

PHONETIC ENCODING FOR BANGLA AND ITS
APPLICATION TO SPELLING CHECKER,

TRANSLITERATION, CROSS LANGUAGE INFORMATION
RETRIEVAL AND NAME SEARCHING

A Thesis

Submitted to the Department of Computer Science of

BRAC University

by

Naushad UzZaman

Student ID: 01201019

In Partial Fulfillment of the

Requirements for the Degree of

Bachelor of Science in Computer Science
May 2005

BRAC University, Dhaka, Bangladesh

ii

DECLARATION

I hereby declare that this thesis is based on the results found by myself.

Materials of work found by other researcher are mentioned by reference. This

Thesis, neither in whole nor in part, has been previously submitted for any

degree.

Signature of Signature of

Supervisor Author

------------------- ------------------

Dr. Mumit Khan Naushad UzZaman

iii

ACKNOWLEDGMENTS

First of all, I would like to thank my supervisor, Dr. Mumit Khan. He gave

me not only full freedom to choose my research topic, but also extended a lot of

guidance throughout its development. I was lucky enough to work under him at

the Center for Research on Bangla Language Processing, BRAC University for

last one year. Although being extremely preoccupied with his busy schedule, he

often showed much enthusiasm and took time and lot of pain to review drafts of

my paper that enabled me to improve the contents as well as my presentation. I

learned plenty of useful things from his comments, revisions and discussions

during this period which taught me to write better research papers. Being a

undergraduate student, I got two of my papers with him accepted in International

conferences and also submitted two more with him in another International

conference, which I feel a great achievement of my under-graduation study at

BRAC University. And it was possible for me mainly because of my supervisor’s

support.

I want to give my heartiest gratitude to all the faculty members of BRAC

University for their helping hands. Many thanks to all of my friends for being with

me and always encouraging me and special thanks to my colleagues working in

Dr. Mumit Khan’s research team, Sajib Dasgupta, Dewan Shahriar Hossain

Pavel, Asif Iqbal Sarkar, Sheemam Monjel and Rowshon Jahan Nupur, who have

seen the Double Metaphone a thousand times and being patient listeners helped

me with their valuable suggestions.

I am also grateful to the reviewer of conferences, where I submitted my

papers. Their valuable reviews were very helpful for me to understand and

iv

improve my paper a lot.

Finally, special thanks and love to my father for his constant guidance and

encouragement in my study and research work, my mother for her prayers and

my one and only brother for his brotherly support and love.

Last but not the least, thanks to the Almighty for helping me in every step

of this work.

v

To my family, friends & well-wishers

vi

ABSTRACT

We present a phonetic encoding for Bangla that can be used by

spelling checkers, transliteration, name searching application and

cross-lingual information retrieval to drastically improve the quality.

The complex, and often inconsistent, rules of Bangla word present a

significant challenge in producing a proper phonetic code. We propose

a phonetic encoding for Bangla, taking into account the various

context-sensitive rules, including those involving the large repertoire of

conjuncts in Bangla.

vii

TABLE OF CONTENT
DECLARATION...ii

ACKNOWLEDGMENTS ...iii

ABSTRACT ..vi

TABLE OF CONTENT...vii

LIST OF TABLES ... x

LIST OF FIGURES ...xi

Chapter I: INTRODUCTION ... 1

CHAPTER II: PHONETIC ENCODING... 3

2.1. Definition .. 3

2.2. Phonetic Encoding for English ... 3

2.2.1. Soundex.. 4

2.2.2. Metaphone .. 6

2.2.3. Phonix ... 8

2.2.4. Double metaphone.. 8

2.3. Existing Phonetic Encoding for Bangla... 10

2.3.1. Hoque and Kaykobad’s soundex type encoding [10, 11] 10

2.3.1.1. Producing simplified format / open format.............................. 12

2.3.1.2. Producing sound-code or Bangla soundex or Bsoundex 12

2.3.2. Zaman and Khan’s soundex type encoding 13

Case 1 ... 13

Case 2 ... 14

Case 3 ... 14

2.3.2.1. Phonetic matching technique for Bangla................................ 15

2.3.2.2. Summary of soundex for Bangla.. 17

2.3.2.3. Encoding reasoning for 0 (not coded) characters 18

2.3.2.4. Example of error correction using phonetic matching 19

CHAPTER III: RESEARCH QUESTION... 20

3.1. Scope Of Our Proposed Encoding ... 20

3.2. Limitation Of Previous Encoding .. 21

1. Hoque and Kaykobad, 2002, BSoundex [10, 11] 22

viii

2. Zaman and Khan, 2004 [9], soundex type phonetic encoding.............. 23

3.3. Why It Is Worthwhile To Answer .. 24

CHAPTER IV: PROPOSED ENCODING ... 26

4.1. Proposed phonetic encoding for words .. 26

4.1.1. Phonetic encoding table.. 27

4.1.2. Encoding reasoning .. 31

CHAPTER V: APPLICATIONS OF PHONETIC ENCODING 48

5.1. Spelling Checker .. 48

5.1.1. Spelling error patterns .. 48

5.1.2. Previous spelling checking techniques ... 50

5.1.2.1. Approximate string matching algorithm.................................. 50

Levenshtein Edit Distance[23, 24, 25] .. 50

Longest common substring (LCS) [26] ... 51

5.1.2.2. BB Choudhury’s Reverse dictionary method.......................... 53

Phonetically similar character error correction 53

Reversed word dictionary... 53

Error detection & position finding and Error correction 54

Insertion and transposition: .. 56

Deletion and substitution: ... 56

5.1.2.3. Abdullah and Rahman’s Recursive simulation method [19] ... 57

Algorithm: RecursiveSimulation ... 61

Sorting the suggestion list: ... 63

5.1.2.4. Hoque and Kaykobad’s soundex type encoding 66

5.1.2.5. Zaman and Khan’s soundex type encoding 66

5.1.3. Performance of previous techniques... 66

5.1.4. How to rank... 69

5.1.5. Performance of our proposed encoding .. 70

5.2. Transliteration .. 73

5.2.1. What is transliteration.. 73

5.2.2. Previous transliterations.. 74

5.2.3. Proposed new technique for transliteration 75

ix

5.2.3.1. Direct mapping... 75

5.2.3.2. Phonetic mapping .. 78

Algorithm of phonetic mapping... 78

5.2.4. Example of transliteration.. 82

5.2.4.1. Direct mapping... 82

5.2.4.2. Phonetic mapping .. 83

5.3. Cross Language Information Retrieval ... 85

5.3.1. What does it handle .. 85

5.3.2. Previous work.. 85

5.3.3. How does it work... 86

5.3.4. Example .. 87

Bangle Text:... 87

Encoding of Bangla Text:... 87

5.4. Name Searching and Matching .. 89

5.4.1. Proposed name encoding for Bangla.. 90

5.4.2. Rationale for Name encoding.. 96

5.4.1. Algorithm and perfomance of name searching using proposed

phonetic encoding ... 99

Algorithm for Name searching ... 100

CHAPTER VI: CONCLUSION .. 102

6.1. Summary of contributors .. 102

6.2. Future research.. 103

REFERENCES...- 1 -

APPENDICES ... i

A. Bangla Alphabet ... i

B. Bangla Unicode Chart...ii

C. IPA (International Phonetic Alphabet) ..vi

D. Bangla IPA Chart ..vii

x

LIST OF TABLES

Table 1: Soundex encoding table ... 4

Table 2: PHONIX encoding table.. 8

Table 3: Hoque and Kaykobad’s phonetic encoding for Bangla 10

Table 4: Bangla phonetic encoding table.. 15

Table 5: Suggestions for misspelled words .. 19

Table 6: Double Metaphone Phonetic Encoding table for words 27

Table 7: Edit distance example... 51

Table 8: LCS example .. 52

Table 9: Challenges for spelling checker and performance of previous techniques

... 68

Table 10: Encoding performance.. 70

Table 11: Error distribution ... 70

Table 12: Performance of proposed phonetic encoding 71

Table 13: Table for direct mapping ... 75

Table 14: Modification in proposed encoding ... 79

Table 15: Proposed encoding for phonetic mapping .. 80

Table 16: Few examples from above paragraph to make the process clear 83

Table 17: English word, encoding of English word, Bangla word with the same

encoding from the text .. 87

Table 18: Proposed Name Encoding for Bangla.. 90

Table 19. Example of vowels encoding ... 96
Table 20. Example of স and ছ .. 97

Table 21. Example of হ ... 98

Table 22. One to one transformation of ◌ঃ .. 98

Table 23: Generating suggestions for names using name encoding and other

trivial methods .. 100

xi

LIST OF FIGURES

Figure 1: The Soundex algorithm ... 5

Figure 2: Flowchart of producing sound code from a given word 11

Figure 3: The Soundex algorithm for Bangla .. 17

Figure 4: Error localization by conventional and reverse dictionary.................... 55

Figure 5: List of phonetically similar letters... 58

Figure 6: List of vowel-symbols (known as kaar) .. 58

Figure 7: List of consonant symbols (known as folaa & reff) 58

Figure 8: Circular lists of the grouped letters .. 58

Figure 9: Some compound letters and their formation.. 59

Figure 10: Some common Bangla words with their miss-spelt forms 59

Figure 11: Simulated suggestion list for the word misspelled word, using

Recursive Simulation algorithm. ... 65

1

1

Chapter I: INTRODUCTION

Bangla, also known as Bengali, is the language of approximately 210

million people, the majority of whom live in Bangladesh and in the Indian state of

West Bengal, making it the 4th most widely spoken language in the world. It

belongs to the leftmost branch, called the Aryan or Indo-Iranian, of the Indo-

European family of languages, and is written in the Brahmi-derived Bangla script.

Bangla underwent a period of vigorous Sanskritization that started in the 12th

century and continued throughout the middle ages, resulting in the vast gap

between the script and the pronunciation [2]. Bangla lexicon today consists of

tatsama (Sanskrit words that have changed pronunciation, but retaining the

original spelling), tadbhava (Sanskrit words that have changed at least twice in

the process of becoming Bangla), and a fairly large number of “loan-words” from

Persian, Arabic, Portugese, English, and other languages. There are also a large

number of words of unknown etymology, which may have originated from

Dravidian, Austric or Sino-Tibetan languages. All of these contribute to the

complexity of the Bangla spelling rules, with the Sanskritization process as the

largest contributor. An additional factor is the large number of consonant clusters

or juktakkhors (typically represented as conjuncts in the written form) in Bangla,

where each consonant in the cluster except for the last one loses its inherent

vowel. One impact of this complexity can be seen in the observation that two of

the most common reasons for misspelling are (i) phonetic similarity of Bangla

characters, and (ii) the difference between the grapheme representation and the

phonetic utterances [3].

Phonetic encoding has a wide variety of applications. It was first proposed

for name searching application in census [4] but later its application extended to

spelling checker. The performance of these applications depends on how better

2

2

the code represent the pronunciation. Phonetic encoding is always a great

challenge in a language. English and other Western languages have well

established phonetic encodings [4, 5, 7, 8], but similar work for Bangla has barely

begun [9, 10]. These efforts are based mostly on Soundex [4] or other ad-hoc

methods, which cannot handle the complexity of Bangla spelling rules. This is

the primary motivation for creating a phonetic encoding that can handle such

complexity.

After Introduction, In Chapter II, we will describe about phonetic encoding

in detail, which will include wellestablished encoding for English and also existing

encoding for Bangla as well. In Chapter III, we will describe the Research

question, which includes the scope of our encoding, the limitations of other

encoding and the importance of our encoding. In Chapter IV, we proposed our

encoding with reasoning. In Chapter V, we have shown how currently spelling

checker, transliteration, name searching work and how we drastically improve its

performance using phonetic encoding, we also introduced a new application for

Bangla, which is cross-lingual information retrieval for Bangla in this chapter. And

finally in conclusion, we summarized how this encoding helps in applications like

spelling checker, transliteration, cross-lingual information retrieval and name

searching.

3

CHAPTER II: PHONETIC ENCODING

2.1. Definition

Code a string based on how it is pronounced. [1]

The input of a phonetic encoding or “sound-alike” algorithm is a word,

and the result is an encoded key, which should be same for all words that are

pronounced similarly, allowing for a reasonable amount of fuzziness.

For example, metaphone-encoding [5] gives the code RLS for the word

realise in English.

We know that realize and realise has the same pronunciation. Hence a

good encoding in English should be able to give the same code RLS to

realize as well.

2.2. Phonetic Encoding for English
In English, a major class of approximate string matching algorithms is

the various phonetic methods, from the eighty-year old Soundex [4], to the

more recent Metaphone [5], Double metaphone [7] and PHONIX [8]. The

basic principle behind these phonetic matching schemes is to partition the

consonants by phonetic similarity, and then use a single key to encode each

of these sets. For these particular algorithms, only the first few consonant

sounds are encoded, unless the first letter is a vowel. Metaphone for example

encodes "Stephan", “Steven”, and “Stefan” as STFN, so all three names

compare equal when encoded.

A brief description on each of the phonetic encoding for English is

given below.

4

2.2.1. Soundex

Among all the phonetic methods, Soundex method is by far the

oldest, first patented by Odell and Russel in 1918. Soundex partitions the

set of letters into seven disjoint sets, assuming that the letters in the same

set have similar sound. Each of these sets is given a unique key, except

for the set containing the vowels and the letters h, w, and y, which is

considered to be silent and is not considered during encoding. The

Soundex codes are shown in Table 1: Soundex encoding table. The

Soundex algorithm itself, shown in Figure 1: The Soundex algorithm,

transforms all but the first letter of each string into the code, and then

truncates the result to be at most four characters long. Zeros are added at

the end if necessary to produce a four-character code. For example,

Washington is coded W-252 (W, 2 for the S, 5 for the N, 2 for the G,

remaining letters disregarded), and Lee is coded L-000 (L, 000 added).

A limitation of Soundex is that it does not know the intricacies of

complex spelling rules for English, and because it works on a letter-by-

letter basis, it often does not produce the expected result. Another

limitation is that truncating the words to four-character code ignores

differences in long strings, which may not be appropriate when finding

alternatives for misspelled words.

An advantage of Soundex is the small table size and simplicity of

the letter-by-letter algorithm, which can provide significant speedup over

the other phonetic methods.

Table 1: Soundex encoding table

Code Letters

0 (not coded) A, E, I, O, U, H, W, Y

1 B, F, P, V

5

Code Letters

2 C, G, J, K, Q, S, X, Z

3 D, T

4 L

5 M, N

6 R

1. Capitalize all letters in the word and drop all punctuation marks. Pad the word with

rightmost blanks as needed during each procedure step.

2. Retain the first letter of the word.

3. Change all occurrence of the following letters to '0' (zero):

 'A', E', 'I', 'O', 'U', 'H', 'W', 'Y'.

4. Change letters from the following sets into the digit given:

• 1 = 'B', 'F', 'P', 'V'

• 2 = 'C', 'G', 'J', 'K', 'Q', 'S', 'X', 'Z'

• 3 = 'D','T'

• 4 = 'L'

• 5 = 'M','N'

• 6 = 'R'

5. Remove all pairs of digits which occur beside each other from the string that resulted

after step (4).

6. Remove all zeros from the string that results from step 5.0 (placed there in step 3)

7. Pad the string that resulted from step (6) with trailing zeros and return only the first

four positions, which will be of the form <uppercase letter> <digit> <digit> <digit>.

Figure 1: The Soundex algorithm

6

2.2.2. Metaphone

The Metaphone algorithm, proposed by Lawrence Philips, 1990, is

also a system for transforming words into codes based on phonetic

properties. However, unlike Soundex, which operates on a letter-by-letter

scheme, Metaphone analyzes both single consonants and groups of

letters called diphthongs, according to a set of rules for grouping

consonants, and then mapping groups to Metaphone codes.

Details on metaphone encoding can be found in [5, 6].

The Metaphone Rules
 Metaphone reduces the alphabet to 16 consonant sounds:

B X S K J T F H L M N P R 0 W Y

That isn't an O but a zero - representing the 'th' sound.

Transformations
Metaphone uses the following transformation rules:

Doubled letters except "c" -> drop 2nd letter.

Vowels are only kept when they are the first letter.

B -> B unless at the end of a word after "m" as in “dumb"

C -> X (sh) if -cia- or -ch-

 S if -ci-, -ce- or -cy-

 K otherwise, including -sch-

D -> J if in -dge-, -dgy- or -dgi-

 T otherwise

F -> F

G -> silent if in -gh- and not at end or before a vowel

 in -gn- or -gned- (also see dge etc. above)

 J if before i or e or y if not double gg

 K otherwise

H -> silent if after vowel and no vowel follows

 H otherwise

7

J -> J

K -> silent if after "c"

 K otherwise

L -> L

M -> M

N -> N

P -> F if before "h"

 P otherwise

Q -> K

R -> R

S -> X (sh) if before "h" or in -sio- or -sia-

 S otherwise

T -> X (sh) if -tia- or -tio-

 0 (th) if before "h"

 silent if in -tch-

 T otherwise

V -> F

W -> silent if not followed by a vowel

 W if followed by a vowel

X -> KS

Y -> silent if not followed by a vowel

 Y if followed by a vowel

Z -> S

Initial Letter Exceptions

Initial kn-, gn- pn, ac- or wr- -> drop first letter

Initial x- -> change to "s"

Initial wh- -> change to "w"

8

2.2.3. Phonix

PHONIX is similar to Soundex in that letters are mapped to a set of

codes. Prior to this mapping however, PHONIX applies preliminary

transformations to letter groups in order to reduce strings to a canonical

form. For example, gn, ghn, and gne are mapped to n, the sequence tjV

(where V is any vowel) is mapped to chV if it occurs at the start of a string,

and x is transformed to ecs. PHONIX applies altogether about 160 of

these transformations. These transformations provide a certain degree of

context for the phonetic coding and allow, for example, c and s to be

distinguished, which is not possible under Soundex. The Phonix codes are

shown in Table 2: PHONIX encoding table.

