings designed for spelling checkers [5,

71, = (/s/, /§)), = (/s/, /f]), T /{/ are encoded the same as they are very close in

*Rationale for z to be Not Coded is according to Transformation 104



97

pronunciation; similarly for v /c/ and = /ch/. However, in case of name encoding, we

encode all 5 of these letters to the same code. The reason is that in Bangla, the

sound /so/ is expressed using I (/s/, /f/), but sometimes also with = /ch/. Our

solution is to encode # (/s/, /{/) and = /ch/ the same way. Since these two letters

belonged to two different groups, we combine the two groups and use the same

code.

Example: The name /salam/ is usually written as =1=% /falam/, but often also
as =« /chalam/. e /falam/ is phonetically more appropriate as = sounds like /s/
and /f/; to make matters worse, even if /salam/ is written as == /chalam/, it is still
pronounced as /salam/. Following are few more examples of names where = (/s/,
/f/) and = /ch/ are both pronounced as /s/, to justify the decision to make = (/s/, /f/)

and 2 /ch/ in the same group.

Table 20. Example of 7 and &

Name with pronunciation Both Locally Encoding
(according to rules) pronounced as

qieTe /bafet/ , =S /bachet/ /baset/ “hst”
e /mukf(it/ , ¥ /mukchit/ /muksit/ “mkst”
7if%T /nafif/ , Sif¥F= /nafich/ /nafis/ “nf”
2 /hafina/ , & /hachina/  /hasina/ g ¢

Transformation 35: At the beginning of a word, and if the word is S-s<®

/>/ or S-FHIW /a/, it is pronounced as /&/ and if there is a 2 or © after T phalaa, then

it is pronounced as 4 /e/. Both of these were encoded to “e” in section 4.1. But in

case of names, vowels are Not Coded. So, itis Not Coded.

*Rationale for z to be Not Coded is according to Transformation 104



98

Example: *i=t /feema/ and ¢ /fema/ are both encoded as “sm”, which are

similar sounding.
Transformations 36-92: Names are just words, so the rationale is the

same as for words, see section 4.1 for its reasoning.
Transformation 93: In names, ¥ is almost silent; it mainly gets the sound

of attached vowel and sometimes causes nasalization. So, it is Not Coded.
Example: i@l /mia/ — “m”, @ /saiém/ — “sm”, A /saria/ — “saria”

Transformations 94-103: Names are just words, so the rationale is the

same as for words, see section 4.1 for its reasoning.
Transformation 104: In names, 2 is usually silent or almost silent. So, it is

Not Coded.

Table 21. Example of T

Names Withz  Names Without 2 Encoding

RAT /yahira/ T /yara/ i
iRer® /nabilafi/ 7= /nabila/ “ab]”
iR /tafiminaf/ ©Ifs=l /tamina/ “tmn”
w3l /fafimida/  wifsml /famida/ “pmd”

Transformation 105: The equivalent of the English in name

abbreviations and titles is Bangla ::3, e.g., &2 is the same as EW /mohammod/.

Since these are often ad-hoc, one-to-one transformations are used before

encoding process. This set of transformations will of course be expanded as
more new cases come in use. So, to encode iz we will first transofrm it to ciiz=m

/mohammad/ before the final encoding /mohammad/.

Table 22. One to one transformation of

Short cut Elaborated form Encoding



99

T3 (TRREM /mohammod/

“mmmD”
T3 T34 /doktor/ “DKTY”
g T3 /dactar/ “DKTF
qB3 QTS /advokat/ «ppT

Table 22. One to one transformation of :: lists just a few of the very

common — there is quite a large number in use, and new cases do get added to
the colloquial use over time.
Transformations 106-108: Names are just words, so the rationale is the

same as for words, see section 4.1 for its reasoning.

