
Recognizing Sentimental Emotions in Text
by Using Machine Learning

by

Tabassum Khan Bushra
18101163

Kallol Saha
18101461

Ammin Hossain Mulki
18101468

Sanjana Sabah Khan
18101502

Afrin Binta Amzad
19301267

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
October 2022

© 2022. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The paper we submitted is the result of our own unique research, which we
conducted while studying at Brac University.

2. The study does not incorporate anything previously published or created by a
third party unless it is properly referenced by complete and correct referencing.

3. This paper does not contain any materials that have been accepted or applied
for a degree or certificate from any academic or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Tabassum Khan Bushra
18101163

Kallol Saha
18101461

Ammin Hossain Mulki
18101468

Sanjana Sabah Khan
18101502

Afrin Binta Amzad
19301267

i

Approval

The thesis titled “Recognizing Sentimental Emotions in Text by Using Machine
Learning” submitted by

1. Tabassum Khan Bushra (18101163)

2. Kallol Saha (18101461)

3. Ammin Hossain Mulki (18101468)

4. Sanjana Sabah Khan (18101502)

5. Afrin Binta Amzad (19301267)

Of Summer, 2022 has been accepted as satisfactory in partial fulfillment of the
requirement for the degree of B.Sc. in Computer Science on October 11, 2022.

Examining Committee:

Supervisor:
(Member)

Moin Mostakim
Lecturer

Department of Computer Science and Engineering
Brac University

Program Coordinator:
(Member)

Dr. Md. Golam Rabiul Alam
Associate Professor

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi
Associate Professor

Department of Computer Science and Engineering
Brac University

ii

Ethics Statement

The thesis paper we are composing is to be of the highest quality. With the level of
integrity we are maintaining, our paper promises to be very reliable. The unbiased
approach we took for conducting our research ensures the fairness of our analysis.
We are hopeful that the findings, as well as the research itself and its methodology,
will in one way or another contribute to humanity’s good, and future advancement.

iii

Abstract

As one of the fastest and most prominent deep learning technologies being fiddled
with today, sentiment analysis is capable of revealing an individual’s true emotions
by analyzing their facial speech, text, facial expressions, gestures, and so on. The
technology is being constantly used to understand how different individuals feel or
react when they are put under certain circumstances or situations. The information
obtained from such analyses is then processed to unravel the subject’s sentimental
reactions to said circumstances and situations which can further be utilized in a
magnitude of ways. While the technology itself is constantly being improved upon,
opportunities still exist to make it more efficient. This research aims to use a va-
riety of machine learning algorithms and language models for sentiment detection
in textual data, and understand how each of these algorithms and models approach
the problems presented to them through the textual data. This is to be achieved
utilizing five models that fall under three pairs namely primitive or simple models
featuring TF-IDF and Bag of Words; mid complexity models featuring Naive Bayes;
and advanced context-identifying state-of-the-art models namely LSTM and BERT.
The datasets for this research include the Spotify App Reviews Dataset and 100K
Coursera’s Course Reviews Dataset. We used 10000 samples from these datasets
for our research. After running the suggested models, the research aims to discover
which of them works best and on which datasets, whether or not there are any
similarity patterns between them, and whether or not any of the suggested models
provide poor or disappointing results, all of which are provided in descriptive and
quantified forms, as well as through graphical representation. For 5 label sentiment
classification, Multinomial Naive Bayes gave the highest accuracy score for both
the Coursera’s Course Review and LSTM scored highest for Spotify App Review
dataset which are 74.81% and 62.7%. For 3 label classification, pretrained BERT
gave the highest accuracy score for the Coursera dataset and LSTM gave the highest
score for Spotify dataset which are 91.2% and 78.3% respectively. However since
our datasets very highly imbalanced, the accuracy score is a poor metric for per-
formance evaluation of the algorithms so we looked at the f1 scores instead. We
have also addressed the imbalance in out datasets by using different bias handling
techniques, such as random oversampling of the minority classes. We finally reached
the conclusion that both LSTM and BERT performed the best for both datasets
after carefully observing the f1 scores for all the class predictions for our algorithms
in both cases of sentiment label categorization.