Table 2: PHONIX encoding table

Code Letters

0 (not coded) A, E, H, I, O, U, W, Y

1 B, P

2 C, G, J, K, Q

3 D T

4 L

5 M, N

6 R

7 F, V

8 S, X

2.2.4. Double metaphone

Lawrence Philips, 2000, also proposed double metaphone.

Metaphone worked fine in most of the cases but there were a few cases

9

that metaphone cannot handle [7]. Such as,

• Bryan (BRYN) was not matched to Brian (BRN).

• MacCafferey is encoded to MKKF, an out-and-out

bug.

• Retaining Soundex's choice of preserving the first

letter (in Metaphone, only for words that started with vowels), "Otto"

for example, cannot be matched to "Auto."

• More difficult to deal with, and contributing

considerably to inelegance, are the consonants that are

pronounced differently in different words. For example, “gh” in light

and rough.

• English has a tendency to accumulate a large number

of words from non-English sources, notably French, Latin, and

Greek. When transliterating from the Greek alphabet, the letter that

is pronounced “kh” is Greek (a sound that does not exist in English

– think “chutzpah”), is spelled “ch” and pronounced “k”: “orchestra”,

“chorus”, etc.

• Most importantly, some familiar names can just as

plausibly be pronounced more than one way. Henry Kissinger and

Kim Basinger are example of that type. Basinger is pronounced in

both way as “Basin-gger” or “Basin-jer”.

These problems led Philips to propose another phonetic encoding,

Double metaphone, which perform better but not perfect. Main

improvement of this encoding is it will give two keys for words and names

that can be plausibly pronounced more than one way.

For example, in case of Kuczewski, there are two ambiguous

sounds, so "Kuczewski" now comes back as KSSK for the American

version, "Kuhzooski," as well as KXFS for "Kutchefski." (‘X' is used to

represent the "sh" sound, and ‘0', zero, to represent "th," as in original

10

Metaphone.)

2.3. Existing Phonetic Encoding for Bangla
Eighty years old technique of phonetic encoding is new in Bangla.

Hoque and Kaykobad, 2002 [10], first proposed it. After that Zaman and

Khan, 2004 [9], proposed their version of soundex type Bangla phonetic

encoding. Both of the encoding use “soundex” in their encoding name.

Reason behind it is they follow the general principal of soundex encoding, to

partition the letters in to disjoint sets.

2.3.1. Hoque and Kaykobad’s soundex type encoding [10, 11]

Using the major concepts from the soundex encoding [4], Hoque

and kaykobad’s proposed encoding maintain following rules. [10]
• Same sounding letters would have same value, e.g. NA (ন)

and NNA (ণ)

• Same composite consonants would have single value, as if k

(KA HASANT KA)→ ক (KA)

Their proposed encoding is given in following Table 3: Hoque and

Kaykobad’s phonetic encoding for Bangla.

Table 3: Hoque and Kaykobad’s phonetic encoding for Bangla

Group Name Group Member

1 ক, খ, গ, ঘ, k

2 চ, ছ, জ, ঝ, য

3 ট, ঠ, ড, ঢ

4 ত, থ, দ, ধ, t

5 প, ফ, ব, ভ

6 ঙ, ঞ, ◌ং

7 শ, স, ষ

8 র, ড়, ঢ়, ঋ

11

9 ন, ণ

α ম

β ল

Like Soundex [4], they only give codes to consonants. But they

consider some special cases to handle the exceptions.
Consonant য় sounds like a, which sounds vowel like. Also, while we

pronouncing হ, the airflow do not face any barrier, that implies that হ sound

has vowel like impact. So, য় and হ are not involved in grouping. A few

vowels are involved in the grouping because of their consonant like sound,
e.g. ঋ.

 To suggest similar sounding words for the miss-spelled word, each

word stored in the dictionary would store sound code. The generation of

the sound-code is outlined via flow chart below.

Figure 2: Flowchart of producing sound code from a given word

Word

Word in Open
format

All vowels {Principal vowel (except if having initial

position) and half vowels} are removed. Compound

consonants are broken into simplified form. We call the final

format as Open Format / Simplified format.

Keeping initial letter unchanged, using encoding

table substitute consonant sound with its group

number, If same group number exist adjacently, then

substitute them with single one. We call this final

format as Sound Code or Bangla Soundex, in short

Sound code

12

They did not state specifically but their following description shows

that they used the ASCII encoding rather than generalized Unicode

encoding for encoding the Bangla text.

2.3.1.1. Producing simplified format / open format

The word need to be simplified before generating Sound-code

or Bsoundex. According to them there exists number of character(s) or

symbol(s) in Bangla that are placed after the consonants but

pronounced before the consonants. For example, Ref sounds

before the sound of the consonant after which it is placed.

At first step, above-mentioned words are rearranged according

to their sounding sequences. For example,

Secondly, all vowels {Principal vowel (except if having initial

position) & half vowels} are removed. Compound consonants are

broken into principal form that is member of Table 3: Hoque and

Kaykobad’s phonetic encoding for Bangla.

For example,
কর্ম would be converted to করম

তােদর would be converted to তদর

adতু would be converted to aদভত

েkশ would be converted to কলশ

Thus, Simplified format or open format is produced.

2.3.1.2. Producing sound-code or Bangla soundex or

Bsoundex

Keeping initial letter unchanged, using Table 3: Hoque and

13

Kaykobad’s phonetic encoding for Bangla, substitution of the

decomposed or simplified component (alphabet) of word is done with

the respective group number, if the adjacent group has the same

number then only one such group is used. The final format is the

sound code or Bangla Soundex, in short Bsoundex.

For example, করম will be converted to a 4 lengthen sound code

as “ক8α0”, with zero padding.

This is how, BSoundex encodes a word.

2.3.2. Zaman and Khan’s soundex type encoding

Zaman and Khan, 2004 [9], proposed a Soundex type encoding for

Bangla. Unlike [11], this Soundex type encoding does not follow each and

every rule of English soundex, rather than that it customizes the soundex

and based on the Bangla’s nature it proposes a encoding. This can better

handle the complex part of Bangla word, conjuncts or jukhtakkhor, where

each consonant in the cluster except for the last one loses its inherent

vowel.

There are some rules for English Soundex, but we can not use

those in Bangla. Following are the reasons for that.

Case 1: Soundex keeps the first letter of the string in the encoding.

Problem: This is in fact a general problem with Soundex. If there is

a spelling error in the first character of the word, the correct suggestion
cannot be produced using Soundex. For example, if we write gম instead of

ঘুম, Soundex will not be able to suggest the correct alternative, as the

incorrectly spelled word gম will begin with গ independent of the character

encoding used, Unicode or otherwise. at the beginning. Since the

14

phonetically encoded lexicon will have the word ঘুম encoded as something

that begins with ঘ, the phonetic method will never produce ঘুম as a

suggestion for gম. Of course, other edit-distance algorithms (e.g.,

Levenshtein [23]) are able to produce the correct suggestion in this

particular case, so a spelling checker employing other similarity measures

will produce the expected result (See [12] for a summary of the various

edit-distance algorithms).

Case 2: Soundex excludes vowels when encoding strings.
Problem: The a vowel is often used as a prefix to negate the

meaning of Bangla words, and excluding it will often produce suggestions

that are of the opposite meaning than the intended one. This may be

appropriate behavior for some applications, but not for a spelling checker.
For example, the words সুখ and aসুখ will result in the same Soundex code,

even though we do not expect one as the suggested alternative for the

other, much like we would not expect unwell as the suggested alternative

for well .
Problem: Another problem of excluding the vowels is that words

that are not phonetically similar and have very different meanings also
produce the same code. বন and বািন, aকাজ and কািজ. বন (forest) and বািন for

example will produce the same code if we exclude vowels, even if these

words do not have same meaning, and in addition, are phonetically quite
different. Similarly, in the case of aকাজ and কািজ, the a from aকাজ and the ি◌

from কািজ will be excluded to produce the same code, another undesired

result.

Case 3: In soundex, consecutive repetitions of the same coded

characters are eliminated.

Problem: Unicode specifies that the consonants that make up

Bangla juktakkhors are separated by hasant chraracter, which is not

coded in our algorithm (i.e., eliminated during the phonetic encoding

process). The side-effect of this decision to eliminate hasant is that, at

least for a set of juktakkhors, consecutive repetitions of the same

15

consonants will have the same code as the single instance of that
consonant. Using our algorithm, ণ্ন (ণ্ ন) for example will have the same

code as ন, since we exclude the hasant embedded in the Unicode

representation of the conjunct. This particular problem is not a general

Soundex problem, but rather a consequence of the way our algorithm

handles Bangla conjuncts.

2.3.2.1. Phonetic matching technique for Bangla

Table 4: Bangla phonetic encoding table shows the proposed

Bangla phonetic codes with Letter, Name (according to unicode found

at [13]) and Unicode number (from [14]) & Figure 3: The Soundex

algorithm for Bangla shows the modified Soundex algorithm using this

encoding, suitable for a Bangla spelling checker.

Table 4: Bangla phonetic encoding table

Code Letter Name Unicode

0 (zero) ◌্ Virama/Hasant “09CD”

Not ে◌া Sign O “09CB”

Coded ◌ঁ Candrabindu “0981”

“a” আ AA “0986”

 ◌া Sign AA “09BE”

“i” i I “0987”

 ঈ II “0988”

 ি◌ Sign I “09BF”

 ◌ী Sign II “09C0”

“u” u U “0989”

 ঊ UU “098A”

 ◌ু Sign U “09C1”

16

 ◌ূ Sign UU “09C2”

“e” e E “098F”

 ে◌ Sign E “09C7”

 ঐ AI “0990”

 ৈ◌ Sign AI “09C8”

“o” a A “0985”

 o O “0993”

 ঔ AU “0994”

 ে◌ৗ Sign AU “09CC”

“k” ক KA “0995”

 খ KHA “0996”

“g” গ GA “0997”

 ঘ GHA “0998”

“m” ম MA “09AE”

 ঙ NGA “0999”

 ◌ং Anusvara “0982”

“c” চ CA “099A”

 ছ CHA “099B”

“j” য YA “09AF”

 জ JA “099C”

 ঝ JHA “099D”

“T” ট TTA “099F”

 ঠ TTHA “09A0”

“D” ড DDA “09A1”

 ঢ DDHA “09A2”

“r” ঋ Vocalic R “098B”

 র RA “09B0”

 ড় RRA “09DC”

 ঢ় DDHA “09A2”

“n” ন NA “09A8”

17

 ণ NNA “09A3”

“ t” ত TA “09A4”

 থ THA “09A5”

“ d” দ DA “09A6”

 ধ DHA “09A7”

“p” প PA “09AA”

 ফ PHA “09AB”

“b” ব BA “09AC”

 ভ BHA “09AD”

“y” য় YYA “09DF”

“l” ল LA “09B2”

“s” শ SHA “09B6”

 স SA “09B8”

 ষ SSA “09B7”

“h” হ HA “09B9”

 ◌ঃ Visarga “0983”

[1] Replace all of s by its phonetic code.

[2] Eliminate all occurrences of code 0 (i.e.,

eliminate hasant, candrabindu, sign O).

[3] Return the resulting string.

Figure 3: The Soundex algorithm for Bangla

2.3.2.2. Summary of soundex for Bangla

Transformations
0 (Not Coded): 3 (Hasant, Candrabindu, Sign O: ে◌া)

Vowels: 5 codes

Consonants: 17 codes

18

2.3.2.3. Encoding reasoning for 0 (not coded) characters
1. Name: Virama / Hasant; Unicode: 09CD; Character: ◌ ্

The absence of vowels between consonants can be

represented by Virama / Hasant. This is used in the

Jukhtakhor/Conjuncts.

In our encoding, we will give it 0 (zero) code. Because hasant

means it is used to connect two or more consonants and we don't need

to keep the information of connectors (hasant) in our encoding. And

more importantly this is used to lower the sound of 1st consonant in

conjuncts. And individually has No Sound in words.

This will also reduce one extra character error. For example, if
someone misses the ◌্, then it’s basically all the same. Mean he was

trying to write some Conjuncts but missed the connector ◌্ so, if we

consider it as 0 (zero) code we can reduce this error.
Example: দg = দ গ ◌্ ধ

We can see that we can easily reduce the ◌্ from our encoding.

2. Name: Sign O; Unicode: 09CB; Character: ে◌া

 ে◌া (Sign O) is given 0 (zero) code, because in bangla words, O

in the middle or end of word is an inherent vowel. For example, ভাল and

ভােলা. Both sound same and even if we don't have ে◌া in ভাল, it will

pronounce as ভােলা. Because there is an inherent vowel ে◌া in ভাল. Rather

than adding inherent vowels in encoding we give ে◌া 0 (zero) code. So,

now ভাল and ভােলা will have the same code.

3. Name: Candrabindu; Unicode: 0981; Character: ◌ঁ

We give ◌ঁ 0 (zero) code. ◌ঁ is used for nasal words. Our main

target is to encode the similar sounded characters in to the same code.

Similar sounded characters means which sounds similar when we read

it in our normal conversations not according to actual grammar. In

normal conversations, we don't emphasize on nasal sounds and simply

19

pronounce it without ◌ঁ most of the cases. So, we can simply omit ◌ঁ

from our encoding.

2.3.2.4. Example of error correction using phonetic matching

Table 4 shows a set of misspelled words, their corresponding

encoded versions, and the suggested alternatives.

Table 5: Suggestions for misspelled words

Input Encoded Suggestion

খুমাড় kumar কুমার

পাসান pasan পাষাণ

দগধ Dgd দg (দগ ◌্ ধ)

20

20

CHAPTER III: RESEARCH QUESTION

3.1. Scope Of Our Proposed Encoding

The peculiar orthographic rules in Bangla pose a challenge when creating

a phonetic encoding for it. Some of the common cases illustrating these

unscientific spelling rules, ones that a candidate encoding must be able to

handle, are shown below:

1. There are groups of phonetically similar characters in Bangla; for
example, NA (ন) and NNA (ণ); SA (স), SHA (শ) and SSA (ষ), etc. The

contrast between long and short vowels in the script is also in the

modern version of the spoken language.

2. Bangla has many consonant clusters or conjuncts with unusual
pronunciations (i.e., k, h, etc.): let us consider k. k = ক+◌্ +ষ; kত [KA

HASANT SSA TA] /kɦɔto̪/ is pronounced as খত [KHA TA] /kɦɔto̪/, where

ষ does not have any sound.

3. Bangla has different uses of Phalaa's, the cluster final form of the

semi-vowels in Bangla (BA, MA, YA, RA and LA) which are

represented using a distinct sign-form. BA phalaa for example has a

distinct pronunciation from a BA in any other position in a cluster or in

a standalone configuration.

4. Different pronunciation of letters or conjuncts in different contexts:

consider again k. At the beginning of word, it is pronounced as খ /kɦ/.

(kত → খত /kɦɔto̪/); in the middle or at the end of a word, it is

pronounced as কখ /kkɦ/, (দk → দকখ /do̪kkɦo/).

5. Multiple pronunciations of some letters in the same context, such as হ

21

21

with ব: According to Bangla phonological rules, হ should be pronounced

as o or u and ব should be pronounced as ভ: আhান → আoভান /aovan/.

However, most native speakers pronounce these words the same way
as it is written. For example, আhান is usually pronounced as আহভান

/aɦobɦan/. Both pronunciations are considered correct.

Previous efforts in creating phonetic encoding for Bangla [9, 10] are based

on Soundex [4]. Soundex partitions the letters into disjoint sets, assuming the

letters within the same set have similar sound. It works on a letter-by-letter basis,

and cannot handle context-sensitive rules, such as those illustrated earlier. A

recently published encoding [9] based on Soundex is able to handle most of the

trivial cases, and those involving some of the conjuncts, but it fall far short of

producing suggestions for a large majority of the complex misspelled words.

Metaphone encoding [5] does consider the context, so it is able to handle all but

the last case above, which requires that the encoding be able to produce multiple

encoded forms of the same character sequence. Double Metaphone [7] remedies

that problem of Metaphone of not being able to produce multiple encodings from

the same string. These limitations in part led us to create a Double Metaphone

encoding for Bangla that does not suffer from the problems listed above, and in

addition, is able to the full complexity of Bangla spelling rules.

Main achievement of our phonetic encoding is, unlike any other previous

phonetic encoding either in English or Bangla, our proposed encoding not only

gives a proper phonetic encoding [1] but also this can also work as an

intermediate code in multi-lingual applications.

3.2. Limitation Of Previous Encoding
So far we have two encoding for Bangla [9, 11], both are based on

soundex. Even though they did some customization for Bangla but still

they can not encode the pronunciation of most of the words correctly.

22

22

1. Hoque and Kaykobad, 2002, BSoundex [10, 11]

It can handle:

• Phonetic similarities of some letters in Bangla:
o Hoque and Kaykobad’s encoding partitions letters into

11 disjoint groups. Table 3: Hoque and Kaykobad’s

phonetic encoding for Bangla. This partition gives the

same code to similar sounding letters.

• Some trivial case of conjuncts:
o Before producing Sound-code they generate a

simplified format or open format. This part handles the

conjunct problem in trivial cases.

It can not handle:

• Unusual pronunciation of many clusters or conjuncts:
o Described in 3.1.2.

• Different uses of Phalaa’s.
o Described in 3.1.3.

• Different pronunciation of letters or conjuncts in different
context.

o Described in 3.1.4.

• Multiple pronunciations of some letters in the same context.
o Described in 3.1.5.