5.4.1. Algorithm and perfomance of name searching using

proposed phonetic encoding

A naive approach is to search for the encoded string in the database,
which may return a large number of names, many of which are not considered
equivalent to the name being searched for. The encoding removes all the vowels
and the letters marked as Not Coded, so the encoded string is typically much
shorter than the original name. Since many other names may map to this shorter
encoded string, the match returns many irrelevant names in addition to the
“‘equivalent” ones. To avoid this problem, other figures of merit must be used to
narrow this list to include only the desired set, and to rank the resulting set in
order of relevance [46]. We propose one such figure of merit that uses a
weighted sum of the orthographic and phonetic edit-distances to exclude

dissimilar names from the query result. We give an algorithm to search for a
name (in this case w=g@ /mortusa/). After the algorithm, Table 23: Generating
suggestions for names using name encoding and other trivial methods

shows a pre-encoded list of names to search, with various columns that are

computed during the various steps.



100

Algorithm for Name searching

Encode the name to search for: ssgst /mortuya/ — mrtj.

Compute the Levenshtein edit-distance [23] (column ED) between the
candidate name and each of the names from list.

Compute the edit distance score (column EDscr) between the two strings
s1 and s2 from ED: EDscr = (maxLen(s1, s2)-ED)/maxLen(s1, s2).
Compute the phonetic edit-distance (column PED), using the encoded
versions.

Compute the phonetic edit distance score (PEDscr) from PED: PEDscr =
(maxLen(s1, s2)-ED)/maxLen(s1, s2).

The figure of merit (FOM) is the weighted sum of PEDscr and Edscr, with
PEDscr as the dominant factor: (PEDscr + Edscr/10)/1.1 and value ranges
from 0 to 1.

Table 23: Generating suggestions for names using name encoding and

other trivial methods

Names Encoding ED EDscr PED PEDscr FOM
= /fumin/ "smn” 6 0 4 0 0

4w /rofid/ "rsd" 5 0167 4 0 0.02
T /mustofa/  wpgpn 5  0.375 2 0.5 0.49
Jtes /bachet/ "bst" 6 0 3 0.25 0.23
Telre /mukfit/ "mkst" 5  0.167 3 0.25 0.24
Qe /mortuja/ "mrtj" 0 1 0 1 1

FaCoren /murtogal - wpp e 2 0714 0 1 0.97
TqereT /mortoja/ "mrtj" 1 0.833 0 1 0.98
GRS /mortugal wpyypgye 1 0.857 0 1 0.99



101

We can use the FOM to rank the matches returned by the query, which in
this case does correspond to the expected convention for the Bangla name s=rget

/mortuza/. We expect that a name searching algorithm will need to tailor the figure

of merit to the application domain.



102

CHAPTER VI: CONCLUSION

We present a Double Metaphone phonetic encoding for Bangla, tailored
for applications like spelling checker, transliteration, cross-lingual information
retrieval and name searching. This encoding encapsulates the complex spelling
rules for Bangla, and in addition, takes into account some of the dialectic
pronunciation differences that are not possible to handle otherwise. The result in
each case shows that it easily outperforms the current state of the art Bangla
spelling checker, transliteration, name searching application and also opens new
area of research on cross-lingual information retrieval.

6.1. Summary of contributors

6.1.1. Can be used to develop a spelling checker, which can give the
words of same pronunciation in suggestion.

6.1.2. Can be used to develop a transliteration, which can use not only a
one to one mapping but also able to give words with same
pronunciation from dictionary

6.1.3. Can be used to develop a name searching application, where
similar sounding names can be easily found and ranked in the
suggestion.

6.1.4. Can be used as an intermediate code in multi-lingual information
retrieval, where a user issues a query in one language (such as
English) to search a collection in a different language (such as
Bangla). More specifically, writing the pronunciation of a word in
English one can search words with same pronunciation in a Bangla

document.



103

6.2. Future research
6.2.1. Digital pronunciation dictionary can be developed from the variation
of this encoding, which can be used as a stand-alone digital
pronunciation dictionary and also for a Text to Speech application.



REFERENCES

[1] Definition of phonetic encoding available online at
http://www.nist.gov/dads/HTML/phoneticEncoding.html.

[2] Facts about the World's Languages: an Encyclopedia of the World's Major
Languages, Past and Present, Jane Garry and Carl Rubino (ed.), New
York/Dublin: H. W. Wilson Press, 2001.