Keywords: BERT; Bag of Words; TF-IDF; Naive Bayes; LSTM

iv

Acknowledgement

Firstly, we would want to thank the Almighty for keeping us safe physically and men-
tally during the time of the COVID-19 pandemic, allowing us to continue our studies
and research work despite the hardships. Additionally, we would like to convey our
heartfelt appreciation to Mr. Moin Mostakim, our advisor, whose genuineness and
encouragement we will always remember. We could not finish our research paper
without his guidance. Furthermore, we would also like to thank our parents for
their unconditional love and support, which helped us to fulfill our dreams. Last
but not the least, we express our gratefulness to Brac University for giving us the
opportunity to conduct our research, and providing us with the resources necessary
for it.

v

Table of Contents

Declaration i

Approval ii

Ethics Statement iii

Abstract iv

Acknowledgment v

Table of Contents vi

List of Figures viii

List of Tables x

1 Introduction 1
1.1 Research Problems . 2
1.2 Research Objectives . 4

2 Related Works 5

3 Background Studies 7
3.1 Natural Language Processing (NLP) 7
3.2 Sentiment Analysis . 9
3.3 Machine Learning (ML) . 10

3.3.1 Decision Process . 10
3.3.2 Error Function . 11
3.3.3 Model Optimization Process 11
3.3.4 Supervised Machine Learning 11
3.3.5 Unsupervised Machine Learning 11
3.3.6 Semi-Supervised Learning . 12

3.4 Bag of Words . 12
3.4.1 Step 1: Collecting Data . 13
3.4.2 Step 2: Designing Vocabulary 13
3.4.3 Step 3: Creating Document Vectors 14
3.4.4 Managing Vocabulary . 15
3.4.5 Scoring Words . 16
3.4.6 Word Hashing . 16
3.4.7 TF-IDF . 16

vi

3.5 TF-IDF . 17
3.6 Logistic Regression . 18
3.7 Long Short-Term Memory (LSTM) 19
3.8 BERT . 21

3.8.1 Pre-Training . 21
3.8.2 Fine-tuning . 21
3.8.3 Transformer . 22
3.8.4 The input and output . 22

3.9 Naive Bayes . 23
3.10 Confusion Matrix . 25
3.11 Precision . 25
3.12 Recall . 25
3.13 F1-Score . 26
3.14 Accuracy . 26

4 Methodology 27
4.1 Datasets . 27
4.2 Data Pre-Processing . 29
4.3 TF-IDF Model Explanation . 29
4.4 Bag of Words Model Explanation . 31
4.5 LSTM Model Explanation . 32
4.6 Naive Bayes Model Explanation . 33
4.7 BERT Model Explanation . 34

5 Result and Analysis 36

6 Conclusion 66

Bibliography 68

vii

List of Figures

3.1 Natural Language Processing . 8
3.2 Working Process of Machine Learning 10
3.3 Machine Learning . 11
3.4 LSTM architecture . 19
3.5 LSTM memory cell with a forget gate 20
3.6 Embedding Layers in BERT . 23

4.1 Overview of Methodology . 28

5.1 Sentiment 1-5 for Coursera in Tf-IDF 46
5.2 Sentiment 1-3 for Coursera in Tf-IDF 46
5.3 Sentiment 1-5 for Coursera in BOW 47
5.4 Sentiment 1-3 for Coursera in BOW 47
5.5 Sentiment 1-5 for Coursera in Naive Bayes 48
5.6 Sentiment 1-3 for Coursera in Naive Bayes 48
5.7 Sentiment 1-5 for Coursera in LSTM 48
5.8 Sentiment 1-3 for Coursera in LSTM 48
5.9 Sentiment 1-5 for Coursera in BERT 49
5.10 Sentiment 1-3 for Coursera in BERT 49
5.11 Sentiment 1-5 for Spotify in Tf-IDF 49
5.12 Sentiment 1-3 for Spotify in Tf-IDF 49
5.13 Sentiment 1-5 for Spotify in BOW . 50
5.14 Sentiment 1-3 for Spotify in BOW . 50
5.15 Sentiment 1-5 for Spotify in Multinomial-Naive Bayes 51
5.16 Sentiment 1-3 for Spotify in Multinomial-Naive Bayes 51
5.17 Sentiment 1-5 for Spotify in LSTM 51
5.18 Sentiment 1-3 for Spotify in LSTM 51
5.19 Sentiment 1-5 for Spotify in BERT 52
5.20 Sentiment 1-3 for Spotify in BERT 52
5.21 Sentiment 1-5 for Coursera in TF-IDF after Class-weighting 53
5.22 Sentiment 1-5 for Coursera in TF-IDF after Oversampling 53
5.23 Sentiment 1-3 for Coursera in TF-IDF after Class-weighting 54
5.24 Sentiment 1-3 for Coursera in TF-IDF after Oversampling 54
5.25 Sentiment 1-5 for Coursera in BOW after Class-weighting 55
5.26 Sentiment 1-5 for Coursera in BOW after Oversampling 55
5.27 Sentiment 1-3 for Coursera in BOW after Class-weighting 56
5.28 Sentiment 1-3 for Coursera in BOW after Oversampling 56
5.29 Sentiment 1-5 for Coursera in Multinomial-Naive Bayes after Class-