More constraints:

This encoding has few extra constraints because of exactly

following the English soundex algorithm rather than customizing it

for Bangla. These are:

• Keeps the first letter of the string in encoding:
o It is a major problem in soundex encoding. And

specifically for Bangla. We miss our desired

suggestion because of keeping the first letter in the

23

23

encoding. Detail of its problem is described in 2.3.2,

case 1.

• Excluding vowels when encoding string:
o Even though English face the same problem for

excluding vowels, but it also helps them many cases.

But main thing is Soundex algorithm was proposed for

name searching in census. In case of name searching

excluding vowels is required for Bangla as well. But

this encoding was proposed for spelling checker;

hence it is not acceptable to exclude vowels.

Problems of excluding vowel are described in 2.3.2,

case 2.

• Consecutive repetitions of the same coded characters are
eliminated.

o This also poses a problem, and sometimes we get

extra irrelevant suggestion for it. Detail of its problem

is described in 2.3.2, case 3.

2. Zaman and Khan, 2004 [9], soundex type phonetic encoding

It can handle:

• Phonetic similarities of some letters in Bangla:
o Zaman and khan’s encoding partitions letters into 23

disjoint groups. Table 4: Bangla phonetic encoding

table. This partition gives the same code to similar

sounding letters.

• Conjuncts with usual pronunciation:
o Before producing Sound-code they generate a

simplified format or open format. This part handles the

conjunct problem in trivial cases.

24

24

It cannot handle:

• Unusual pronunciation of many clusters or conjuncts:
o Described in 3.1.2.

• Different uses of Phalaa’s.
o Described in 3.1.3.

• Different pronunciation of letters or conjuncts in different
context.

o Described in 3.1.4.

• Multiple pronunciations of some letters in the same context.
o Described in 3.1.5.

We have not described the problems in detail in this section but

referred to those sections, where it has been described. These may

seems few lines here, but reading its description one would understand

how complex it can be to handle those.

This Thesis paper answer these unanswered questions, more

specifically gives a encoding that can properly encode a word

representing its sound considering all these complex cases above.

3.3. Why It Is Worthwhile To Answer
Using this proposed encoding we can develop very efficient and useful

applications that we can not otherwise.

1. Bangla does not have very good spelling checker that can

give word of same pronunciation in suggestions considering complex

Bangla rules, this encoding helps us to develop that.

2. Bangla have many transliteration applications, but all of

those give a one to one mapping. It will convert each English letter or

letters to fixed Bangla letter or letters. There are no transliterations

available where if you write in English it will give dictionary word of

same pronunciation. Using phonetic encoding we can develop that.

3. Name searching is a very useful application in census,

25

25

hospitals, educational institutes, offices, etc. There is no such name

searching application in Bangla that gives names with almost same

pronunciation in suggestion. This encoding helps to develop this

application too.

4. This encoding can work as an intermediate code in multi-

lingual information retrieval, where a user issues a query in one

language (such as English) to search a collection in a different

language (such as Bangla). More specifically, writing the pronunciation

of a word in English one can search words with same pronunciation in

a Bangla document.

26

CHAPTER IV: PROPOSED ENCODING

Proposing our encoding we needed to keep few things in our mind. We

need to think about phonetic similarity of letters to give them the same code and

also the keep in mind the orthographic or spelling rules, to know how letters spell

in different context, so that we can encode the letters with similar sounding letters

considering the context.

Another purpose of this encoding is to work as an intermediate code in

multi-lingual applications. We will be encoding our Bangla letters to a set of Latin

alphabets, so that it can easily work as an intermediate language to work with

English.

We assume that the Bangla text is encoded using Unicode Normalization

Form C (NFC) [13].

4.1. Proposed phonetic encoding for words
We will have two encoding, mainly one for words and a few variations

from it for names as well. This section describes about the words encoding.

Throughout the paper we termed our proposed phonetic encoding by

Double metaphone phonetic encoding or proposed phonetic encoding. To

encode Bangla words we need to consider context and also need to generate

multiple codes for the same string. These constraints can be handled in

Double metaphone algorithm, which we did for Bangla here. Hence, we

termed it as Double metaphone phonetic encoding.

27

4.1.1. Phonetic encoding table

Following Table 6: Double Metaphone Phonetic Encoding table for

words is the table of proposed Double Metaphone phonetic encoding for

words. Followed by the table there will be reasoning of each of the encoding.

Table 6: Double Metaphone Phonetic Encoding table for words

Letter Name Unicode Code Context Example

◌্ VIRAMA

(Hasant)

\u09CD Not Coded

ে◌া SIGN O \u09CB Not Coded

◌ঁ CANDRABINDU \u0981 Not Coded

a A \u0985 “o”

o O \u0993 “o”

আ AA \u0986 “a”

◌া SIGN AA \u09BE “a”

i I \u0987 “i”

ঈ II \u0988 “i”

ি◌ SIGN I \u09BF “i”

◌ী SIGN II \u09C0 “i”

u U \u0989 “u”

ঊ UU \u098A “u”

◌ু SIGN U \u09C1 “u”

◌ূ SIGN UU \u09C2 “u”

e E \u098F “e”

ে◌ SIGN E \u09C7 “e”

ঐ AI \u0990 “oi”

ৈ◌ SIGN AI \u09C8 “oi”

ঔ AU \u0994 “ou”

ে◌ৗ SIGN AU \u09CC “ou”

ক KA \u0995 “k”

খ KHA \u0996 “k”

k \u0995 \u09CD \u09B7 “k” @ the beginning kত /khɔto̪/

28

Letter Name Unicode Code Context Example
k \u 0995 \u09CD \u09B7 “kk” @ middle/end দk /do̪kkho/

গ GA \u0997 “g”

ঘ GHA \u0998 “g”

ঙ NGA \u0999 “ng” বাঙলা /baŋla/

◌ং ANUSVARA \u0982 “ng” বাংলা /baŋla/

চ CA \u099A “c”

ছ CHA \u099B “c”

x\u09CD\u09AF |

x\u09CD\u09AF \u0986

“e” @ the beginning

as YA phalaa
বয্k /bækto̪/

...xy \u09CD z \u09CD \u

09AF

Not Coded @ middle/end

with conjuncts
সnয্া /ʃondɦ̪a/

য YA as phalaa

...xy \u09CD \u09AF Doubles: yy @ middle/end aদয্ /odd̪o̪/

য YA \u09AF “j”

জ JA \u099C “j”

ঝ JHA \u099D “j”

\u099E \u099A “n” Before CA aāল /ɔncɔl/

\u099E \u099B “n” Before CHA বাĂা /bancha/
\u099E \u099C “n” Before JA aăিল /ɔnɟoli/
\u099E \u099D “n” Before JHA যĄা /ɟɦɔnɟa/
\u099A \u099E “n” After CA যাচ্ঞা /ɟacna/
\u099E \u0985 |

\u099E\u0987

Not Coded Before A | I িমঞা /miã/

\u099C \u09CD \u099E “ge” @ the beginning

after JA
jাত /gæ̃tɔ̪/

... \u099C \u09CD \u099E “gg” @ middle/end

after JA
িবjান /biggæ̃n/

ঞ NYA

\u099E \u09CD “n” With hasant নঞ /nɔn/

ট TTA \u099F “T”

ঠ TTHA \u09A0 “T”

ড DDA \u09A1 “D”

ঢ DDHA \u09A2 “D”

ঋ VOCALIC R \u098B “ri” @ the beginning ঋতু /ritu̪/

29

Letter Name Unicode Code Context Example

x\u098B “ri” | xri @ middle/end িবকৃত /bikkrito̪/̀ | িবকৃত

/bikrito̪/̀

x\u09CD \u09B0 “r” @ the beginning pকাশ /prokaʃ/ র RA as phalaa

...x\u09CD \u09B0 “r” @ middle/end রািt /ratt̪r̪i/ | রািt /ratr̪i/

র RA \u09B0 “r”

ড় RRA \u09DC “r”

ঢ় DDHA \u09A2 “r”

ন NA \u09A8 “n”

ণ NNA \u09A3 “n”

ত TA \u09A4 “t”

থ THA \u09A5 “t”

দ DA \u09A6 “d”

ধ DHA \u09A7 “d”

প PA \u09AA “p”

ফ PHA \u09AB “p”

x\u09CD \u09AC y... Not Coded @ the beginning sেদশ /ʃɔdeʃ/

...x\u09CD y \u09CD

\u09AC

Not Coded BA phalaa with

conjuncts
তt্ব /tɔ̪tt̪o̪/

... \u09AC \u09CD \u09AC “bb” After BA as

conjuncts
িতbত /ti̪bbɔt/̪

... \u09AE \u09CD \u09AC “mb” After MA as

conjuncts
লm /lɔmbo/

... \u0997 \u09CD \u09AC “gb” After GA as

conjuncts
িদিgিদক /di̪gbidi̪k/

\u0989 \u09A6 \u09CD

\u09AC

“udb” After Ud- (U DA

BA...)
uেdগ /udb̪eg/

ব BA as phalaa

...y \u09CD \u09AC Doubles: yy @ middle/end িবƭ /biʃʃo/

ব BA \u09AC “b”

ভ BHA \u09AD “b”

x\u09CD \u09AE... Not Coded @ the beginning sরণ /ʃɔroɳ/ম MA as phalaa

...x\u09CD y \u09CD

\u09AE

Not Coded MA phalaa with

conjuncts
সূk /ʃukkhõ/

30

Letter Name Unicode Code Context Example

... \u0995 \u09CD \u09AE “km” After KA as

conjuncts
rিkনী /rukmini/

... \u0997 \u09CD \u09AE “gm” After GA as

conjuncts
যুg /ɟugmɔ/

... \u0999 \u09CD \u09AE “ngm” After NGA as

conjuncts
বাঙ্ময় /baŋmoi/

... \u099F \u09CD \u09AE “tm” After TTA as

conjuncts
কুćল /kutmol/

... \u09A3 \u09CD \u09AE “nm” After NNA as

conjuncts
মৃĔয় /mrinmɔẽ/

... \u09A8 \u09CD \u09AE “nm” After NA as

conjuncts
জn /ɟɔnmo/

... \u09AE \u09CD \u09AE “mm” After MA as

conjuncts
সmান /ʃɔmman/

... \u09B2 \u09CD \u09AE “lm” After LA as

conjuncts
gl /gulmo/

... \u09B6 \u09CD \u09AE “sm” @ middle/end

with SHA
কাųীর /kaʃmir/

... \u09B7 \u09CD \u09AE “sm” @ middle/end

with SSA
কুſাn /kuʃmando/

... \u09B8 \u09CD \u09AE “sm” @ middle/end

with SA
সুিsতা /ʃuʃmita/

...y \u09CD \u09AE Doubles: yy @ middle/end

otherwise
পd /pɔddõ/

ম MA \u09AE “m”

য় YYA \u09DF “y”

ল LA \u09B2 “l”

শ SHA \u09B6 “s”

স SA \u09B8 “s”

ষ SSA \u09B7 “s”

\u09B9 \u09CD \u098B “ri” HA with Vocalic

R
hঋদয় /rɦidoẽ/

\u09B9 \u09CD \u09B0 “r” HA with R as

phalaa
hদ /rɔd/

হ HA

\u09B9 \u09CD \u09A8 “nn” HA with NA পূরব্াh /purbaǹno/

31

Letter Name Unicode Code Context Example

\u09B9 \u09CD \u09A3 “nn” HA with NNA pাh /prannɦo/

\u09B9 \u09CD \u09AE “mm” HA with MA bhা /brommɦa/

\u09B9 \u09CD \u09AF “jj” HA with YA as

phalaa @
middle/end

uহয্ /uɟɟɦo/

\u09B9 \u09CD \u09B2... “l” HA with LA @

beginning
hাদ /lɦad/

... \u09B9 \u09CD \u09B2 “ll” HA with LA @

middle/end
আhাদ /allɦad/

\u09B9 \u09CD \u09AC “h” | “o” HA with BA আhান /aovan/ | আhান

/aɦobɦan/

হ HA \u09B9 “h” Otherwise

x\u0983 y... Doubles: yy @ the middle dঃসময় /duʃʃomoẽ/

x\u0983 “h” @ the end, strlen

= 1 | 2
uঃ /uɦ/, বাঃ /baɦ/

◌ঃ VISARGA

x\u0983 Not Coded Otherwise @ the

end
পুনঃ /puno/

4.1.2. Encoding reasoning
Name: Virama / Hasant; Unicode: \u09CD; Letter: ◌ ্

The absence of vowels between consonants can be

represented by Virama / Hasant. This is used in the

Jukhtakhor/Conjuncts.

In our encoding, we will give it 0 (zero) code. Because

hasant means it is used to connect two or more consonants and we

don't need to keep the information of connectors (hasant) in our

encoding. And more importantly this is used to lower the sound of

1st consonant in conjuncts. And individually has No Sound in words.

This will also reduce one extra character error. For example,
if someone misses the ◌্ , then it’s basically all the same. Mean he

32

was trying to write some Conjuncts but missed the connector ◌্ so,

if we consider it as 0 (zero) code we can reduce this error.
Example: দg = দ গ ◌্ ধ

We can see that we can easily reduce the ◌্ from our

encoding.

Final code: Not Coded

Name: Sign O; Unicode: \u09CB; Letter: ে◌া

 ে◌া (Sign O) is given 0 (zero) code, because in Bangla

words, O in the middle or end of word is an inherent vowel. For
example, ভাল and ভােলা. Both sound same and even if we don't have

ে◌া in ভাল, it will pronounce as ভােলা. Because there is an inherent

vowel ে◌া in ভাল. Rather than adding inherent vowels in encoding we

give ে◌া 0 (zero) code. So, now ভাল and ভােলা will have the same

code.

Final Code: Not Coded

Name: Candrabindu; Unicode: \u0981; Letter: ◌ ঁ

We give ◌ঁ 0 (zero) code. ◌ঁ is used for nasal words. Our main

target is to encode the similar sounded characters in to the same

code. Similar sounded characters means which sounds similar

when we read it in our normal conversations not according to actual

grammar. In normal conversations, we don't emphasize on nasal
sounds and simply pronounce it without ◌ঁ most of the cases. So, we

can simply omit ◌ঁ from our encoding.

Final Code: Not Coded

Name: A; Unicode: \u0985; Letter: a; IPA: /ɔ/, /o/

Name: O; Unicode: \u0993; Letter: o; IPA: /o/

If there is a i or u after a then it sounds as /o/. Otherwise, in

33

most of the cases it sounds as /ɔ/. /o/ and /o/ are very close in

pronunciation. So, we are encoding all the cases of a and o to “o”.

Final Code: “o”

Name: AA; Unicode: \u0986; Letter: আ ; IPA: /a/

Name: Sign AA; Unicode: \u09BE; Letter: ◌া ; IPA: /a/

Final Code: “a”

Name: I; Unicode: \u0987; Letter: i; IPA: /i/

Name: Sign I; Unicode: \u09BF; Letter: ি◌; IPA: /i/

Name: II; Unicode: \u0988; Letter: ঈ; IPA: /i/

Name: Sign II; Unicode: \u09C0; Letter: ◌ী; IPA: /i/

Final Code: “i”

Name: U; Unicode: \u0989; Letter: u; IPA: /u/

Name: Sign U; Unicode: \u09C1; Letter: ◌;ু IPA: /u/

Name: UU; Unicode: \u098A; Letter: ঊ; IPA: /u/

Name: Sign UU; Unicode: \u09C2; Letter: ◌;ূ IPA: /u/

Final Code: “u”

Name: E; Unicode: \u098F; Letter: e; IPA: /æ/, /e/

Name: Sign E; Unicode: \u09C7; Letter: ে◌; IPA: /æ/, /e/

e has two sounds. One is /e/, such as in, েক, েস, েতজ

Another one is /æ/, such as in, eক, েকন, েদখা

In our encoding, our main target is to give closely similar

sounding word the same code. In this case, /e/ and /æ/ are very
close in pronunciation. So, we are encoding all the cases of e to

“e”.

Final Code: “e”

34

Name: AI; Unicode: \u0990; Letter: ঐ; IPA: /oi/

Name: SIGN AI; Unicode: \u09C8; Letter: ৈ◌; IPA: /oi/

Final Code: “oi”

Name: AU; Unicode: \u0994; Letter: ঔ; IPA: /ou/

Name: SIGN AU; Unicode: \u09CC; Letter: ে◌ৗ; IPA: /ou/

Final Code: “ou”

Name: KA; Unicode: \u0995; Letter: ক; IPA: /k/

Name: KHA; Unicode: \u0996; Letter: খ; IPA: /kɦ/

Both ক and খ are Velar. But ক is Un-aspirated and খ is

Aspirated. So, in this case, we are giving the same code to both

letters.

Final Code: “k”

Name: Conjunct KHIYO; Unicode: \u0995 \u09CD \u09B7;

Letter: k = ক ◌ ্ষ ; IPA: /k/, /kɦ/

Case 1: At the beginning of a word, it is pronounced as খ

/kɦ/. So it is given the same code as খ, which is “k”.

 kত /kɦɔto̪/ → খত → kt

Case 2: In the middle or at the end of words, it is similar to

কখ /kkɦ/, so it is encoded as “kk”.

 দk /do̪kkɦo/ → দকখ → dkk

Exception: তত্kনাt /tɔ̪tk̪hɔnat/̪ According to its pronunciation it

should be encoded as “ttknat”, but it is instead encoded as

“ttkknat”.

Name: GA; Unicode: \u0997; Letter: গ; IPA: /g/

35

Name: GHA; Unicode: \u0998; Letter: ঘ; IPA: /gɦ/

Both গ and ঘ are Velar. But গ is Un-aspirated and ঘ is

Aspirated. So, in this case, we are giving the same code to both

letters.