[3] P. Kundu and B.B. Chaudhuri, “Error Pattern in Bangla Text", International
Journal of Dravidian Linguistics, 28(2), 1999.

[4] The Soundex Algorithm, available online at
http://www.archives.gov/research room/genealogy/census/soundex.html.

[5] Lawrence Phillips, “Hanging on the Metaphone”, Computer Language,
7(12), 1990.
[6] Lawrence Philip’s Metaphone Algorithm, available online at

http://aspell.sourceforge.net/metaphone/index.html

[7] Lawrence Phillips, “The Double Metaphone Search Algorithm”, C/C++
Users Journal, 18(6), June 2000, available online at
http://www.cuj.com/documents/s=8038/cuj0006philips/.

[8] T. N. Gadd, “PHONIX: The Algorithm”, Program, 24(4), pp. 363-366, 1990.

[9] Naushad UzZaman and Mumit Khan, “A Bangla Phonetic Encoding for

Better Spelling Suggestion”, Proc. 7th International Conference on Computer and
Information Technology, Dhaka, December, 2004.

[10] Md. Tamjidul Haque and M. Kaykobad, “Coding System for Bangla Spell

Checker”, Page 186 — 190, Proc. 5th International Conference on Computer and
Information Technology, Dhaka, December, 2002.



[11] Md. Tamjidul Haque and M. Kaykobad, “Use of Phonetic Similarity for

Bangla Spell Checker”, Page 182 — 185, Proc. sth International, Conference on
Computer and Information Technology, Dhaka, December, 2002.

[12] J. Zobel and P. Dart, “Finding Approximate Matches in Large Lexicons”,
Software - Practice and Experience, 25(3), pp. 331-345, March, 1995.

[13] The Unicode Consortium, The Unicode Standard, Version 4.0, Addison-
Wesley, 2003.

[14] Bangla Unicode Chart, available online at
http://www.unicode.org/charts/PDF/U0980.pdf.

[15] B. B. Chaudhuri, “Reversed word dictionary and phonetically similar word
grouping based spell-checker to Bangla text”, Proc. LESAL Workshop, Mumbai,
2001.

[16] Daniel Jurafsky and James H. Martin, “Speech and Language Processing,
An Introduction to Natural Language Processing, Computational Linguistics, and
Speech Recognition”, ISBN — 0-13-095069-6, Prentice Hall, 2000.

[17] F.J. Damerau, “A technique for computer detection and correction of
spelling errors”, communication of ACM, 7(3), 171-176, 1964.

[18] Arif Billah Al-Mahmud Abdullah and Ashfaqg Rahman, “A Different

Approach in Spell Checking for South Asian Languages”, Proc. 2nd |nternational
Conference on Information Technology for Applications (ICITA), China, 2004.

[19] Bangla Uccharon Obidhan, Bangla Academy, Dhaka, Bangladesh.
[20] Bangla Banan Obidhan, Bangla Academy, Dhaka Bangladesh.

[21] R.Ishida's Bengali script notes [Draft], available online at
http://people.w3.org/rishida/scripts/bengali/bengali-script/.

[22] Bangla Banan Obhidhan, Dr. Khurshid Alam, Mirnava, Dhaka,
Bangladesh.



[23] Levenshtein edit distance algorithm, available online at
http://www.nist.gov/dads/HTML/Levenshtein.html.

[24] http://www.cs.virginia.edu/~cyberia/presentations/EuDL/ppt/sld011.htm.

[25] http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Dynamic/Edit/.

[26] http://www.cs.sunysb.edu/~algorith/files/longest-common-substring.shtml.

[27] Wikipedia description on Transliteration, available online at
http://en.wikipedia.org/wiki/Transliteration.

[28] Wikipedia description on Transcription, available online at
http://en.wikipedia.org/wiki/Transcription %28linguistics%29.

[29] Kevin Knight and Jonathan Graehl, “Machine Transliteration”, available
online at http://acl.ldc.upenn.edu/J/J98/J98-4003.pdf.