weighting . 57

viii

5.30 Sentiment 1-5 for Coursera in Multinomial-Naive Bayes after Over-
sampling . 57

5.31 Sentiment 1-3 for Coursera in Multinomial-Naive Bayes after Class-
weighting . 58

5.32 Sentiment 1-3 for Coursera in Multinomial-Naive Bayes after Over-
sampling . 58

5.33 Sentiment 1-5 for Coursera in LSTM after Class weighting 58
5.34 Sentiment 1-5 for Coursera in LSTM after Oversampling 58
5.35 Sentiment 1-3 for Coursera in LSTM after Class weighting 59
5.36 Sentiment 1-3 for Coursera in LSTM after Oversampling 59
5.37 Sentiment 1-5 for Spotify in TF-IDF after Class-weighting 59
5.38 Sentiment 1-5 for Spotify in TF-IDF after Oversampling 59
5.39 Sentiment 1-3 for Spotify in TF-IDF after Class-weighting 60
5.40 Sentiment 1-3 for Spotify in TF-IDF after Oversampling 60
5.41 Sentiment 1-5 for Spotify in BOW after Class-weighting 61
5.42 Sentiment 1-5 for Spotify in BOW after Oversampling 61
5.43 Sentiment 1-3 for Spotify in BOW after Class-weighting 62
5.44 Sentiment 1-3 for Spotify in BOW after Oversampling 62
5.45 Sentiment 1-5 for Spotify in Multinomial-Naive Bayes after Class-

weighting . 63
5.46 Sentiment 1-5 for Spotify in Multinomial-Naive Bayes after Oversam-

pling . 63
5.47 Sentiment 1-3 for Spotify in Multinomial-Naive Bayes after Class-

weighting . 64
5.48 Sentiment 1-3 for Spotify in Multinomial-Naive Bayes after Oversam-

pling . 64
5.49 Sentiment 1-5 for Spotify in LSTM after Class weighting 64
5.50 Sentiment 1-5 for Spotify in LSTM after Oversampling 64
5.51 Sentiment 1-3 for Spotify in LSTM after Class weighting 65
5.52 Sentiment 1-3 for Spotify in LSTM after Oversampling 65

ix

List of Tables

5.1 Accuracy Table for Sentiment 1-5 . 37
5.2 Precision, Recall and F1-Score (1-5) of Models 39
5.3 Accuracy Table for Sentiment 1-3 . 41
5.4 Precision, Recall and F1-Score (1-3) of Models 42
5.5 Accuracy Table for Class Weight and Oversampling of Models 44
5.6 Precision, Recall and F1-Score (1-5) of Models for Class-weight com-

putation and Random Oversampling 45
5.7 Precision, Recall and F1-Score (1-3) of Models for Class-weight com-

putation and Random Oversampling 45

x

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

AI Artificial intelligence

BERT Bidirectional Encoder Representations from Transformer

LSTM Long Short-Term Memory

ML Machine Learning

NLP Natural Language Processing

xi

Chapter 1

Introduction

Machines that have been programmed to think and behave like people use artificial
intelligence (AI) to mimic human intelligence. The phrase might also be used to de-
scribe any computer that has human-like abilities like learning and problem-solving.
AI enables software to automatically learn from patterns or characteristics in the
data by combining massive volumes of data with quick, repeated processing and
sophisticated algorithms. The development of systems that [20] include text-based
emotional feeling has become increasingly the subject of research papers in recent
years that are motivated by artificial intelligence (AI). A number of natural processes
that AI systems represent depend on emotions. Perception, logic, education, and
language processing are some of these. There are primarily 5 significant divisions of
AI: 1.Machine Learning 2.Neutral Network 3.Deep Learning 4.Robotics 5.Artificial
vision.

A crucial area of artificial intelligence (AI), machine learning has essentially taken
the place of AI in many applications. One of the key components of our study
article is this. Machine learning algorithms are used to identify the most relevant
search results, detect objects in photographs, translate speech to text, match news
items, communications, or products with users’ interests, and more. Conventional
machine learning algorithms are limited in their ability to process natural data in
its raw form. In general, there are three types of machine learning algorithms: 1.
Supervised Learning 3. Reinforcement learning and 2. Unsupervised learning. We
may categorize data using machine language linked to supervised learning, one of
such approaches, and understand it. A learning algorithm is inferred using labeled
data or a data set that has been categorised in the supervised learning approach.