Final Code: “g”

Name: NGA; Unicode: \u0999; Letter: ঙ; IPA: /ŋ/

Name: ANUSVARA; Unicode: \u0982; Letter: ◌ং; IPA: /ŋ/

ঙ and ◌ং sounds like /ŋ/, so it is encoded as “ng”.

 বাঙলা /baŋla/ → bangla

 বাংলা /baŋla/ → bangla

Name: CA; Unicode: \u099A; Letter: চ; IPA: /c/

Name: CHA; Unicode: \u099B; Letter: ছ; IPA: /cɦ/

Both চ and ছ are Palatal. But চ is Affricate Un-aspirated and ছ

is Affricate Aspirated. So, in this case, we are giving the same code

to both letters.

Final Code: “c”

Name: YA; Unicode: \u09AF; Letter: য; IPA: /ɟ/

য as phalaa

Case 1: At the beginning of a word, and if the word is a-কারাn

/ɔ/ or আ-কারাn /a/, it is pronounced as /æ/.

Example: বয্k, ধয্ান

 At the beginning of a word, and if there is a i or u after য

phalaa, then it is pronounced as e /e/

Example: বয্িথত, বয্িk

 We encode both /æ/ and /e/ as “e”.

36

 বয্k /bækto̪/ → bekt

 ধয্ান /dɦ̪æn/ → den

 বয্িk /bekti̪/ → bekti

Final Code: “e”
Case 2: In the middle or at the end of a word with conjuncts,

it is usually silent, and so it is Not coded.

 সnয্া /ʃondɦ̪a/ → সnা → snda

 sাsয্ /ʃasth̪o/ → সাs → sast

Final Code: Not Coded
Case 3: In the middle or at the end of a word it doubles the

attached letter, and so the code is doubled as well.

 aদয্ /odd̪o̪/ → ad → odd

 মধয্ /mɔdd̪ɦ̪o/ → মd → mdd

Final Code: Same as attached letter
Case 4: Otherwise when it is used normally rather than as a

phalaa, it is encoded as “j”

Final Code: “j”

Name: JA; Unicode: \u099C; Letter: জ; IPA: /j/

Name: JHA; Unicode: \u099D; Letter: ঝ; IPA: /jɦ/

Both জ and ঝ are Palatal. But জ is Affricate Un-aspirated and

ঝ is Affricate Aspirated. So, in this case, we are giving the same

code to both letters.

Final Code: “j”

Name: NYA; Unicode: \u099E; Letter: ঞ; IPA: /nã/

Case 1: Usually in conjuncts if a ঞ is added before a চ, ছ, জ,

37

ঝ, or after a চ then it is pronounced as ন /n/; in this case it is

encoded as “n”.

Before চ: aāল /ɔncɔl/ → aনচল → oncl

Before ছ: বাĂা /bancha/ → বানছা→ banca

Before জ: aăিল /ɔnɟoli/ → aনজিল → onjli

Before ঝ: যĄা /ɟɦɔnɟɦa/ → যনঝা → jnja

After চ: যাচ্ঞা /ɟacna/ → যাচনা→ jacna

Final Code: “n”
Case 2: If আ–কার and i–কার is added after a ঞ, then it creates a

nasal sound. িমঞা /miã/ → িমআঁ. However, since in our encoding nasal

sounds are Not Coded, it is also Not Coded.

 িমঞা /miã/ → িমআ → mia

 নািঞ /naĩ/ → নাi → nai

Final Code: Not Coded
Case 3: In conjuncts after জ, ঞ sounds as “g” at the

beginning of the word and as “gg” in the middle or at the end of the

word. At the beginning, it is encoded as “g” and in the middle or at
the end; it is encoded as “gg”. Again, if at the beginning, আ (◌া)–কার

is added with j then আ (◌া)–কার is pronounced as “æ”, which is

encoded as “e”.

At the beginning:

 jাত /g ̃æt̪ɔ/ → get

 jান /g ̃æn/ → gen

Final Code: “g”
At the middle/end:

 িবjান /bigg ̃æn/ → biggan

38

 িবj /bigg ̃o/ → bigg

Final Code: “gg”

Exception: সংjা /ʃɔŋga/ should be encoded as “sngga” but it is

instead encoded as “snggga”.

Case 4: Otherwise, if there is a VIRAMA/Hasant after it, then

it is simply encoded as “n”.

 নঞ /nɔn/ → nn

 নঞর্থক /nɔnɔrtthòk/ → nnrttk

Final Code: “n”

Name: TTA; Unicode: \u099F; Letter: ট; IPA: /t/̪

Name: TTHA; Unicode: \u09A0; Letter: ঠ; IPA: /tɦ̪/

Both ট and ঠ are Retroflex. But ট is Un-aspirated and ঠ is

Aspirated. So, in this case, we are giving the same code to both

letters.

Final Code: “T”

Name: DDA; Unicode: \u09A1; Letter: ড; IPA: /d/̪

Name: DDHA; Unicode: \u09A2; Letter: ঢ; IPA: /dɦ̪/

Both ড and ঢ are Velar. But ড is Un-aspirated and ঢ is

Aspirated. So, in this case, we are giving the same code to both

letters.

Final Code: “D”

Name: VOCALIC R; Unicode: \u098B; Letter: ঋ; IPA: /ri/

Case 1: At the beginning Vocalic R ঋ and Sign Vocalic R ◌ ৃ

are encoded as “ri”.

39

 ঋতু /ritu̪/ → ritu

Final Code: “ri”
Case 2: According to phonological rules in [19], it doubles

the sound of the attached letter if it is in the middle or at the end.

However, since people usually pronounce it as “ri” in such cases as

well, it is encoded as both codes.

 িবকৃত /bikkrito̪/ → bikkrit

 িবকৃত /bikrito̪/ → bikrit

Final Code: “ri”, “xri” // x is the code of attached letter

Name: RA; Unicode: \u09B0; Letter: র ; IPA: /r/

র as phalaa

Case 1: At the beginning of the word র-phalaa sounds like র,

so it is encoded as “r”.

 pকাশ /prokaʃ/ → prkas

 pনাম /pronam/ → prnam

Final Code: “r”
Case 2: According to [19, 20, 21], in the middle or at end, it

doubles the attached letter. But if we consider the pronunciation of
these words, it is also pronounced as only র. As a solution, we

again encode it both the codes using the Double Metaphone

approach.

 রািt /ratt̪r̪i/ → রাতিt → rattri

 রািt /ratr̪i/ → রাতির → ratri

 ছাt /cɦat̪tr̪ɔ/ → ছাতt → cattr

 ছাt /cɦatr̪ɔ/ → ছাতর → catr

Final Code: “r”, “xr” // x is the code of attached letter

40

Case 3: Otherwise র is encoded as “r”.

Final Code: “r”

Name: RRA; Unicode: \u09DC; Letter: ড়; IPA: /r/̪

Name: DDHA; Unicode: \u09A2; Letter: ঢ়; IPA: /rɦ̪/

Both ড় and ঢ় are Alveolar and Flapped. So, in this case, we

are giving the same code to both letters.

Final Code: “r”

Name: NA; Unicode: \u09A8; Letter: ন; IPA: /n/

Name: NNA; Unicode: \u09A3; Letter: ণ; IPA: /n/

Final Code: “n”

Name: TA; Unicode: \u09A4; Letter: ত; IPA: /t/

Name: DDHA; Unicode: \u09A5; Letter: থ; IPA: /th/

Both ত and থ are Dental. But ত is Un-aspirated and থ is

Aspirated. So, in this case, we are giving the same code to both

letters.
One debatable topic on ত is Khondo-TA t, which is short

form of ত. Currently it is not in the Unicode chart and it is written as

ত and ◌্ . In our encoding ◌ ্ is Not coded, so it will automatically get

the same code “t” as ত. But if later it is included in the Unicode chart

then we can simply give that letter the code “t”.

Final Code: “t”

Name: DA; Unicode: \u09A6; Letter: দ; IPA: /d/

Name: DHA; Unicode: \u09A7; Letter: ধ; IPA: /dɦ/

Both দ and ধ are Dental. But দ is Un-aspirated and ধ is

41

Aspirated. So, in these cases, we are giving the same code to both

letters.

Final Code: “d”

Name: PA; Unicode: \u09AA; Letter: প; IPA: /p/

Name: PHA; Unicode: \u09AB; Letter: ফ; IPA: /ph/

Both প and ফ are Bilabial. But প is Un-aspirated and ফ is

Aspirated. So, in these cases, we are giving the same code to both

letters.

Final Code: “p”

Name: BA; Unicode: \u09AC; Letter: ব; IPA: /b/

Name: BHA; Unicode: \u09AD; Letter: ভ; IPA: /bh/

Both ব and ভ are Bilabial. But ব is Un-aspirated and ভ is

Aspirated. So, in these cases, we are giving the same code to both

letters.

Final Code: “b”
ব as phalaa

Case 1: At the beginning ব–phalaa doesn’t have any sound.

So it is Not Coded.

 sািধকার /ʃadɦ̪ikar/ → সািধকার → sadikar

 sেদশ /ʃɔde̪ʃ/ → সেদশ → sdes

 jালা /ɟala/ → জালা → jala

Final Code: Not Coded
Case 2: At the middle/end ব–phalaa with ব, ম and গ that is

derived from ক keeps it sound. So it is encoded as “b”.

 ব: িতbত /ti̪bbɔt/̪ → tibbt

 সাbাশ /ʃabbaʃ/ → sabbas

42

 ম: লm /lɔmbo/ → lmb

 সmর্ধনা /ʃɔmbordɦ̪ona/ → smbrdna

 গ: িদিgিদক /di̪gbidik/ → digbidik

Final Code: “b”
Case 3: At the beginning ব–phalaa with দ that is derived from

ud keeps it sounds. So it is encoded as “b”.

দ that is derived from ud:

 uেdগ /udb̪eg/ → udbeg

 uেdাধন /udb̪odhon/ → udbdn

Final Code: “b”
Case 4: At the middle of the word ব–phalaa with conjuncts

doesn’t have any sound. So it is Not coded.

তtt /tɔ̪tt̪o̪/ → ততত → ttt

ujjল /uɟɟɔl/ → uজজল → ujjl

ucাস /ucchaʃ/ → uচছাস → uccas

Final Code: Not Coded
Case 5: At the middle/end of the word sound of ব with

conjuncts doubles. So it has the same code as the previous code.

 িdt /ditt̪o̪/ → িদতত → ditt

 িবƭ /biʃʃo/ → িবশশ → biss

Final Code: x // x is the code of attached letter

Name: MA; Unicode: \u09AE; Letter: ম; IPA: /m/

ম as phalaa

Case 1: At the beginning of the word ম-phalaa doesn’t have

any sound. So it is Not Coded.

 sরণ /ʃɔroɳ/ → সরন → srn

43

 sশান /ʃɔʃan/ → সশান → ssan

Final Code: “m”
Case 2: At the middle of the word ম–phalaa with conjuncts

doesn’t have any sound. So it is Not coded.

সূk /ʃukkhõ/ → সূকখ → sukk

লkণ /lɔkkhon/ → লকখন → lkkn

Final Code: Not Coded
Case 3: At the middle/end ম phalaa with ক, গ, ঙ, ট, ণ, ন, ম, ল, স,

ষ, শ keep its sound. So it is simply coded to “m”.

 ক: rিkনী /rukmini/ → rukmini

 গ: বাgী /bagmi/ → bagmi

 যুg /ɟugmo/ → jugm

 ঙ: বাõয় /baŋmoẽ/ → bangmy

 বাõুখ /baŋmukh/ → bangmuk

 ট: কুćল /kutmol/ → kuTml

 কুćিলত /kutmolito̪/ → kuTmlit

 ণ: িহরĔয় /ɦirɔnmɔẽ/ → hirnmy

 মৃĔয় /mrinmɔẽ/ → mrinmy

 ন: unাদ /unmad/̪ → unmad

 জn /ɟɔnmo/ → jnm

 ম: সmান /ʃɔmman/ → smman

 সmিত /ʃɔmmoti/ → smmti

 গ: gl /gulmo/ → gulm

 বlীক /bolmik/ → blmik

44

 স: সুিsতা /ʃuʃmita/ → susmita

 ষ: কুſাn /kuʃmando/ → kusmand

 শ: কাųীর /kaʃmir/ → kasmir

Final Code: “m”
Case 4: Otherwise at the middle/end ম with conjuncts

doubles the sound of attached letter. So it encoded with the same

code of the previous character.

ছd /cɦɔdd̪õ̪/ → ছদদ → cdd

পd /pɔdd̪õ̪/ → পদদ → pdd

Final Code: x // x is the code of attached letter

Name: YYA; Unicode: \u09DF; Letter: য়; IPA: /ẽ/

Final Code: “y”

Name: LA; Unicode: \u09B2; Letter: ল; IPA: /l/

Final Code: “l”

Name: SA; Unicode: \u09B8; Letter: স; IPA: /s/, /ʃ/

Name: SHA; Unicode: \u09B6; Letter: শ; IPA: /s/, /ʃ/

Name: SSA; Unicode: \u09B7; Letter: ষ; IPA: /ʃ/

Final Code: “s”

Name: HA; Unicode: \u09B9; Letter: হ; IPA: /h/

হ with ঋ: হ doesn’t have any sound in conjuncts with ঋ. So, it

is Not Coded.

 hঋদয় /rɦido̪e/̃ → িরদয় → ridy

45

 hঋতিপn /rɦidp̪indo/ → িরতিপনড → ritpinD

Final Code: Not Coded
হ with র: হ doesn’t have any sound in conjuncts with র. So, it

is Not Coded.

 hদ /rɦɔd/̪ → রদ → rd

 hাস /rɦaʃ/ → রাস → ras

Final Code: Not Coded

হ with ণ/ন: হ sounds as নহ /nɦ/ in conjuncts with ণ/ন where ɦ sounds

lightly. So, it is encoded as “n”.

 পূরব্াh /purbannɦo/ → পূরবানন → purbann

 িচh /cɦinnɦo/ → িচনন → cinn

 pাh /prannɦo/ → pানন → prann

Final Code: “n”

হ with ম: হ sounds as মহ /mɦ/ in conjuncts with ম where ɦ

sounds lightly. So, it is encoded as “m”.

 bhা /bromma/ → বরামমা → brmma

 bাh /brammo/ → bামম → bramm

Final Code: “m”
হ with য: হ sounds as য in conjuncts with য. So, it is encoded

as “j”.

 uহয্ /uɟɟɦo/ → uযয→ ujj

 ঐিতহয্/oiti̪ɟɟɦo/ → ঐিতযয → oitijj

Final Code: “j”
হ with ল: হ doesn’t have any sound in conjuncts with ল at the

beginning. So, it is Not Coded.

 hাদ /lɦad/ → লাদ → lad

46

হ sounds as ল in conjuncts with লহ /lɦ/ in middle/end where ɦ

sounds lightly. So, it is encoded as “l”.

 আhাদ /allɦad/ → আললাদ → allad

Final Code: “l”
হ with ব: According to grammatical rules হ should be sounded

like o or u and ব should be sounded as ভ.

 আhান /aovan/ → আoভান

However, most native speakers pronounce these words the
same way as it is written. For example, আhান is usually pronounced

as আহভান /aɦobɦan/, so we encode it to two different codes for the

two different pronunciations.
 আhান → আoভান /aovan/ → aoban

 আhান → আহভান /aɦobɦan/ → ahban

Final Code: “o”, “h”

Name: VISARGA; Unicode: \u0983; Letter: ◌ঃ

Case 1: In the middle of the word, ◌ঃ gets the sound of the

character next to it.

 dঃসময় /du̪ʃʃomoi/ → dসসময় → dussmy

 dঃখ /du̪kkɦo/ → dকখ → dukk

Final Code: x // x is the code of next letter
Case 2: If ◌ঃ is at the end, and the string length is 2 or 3,

then ◌ঃ sounds as হ. So it is encoded as “h”.

 uঃ /uɦ/ → uহ → uh

 বাঃ /baɦ/ → বাহ → bah

Final Code: “h”
Case 3: If ◌ঃ is at the end, and the string length greater than

47

3, then ◌ঃ sounds as o. However, since o is Not Coded in our

encoding, ◌ঃ is Not Coded as well.

পুনঃ /puno/ → পুেনা → পুন → pun

aধঃ /adɦo/ → aেধা → aধ → od

Final Code: Not Coded

48

CHAPTER V: APPLICATIONS OF PHONETIC ENCODING

Proper phonetic encoding is a very good contribution for a language, but it

has no significance until it is used properly in applications. Name searching was

first such application, where phonetic encoding was used after that spelling

checker adopts this phonetic encoding technique.

We have used our phonetic encoding in many applications like spelling

checker, transliteration, cross-lingual information retrieval and name searching

for Bangla. In each case, we will first show how that application were developed

earlier, how they perform and then how phonetic encoding improves its

performance.

5.1. Spelling Checker

The problem of detecting error in words and automatically correcting

them is a great research challenge. Its solution has enormous potentials in

text and code editing, computer aided authoring, optical character recognition

(OCR), machine translation (MT), natural language processing (NLP),

database retrieval interface, speech recognition, text to speech and speech to

text conversion, communication system for the disabled (e.g. blind and deaf),

computer aided tutoring and language learning, desktop publication and pen

based computer interface. [15]

5.1.1. Spelling error patterns
The word-error can belong to one of the two distinct categories,

49

namely, non-word error and real-word error. Let a string of characters

separated by spaces or punctuation marks be called a candidate string. A

candidate string is a valid word if it has a meaning. Else, it is a non-word. By

real word error we mean a valid but not the intended word in the sentence,

thus making the sentence syntactically or semantically ill-formed or incorrect.