[30] Yaser Al-Onaizan and Kevin Knight, “Machine Transliteration of Names in
Arabic Text”, available online at
http://acl.ldc.upenn.edu/acl2002/SEMITIC/pdfs/Semitic027.pdf.

[31] Nasreen AbdulJaleel and Leah S. Larkey, “English to Arabic
Transliteration for Information Retrieval: A Statistical Approach”, available online
at http://ciir.cs.umass.edu/pubfiles/ir-261.pdf.

[32] Leah S. Larkey, Nasreen AbdulJaleel, Margaret Connell, “What’s in a
Name?: Proper Names in Arabic Cross Language Information Retrieval”,
available online at http://ciir.cs.umass.edu/pubfiles/ir-278.pdf.

[33] Nasreen AbdulJaleel and Leah S. Larkey, “Statistical Transliteration for
English-Arabic Cross Language Information Retrieval’, available online at,
http://ciir.cs.umass.edu/pubfiles/ir-293.pdf.

[34] GAO Wei, “Phoneme based Statistical Transliteration of Foreign Names
for OOV problem”, MSc Thesis, Chinese University of Hong Kong, 2004,
available online at http://compling.ai.uiuc.edu/webpage/projects/thesis.pdf.

[35] ITRANS, available online at http://www.aczoom.com/itrans/.

[36] ITRANS table, available online at http://sanskrit.gde.to/web-
interface/bengali.html.

[37] Aksharmala mapping, available online at



http://aksharamala.com/help/chm/Input%20Schemes/ITRANS/Bengali/quick.html

[38] Iwrite32, available online at
http://members.tripod.com/~sbiswas/IWrite32/IWrite32.html.

[39] Bornosoft, available online at http://www.bornosoft.com/.

[40] Kickkeys, available online at http://www.kickkeys.com/.

[41] Lekho, available online at http://lekho.sourceforge.net/.

[42] Bengali Transliteration System by prabashi.org, available online at
http://www.prabasi.org/Literary/ComposeArticle.html.

[43] Sadikur Rahman, “Apnar shontaner prio naam”, Salahuddin Boi Ghar,
Bangla Bazar, Dhaka, September, 2003.

[44] Anis Ahmed, “Bissher shreshto 110 monishi”, Dhaka, Bangladesh.

[45] List of Contributors, “BANGLAPEDIA: National Encyclopedia of
Bangladesh”, Dhaka, Bangladesh, 2003.

[46] NameX Technology, available online at
http://www.imagepartners.co.uk/Thesaurus/AboutNameX.htm.




PPPPPPPPPP

aaaaaaaaaaaaaaaa

Soro Barna

qNEHCTUH9 988

Banjan Barna

FYNTEHRTIBEIT
FITYRETAFITGTY
IANTAZTTGT F&23v

Bangla Number

YRV8EYerdO



il

B. Bangla Unicode Chart

Bengali
Range: 0980-09FF

This file containg an excerpt from the character code tables and list of character names for the Unicode
Standard, last updated for
The Unticeds Srovdard, Version 4.0

This file may be updated as mecessary to reflect errata without notice. For an up-to-date list of errata, see
Tagpe S wwni anicode orglerraal

Disclaimer

These charts are provided as the on-line reference to the character contents of the Unicode Standard, Version
4.0 but do not provide all the information needed to fully support individual seripts wsing the Unicode
Standard. For a complete understanding of the use of the characters contained in this excerpt file, please
consult the appropriate sections of The Unicode Standard, Version 4.0 (ISBN 0-321-1B578-1), as well as
Unicode Standard Annexes #9, #1101, #14, #15, #24 and #29, the other Unicode Technical Reports and the
Unicode Character Database, which are available on-line.

See hrrpcShwww wnicode, org Public/ UNIDATAAUCD hiwd o fitrps e anfcode. or glreports’

A thorough understanding of the information contained in these additional sources is required for a successful
implementation.