The major focus of our study is on automatically identifying emotions in text. Hu-
man emotions are affective states linked to physiological reactions. The [9] sentiment
identification is being used in a variety of real-world scenarios where a person’s emo-
tional state acts as a clue to the machine learning system’s efficiency. It may seem
challenging to infer a person’s emotional state from an analysis of a text docu-
ment they have written, but this is frequently necessary because textual expres-
sions are frequently the result of the interpretation of the meaning of concepts and
the interaction of concepts stated in the text document. In the human-computer
connection, understanding the text’s mood is crucial. While text-based emotion
identification systems still require development, speech recognition has seen a great

1

deal of progress. From an [4] application standpoint, where emotion is conveyed as
joy, sadness, rage, surprise, hatred, fear, and other things, the ability to recognize
human emotions in text is becoming more and more crucial. The emphasis is on
the sentiment-related studies in the field of cognitive psychology because there isn’t
a standard sentiment word hierarchy. To identify our text-based emotional senti-
ments, we are going to use Bag-of-Words, TF-IDF, LSTM, Naive Bayes, BERT,
and more. Firstly, the bag-of-words model is an information retrieval and natural
language processing structure for summarizing. This paradigm maintains multiplic-
ity while ignoring syntax and even word order, and it portrays a text—such as a
sentence or document—as the bag (individual designs) of its words. However, Bag
of Words just provides a collection of vectors with the number of index terms in
the document, but the TF-IDF model provides data on both the more and less
significant words. Second, the metric known as TF-IDF, which stands for Term
Frequency-Inverse Text Frequency, is a way to measure the importance or relevance
of string representations in a document, such as words, phrases, or lemmas. It is
referred to as a corpus and is employed in the domains of information retrieval (IR)
and machine learning. We can quantify the importance of each word in a document
by assigning it a numerical value with the aid of TF-IDF. We apply LSTM to cir-
cumvent this issue. This problem is constantly monitored by the Long Short Term
Memory (LSTM) through a technique known as cell state. When the input or length
increases, LSTMs find it difficult to keep the valuable information. Once more using
the Bayes Theorem as its foundation, the Naive Bayes sorting algorithm presumes
independence between predictors. Simply expressed, a Naive Bayes classifier thinks
that the existence of one feature in a class has no bearing on the presence of any more
features. In general, the Multinomial Naive Bayes classification method is a solid
place to start when performing sentiment analysis. The Naive Bayes technique’s
basic tenet is that the probability of labels applied to texts are calculated using the
cumulative values for words and classes. Finally, the BERT is used to resolve the
issue. BERT’s basic tenet is paying attention and recognizing how words interact
with one another in context. Since BERT just encrypts data and creates a language
model—not decoding it—an encoder is adequate. Unlike directional model such as
LSTM, which conceptualize each input sequentially (left to right or right to left).
Transformer and BERT are non-directional models since they read the complete
phrase rather than the words in sequence as the input. This characteristic helps
models to comprehend how a word fits into the overall context of the phrase. While
Emotion Analysis seeks to identify certain sorts of sentiments expressed [7] in texts,
such as anger, disgust, fear, happiness, sorrow, and surprise, Sentiment Analysis
seeks to identify positive, neutral, or negative feelings from text.

1.1 Research Problems

Every year, the number of individuals throughout the world who have access to the
internet grows. According to [19], DataReportal by April 2021, a new article named
”Digital Around the World” clearly stated that 4.72 billion people around the world
use the internet which accounts for more than 60% of the global population. They
also noted that internet users are now rising at a 7.6% annual pace, equal to an
average of over 900,000 new users every day. Social media and shopping platforms
are mainly where people invest most of their time while using the internet. People are

2

communicating with each other through texts, voice speeches or facial expressions
on the internet and with each of them, they express their emotions. Keeping this in
mind, the idea of a system by which a machine can predict and classify the sentiment
of the users are more and more relevant than ever. Machine learning is a great way
to let the machine learn about the user’s sentiments so that it can suggest similar
shopping options, show movies or posts or songs with the same theme, or suggest
emoji or GIFs that express the same emotions as the user’s text unlike before when
machines could not recognize human emotions. That’s how the machine learning
approach can make the overall experience of users more delightful and effortless
while using the internet.