In both cases the problem is to detect the erroneous word and either suggest

correct alternatives or automatically replace it by the appropriate word. [15]

In Bangla so far, we do not have any very good technique that deals

with non-word errors. Real-word error can be the next step after solving this

problem. We will focus only on non-word errors in this chapter, which is the

major part in any spelling errors.

In non-word errors, there are mainly two types of errors. One is

typographical error and another is phonetic error. Description of typographical

error is as follows.

In an early study, [17] found that 80% of all misspelled words (non-

words errors) in a sample of human keypunched text were caused by single

error misspellings: a single one of the following errors:

• Substitution error: mistyping the as ther
• Deletion error: mistyping the as th
• Insertion error: mistyping the as thw
• Transposition error: mistyping the as hte [16]

These are the type of typographical errors, which occurred due to

typing mistakes, negligence, and lack of concentrations. But if computer gives

a red underline into it, then we can easily correct it without seeing the spelling

suggestions.

But scenarios of phonetic errors are not the same. Phonetic errors

50

occur when the user do not know the spelling of a word but knows the

pronunciation of the word. So, using the pronunciation the user may write a

word but in suggestion it is impossible to get the desired word in case of

Bangla, because of complex Bangla rules described in 3.1.

5.1.2. Previous spelling checking techniques

5.1.2.1. Approximate string matching algorithm

This method uses an approximate string-matching algorithm to

check the closeness of dictionary words with the misspelled word. In

suggestion it gives the words that are close to it.

Levenshtein Edit Distance[23, 24, 25]

Definition:
 The edit distance of two strings, s1 and s2, is defined as the

minimum number of point mutations required to change s1 into s2,

where a point mutation is one of:

1. Replace a letter,

2. Insert a letter,

3. Delete a letter,

4. Transpose consecutive letters

Example:
e(“Virginia”, “Vermont”) = 5

Virginia

Verginia

Verminia

Vermonia

51

Vermonta
Vermont

 Detail on edit distance can be found at [23, 24, 25].

• How edit distance can be used in spelling checker
To generate suggestion for a misspelled word we need to

generate edit distance with each of the word in the lexicon and the

misspelled word. If the edit distance is below a threshold then we can

add the word in the suggestion list.

For example, we assume our lexicon consist of following words.

কথা, কাক, কলা, মালা

Our misspelled word is কল. Now when we check the dictionary

file we find that there are no such word কল. So, it is a misspelled word

according to this dictionary. Now to generate and rank the suggestion,

we will generate the edit-distance with all the words of the dictionary.

Table 7: Edit distance example

Dictionary

word

Edit Distance
with word কল

কথা 2
কাক 2
কলা 1
মালা 3

Hence, our ranked suggestion for কল will be কলা, কাক, কথা, মালা

Longest common substring (LCS) [26]

52

Longest common substring is the longest substring that is

common in two strings.

For example, between “Naushad UzZaman” and “NZ”, longest

common substring is “NZ”.

LCS-Len is the length of longest common substring. In this

case, LCS-Len is 2.

• How LCS can be used in spelling checker
To generate suggestion for a misspelled word we need to

generate LCS-Len with each of the word in the lexicon and the

misspelled word. If the LCS-Len is above a threshold then we can add

the word in the suggestion list.

For example, we assume our lexicon consist of following words.

কথা, কাক, কলা, মালা

Our misspelled word is কল. Now when we check the dictionary

file we find that there are no such word কল. So, it is a misspelled word

according to this dictionary. Now to generate and rank the suggestion,

we will generate the LCS-Len with all the words of the dictionary.

Table 8: LCS example

Dictionary

word

LCS-Len with
word কল

কথা 1
কাক 1
কলা 2
মালা 1

53

Hence, our ranked suggestion for কল will be কলা, কাক, কথা, মালা

5.1.2.2. BB Choudhury’s Reverse dictionary method

[15] describes a unique method for Bangla spelling checker, which

does phonetic grouping to handle trivial phonetic errors and uses a

reverse dictionary to handle the typographical error.

Phonetically similar character error correction

Bangla letters be partitioned according to phonetic similarity

(e.g., I:II, U:UU, NA:NNA, SA:SSA:SHA, etc), with each set

represented by a single code. This coding can then be applied to

Bangla dictionary to convert it to a non-homophonous one, with each

entry pointing to the set of words that correspond to this code.

For example, suppose we encountered string bAnI and wish to

check if it is a valid word. By phonetic similarity coded notation it can

be converted into bAni. In Dc, is the dictionary consisting of word list

and corresponding code to each of the word, there is a match of bAni.
Now its corresponding valid words are bANI and bAni, none of which

match with bAnI. So our candidate bAnI is a wrong word. But the

suggested corrected word is either bANI or bAni.

Reversed word dictionary

For a valid word, its reversed word is a string of characters in

reversed sequence. Thus, the reversed version of the words 'read' and

'copy' are the strings 'daer' and 'ypoc', respectively where the first

character of the word goes to the last position, the second character

occupies the last but one position and so on. In general, the reversed

word of a word W = x1x2 ... xk is Wr = xkxk-1 ... x2x1.

54

In a reversed word dictionary Dr, the reversed version of all

dictionary words is maintained. For quick access or retrieval, the words

can be alphabetically ordered, partitioned in terms of word length and

maintained in indexed flat file or in trie structure. The dictionary

structure for our purpose can be indexed or trie depending on the

system capability. We have used trie structure for our purpose,

because it is computationally faster to access.

The purpose of reversed word dictionary is to look for match of

a string S backwards from the last character. We shall show that

search in conventional dictionary Dc as well as reversed word

dictionary together helps in finding the error position in S as well as in

creating a small subset of correction candidate words which indeed

contains the intended word.

Note that both forward and reversed word dictionary can be

prepared using phonetic alphabet, as discussed in Section 3. This

helps us in tackling phonetically similar character substitution error

automatically.

Error detection & position finding and Error correction

To start with we have two assumptions.

Assumption 1: There can be only single error in the word,

which is one among insertion, deletion, substitution and transposition.

Assumption 2: The correct word is available in both the

dictionary (conventional and reversed word) files.

Finding error region:
Consider, an erroneous string S of n characters. Suppose we try

55

to match the string in conventional dictionary Dc and check the

dictionary word that matches at maximum number of character

positions, say k1 in a sequence starting from left. For example, let the

erroneous string be ‘forvune’ where the error has occurred at 4-th

position and the correct word is 'fortune'. In the dictionary, there are

several words with 'for...', but no word with 'forv...'. Thus, here k1 = 3.

k1 is the length of maximum matched substring of misspelled

word with all words of dictionary Dc.

k2 is the length of maximum matched substring of misspelled

reverse word with all the words of reverse dictionary Dr.

Sl is the length of maximum substring of misspelled word when

both the dictionaries are used.

Sr is the length of maximum substring of misspelled word when

both the dictionaries are used.

Hence, if length of string is n, then error region can be n – Sl –

Sr.

Figure 4: Error localization by conventional and reverse
dictionary

Note that since the error is a single substitution or deletion the

correct word will lie in the dictionary words of n and n + 1 characters.

56

While searching in Dc and Dr, we look only for words of length n and n

+ 1.

Now after finding the error region, we need to correct the

misspelled word. Insertion and transposition will be treated in one way

and deletion and substitution will be treated another way.

Insertion and transposition:

• If the error is caused due to insertion (transposition), the correct

word is deleted (transposed string).

• If there are n characters in a misspelled word, we can make n

different strings by deleting one character at a time.

xyz – xy | yz | zx

• Similarly n-1 strings can be generated, by transposing one pair

of neighboring characters.

xyz – xzy | yxz

• Total, n + n – 1 = 2n – 1 strings may be checked in the

conventional dictionary and the strings that are valid words are

included in the candidate set of correct words.

Deletion and substitution:

• We cannot generate suggestion for deletion and substitution

error in the same way as insertion and transposition error.

• If N = alphabet size = 60 for Bangla, n = string length, then 2nN

strings needed to be generated for checking, hence it is not

economical to do it in the same way as insertion and

transposition.

• For deletion and substitution reverse dictionary will be used to

find the error region.

57

• If the error region is detected then

o If the error region is 0 but that word is not in the

dictionary then it is a deletion error. To correct this we

can just try by inserting each of the letter from alphabet

and check if it is a correct dictionary word or not.

o If the error region is 1 and the word is not in the

dictionary then it is a substitution error. To correct this we

can delete that letter from the error region and try by

inserting each of the letter from alphabet and check if it is

a correct dictionary word or not.

This is how Chaudhury’s reverse dictionary method works for

correcting a misspelled word.

5.1.2.3. Abdullah and Rahman’s Recursive simulation

method [19]

Recursive simulation method does a grouping for similar sounding

letters in Bangla. This considers letters, symbolic form of vowels and

consonants. Figure 5: List of phonetically similar letters, Figure 6: List
of vowel-symbols (known as kaar) and Figure 7: List of consonant
symbols (known as folaa & reff) are example of those grouping. Using

these grouping they create a circular lists. Each circular list contains

similar sounding letters, symbolic form of vowels and consonants. Figure
8: Circular lists of the grouped letters are the example of that list.

58

Figure 5: List of phonetically similar letters

Figure 6: List of vowel-symbols (known as kaar)

Figure 7: List of consonant symbols (known as folaa & reff)

Figure 8: Circular lists of the grouped letters

There are 150 compound letters or conjuncts, which are formed by

59

joining two or more consonants. Some of them are as following:

Figure 9: Some compound letters and their formation

Now, in the following Figure 10: Some common Bangla words with

their miss-spelt forms some very commonly used Bangla words and their

miss-spelt forms are mentioned for farther analysis.

Figure 10: Some common Bangla words with their miss-spelt forms

From the data mentioned in Figure 10: Some common Bangla

words with their miss-spelt forms, it can be seen that in Bangla language,

every single word may have several numbers of analogous phonetic

representations and each representation creates its own pronunciation

strictly according to its elementary letters and symbols. No word violates

the phonetic properties of its constructing letters. But in English words, it is

frequently seen that the pronunciation of the word is much different from

60

the usual phonetic properties of its elementary letters. This is the most

prominent difference in the spelling between the Western and South Asian

languages.

Since Metaphone and Double Metaphone algorithms manipulate

each letter of the alphabet and work mainly on the pronunciation of the

syllabi of any word, they are suitable for detecting suggestions in Western

languages, which have smaller alphabet of less complexity. But South

Asian languages have much bigger alphabet that is also extremely

complex. Here, in order to give appropriate suggestions, it is necessary to

simulate various representations of the miss-spelt word on the basis of the

sets of similarly spelt letters, vowel symbols, consonant symbols and

compound letters. But these algorithms are not designed to satisfy all

these requirements. Hence, the algorithms like Metaphone and Double

Metaphone are not very suitable and efficient for South Asian and many

other languages.

Under these circumstances, a new algorithm which can satisfy all

the mentioned criteria and reduce the complexity of implementation of

searching the nearest suggestions for the miss-spelt word in Bangla as

well as other South Asian languages is needed. Here, an algorithm, which

may solve this problem partially, has been proposed. This algorithm is

named RecursiveSimulation, which is still under research and

development. In this algorithm a set of circular lists has been used. Each

of the lists consists of letters that are phonetically similar. For example,

some lists are mentioned in Figure 8: Circular lists of the grouped letters.

If in the miss-spelt word, any letter exists in any of the lists, then

that letter will be replaced by all other letter of the corresponding list one

by one and then will be checked for matching in the dictionary. When any

null character will be found in the list then a word representation will be

61

formed where the position of that letter will be simply ignored.

Algorithm: RecursiveSimulation

Input: W, the miss-spelt word

S, empty array for storing the suggestions

P, current position of the character in the

miss-spelt word (default value is the length if W

and all external procedures always pass this

value)

Output: S, array containing the found suggestions

1. RecursiveSimulation (W, S, P)

2. C = Pth character of W

3. L = number of letters in alphabet that are

phonetically similar to

C

4. T = W

5. while L > 0 do

6. M = empty string

7. ReplaceLetter(T, M, P)

8. if M exists in the dictionary and M does not exist

in S then

9. append M to S

10. if P > 1 then RecursiveSimulation (M, S, P – 1)

11. T = M

12. L = L – 1

13. end

14. if P = length of W and P > 1 then do

15. W = leftmost (P – 1) characters of W

16. P = P - 1

17. while Pth character of W is any vowel-symbol or

62

any

consonant-symbol and P>0

18. do

19. W = leftmost (P – 1) characters of W

20. P = P – 1

21. end

22. RecursiveSimulation (W, S, P)

23. end

1. ReplaceLetter(T, M, P)

2. M = leftmost (P – 1) characters of T

3. L = Pth character of T

4. N = next phonetically similar character to L

5. if N is a vowel-symbol then do

6. if N is grammatically used before the letter then

7. if L is a vowel-symbol then

8. if L is grammatically used before the

letter then

9. append N to M

10. else

11. if P > 1 then insert N at (P – 1)th

position of M

12. else

13. if P > 1 then insert N at (P – 1)th

position of M

14. else

15. if L is a vowel-symbol then

16. if L is grammatically used before the

letter then

17. if P < length of T then do

18. P = P + 1

19. append Pth character of T to M

20. append N to M

21. end

63

22. else

23. append N to M

24. else

25. append N to M

26. end

27. else if N is a vowel then do

28. if L is a vowel-symbol then

29. if L is grammatically used before the

letter then

30. if P < length of T then do

31. P = P + 1

32. append Pth character of T to M

33. append N to M

34. end

35. else

36. append N to M

37. else

38. append N to M

39. end

40. else

41. append N to M

Sorting the suggestion list:

After generating the suggestion it need to be sorted. Edit distance

algorithm is used to sort the suggestions.

A simple simulation for the word is given below in Figure 11:

Simulated suggestion list for the word misspelled word, using Recursive

Simulation algorithm.

64

65

Figure 11: Simulated suggestion list for the word misspelled word, using
Recursive Simulation algorithm.

66

5.1.2.4. Hoque and Kaykobad’s soundex type encoding

Description of this method is available in 2.3.1. For spelling

checker, we need to use an approximate string matching algorithm after

the encoding to get the suggestions.

5.1.2.5. Zaman and Khan’s soundex type encoding

Description of this method is available in 2.3.2. For spelling

checker, we need to use an approximate string matching algorithm after

the encoding to get the suggestions.

5.1.3. Performance of previous techniques

Before considering the performance, we need to find out the

challenges for a spelling checker. To find out the challenge we need to

understand the peculiar nature of Bangla language, which we need to

consider giving similar sounding word in the suggestion. None of the previous

technique handles most of the peculiar nature of Bangla and give suggestions

accordingly but unfortunately most of them does not even noticed these

peculiarities. Following are the challenges to consider when someone

generates suggestion in a Bangla spelling checker.

1. There are groups of phonetically similar characters in Bangla; for
example, NA (ন) and NNA (ণ); SA (স), SHA (শ) and SSA (ষ), etc. The

contrast between long and short vowels in the script is also in the

modern version of the spoken language.

2. Bangla has many consonant clusters or conjuncts with unusual
pronunciations (i.e., k, h, etc.): let us consider k. k = ক+◌্ +ষ; kত [KA

HASANT SSA TA] /kɦɔto̪/ is pronounced as খত [KHA TA] /kɦɔto̪/, where

ষ does not have any sound.

3. Bangla has different uses of Phalaa's, the cluster final form of the

67

semi-vowels in Bangla (BA, MA, YA, RA and LA) which are

represented using a distinct sign-form. BA phalaa for example has a

distinct pronunciation from a BA in any other position in a cluster or in

a standalone configuration.

4. Different pronunciation of letters or conjuncts in different contexts:

consider again k. At the beginning of word, it is pronounced as খ /kɦ/.

(kত → খত /kɦɔto̪/); in the middle or at the end of a word, it is

pronounced as কখ /kkɦ/, (দk → দকখ /do̪kkɦo/).

5. Multiple pronunciations of some letters in the same context, such as হ

with ব: According to Bangla phonological rules, হ should be pronounced

as o or u and ব should be pronounced as ভ: আhান → আoভান /aovan/.

However, most native speakers pronounce these words the same way
as it is written. For example, আhান is usually pronounced as আহভান

/aɦobɦan/. Both pronunciations are considered correct.

Typographical error is a trivial challenge in a spelling checker for any

language, which can be solved by any string matching algorithms like Edit

Distance. But main challenge in a language is a phonetic error. Above, we

have described the peculiar phonetic nature of Bangla, which a spelling

checker must take in to account generating suggestion.

We have 5 previous techniques, these are:

1. Approximate string matching algorithms: AS
2. BB Chaudhury’s reverse dictionary method: BB [15]
3. Abdullah and Rahman’s recursive simulation method: AR

[19]
4. Hoque and Kaykobad’s soundex type encoding: HK [10, 11]
5. Zaman and Khan’s soundex type encoding: ZK [9]

Now, we will see which method can handle the challenges described

above.

68

Table 9: Challenges for spelling checker and performance of previous

techniques
Challenge Mentioned it as

problem

Can Handle

There are groups of phonetically

similar characters in Bangla; for
example, NA (ন) and NNA (ণ); SA

(স), SHA (শ) and SSA (ষ), etc. The

contrast between long and short

vowels in the script is also in the

modern version of the spoken

language.

1. BB

2. AR

3. HK

4. ZK

1. BB

2. AR

3. HK

4. ZK

Bangla has many consonant

clusters or conjuncts with unusual
pronunciations (i.e., k, h, etc.): let

us consider k. k = ক+◌্ +ষ; kত [KA

HASANT SSA TA] /kɦɔto̪/ is

pronounced as খত [KHA TA]

/kɦɔto̪/, where ষ does not have any

sound.