Fonts

The shapes of the reference glyphs used in these code charts are not prescriptive. Considerable variation is to
be expected in actual fonts. The particular fonts used in these charts were provided to the Unicode Consortium
by a number of different font designers, who own the rights to the fonts.

See furpwww intcode orgdohorisfoms il e a T,

Terms of Use

You may freely use these code chans for personal or intermal business wses only. You may not incorporate
them either wholly or in part into any product or publication, or otherwise distribute them without express
written permission from the Unicode Consortium. However, vou are welcome to provide links to these charts.

The fonts and font data used in production of these Code Charts may NOT be extracted or otherwise wsed in
any commercial product without pennission or license granted by the typeface ownen{s).

The information in this file may be updated from time to me. The Unicode Consortium is not liable for corors.
or eimissions in this excerpt file or the standard fself. Information on characters added to the Unicode
Standard since the publication of Version 4.0 as well as on characters currently being considered for addition
1o the Unicode Standard can be found on the Unicade web site.

See htrpe S wnicode, orgpending perding. il and Bt Sewwaeicode orgdelfoc P ipeline md.

Copyrlpid © J091-2003 Unicode, Tne. AN vights reserved



09FF

Bengali

0B 083 0OBA 0SB

gl i oy <

m\\\\\\\\\\\\\\\\\\\\

wk

m x.ﬁqm

B EPs i

m_q_qxh.,.mwﬂlhcq\
»w\om:mawemam“\\\\.w\ﬂ\b\b

e .ﬁ.\\ %\\\\m NMEM

Hm\\ﬁm\\\\\\ﬁmﬂmﬂmimx

A - H\\ﬂmﬁmam_ﬁ_mﬂﬁﬂ

@m\\\\\\\ﬂ DI FIFT W DI DEWNIBEFE Sy W

\\Emﬁwﬁ@@mmh\\ﬂ

EEEEEEEEEEEEEEEE



1981 Bengali 0on7?
Basad on ISCIl 1988 {981 “reserved=
: : {982 BEMGAL] LETTER LA
Various signs 0983 <regerved=
0881 ¢ BENGALI SIGN CANDRABINDU 0984 “reserved=
0582+ BENGALI SIGH ANUSVARA {985 “reserved=
0883 : BEMGALISIGN VISARGA 0986 1 BENGALI LETTER SHA
{987 ® BEMGALI LETTER 58A
Independent vowels [988 ¥ BENGALI LETTER SA
0585 ¥ BEMGALI LETTER A {583 T BENGALI LETTER HA
0536 M BEMGAL] LETTER AA i i
0587 # BEMGALI LETTER I
0saE B BENGALI LETTER I [98C . BEMGALI SIGN MUKTA
nsAs F BENGALI LETTER U = for extending the alphabet to new letters
0s8% % BENGALI LETTER LU 980 % BEMGALI SIGN AVAGRAHA
0588 % BENGALILETTER VOCALIC R Dependent vowel signs
0BAC ®» BENGALI LETTER VOCALIC L ORE 4 AENEATTVERL S
0280 EF <reserved> :
YR sl 198F T BENGALI VOWEL SIGN |
OoaF éEﬂG L-! LETTER E = gtands to the left of the consonant
Eia @ A G:u SR 8900 ™1 BEMGAL] VOWEL SIGM 11
il 5 901 _  BENGALI VOWEL SIGN U
s i = 0aCZ . BENGALI VOWEL SIGN LU
e ;E;“é”:L'i O s 09C3 ., BENGALI VOWEL SIGN VOCALIC R
2 0acd BEMGAL] VOWEL SIGN VOCALIC RR
0534 # BENGALILETTER AL 0905 ; mﬂ",m_,
Consonants acE “reaerved=
0595 F BENGALI LETTER KA 09CT BEMGAL] VOWEL SIGN E
0596 ¥ BEMGALI LETTER KHA = stands to the left of the consonant
087 % BENGALI LETTER GA 09CE T BEMGAL] VOWEL SIGN Al
089E ¥ BENGALI LETTER GHA = gtands to the left of the consonant
0538 @ BENGALILETTER NGA Two-part dependent vowel signs
0g3A B BENGALILETTER CA These fwo-praerd dependent vowed 2igny eeve glipdi
0598 ® BEMGALILETTER CHA pleces whiich sfeed o baork sides r.g."-Ifu‘ LTI D
08C W BEMGALI LETTER JA These vowe! sigme fodlow the comsonant in logical
0890 ¥ BEMGALI LETTER JHA arder, ulrnu'.mfmm'af B homaled as o anil for most
089E @ BEMGALI LETTER NYA Procesaikg. :
089F © BENGALILETTER TTA T2 “E;ﬁ":__“u‘;’:f]* Al
0540 ¥ BEMGALI LETTER TTHA g :
05A1 % BENGALI LETTER DDA 09CC T BEMGALL VOW ::L SIGM ALl
0842 T BENGALILETTER DDHA «DICTT 0807
0843 1 BENGALILETTER NNA Various signs
Oabee : ARNCALILEFTER TA 8900 . BEMGALI SIGN VIRAMA
0BAS BEMGALI LETTER THA = hasant (Bengali term for halant)
0546 % BEMGALI LETTER D B
0547 ¥ BENGALI LETTER DHA s
0538 7 BENGALI LETTER MA iy
0Bag <reserweds cresarvads
0544 ® BEMGALILETTER PA PRI
054 ¥ BENGALI LETTER FHA PR
054C 3 BENGALI LETTER BA R
= Bengali va, wa “regarved>
0540 & BENGALILETTER BHA P
e o BN L I RN 1907 't BENGALI AU LENGTH MARK
054F ¥ BENGALILETTER YA
0880 ¥ BENGALI LETTER RA