Moreover, text is the basis for a machine to know what sentiment state the user
is in initially and by using and storing the user’s data, the machine will gradually
self-taught itself on identifying the specific emotions. However, along with some
advantages, there are some drawbacks in this system. According to a renowned
article [22] by Apriorit, in the machine learning approach, we need to gather a
huge amount of training data. It is quite a hassle to find a trusted corporation
where we can receive and would be allowed to use their data for our experiment.
Unfortunately, most of the public datasets are not sufficient. In those cases, we can
create our own dataset or combine several datasets and keep modifying the data
as the experiment progresses to solve this issue. Then, according to this research
[14], inadequate or incomplete words are another challenge to solve for the model
development part. Model development has two parts and they are - Data pre-
processing and Feature extracting process. Data pre-processing turns the word
into its original form and removes the unwanted words which do not represent any
emotion. It also corrects any spelling mistake. Then, in the Feature extracting
process, it turns the data into features which are capable of being used for machine
learning models. Gradually, the method has to come across the classification of
algorithms and measure the performances, they are solved by different equations
and measurements.

Finally, In natural language processing sentiment analysis is an active research field.
As in blogs, social networks or product reviews it performs organizing and extracting
sentiments from user generated text. In this research paper we are going to explore
sentiment analysis challenges which are the most complex in natural language pro-
cessing. However, many organizations face the challenges of sentiment analysis but
these are not difficult to overcome with the right solutions. In this guide, we have
faced some research problems related to this field in our research work. First of all,
this paper tackles a fundamental problem which is word score polarity categoriza-
tion. For instance, words “Happy” and “Sad” are high on positive (+) and negative
(-) polarity scores but in between there is mid polarity [10]. Secondly, in our research
paper these are somewhat positive and somewhat negative; these words sometimes
get left out and dilute the sentiment score. Another problem we have faced is that
sometimes people use memes and sarcasm in social media which make it difficult
for sentiments tools to detect the actual context. Because of this reason the result
sometimes shows the negative value which is basically positive. In our research paper
we have used two datasets- 1. Coursera course review dataset and 2. Spotify App
review dataset. Among these datasets, Coursera Course dataset struggle to parse
information because of biases. Another example we have faced, for instance ”Buy

3

Used Cars” and ”Purchase Old Automobiles” are represented differently [10] in the
Bag-of-Words model when the code is run through the models as text classification
problems, for instance. Another illustration is that BERT performs slowly to train
since it is a large and pre-trained model because there are many weights to update.
Gradually, the method has to come across the classification of algorithms and mea-
sure the performances, they are solved by different equations and measurements.
Finally, regardless of how this approach of machine learning solves the challenge of
emotion recognition, we live in a period when additional issues may arise. As a
result, according to this research paper [11], there will always be space for improve-
ment in areas like language representation and categorization. The extraction of
contextual information is critical during language representation because it serves
as the foundation for enhancing categorization accuracy. Our goal in this paper is
to train and test the selected models on datasets and find out which method is more
appropriate and close to understanding a text just like a human.

1.2 Research Objectives

This research aims to figure out a suitable and effective method to predict and
classify sentiments from text by using machine learning. Usually several tasks are
divided so that altogether they can perform the human emotion reorganization pro-
cess. The main objectives are -

1. Increasing the performance of the datasets mid polarities will be our primary
intent.

2. We aim to comprehend sentiment analysis.

3. We like to understand how the algorithms function while dealing with various
categorical matrices.

4. To identify and address any bias issues in our datasets.

4

Chapter 2

Related Works

This particular section indicates the importance of other research publications and
how the works have impacted our process of understanding. After reading the re-
search publications we have been critically analyzed that sentiments play promising
roles in the existence or the complete make-up of individuals. According to Robert
Plutchik’s wheel model there are eight basic emotions such as joy, sadness, anger,
fear, expectation, surprise, acceptance and disgust which are controlled by text from
the paper works by other researchers. In this paper we try to show our task of sen-
timent analysis on text data and exchange of emotion through text message.

Without any interruption computers are unable to understand human emotion. A
recent research work [21] by the research institute of Communication and Computer
Systems (ICCS), Greece has proposed a method called NLP (Natural Language
Processing) to understand human emotion by using text. It helps a computer to
be capable of understanding the contents of speech which includes the contextual
nuances of the languages. Neural NLP, one of the three types of NLP (Symbolic NLP,
Statistical NLP, and Neural NLP), assists in determining the meaning of statements
that are difficult for computers to decipher. The use of LSTM (Long Short-Term
Memory Networks) in text classification [16] truly solves the problem of long-term
learning dependencies. The accuracy level of the LSTM network has achieved 91.9%
which helps to accurately estimate the expressed emotion in text. Therefore, We
have converted classical text data into numerical data by using the method of TF-
IDF as artificial intelligence works with numerical data. Despite its strength we
have noticed when we find information from large document collections, it is not
able to equate a word with its plural words [1]. We also contend that the Bag-of-
Words model is the text categorization representation that manifests itself the most.
Similar to the TF-IDF approach, Bag-of-Terms uses a sparse matrix to describe
a document to show how frequent words are graded and given less weight than
unusual words. Thereby sparse matrix representation shows the result as the vector
contains many 0’s which we like to avoid [3]. Another recent research work [12]
indicates that a relationship between word and sentiment does not exist without
a reductionist approach. However, it is also observed that a single word “happy”
refers to the different emotional status such as “Don’t be happy”, “Look so happy”
which is wildly different. [12] A machine learning system may be trained to identify

5

the connections between words and tags or labels in texts.