1. ZK

None

Bangla has different uses of

Phalaa's, the cluster final form of

the semi-vowels in Bangla (BA,

MA, YA, RA and LA) which are

represented using a distinct sign-

form. BA phalaa for example has a

distinct pronunciation from a BA in

any other position in a cluster or in

a standalone configuration.

1. AR, but describes

the trivial one and

did not describe the

unusual one.

2, HK, also describe

only the trivial one

and did not notice

the unusual one.

3. ZK

1. AR: can

handle the trivial

one only.

2. HK: can

handle the trivial

one only.

3. can handle the

trivial one only

Different pronunciation of letters or 1. ZK None

69

conjuncts in different contexts:
consider again k. At the beginning

of word, it is pronounced as খ /kɦ/.

(kত → খত /kɦɔto̪/); in the middle or

at the end of a word, it is

pronounced as কখ /kkɦ/, (দk → দকখ

/do̪kkɦo/).

Multiple pronunciations of some

letters in the same context, such
as হ with ব: According to Bangla

phonological rules, হ should be

pronounced as o or u and ব should

be pronounced as ভ: আhান → আoভান

/aovan/. However, most native

speakers pronounce these words

the same way as it is written. For
example, আhান is usually

pronounced as আহভান /aɦobɦan/.

Both pronunciations are

considered correct.

None None

We have seen that none of the previous method can handle the

problems, but spelling checker using our proposed phonetic encoding can

handle all these problems.

5.1.4. How to rank

To rank the suggestion we used both phonetic edit distance, which is edit

distance between phonetic codes, and normal edit distance. We did not use the

average of both, but preferred for a weighted average. For example, our

score = a * phonetic_edit_distance + (1-a) * normal_edit_distance

70

where, a > (1-a).

We rank the suggestions according to the scored achieved for a word.

5.1.5. Performance of our proposed encoding

Table 10: Encoding performance shows the performance of this encoding

when it is used on 1607 commonly misspelled words found in [22]. We first apply

our encoding to both the correct and misspelled words, and then compute the

phonetic edit distance between the two encoded versions. It is considered correct

if the edit distance is 0. In our case 134 out of 1607 words do not produce an edit

distance of 0 with the correct word, which are termed as error, resulting in an

accuracy of 91.37%.

Table 10: Encoding performance

No of words 1607

Correct (Edit

Distance 0) 1473

Error 134

Rate of accuracy 91.67%

Rate of error 8.33%

The number of unmatched words fall to 107 and 27 if we consider edit

distances of 1 and 2 respectively, as shown in Table 3.

Table 11: Error distribution

Error 134

Edit Distance 1 107

Edit Distance 2 27

When we generate the suggestion list, we can easily add words to the

suggestion list when the words have Edit distance <=2. So, we can always get

our expected word in the suggestion list, and more than 91.37% times at the top

71

of the list.

We can not directly show the performance with each of the previous

method. But we have shown in previous section that previous methods can not

give us expected suggestions. In Table 12: Performance of proposed phonetic

encoding, we will show that how well this can encode the words by comparing

with other encoding and approximate string matching methods. Among the

Soundex for Bangla by “Hoque and Kaykobad” and “Zaman and Khan”, we have

shown only the “Zaman and Khan” one, since they considered Unicode encoding

like us. And they are almost similar, just the codes are different.

Table 12: Performance of proposed phonetic encoding contains (i)

traditional edit distance algorithm [23], (ii) Soundex encoding described in

[zaman khan soundex], and (iii) our proposed encoding. For the Soundex and

Double Metaphone methods, the error (denoted by E in the table) is calculated

from the phonetic edit distance between the encoded versions. The results

clearly show that the proposed encoding performs much better than the other

existing methods.

Table 12: Performance of proposed phonetic encoding

Edit Distance Soundex Double Metaphone

Misspelled

Word

Correct Word E Misspell

ed Word

Correct

Word

E Misspelled

Word

Correct

Word

E

কসট /koʃto/ কŷ /koʃto/ 2 ksT ksT 0 ksT ksT 0

dকখ /du̪kkɦo/ dঃখ /du̪kkɦo/ 1 dukk duhk 1 dukk dukk 0

ষািম /ʃami/ sামী /ʃami/ 2 sami sbami 1 sami sami 0

aততাn /ɔtt̪a̪nt ̪̀ o/ aতয্n /ɔtt̪ ̪̀ ɔnto̪/ 2 ottant otjnt 2 ottant ottnt 1

িরদয় /rɦido̪i/ hদয় /rɦido̪i/ 2 ridy hrdy 2 ridy ridy 0

72

িবসেশা /biʃʃo/ িবƭ /biʃʃo/ 2 biss bisb 1 biss biss 0

চাদ /cad/̪ চঁাদ /cãd/̪ 1 cad cad 0 cad cad 0
asমান

/ɔsto̪man/ asায়মান /ɔsta̪em̃an/ 2 ostman ostayman 2 ostman

ostayman 2
jরাজীরেনা

/ɟɔraɟirno/ জরাজীর্ণ /ɟɔraɟirno/ 4 jbrajirn jrajirn 1 jrajirn jrajirn 0

তরংগ /tɔ̪rɔŋgo/ তরò /tɔ̪rɔŋgo/ 2 trmg trmg 0 trngg trngg 0

কনা /kɔna/ কণা /kɔɳa/ 1 kna kna 0 kna kna 0
িনnয্িনয়

/nindɔ̪niẽ/ িনnনীয় /nindɔniẽ/ 3 nindjniy nindniy 1 nindniy nindniy 0

পদদ /pɔdd̪o̪/ পd /pɔdd̪õ̪/ 2 pdd pdm 1 pdd pdd 0

িনচ /nic/ নীচ /nic/ 1 nic nic 0 nic nic 0

We have shown the use of proposed encoding in spelling checker. This

encoding encapsulates the complex spelling rules for Bangla, and in addition,

takes into account some of the dialectic pronunciation differences that are not

possible to handle otherwise. The performance results show that it easily

outperforms the current state of the art Bangla spelling checkers in producing

appropriate suggestions for not only the commonly misspelled words, but also for

the large number of “corner” cases which are currently beyond the reach of the

other existing methods.

73

5.2. Transliteration

Transliteration from English letters is particularly important for users

who are only familiar with the English keyboard layout, and hence could not

type quickly in a different alphabet even if their software would actually

support a keyboard layout for another language [27]. This is the main reason

of a Transliteration. In case of Bangla, also known as Bengali, we have

different keyboard layouts. So, it is hard for a beginner to memorize the layout

and write smoothly. Even though there are some phonetic keyboard layouts,

which is helpful to get started but we still need a very good transliteration

process. Bangla is not a very phonetic language; so orthographic rules are

not same as phonetic rules. Mean we may pronounce something but when

we write it, it is not exactly all the same. Sometime some letters are silent,

sometimes some letters get sound of another letter, and sometimes letters

sounds differently depending on context, many complexities like these. So,

even if we write something in English then it will be hard to get the correct

dictionary word with that pronunciation. In this section we described how we

could get these complex dictionary words and normal words in a

transliteration from the English pronunciation.

5.2.1. What is transliteration

Transliteration in a narrow sense is a mapping from one script into

another script. It tries to be lossless, i.e., the informed reader should be

able to reconstruct the original spelling of unknown transliterated words

[27]. This is opposed to transcription, which maps the sounds of one

language to the script of another language. Still, most transliterations map

the letters of the source script to letters pronounced similarly in the goal

script, for some specific pair of source and goal language [28]. In a more

specialized sense, a transcription is (a system of) writing the sounds of a

74

word in one language using the script of another language. If the relations

between letters and sounds are similar in both languages, a transliteration

may be (almost) the same as a transcription. In a broader sense, the word

transliteration is used to include both transliteration in the narrow sense

and transcription [27].

Considering both the challenges we will give the process of a

transliteration for Bangla from English. It is clear that there will be two

types. One will be direct mapping and another will be phonetic mapping.

Direct mapping will do what transliteration means in narrow sense. There

will be one to one mapping. Phonetic mapping will do what transliteration

means in broader sense; it will also work as transcription.

5.2.2. Previous transliterations

Transliteration for English to other languages is an important

research challenge and many researches have been done in this field. For

example, English to Japanese [29], English to Arabic [30, 31, 32, 33] and

English to Chinese [34]. These transliterations are also used in various

applications, like multi-lingual information retrieval and getting the OOV

(out of vocabulary) words of same pronunciation using statical analysis.

Main work on Bangla for transliteration was started by ITRANS [35,

36], in early 1991. Now a day this application is becoming popular and

useful. There are some word processors that support transliteration on

Bangla [38, 39, 40, 41, 42]. But these are phonetically direct mapping,

which is mapping from one script to another and will be lossless. No work

on phonetic mapping, which will give the word with same pronunciation

from dictionary, has been found so far.

75

5.2.3. Proposed new technique for transliteration

5.2.3.1. Direct mapping

It is a trivial mapping and existing Transliterations use this method.

Most popular mapping is the mapping provided by ITRANS [36]. Some

software [37, 38] exactly uses this mapping and some use their own. Still

we are giving a mapping, which we used for our direct mapping

transliteration. Since this direct mapping is still a phonetic mapping but the

difference is, it will not look up in the dictionary if it has any word with

same pronunciation. We have introduced an intermediate encoding, which

will be used to encode before converting. We need it because in some

cases it should not be converted directly, like bool pronounce as bul,

hence before mapping we convert “oo” to “u”. Another thing is we will not

only consider one letter for one to one mapping, we may sometime

consider bigrams for mapping. Because, to represent some Bangla letters

phonetically in English we use those birgrams. Like for Bangla letter খ /kh/

we use kh.

Table 13: Table for direct mapping

English letter
or Bigram

Intermediate
Encoding Name

Bangla
letter Unicode

A A AA আ \u0986

A A SIGN AA ◌া \u09BE

b B BA ব \u09AC

bh Bh BHA ভ \u09AD

c C CA চ \u099A

ch Ch CHA ছ \u099B

d D DA দ \u09A6

dh Dh DHA ধ \u09A7

D D DDA ড \u09A1

76

Dh Dh DDHA ঢ \u09A2

e E E e \u098F

 E SIGN E ে◌ \u09C7

ee i SIGN I ি◌ \u09BF

f Ph PHA ফ \u09AB

g G GA গ \u0997

gh Gh GHA ঘ \u0998

h H HA হ \u09B9

H H VISARGA ◌ঃ \u0983

i I I i \u0987

 i SIGN I ি◌ \u09BF

I I II ঈ \u0988

 I SIGN II ◌ী \u09C0

j J YA য \u09AF

J J JA জ \u099C

jh Jh JHA ঝ \u099D

k K KA ক \u0995

kh Kh KHA খ \u0996

l L LA ল \u09B2

m M MA ম \u09AE

M M

CANDRABIN

DU ◌ঁ \u0981

n N NA ন \u09A8

N N NNA ণ \u09A3

Nh Nh NYA ঞ \u099E

ng Ng ANUSVARA ◌ং \u0982

Ng Ng NGA ঙ \u0999

o O A a \u0985

O @ BEGIN O O o \u0993

77

O @

MIDDLE/END O SIGN O ে◌া \u09CB

oi oi AI ঐ \u0990

 oi SIGN AI ৈ◌ \u09C8

ou ou AU ঔ \u0994

 ou SIGN AU ে◌ৗ \u09CC

oo u SIGN U u \u09C1

p p PA প \u09AA

ph ph PHA ফ \u09AB

q k KA ক \u0995

r r RA র \u09B0

R R RRA ড় \u09DC

Rh Rh DDHA ঢ় \u09A2

s s SA স \u09B8

sh sh SHA শ \u09B6

S S SSA ষ \u09B7

t t TA ত \u09A4

th th THA থ \u09A5

T T TTA ট \u099F

Th Th TTHA ঠ \u09A0

u u U u \u0989

 u SIGN U ◌ু \u09C1

U U UU ঊ \u098A

 U SIGN UU ◌ূ \u09C2

v bh BHA ভ \u09AD

w oa O AA oআ
\u0993

\u0986

x @ BEGIN j YA য \u09AF

x @

MIDDLE/END ks KA SA কস
\u0995

\u09B8

78

y y YYA য় \u09DF

Z j YA য \u09AF

\ \ HASANT ◌্ \u09CD

5.2.3.2. Phonetic mapping

In phonetic mapping main idea is we will check in the dictionary if

we have the word with same pronunciation. Following is the algorithm of

phonetic mapping.

Algorithm of phonetic mapping

if there is a word with the same pronunciation in
the dictionary
 then convert it to that word

else if there are multiple words with the same
pronunciation in the dictionary
 then give suggestions for that word and the
user will select which one to use
else if there are not words with the same
pronunciation in the dictionary
 then convert it using direct mapping

Now main challenge is how we can get the pronunciation of a

Bangla word to check it with an English word and understand it has the

same pronunciation. We have used the phonetic encoding for Bangla

proposed in section 4.1. That encoding encodes Bangla word in to an

English word that represents the pronunciation of a word. So, our only

challenge is to convert the English words in the same manner so that
both encoding are consistent. For example, কলম is encoded in to klm.

Our main challenge will be to encode the English word in a way so that

when someone writes kolom then it is encoded to klm. So, checking

79

the encoding we can say that it have the same pronunciation as a

dictionary word. Problem is we have to modify the proposed encoding

in very few cases, so that both of these represent to same code for the

same pronunciation. Following Table 14: Modification in proposed

encoding is the modification of proposed encoding. After that in Table

15: Proposed encoding for phonetic mapping, we propose our

encoding for English word, which will guarantee to have the same code

with the same pronunciation, Bangla word. Table 15: Proposed

encoding for phonetic mapping is almost same as Table 13: Table for
direct mapping. Differences are kept bold so that it can be easily

distinguished. In direct mapping we had to keep in mind that there

should be a one to one mapping to all Bangla letters so that every

letter can be written.

Table 14: Modification in proposed encoding

Bangla letter Name Unicode

Encoding in

our proposed

one

Modified

encoding
ভ BHA \u09AD “b” “bh”
ছ CHA \u099B “c” “ch”
ধ DHA \u09A7 “d” “dh”
ঢ DDHA \u09A2 “d” “dh”
ঘ GHA \u0998 “g” “gh”
ঝ JHA \u099D “j” “jh”
খ KHA \u0996 “k” “kh”
ফ PHA \u09AB “p” “ph”
থ THA \u09A5 “t” “th”
ঠ TTHA \u09A0 “T” “Th”

80

Table 15: Proposed encoding for phonetic mapping

English letter
or Bigram

EncodingLikeB
angla Name

Bangla
letter Unicode

a A AA আ \u0986

a A SIGN AA ◌া \u09BE

b B BA ব \u09AC

bh Bh BHA ভ \u09AD

c C CA চ \u099A

ch Ch CHA ছ \u099B

d D DA দ \u09A6

dh Dh DHA ধ \u09A7

D D DDA ড \u09A1

Dh Dh DDHA ঢ \u09A2

e E E e \u098F

 E SIGN E ে◌ \u09C7

ee I SIGN I ি◌ \u09BF

f Ph PHA ফ \u09AB

g G GA গ \u0997

gh Gh GHA ঘ \u0998

h H HA হ \u09B9

H H VISARGA ◌ঃ \u0983

I I I i \u0987

 I SIGN I ি◌ \u09BF

I capital I II ঈ \u0988

 I SIGN II ◌ী \u09C0

j J YA য \u09AF

J J JA জ \u099C

jh Jh JHA ঝ \u099D

81

k K KA ক \u0995

kh Kh KHA খ \u0996

l L LA ল \u09B2

m M MA ম \u09AE

M Not Coded
CANDRABIN
DU ◌ঁ \u0981

n N NA ন \u09A8

N N NNA ণ \u09A3

Nh N NYA ঞ \u099E

ng Ng ANUSVARA ◌ং \u0982

Ng Ng NGA ঙ \u0999

o Not Coded A a \u0985

O @ BEGIN O O o \u0993

O @
MIDDLE/END Not Coded SIGN O ে◌া \u09CB

oi Oi AI ঐ \u0990

 Oi SIGN AI ৈ◌ \u09C8

ou Ou AU ঔ \u0994

 Ou SIGN AU ে◌ৗ \u09CC

oo U SIGN U u \u09C1

p p PA প \u09AA

ph Ph PHA ফ \u09AB

q K KA ক \u0995

r R RA র \u09B0

R R RRA ড় \u09DC

Rh R DDHA ঢ় \u09A2

s S SA স \u09B8

sh S SHA শ \u09B6

S S SSA ষ \u09B7

82

t T TA ত \u09A4

th Th THA থ \u09A5

T T TTA ট \u099F

Th Th TTHA ঠ \u09A0

u U U u \u0989

 U SIGN U ◌ু \u09C1

U U UU ঊ \u098A

 U SIGN UU ◌ূ \u09C2

v Bh BHA ভ \u09AD

w Oa O AA oআ
\u0993

\u0986

x @ BEGIN J YA য \u09AF

x @

MIDDLE/END Ks KA SA কস
\u0995

\u09B8

y Y YYA য় \u09DF

z J YA য \u09AF

\ Not Coded HASANT ◌্ \u09CD

5.2.4. Example of transliteration

We have described two of our Transliteration methods. Now we will

show some examples that will make it clear.

Suppose we have written the following text.

ami bhalo achi. tomar khobor ki. ajke shondha bela tumi ki korcho. obak

bepar holo, ami ekhon bangla likhte pari iNglish diye. aro mojar bepar holo ami

dui bhabe likhte pari. ekTa DairekT arekTa phoneTik. tomar desh e koto Taka te

ek Dolar. ami ai bhabe abar juk\to bor\no likhte pari.

5.2.4.1. Direct mapping

Output in direct mapping will be following.