a0 The Ulaicode Sterdowa d 0, Copyrigh © J000-2003, Unicode, Tne. AN righss reserved,

v



wWpC Bengali

Additional consonants
080C % BENGALILETTER RRA
= (9415 0O8EC |
0800 ¢ BENGALILETTER RHA
= 0942 ™ [ABC |

080E <peserved=
080F W BENGALILETTER ¥YA
= 09AF § D9BC |

Generic additions

O08ED W BENGALILETTER VOCALIC RR
05E1 § BENGALILETTER YOCALIC LL
nBEZ BEMGALI VOWEL SIGH VOCALIC L

0SE3 , BENGALI VOWEL SIGN VOCALIC LL
Digits

056 © BENGALIDIGIT ZERO
DSE7 > BENGALI DIGIT ONE
DSEE & BENGALIDIGIT TWO
0SES @ BENGALI DIGIT THREE
DSEA B BENGALIDIGIT FOUR
DSEE @ BENGALIDIGIT FIVE
DEEC + BENGALIDIGIT SIX
0SED % BENGALI DIGIT SEVEN
DSEE ¥ BENGALI DIGIT EIGHT
0SEF & BENGALI DIGIT NINE

Bengali-specific additions

050 T BEMNGALI LETTER RA WITH MIDDLE
DIAGOMAL
= Assamese

08F1 ¥ BENGALILETTER EA WITH LOWER
DIAGOMAL
= BEMGALI LETTER ¥A WITH LOWER
DIAGONAL
= Assamese

08F2 ~ BENGALI RUPEE MARK

053 ¥ BENGALI RUPEE SIGN

054 » BENGALI CURRENCY NUMERATOR
OME
= N in current usage

0%F5 = BENGALI CURRENCY NUMERATOR
TWO
= Nt in current usage

08F§ & BENGALI CURRENCY MUMERATOR
THREE
= Nt in current usage

05F7 | BEMWGALI CURREMCY NUMERATOR
FOLR

058 K BENGALI CURRENCY NUMERATOR
OME LESS THAN THE DENOMINATOR

08F9 o BENGALI CURRENCY DENOMINATOR
SIXTEEN

05FA = BEMNGALI ISSHAR

The Unicode Stevrdeneed 4.0, Copyright © 1900-2003. Unicode, Tne. Al rights reserved.