The study [2] ”Recognizing emotions in text using ensemble of classifiers” depicts
how people’s text messages and online content reflect their emotional states in the
context of microblogging. Additionally, emotion differs from person to person and
offers valuable information about the sentiments, according to a text-center ap-
proach. The second technique is commonly used for the automated identification
of emotions in text and it is one of the two types of approaches that have been
proposed: emotion and sentiment analysis method models. [2] The Naive Bayes
hypothesis, which holds that words are mutually independent and may perform well
in text classification, is briefly described in the article.

Additionally, As for sentiment analysis in many languages, the BERT model has
become a widely used approach. However, we notice the BERT performs well in
the evaluation of out of domain as the large information or most used dataset train
on Google’s BooksCorpus and Wikipedia runs over the 95% best performance with
BERT implementation. It is significantly useful that the machine predicts and learns
while training the data in a large dataset, but as there are lots of weights to make up-
dates it becomes slow to train [17]. To embed the semantically meaningful sentence
we use modification of the BERT model which is Sentence-BERT. Computing with
Cosine similarity and to train a siamese network with max-pooling, Sentence-BERT
performs well rather than the BERT algorithm [5]. In addition, the International
Survey on Emotion Antecedents and Reaction (ISEAR) helps to train up and affect
text datasets.

From the discussion mentioned above, the impact of previous works reflected in our
research is clearly noticeable. Our research paper has described the elaborative con-
cept of NLP, LSTM, BERT which are effective in text datasets. Furthermore, it is
also observed why the Natural Language Processing (NLP) model is considered to
be the best suitable method for recognizing emotion in a text dataset. Thus the
approach to consider that method NLP requires the best way to recognize senti-
ments in text, instead, complications of other methods also mentioned briefly in our
research.

6

Chapter 3

Background Studies

3.1 Natural Language Processing (NLP)

As it is the information era, the volume and worth of information available now
are greater than before. Because of the language barrier, individuals from all over
the world could not access or comprehend knowledge that was spoken or written by
humans in many languages in various ways and saved in books, CDs, and recorders.
As we enter the information era, we can not only access the information but also
understand it with the help of a technology named NLP. NLP helps a machine to
analyze different languages and understand the meaning with context which was
only possible for human beings up until now.

Natural Language Processing is the study of how a machine may learn to compre-
hend and interpret human language. It intersects a bunch of areas of technology
and several other fields such as artificial intelligence (AI), computer science, data
science, machine learning, linguistics, etc. NLP lets computers understand the text
and the spoken words in the same way a human being would understand it.

We broke NLP into a few components to help a computer or machine comprehend
how it works. When more time and data are given to the process, NLP performs
better. Sentence segmentation is the first step in learning how NLP works. Sentences
would be split from a paragraph in sentence segmentation since it would be much
easier for a machine to grasp a sentence than the entire paragraph. If just the
paragraph is more or less organized, an intelligent algorithm can separate sentences
by acquiring the punctuation marks. If the paragraph is not organized, a complex
algorithm must be applied.

The next task would be word tokenization. We would consider the words as tokens
and figure out what parts of speech they belong to now that we’ve divided the
sentences. Punctuation marks, on the other hand, all had their significance and
must be regarded as tokens. A clever algorithm identifies and categorizes each word’s
parts of speech, allowing the computer to comprehend its functions. To do this, the
computer must be pre-trained using the parts of speech classifier model. Then, text

7

lemmatization comes. In a paragraph, most of the words remain at their root form.
However, in many cases, words need to go through different grammatical forms. For
instance, the words “Artist” and “Artistry” have been used in a paragraph. Despite
having separate parts of speech, they both originated from the same root. This
stage aids NLP in comprehending the context of any given text.