83

আিম ভােলা আিছ. েতামার েখােবার িক. আযেক েশানধা েবলা তুিম িক েকারেছা. aবাক েবপার

েহােলা, আিম eেখান বাংলা িলখেত পাির iংিলশ িদেয়. আেরা েমাযার েবপার েহােলা আিম di ভােব িলখেত

পাির. eকটা ডাiেরকট আেরকটা েফােনিটক. েতামার েদশ e েকােতা টাকা েত eক েডালার. আিম আi ভােব

আবার যুেkা েবাের্না িলখেত পাির.

5.2.4.2. Phonetic mapping

Output in phonetic mapping will be following.
আিম বহাল/ভাল/ভােলা আিছ. েতামার খবর কi/িক/কী. আজেক সnয্া েবলা তুিম কi/িক/কী করছ.

aবাক েবপার/বয্াপার হল, আিম eখন/eখেনা বাংলা/বাঙলা িলখেত পাির/পািড় iংিলশ িদেয়. আর/আেরা/আড়

মজার েবপার/বয্াপার হল আিম di ভােব িলখেত পাির/পািড়. eকটা ডাiেরকট আেরকটা েফােনিটক . েতামার

েদশ/েdষ e কত/েকঁাত টঁাকা/টাকা েত eেঁকা/eক ডলার . আিম আi ভােব আবার যুk বরণ/বর্ণ/bণ িলখেত

পাির/পািড়

Table 16: Few examples from above paragraph to make the process clear

English

word

Output in

direct

mapping

Output in

phonetic

mapping

Selected

word

shondha েশানধা সnয্া সnয্া

bela েবলা েবলা েবলা

bepar েবপার েবপার/বয্াপার বয্াপার

mojar েমাযার মজার মজার

DairekT1 ডাiেরকট ডাiেরকট ডাiেরকট

ami আিম আিম আিম

ek eক eেঁকা/eক eক

juk\to যুেkা যুk যুk

bor\no েবাের্না বরণ/বর্ণ/bণ বর্ণ

1 Not found in the dictionary. So, used direct mapping for its suggestion

84

We have given this Table 4 to show that how we can handle the

similar sounding multiple words in suggestion. Basically, we have to just

select our expected word among the suggestions.

85

5.3. Cross Language Information Retrieval

In cross language retrieval, a user issues a query in one language to

search a collection in different language. If the two languages use same alphabet

then similar sounding word can be written in the same way in two languages and

can easily be found as well. However, if two languages use two different

alphabets then it is not an easy task to issue a query in one language to search a

collection in different language. In this section, we will describe how our

proposed encoding in section 4.1 can be used to work as an intermediate code

for this cross language information retrieval.

5.3.1. What does it handle

In this cross language information retrieval between English and Bangla,

main work is to take a word in English and it will find the similar sounding word in

a Bangla document. To give the suggestion it easily handles the complex Bangla

orthographical rules, because of using our proposed phonetic encoding.

5.3.2. Previous work

There are no such efforts given in this type of application for Bangla so far.

But in many languages it is solved by first transliteration of one language to

another language, after that we can easily search that transliterated word in the

document.

For example, we want to search Bangla word বানান /banan/ in a Bangla

document. We issue a query in English by “banan”. So, in trivial method by

transliteration “banan” will be converted to বানান /banan/ first, and then বানান

/banan/ will be searched in the Bangla document, which is a trivial task.

86

This method is used in languages, where we have a good transliteration,

such as [29, 30, 31, and 34]. [33] uses this method for Arabic to English cross

language information retrieval.

5.3.3. How does it work

In this cross-lingual information retrieval, our proposed phonetic encoding

works as an intermediate code. We code Bangla by our proposed code to

Roman alphabets, which represent the pronunciation of the word. Now our main

challenge is to encode the English word in the same way, so that its

pronunciation can be represented by that code. So, rather than the original word

we can operate on the code and find the word of similar pronunciation. For
example, in our proposed encoding, কলম is encoded in to klm. Our main

challenge was to encode the English word in a way so that when someone

searches with kolom then it is converted to klm.

Our limitation is we can not actually handle complex English words, but if

someone writes Bangla using English then they write it in simple English. So, we

can easily handle these cases.

It operates almost similarly to our proposed transliteration in phonetic

mapping, described in 5.2.3.2. In this section we will refer to some of the tables

of that section.

Challenge is we have to modify the proposed encoding in very few cases,

so that both of these represent to same code for the same pronunciation. Table

14: Modification in proposed encoding is the modification of proposed encoding.

After that in Table 15: Proposed encoding for phonetic mapping, we propose our

encoding for English word, which will guarantee to have the same code with the

same pronunciation, Bangla word.

87

5.3.4. Example

Following is an example of a Bangla text. We will try to retrieve few words

from this text by issuing queries in English.

Bangle Text:
আিম ভােলা আিছ. েতামার খবর িক. আজেক সnয্া েবলা তুিম িক করছ. aবাক বয্াপার হল, আিম eখন বাংলা

িলখেত পাির iংিলশ িদেয়. আেরা মজার বয্াপার হল আিম di ভােব িলখেত পাির. eকটা ডাiেরকট আেরকটা

েফােনিটক . েতামার েদশ e কত টঁাকা েত eক ডলার . আিম আবার যুk বর্ণ িলখেত পাির

Encoding of Bangla Text:

ami bhal achi. tmar khbr ki. ajke shndha bela tumi ki krch. obak bepar hl, ami

ekhn bangla likhte pari english diye. ar mjar bepar hl ami dui bhabe likhte pari. ekta

DairekT arekta phnetik. tmar desh e kt Taka te ek Dlar. ami abar jukt brn likhte pari.

Following Table 17: English word, encoding of English word, Bangla word

with the same encoding from the text contains the English word, which we used

to search in a Bangla text; encoding of English word from Table 15: Proposed

encoding for phonetic mapping; and Bangla word with same encoding generated

by proposed encoding with modification from Table 14: Modification in proposed

encoding.

Table 17: English word, encoding of English word, Bangla word with the
same encoding from the text

Queries in English word Encoding of English word

Bangla word with same

encoding in the text

Shondha shndha সnয্া

Bela bela েবলা

Bepar bepar বয্াপার

88

Mojar mjar মজার

DairekT2 DairekT ডাiেরকট

Ami ami আিম

Ek ek eক

juk\to jukt যুk

bor\no brn বর্ণ

Hence, we get our desired Bangla word from Bangla text by issuing a

query in English.

This is how our encoding work as an intermediate code in multi-lingual

information retrieval, where a user issues a query in one language (such as

English) to search a collection in a different language (such as Bangla). More

specifically, writing the pronunciation of a word in English one can search words

with same pronunciation in a Bangla document.

2 Not found in the dictionary. So, used direct mapping for its suggestion

89

5.4. Name Searching and Matching

Names are quite often spelled in a variety of different ways, with all

variants considered equivalent. This creates a challenge when searching for and

matching names in databases, and linking records among different data sources.

The situation is quite complex in Bangla because of its archaic and complex

orthographic rules, arising in part from the large gap between the script and

pronunciation in Bangla. The Bangla language had gone through a vigorous

process of Sanskritization during the 12th century, continuing throughout the

middle ages, and this process in large part contributed to this gap. In addition,

non-indigenous Bangla names are often derived from a variety of different origins

– from Sanskrit, Perso-Arabic languages, Portuguese, and other Western

languages. Most of the imported names have gone through at least one

significant change in both spelling and pronunciation from the original, and have

evolved as names with multiple equivalent spellings in both Bangla and English.

However, the spelling variants of most of these names have one thing in

common – phonetic similarity – a feature that can be used to match these names

with each other. For example, the মুরেতাজা /murto̪ɟa/ and মরতুজা /mortu̪ɟa/ are

common spelling variants of the same name. The similarity of the two names will

be obvious to any native Bangla speaker because of the phonetic similarity along

with some knowledge of Bangla name-spelling rules, but may be difficult for an

algorithm because of the two character mismatches in two different positions.

One solution is to encode the names using a phonetic encoding that

encapsulates Bangla orthographic rules along with the peculiarities of the name-

spelling rules, and then match the resulting encoded versions. With a variation to

the encoding of 4.1 we can propose a phonetic encoding for names that is

capable of matching most of the common names in all spelling variants, and in

addition, providing the correct suggestion in case of a misspelled name, where

90

the spelling error is a phonetic one.

While there are well-established phonetic similarity encodings and

algorithms available for English and other Western languages, similar work for

Bangla, despite it being the 4th largest language by population, is still in its

infancy. Most of the recent efforts in Bangla phonetic similarity algorithm are

based on Soundex [9, 10], which cannot encode the sound of complex Bangla

words; the Double Metaphone encoding in described in section 4.1, tailored for

spelling checking application, encapsulates the entire range of orthographic

rules, including those involving the large repertoire of conjuncts in Bangla. We

base our proposed name encoding on section 4.1, and extend it to support the

name-spelling peculiarities in Bangla. We can use this encoding to match similar

sounding names in a database, and then use other metrics to rank the match (or

the suggestion in the case of a spelling checker).

5.4.1. Proposed name encoding for Bangla
Table 18: Proposed Name Encoding for Bangla details the proposed

name encoding for Bangla, followed by the rationale for the various mapping

rules. Since any word in Bangla can be name, a fair number of the rules are

inherited from the spelling encoding described in section 4.1, and so we describe

the rationale for only those that are specifically for names. We assume that the

Bangla text is encoded using Unicode Normalization Form C (NFC) [13].

Table 18: Proposed Name Encoding for Bangla

No Letter Name Unicode Code Context Example

1 ◌্ SIGN

VIRAMA /

Hasant

\u09CD Not Coded আbুল /abdul/

2 ◌ঁ CANDRABIN

DU

\u0981 Not Coded চঁাদনী /cɦ̃adni/

3 a A \u0985 Not Coded

4 আ AA \u0986 Not Coded

5 ◌া SIGN AA \u09BE Not Coded

91

No Letter Name Unicode Code Context Example

6 i I \u0987 Not Coded

7 ঈ II \u0988 Not Coded

8 ি◌ SIGN I \u09BF Not Coded

9 ◌ী SIGN II \u09C0 Not Coded

10 u U \u0989 Not Coded

11 ঊ UU \u098A Not Coded

12 ◌ু SIGN U \u09C1 Not Coded

13 ◌ূ SIGN UU \u09C2 Not Coded

14 o O \u0993 Not Coded

15 ে◌া SIGN O \u09CB Not Coded

16 e E \u098F Not Coded

17 ে◌ SIGN E \u09C7 Not Coded

18 ঐ AI \u0990 Not Coded

19 ৈ◌ SIGN AI \u09C8 Not Coded

20 ঔ AU \u0994 Not Coded

21 ে◌ৗ SIGN AU \u09CC Not Coded

22 ক KA \u0995 “k”

23 খ KHA \u0996 “k”

24 \u0995 \u09CD

\u09B7

“k” @ the beginning kত /khɔto̪/

25

k

\u 0995 \u09CD

\u09B7

“kk” @ middle/end দk /do̪kkho/

26 গ GA \u0997 “g”

27 ঘ GHA \u0998 “g”

28 ঙ NGA \u0999 “ng” বাঙলা /baŋla/

29 ◌ং ANUSVARA \u0982 “ng” বাংলা /baŋla/

30 চ CA \u099A “s”

31 ছ CHA \u099B “s”

32 শ SHA \u09B6 “s” শাদমান /ʃadm̪an/

33 স SA \u09B8 “s” সামীন /ʃamin/

34 ষ SSA \u09B7 “s”

92

No Letter Name Unicode Code Context Example

35 x\u09CD\u09AF Not Coded @ the beginning

as YA phalaa
শয্ামা /ʃæma/

36 ...xy \u09CD z

\u09CD \u 09AF

Not Coded @ middle/end

with conjuncts
সnয্া /ʃondɦ̪a/

37

য YA as phalaa

...xy \u09CD

\u09AF

Doubles: yy @ middle/end সতয্িজত /ʃɔtt̪o̪ɟit/̪

38 য YA \u09AF “j”

39 জ JA \u099C “j”

40 ঝ JHA \u099D “j”

41 \u099E \u099A “n” Before CA aāল /ɔncɔl/

42 \u099E \u099B “n” Before CHA বাĂা /bancha/

43 \u099E \u099C “n” Before JA মăু /mɔnɟu/

44 \u099E \u099D “n” Before JHA যĄা /ɟɦɔnɟa/

45 \u099A \u099E “n” After CA যাচ্ঞা /ɟacna/

46 \u099E \u0985 |

\u099E\u0987

Not Coded Before A | I িমঞা /miã/

47 \u099C \u09CD

\u099E

“ge” @ the beginning

after JA
jাত /gætɔ̪/

48 ... \u099C \u09CD

\u099E

“gg” @ middle/end

after JA
িবjান /biggæn/

49

ঞ NYA

\u099E \u09CD “n” With hasant নঞ /nɔn/

50 ট TTA \u099F “T”

51 ঠ TTHA \u09A0 “T”

52 ড DDA \u09A1 “D”

53 ঢ DDHA \u09A2 “D”

54 \u098B “ri” @ the beginning ঋতু /ritu̪/

55

ঋ VOCALIC R

x\u098B “ri” | xri @ middle/end িবকৃত /bikkrito̪/ |

িবকৃত /bikrito̪/

56 র RA as phalaa x\u09CD \u09B0 “r” @ the beginning pকাশ /prokaʃ/

93

No Letter Name Unicode Code Context Example

57 ...x\u09CD \u09B0 “r” @ middle/end রািt /ratt̪r̪i/ | রািt

/ratr̪i/

58 র RA \u09B0 “r”

59 ড় RRA \u09DC “r”

60 ঢ় DDHA \u09A2 “r”

61 ন NA \u09A8 “n”

62 ণ NNA \u09A3 “n”

63 ত TA \u09A4 “ t”

64 থ THA \u09A5 “ t”

65 দ DA \u09A6 “ d”

66 ধ DHA \u09A7 “ d”

67 প PA \u09AA “p”

68 ফ PHA \u09AB “p”

69 x\u09CD \u09AC

y...

Not Coded @ the beginning spা /ʃɔpna/

70 ...x\u09CD y

\u09CD \u09AC

Not Coded BA phalaa with

conjuncts
তtt /to̪tt̪ɔ̪/

71 ... \u09AC \u09CD

\u09AC

“bb” After BA as

conjuncts
িতbত /ti̪bbot/̪

72 ... \u09AE \u09CD

\u09AC

“mb” After MA as

conjuncts
লm /lombo/

73 ... \u0997 \u09CD

\u09AC

“gb” After GA as

conjuncts

িদিgিদক

/di̪gbidi̪k/

74 \u0989 \u09A6

\u09CD \u09AC

“udb” After Ud- (U DA

BA...)
uেdগ /udb̪eg/

75

ব BA as phalaa

...y \u09CD \u09AC Doubles: yy @ middle/end িবƭিজt /biʃʃɔɟit/̪

76 ব BA \u09AC “b”

77 ভ BHA \u09AD “b”

78 x\u09CD \u09AE... Not Coded @ the beginning sরণ /ʃɔron/

79

ম MA as

phalaa
...x\u09CD y

\u09CD \u09AE

Not Coded MA phalaa with

conjuncts
সূk /ʃukk̀ho/

94

No Letter Name Unicode Code Context Example

80 ... \u0995 \u09CD

\u09AE

“km” After KA as

conjuncts
rিkনী /rukmini/

81 ... \u0997 \u09CD

\u09AE

“gm” After GA as

conjuncts
যুg /ɟugmɔ/

82 ... \u0999 \u09CD

\u09AE

“ngm” After NGA as

conjuncts
বাõয় /baŋmoi/

83 ... \u099F \u09CD

\u09AE

“tm” After TTA as

conjuncts
কুćল /kutmol/

84 ... \u09A3 \u09CD

\u09AE

“nm” After NNA as

conjuncts
মৃĔয় /mrinmɔẽ/

85 ... \u09A8 \u09CD

\u09AE

“nm” After NA as

conjuncts
জn /ɟɔnmo/

86 ... \u09AE \u09CD

\u09AE

“mm” After MA as

conjuncts
rmান /rumman/

87 ... \u09B2 \u09CD

\u09AE

“lm” After LA as

conjuncts
gl /gulmo/

88 ... \u09B6 \u09CD

\u09AE

“sm” @ middle/end

with SHA
কাųীর /kaʃmir/

89 ... \u09B7 \u09CD

\u09AE

“sm” @ middle/end

with SSA

কুſাn

/kuʃmandɔ/

90 ... \u09B8 \u09CD

\u09AE

“sm” @ middle/end

with SA
সুিsতা /ʃuʃmita̪/

91 ...y \u09CD \u09AE Doubles: yy @ middle/end

otherwise
রিų /rɔʃʃe/

92 ম MA \u09AE “m”

93 য় YYA \u09DF Not Coded িময়া /mia/,

সাে◌য়ম /saiẽm/

94 ল LA \u09B2 “l”

95 \u09B9 \u09CD

\u098B

“ri” HA with Vocalic R hঋদয় /rɦidoi/

96 \u09B9 \u09CD

\u09B0

“r” HA with R as

phalaa
hদ /rɔd/

97

হ HA

\u09B9 \u09CD

\u09A8

“nn” HA with NA পূরব্াh /purbannɔ/

95

No Letter Name Unicode Code Context Example

98 \u09B9 \u09CD

\u09A3

“nn” HA with NNA pাh /prannɦo/

99 \u09B9 \u09CD

\u09AE

“mm” HA with MA bhা /brommɦa/

100 \u09B9 \u09CD

\u09AF

“jj” HA with YA as

phalaa
uহয্ /uɟɟɦo/

101 \u09B9 \u09CD

\u09B2...