9FA

7l



vi

C. IPA (International Phonetic Alphabet)

THE INTERNATIONAL PHONETIC ALPHABET (revised to 1993)

CONSONANTS (PULMONIC)

Bilabial | Labiodental| Dental | Alveolar | Postalveolar| Rewoflex | Palatal | Velar | Uvular | Pharyngeal| Glomal ]
Plosive p b t d t d' C j q G
Nasal m m n n n N|
Trill B r R
Tap or Flap r t
raie (O P|f V|IOD|sz|f 3|5 z|¢ ] X ¥
Lateral
fricative i 13
Approximant v I .[ J I.LI
Lateral
approximant 1 l K L
Where symbols appear in pairs, the one to the right represents a voiced consonant. Shaded areas denote articulations judged imy
CONSONANTS (NON-PULMONIC) SUPRASEGMENTALS TONES & WORD ACCENTS
Clicks Voiced implosives ];:.jectives ' Primary stress founo't J'gn LEVEL CONTOUR
O Bilabial 5 Bilabial asin: , Secondary stress " ot c w—l Eﬁn C o A Rising
1 v v
| Denta d Dentavalveotsr P’ Bitabial i Long € é Tuew & N rung
’ v v
! (Post)alvealar _.[ Palatal {  Dentalalveotar . [lflosg 9 é —I Mid é ’] High rising
4: k‘ Extra-short € gh s
Palatoal veolar g Velar Velar . " _I = ,]
I prs g’ . Syllablebreak Ji.2EKE c Low € Low rising
Alveolar lateral Uwvular Alveolar fricative N - Extr “
Minor (foot) group c lcwl € 1 Rising-falling
VOWELS Il Msior Gatonasion) group 4 Downstep 7 Globalise
Front Central Back  Linking (absence of a break) T Upstep N Global fall
Close 1 ten weu .
y 1Y U DIACRITICS Diacritics may be placed above a symbol with a descender, e.g.I]
Voieeless 11 . Breathy voiced b a Dental td
Close-mid € w @ 9%0 ¥ ¢ 0 ° e % n rA
) viw S U | cwwwu b @ | ww  Ld
h
Open-mid e\ — 3\(3 —A®D aspiraed E8 A® | Linguotabia € d o Lamina [ g
e e , More rounded ? W Labialized tYdY | 7 Nasatized é
Open a (EJ— aeD . Lessrounded Q) I pawatiza @ N Nasatectesse A7
Where symbols appear in pairs, the one to the right
represents a rounded vowel. + Advanced l.i.l Y Velarized tY dY 1 Lateral release dl
. bl al
OTHER SYMBOLS _ Retracted 1| Y prayngeaicea t4 d° No audible refease 0
M Voiceless labiak-velar fricative & % Alveolo-palatal fricatives |~ » 1
W Veiced labial-velar approximant -I Alveolar lateral flap Centralized € Velarized or pharyngealized
> X
I.[ Voiced labial-palatal approximant fj SimultanewsI and X Mid-centralized € R Raised 9 ({ = voiced alveolar fricative)
H voiceless epiglotal fricative Affricates and double articula- i o
tions can be represented by two , Syllabic .} - Lowered 9 ( J = voiced bilabial approximant)
S Voiced epiglottal fricative symbals joined by a tie bar if
necessary. .
2 Epiglottal plosive lz-\ ’t__s.. . Non-syllabic g . Advanced Tongue Root f}
p * Rhoticity [~ b . Retracted Tongue Root Q




D. Bangla IPA Chart

vii

Conzonands
EBiahial [Labioderdall Dental |[Alveolar | Eetrofle: [Paldcalweolar| Paldtal | Velar |Glottal
Plsive p b t d td kg
ph bh th dh th dh kh gh
Affiicate cj 13
cih i3h
M asal m ul 1
Lateral 1
EollTnll t
Flap/Tap r r
th
Friestiee | [ | T W 8 z ] h h
4 pproxnat . e
Vouel:
Fromt Back
Close 1 I |u 1
Close-rmid g 8|0 O
Crpen-mid B B0 3
(Open il