Prior to interpreting the data’s core meaning, NLP’s next goal will be to not only
identify stop words but also filter them out. Every language includes unnecessary
words that add nothing to the text, thus the system must eliminate them. These
tokens are also identified as stop words and NLP usually skip them because they
can be a cause why the NLP system can not get the insights from the data. After
identifying the stop words, the following step would be figuring out the relation
among all the words of a sentence. This process is called dependency parsing.
Through dependency parsing, NLP algorithms construct a parse tree that identifies
the sentence’s root word and connects the tokens. They may also build a parent
term for each token in order to have a deeper comprehension and, as a consequence,
to fully comprehend the core idea.

At present, we have a parse tree so after that, the Named Entity Recognition (NER)
needs to be done. Data scientists begin extracting concepts from the text at this step
of natural language processing by connecting tokens to actual things. For instance,
“Sylhet is one of Bangladesh’s most great cities.” is a sentence where “Sylhet” and
“Bangladesh” represent existing places and that can be detected by using NLP. The
purpose of NER is to identify these nouns and associate them with the real-world
ideas they represent. By removing this data from the text, an NLP model creates
additional meaning that can be used to conduct a thorough study.

Now that NLP can understand the English language well, we still have an obstacle
to overcome and that is in the English language, we use many pronouns such as
he, she, it, they, etc. They express the same meaning as previously used nouns in
a text. Coreference resolution is used to group all references to real-world concepts
or objects in text. Thus, an NLP model will comprehend the meaning of words like
”he,” ”its,” and ”thus.”

Figure 3.1: Natural Language Processing

Without anyone recognizing it, NLP is being used everywhere. For instance, mar-

8

keting is more complex and difficult than ever as the number of competitors is
increasing along with the expectation of the customers. As businesses are going to
use more online platforms, it creates a demand for smooth, personalized, and en-
gaging experiences that will turn customers into loyal advocates. Here comes NLP
to solve all these issues and helps the writer to overcome any writer’s block and
create the opportunity to unleash their creativity. Another application of NLP can
be noticed in chatbots. Without NLP, chatbots cannot reply to users. Moreover,
sentiment analysis softwares use NLP. Spam detection, fake news detection, subtitle
generating, speech recognition, spell and grammar check, online search engine, email
filters are also a few sectors to apply NLP. It is used by virtual assistants like Siri,
Google Assistant, and Alexa. These days, NLP is extensively utilized in the finance
and healthcare industries.

3.2 Sentiment Analysis

Sentiment analysis, sometimes referred to as opinion mining, uses natural language
processing to determine the emotional tone of a body of text (NLP). Nowadays,
businesses decide how consumers feel about any service, item, or idea. Today, social
media is used by a sizeable section of the population from across the globe, allowing
people to publicly express themselves. Sentiment analysis comes into play in this
situation. Data mining, machine learning (ML), and artificial intelligence are used
to mine text for sentiment and subjective information (AI).

A text’s expression of positive, neutral, or negative sentiment is identified by senti-
ment analysis. The artificially intelligent bots are programmed to identify whether
a message is positive, negative, or neutral based on millions of chunks of text. Sen-
timent analysis divides communication into topical pieces, giving each topic a senti-
ment score that is preset. To be able to analyze sentiments properly, the sentiment
analysis system has to rely on an advanced sentiment library to detect the correct
sentiment and score the words or phrases. Sentiment libraries are made up of a
collection of dictionaries that have been carefully graded and include adjectives and
phrases. The next step is POS-tagging. To effectively evaluate a phrase for sen-
timent, it must be broken down into bits using numerous sub-processes, including
POS-tagging, as briefly seen above. The identification of the core constituents of
a text, such as verbs, nouns, adjectives, and adverbs, is known as Part of Speech
tagging. To acquire exact POS-tagging findings, which are critical for recognizing
different phrase combinations, a reliable sentiment analysis system must be based
on accurate natural language understanding software. However, there is a drawback
and that is following strict rules cannot be always proven correct in terms of identi-
fying sentiments. For example, “I am so glad that my book was lost.” here sentiment
analysis system cannot analyze the sentiment of this sentence like a human. The
system will not understand the sarcasm of the sentence. That is the reason why
sentiment analysis has to continuously improve all the time.

Different kinds of sentiment analysis exist. The most well-liked ones focus on emo-
tion recognition in fine-grained sentiment analysis. The polarity category in fine-

9

grained sentiment analysis contains extremely positive, positive, neutral, negative,
and very negative. If the statement conveys a very favorable impression, it will
receive a score of 5, and if it conveys a very negative impression, it will receive a
score of 1. Aspect-based sentiment analysis is one more. It is mostly used to ascer-
tain textual feelings. Whether a sentence expresses a favorable, neutral, or negative
attitude can be determined via aspect-based classifiers. Next, due to the high data
and resource requirements, multilingual sentiment analysis is more challenging than
other types.