“l” HA with LA @

beginning
hাদ /lɦad/

102 ... \u09B9 \u09CD

\u09B2

“ll” HA with LA @

middle/end
আhাদ /allɦad/

103 \u09B9 \u09CD

\u09AC

“h” | “o” HA with BA আhান /aovan/ |

আhান /aɦobɦan/

104 হ HA \u09B9 Not Coded Otherwise

105 One to one

Transformations

Encode

using rest of

the rules

after

transformati

on

 েমাঃ → েমাহাmদ

/mohammɔd/

106 x\u0983 y... Doubles: yy @ the middle dঃসময়

/duʃʃomoẽ/

107 x\u0983 “h” @ the end strlen

== 1 | 2
uঃ /uɦ/, বাঃ /baɦ/

108

◌ঃ Visarga

x\u0983 Not Coded Otherwise @ the

end
পুনঃ /puno/

The transformation or rules described in Table 18: Proposed Name

Encoding for Bangla were derived from a large set of names in the literature [43,

44, 45], which include both common and uncommon names, and of different

origins. We describe the rationale for the name-encoding transformations below.

96

5.4.2. Rationale for Name encoding

Transformations 1, 2: Reason why SIGN VIRAMA (Hasant) and

CANDRABINDU are to be Not Coded can be found in section 4.1.

Transformations 3 – 21: In our encoding, vowels are Not Coded. This is

to account for pronunciation differences from person to person, or region-to-

region, where the differences are due to vowels.

The following is an example of a name, which is spelled (and pronounced)

differently by native speakers:

মরতুজা /mɔrtu̪ɟa/, মুরেতাজা /murto̪ɟa/, মরেতাজা /mɔrto̪ɟa/, েমারতুজা /mortu̪ɟa/

In our encoding, all of these variants are encoded as “mrtj”, and can be

matched against each other regardless of spelling variation. Table 2 shows a few

more such examples justifying the decision to mark vowels as Not Coded.

Table 19. Example of vowels encoding

Similarly pronounced names Encoding

নাiম /naim/, নঈম /noim/ “nm”

নাহলীন /nahleen/, েনহলীন /nehleen/ “nln” 3

নoশাদ /nɔoʃad/, নাoসাদ /naoʃad/ “nsd”

সুিমন /ʃumin/, েসােমন /ʃomen/ “smn”

রােশদ /raʃed/̪, রিশদ /rɔʃid/̪ “rsd”

মুেsাফা /musto̪fa/, েমাsফা /mostɔ̪fa/ “mstp”

Transformations 22-29: Names are just words, so the rationale is the

same as for words, see section 4.1 for its reasoning.

Transformations 30-34: In encodings designed for spelling checkers [5,

7], শ (/s/, /ʃ/), স (/s/, /ʃ/), ষ /ʃ/ are encoded the same as they are very close in

3Rationale for হ to be Not Coded is according to Transformation 104

97

pronunciation; similarly for চ /c/ and ছ /ch/. However, in case of name encoding, we

encode all 5 of these letters to the same code. The reason is that in Bangla, the

sound /sɔ/ is expressed using স (/s/, /ʃ/), but sometimes also with ছ /ch/. Our

solution is to encode স (/s/, /ʃ/) and ছ /ch/ the same way. Since these two letters

belonged to two different groups, we combine the two groups and use the same

code.

Example: The name /salam/ is usually written as সালাম /ʃalam/, but often also

as ছালাম /chalam/. সালাম /ʃalam/ is phonetically more appropriate as স sounds like /s/

and /ʃ/; to make matters worse, even if /salam/ is written as ছালাম /chalam/, it is still

pronounced as /salam/. Following are few more examples of names where স (/s/,

/ʃ/) and ছ /ch/ are both pronounced as /s/, to justify the decision to make স (/s/, /ʃ/)

and ছ /ch/ in the same group.

Table 20. Example of স and ছ

Name with pronunciation

(according to rules)

Both Locally

pronounced as

Encoding

বােসত /baʃet/̪ , বােছত /bachet/̪ /baset/ “bst”

মুকিসত /mukʃit/̪ , মুকিছত /mukchit/̪ /muksit/ “mkst”

নািফস /nafiʃ/ , নািফছ /nafich/ /nafis/ “nfs”

হািসনা /haʃina/ , হািছনা /hachina/ /hasina/ “sn” 4

Transformation 35: At the beginning of a word, and if the word is a-কারাn

/ɔ/ or আ-কারাn /a/, it is pronounced as /æ/ and if there is a i or u after য phalaa, then

it is pronounced as e /e/. Both of these were encoded to “e” in section 4.1. But in

case of names, vowels are Not Coded. So, it is Not Coded.

4Rationale for হ to be Not Coded is according to Transformation 104

98

Example: শয্ামা /ʃæma/ and েশমা /ʃema/ are both encoded as “sm”, which are

similar sounding.

Transformations 36-92: Names are just words, so the rationale is the

same as for words, see section 4.1 for its reasoning.
Transformation 93: In names, য় is almost silent; it mainly gets the sound

of attached vowel and sometimes causes nasalization. So, it is Not Coded.

Example: িময়া /miã/ → “m”, সােয়ম /saiẽm/ → “sm”, সািরয়া /sariã/ → “saria”

Transformations 94-103: Names are just words, so the rationale is the

same as for words, see section 4.1 for its reasoning.
Transformation 104: In names, হ is usually silent or almost silent. So, it is

Not Coded.

Table 21. Example of হ

Names With হ Names Without হ Encoding

যাহরা /ɟaɦra/ যারা /ɟara/ “jr”

নািবলাহ /nabilaɦ/ নািবলা /nabila/ “nbl”

তাহিমনাহ /ta̪ɦminaɦ/ তািমনা /ta̪mina/ “tmn”

ফাহিমদা /faɦmida̪/ ফািমদা /famida̪/ “pmd”

Transformation 105: The equivalent of the English “.” in name

abbreviations and titles is Bangla ◌ঃ, e.g., েমাঃ is the same as েমাহাmদ /mohammɔd/.

Since these are often ad-hoc, one-to-one transformations are used before

encoding process. This set of transformations will of course be expanded as
more new cases come in use. So, to encode েমাঃ we will first transofrm it to েমাহাmদ

/mohammad/ before the final encoding /mohammad/.

Table 22. One to one transformation of ◌ঃ

Short cut Elaborated form Encoding

99

েমাঃ েমাহাmদ /mohammɔd/̪ “mmmD”

ডঃ ডkর /dɔktor/ “DkTr”

ডাঃ ডাkার /dactar/ “DkTr”

eডঃ eডেভােকট /advokæt/ “DbkT”

Table 22. One to one transformation of ◌ঃ lists just a few of the very

common – there is quite a large number in use, and new cases do get added to

the colloquial use over time.

Transformations 106-108: Names are just words, so the rationale is the

same as for words, see section 4.1 for its reasoning.

5.4.1. Algorithm and perfomance of name searching using
proposed phonetic encoding

A naïve approach is to search for the encoded string in the database,

which may return a large number of names, many of which are not considered

equivalent to the name being searched for. The encoding removes all the vowels

and the letters marked as Not Coded, so the encoded string is typically much

shorter than the original name. Since many other names may map to this shorter

encoded string, the match returns many irrelevant names in addition to the

“equivalent” ones. To avoid this problem, other figures of merit must be used to

narrow this list to include only the desired set, and to rank the resulting set in

order of relevance [46]. We propose one such figure of merit that uses a

weighted sum of the orthographic and phonetic edit-distances to exclude

dissimilar names from the query result. We give an algorithm to search for a

name (in this case মরতুজা /mɔrtu̪ɟa/). After the algorithm, Table 23: Generating

suggestions for names using name encoding and other trivial methods

shows a pre-encoded list of names to search, with various columns that are

computed during the various steps.

100

Algorithm for Name searching

• Encode the name to search for: মরতুজা /mɔrtu̪ɟa/ → mrtj.

• Compute the Levenshtein edit-distance [23] (column ED) between the

candidate name and each of the names from list.

• Compute the edit distance score (column EDscr) between the two strings

s1 and s2 from ED: EDscr = (maxLen(s1, s2)-ED)/maxLen(s1, s2).

• Compute the phonetic edit-distance (column PED), using the encoded

versions.

• Compute the phonetic edit distance score (PEDscr) from PED: PEDscr =

(maxLen(s1, s2)-ED)/maxLen(s1, s2).

• The figure of merit (FOM) is the weighted sum of PEDscr and Edscr, with

PEDscr as the dominant factor: (PEDscr + Edscr/10)/1.1 and value ranges

from 0 to 1.

Table 23: Generating suggestions for names using name encoding and

other trivial methods
Names Encoding ED EDscr PED PEDscr FOM

সুিমন /ʃumin/ "smn" 6 0 4 0 0

রিশদ /rɔʃid/̪ "rsd" 5 0.167 4 0 0.02

মুেsাফা /musto̪fa/ "mstp" 5 0.375 2 0.5 0.49

বােছত /bachet/̪ "bst" 6 0 3 0.25 0.23

মুকিসত /mukʃit/̪ "mkst" 5 0.167 3 0.25 0.24

মরতুজা /mɔrtu̪ɟa/ "mrtj" 0 1 0 1 1

মুরেতাজা /murto̪ɟa/ "mrtj" 2 0.714 0 1 0.97

মরেতাজা /mɔrto̪ɟa/ "mrtj" 1 0.833 0 1 0.98

েমারতুজা /mortu̪ɟa/ "mrtj" 1 0.857 0 1 0.99

101

We can use the FOM to rank the matches returned by the query, which in
this case does correspond to the expected convention for the Bangla name মরতুজা

/mɔrtu̪ɟa/. We expect that a name searching algorithm will need to tailor the figure

of merit to the application domain.

102

CHAPTER VI: CONCLUSION

We present a Double Metaphone phonetic encoding for Bangla, tailored

for applications like spelling checker, transliteration, cross-lingual information

retrieval and name searching. This encoding encapsulates the complex spelling

rules for Bangla, and in addition, takes into account some of the dialectic

pronunciation differences that are not possible to handle otherwise. The result in

each case shows that it easily outperforms the current state of the art Bangla

spelling checker, transliteration, name searching application and also opens new

area of research on cross-lingual information retrieval.

6.1. Summary of contributors
6.1.1. Can be used to develop a spelling checker, which can give the

words of same pronunciation in suggestion.

6.1.2. Can be used to develop a transliteration, which can use not only a

one to one mapping but also able to give words with same

pronunciation from dictionary

6.1.3. Can be used to develop a name searching application, where

similar sounding names can be easily found and ranked in the

suggestion.

6.1.4. Can be used as an intermediate code in multi-lingual information

retrieval, where a user issues a query in one language (such as

English) to search a collection in a different language (such as

Bangla). More specifically, writing the pronunciation of a word in

English one can search words with same pronunciation in a Bangla

document.

103

6.2. Future research
6.2.1. Digital pronunciation dictionary can be developed from the variation

of this encoding, which can be used as a stand-alone digital

pronunciation dictionary and also for a Text to Speech application.

- 1 -

REFERENCES

[1] Definition of phonetic encoding available online at
http://www.nist.gov/dads/HTML/phoneticEncoding.html.

[2] Facts about the World's Languages: an Encyclopedia of the World's Major
Languages, Past and Present, Jane Garry and Carl Rubino (ed.), New
York/Dublin: H. W. Wilson Press, 2001.

[3] P. Kundu and B.B. Chaudhuri, “Error Pattern in Bangla Text", International
Journal of Dravidian Linguistics, 28(2), 1999.

[4] The Soundex Algorithm, available online at
http://www.archives.gov/research_room/genealogy/census/soundex.html.

[5] Lawrence Phillips, “Hanging on the Metaphone”, Computer Language,
7(12), 1990.

[6] Lawrence Philip’s Metaphone Algorithm, available online at
http://aspell.sourceforge.net/metaphone/index.html

[7] Lawrence Phillips, “The Double Metaphone Search Algorithm”, C/C++
Users Journal, 18(6), June 2000, available online at
http://www.cuj.com/documents/s=8038/cuj0006philips/.

[8] T. N. Gadd, “PHONIX: The Algorithm”, Program, 24(4), pp. 363-366, 1990.

[9] Naushad UzZaman and Mumit Khan, “A Bangla Phonetic Encoding for
Better Spelling Suggestion”, Proc. 7th International Conference on Computer and
Information Technology, Dhaka, December, 2004.

[10] Md. Tamjidul Haque and M. Kaykobad, “Coding System for Bangla Spell
Checker”, Page 186 – 190, Proc. 5th International Conference on Computer and
Information Technology, Dhaka, December, 2002.

- 2 -

[11] Md. Tamjidul Haque and M. Kaykobad, “Use of Phonetic Similarity for
Bangla Spell Checker”, Page 182 – 185, Proc. 5th International, Conference on
Computer and Information Technology, Dhaka, December, 2002.

[12] J. Zobel and P. Dart, “Finding Approximate Matches in Large Lexicons”,
Software - Practice and Experience, 25(3), pp. 331-345, March, 1995.

[13] The Unicode Consortium, The Unicode Standard, Version 4.0, Addison-
Wesley, 2003.

[14] Bangla Unicode Chart, available online at
 http://www.unicode.org/charts/PDF/U0980.pdf.

[15] B. B. Chaudhuri, “Reversed word dictionary and phonetically similar word
grouping based spell-checker to Bangla text”, Proc. LESAL Workshop, Mumbai,
2001.

[16] Daniel Jurafsky and James H. Martin, “Speech and Language Processing,
An Introduction to Natural Language Processing, Computational Linguistics, and
Speech Recognition”, ISBN – 0-13-095069-6, Prentice Hall, 2000.

[17] F.J. Damerau, “A technique for computer detection and correction of
spelling errors”, communication of ACM, 7(3), 171-176, 1964.

[18] Arif Billah Al-Mahmud Abdullah and Ashfaq Rahman, “A Different
Approach in Spell Checking for South Asian Languages”, Proc. 2nd International
Conference on Information Technology for Applications (ICITA), China, 2004.

[19] Bangla Uccharon Obidhan, Bangla Academy, Dhaka, Bangladesh.

[20] Bangla Banan Obidhan, Bangla Academy, Dhaka Bangladesh.

[21] R. Ishida's Bengali script notes [Draft], available online at
http://people.w3.org/rishida/scripts/bengali/bengali-script/.

[22] Bangla Banan Obhidhan, Dr. Khurshid Alam, Mirnava, Dhaka,
Bangladesh.

- 3 -

[23] Levenshtein edit distance algorithm, available online at
http://www.nist.gov/dads/HTML/Levenshtein.html.

[24] http://www.cs.virginia.edu/~cyberia/presentations/EuDL/ppt/sld011.htm.

[25] http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Dynamic/Edit/.

[26] http://www.cs.sunysb.edu/~algorith/files/longest-common-substring.shtml.

[27] Wikipedia description on Transliteration, available online at
http://en.wikipedia.org/wiki/Transliteration.

[28] Wikipedia description on Transcription, available online at
http://en.wikipedia.org/wiki/Transcription_%28linguistics%29.

[29] Kevin Knight and Jonathan Graehl, “Machine Transliteration”, available
online at http://acl.ldc.upenn.edu/J/J98/J98-4003.pdf.

[30] Yaser Al-Onaizan and Kevin Knight, “Machine Transliteration of Names in
Arabic Text”, available online at
http://acl.ldc.upenn.edu/acl2002/SEMITIC/pdfs/Semitic027.pdf.

[31] Nasreen AbdulJaleel and Leah S. Larkey, “English to Arabic
Transliteration for Information Retrieval: A Statistical Approach”, available online
at http://ciir.cs.umass.edu/pubfiles/ir-261.pdf.

[32] Leah S. Larkey, Nasreen AbdulJaleel, Margaret Connell, “What’s in a
Name?: Proper Names in Arabic Cross Language Information Retrieval”,
available online at http://ciir.cs.umass.edu/pubfiles/ir-278.pdf.

[33] Nasreen AbdulJaleel and Leah S. Larkey, “Statistical Transliteration for
English-Arabic Cross Language Information Retrieval”, available online at,
http://ciir.cs.umass.edu/pubfiles/ir-293.pdf.

[34] GAO Wei, “Phoneme based Statistical Transliteration of Foreign Names
for OOV problem”, MSc Thesis, Chinese University of Hong Kong, 2004,
available online at http://compling.ai.uiuc.edu/webpage/projects/thesis.pdf.

[35] ITRANS, available online at http://www.aczoom.com/itrans/.

[36] ITRANS table, available online at http://sanskrit.gde.to/web-
interface/bengali.html.

[37] Aksharmala mapping, available online at

- 4 -

http://aksharamala.com/help/chm/Input%20Schemes/ITRANS/Bengali/quick.html

[38] Iwrite32, available online at
http://members.tripod.com/~sbiswas/IWrite32/IWrite32.html.

[39] Bornosoft, available online at http://www.bornosoft.com/.

[40] Kickkeys, available online at http://www.kickkeys.com/.

[41] Lekho, available online at http://lekho.sourceforge.net/.

[42] Bengali Transliteration System by prabashi.org, available online at
http://www.prabasi.org/Literary/ComposeArticle.html.

[43] Sadikur Rahman, “Apnar shontaner prio naam”, Salahuddin Boi Ghar,
Bangla Bazar, Dhaka, September, 2003.

[44] Anis Ahmed, “Bissher shreshto 110 monishi”, Dhaka, Bangladesh.

[45] List of Contributors, “BANGLAPEDIA: National Encyclopedia of
Bangladesh”, Dhaka, Bangladesh, 2003.

[46] NameX Technology, available online at
http://www.imagepartners.co.uk/Thesaurus/AboutNameX.htm.

i

APPENDICES

A. Bangla Alphabet

ii

B. Bangla Unicode Chart

iii

iv

v

vi

C. IPA (International Phonetic Alphabet)

vii

D. Bangla IPA Chart