As the popularity of sentiment analysis increases now we can see its application of
it in almost every sector. Sentiment analysis can be used to identify a brand or
organization’s awareness, reputation and popularity over time, track the consumer’s
opinion on the service or product, evaluate the success of any marketing campaign,
social media, collect customers feedback on the services from online platforms and
many more. The benefits of sentiment analysis are real-time analysis, sorting data
at scale, consistent criteria etc.

3.3 Machine Learning (ML)

Machine learning refers to an algorithm that focuses observational data and can train
predictions based on it. The machine concentrates on using data and algorithms,
much like how people can learn, to increase accuracy. However, Random forest,
Linear regression, Support vector machine, Logistic regression, Gradient descent and
so on algorithms are used to make classifications and predictions. As the growing
field of data science, machine learning is an important component that is actually a
branch of artificial intelligence. There are three main parts to learn how the system
of machine learning works [13].

Figure 3.2: Working Process of Machine Learning

3.3.1 Decision Process

The decision process of a machine learning algorithm produces an estimate of the
pattern in the data based on some input data and will basically predict the type of
data by which it collects from input data.

10

3.3.2 Error Function

To assess the accuracy of the model error function can make a comparison between
the known examples and model estimate data.

3.3.3 Model Optimization Process

Until to reach the threshold accuracy model optimization process will repeat the
evaluation process and update weights autonomously.

Therefore, according to the type of signal or feedback machine learning models can
be classified into three primary categories.

Figure 3.3: Machine Learning

3.3.4 Supervised Machine Learning

To classify the data or predict outcomes accurately supervised machine learning is
defined by its training or labeled datasets which are represented using matrices.
Moreover, until getting the desired outputs the model examines the result and ad-
justs the parameters. The main drawback of supervised learning is that classifying
big data can be a real challenge but the accuracy of the result is a trustworthy
method and highly accurate. Linear regression, logistics regression, neural networks
are some of the methods used in supervised learning.

3.3.5 Unsupervised Machine Learning

In this unsupervised machine learning technique there is no need to supervise the
model. As it deals with the unlabeled data it is necessary to allow the model to work
on its own information.However, unsupervised learning has a dataset which only has
inputs and is computationally complex. The main drawback of the unsupervised
machine learning model, as the used data is not known it is not possible to get
precise information. Furthermore, accuracy of the result is a trustworthy method
but less accurate. Unsupervised learning uses some other algorithms which can

11

be divided into different categories and they are Hierarchical clustering, Cluster
algorithms, K-means and so on.

3.3.6 Semi-Supervised Learning

Semi-supervised learning refers to the intermediate ground between the learning
algorithm of supervised and unsupervised machine learning. In this algorithm the
training data consists of both labeled and unlabeled data and the results may not be
accurate. Semi-supervised learning can be the solution of the problem when there
is not enough labeled data to train the supervised learning algorithm. In the end,
there are few assumptions followed by semi-supervised learning which are continuity
assumption, cluster assumption, manifold assumption and so on.

However, apart from the above methods of machine learning algorithm, there is
another type of learning which is called Reinforcement learning [18]. To interact
with environment reinforcement learning, it enables a machine from its experience.
In reinforcement, the output depends on the current input whereas the next input
depends on the previous output. Reinforcement learning algorithms can be classified
into two basic categories and they are positive and negative reinforcement learning
algorithms.

3.4 Bag of Words

The random nature of text makes it difficult to model, and methods like machine
learning algorithms favor inputs and outputs with clearly specified set lengths. Ba-
sic text cannot be used directly by machine learning algorithms; instead, the text
must be transformed into numbers. more specifically, numerical vectors [8]. This is
referred to in both feature extraction and feature encoding. The bag-of-words model
of text is a well-known and simple method for extracting features from textual data.
The technique is quite flexible and easy to use, and there are many different meth-
ods to use it to extract characteristics from texts. A textual representation of where
words appear in a manuscript is called a ”bag of words.” There are two components:

1. A collection of well-known words.

2. A metric for the amount of well-known words.

Because any information pertaining to the organization or structure of the words
inside the text is disregarded, it is referred to as a ”bag” of words. The model is
just concerned with whether recognized terms exist; it is not concerned with where
in the article they appear. The bag-of-words technique is a widely popular feature
extraction method for sentences and texts (BOW). In this method, each word count
is taken into account as a feature when examining the histogram of the words in
the text. If two papers include comparable information, it is considered that they

12

are similar. The text’s importance might potentially be inferred from its substance
alone. The significance of the text might also be deduced from its content alone.
You may make the bag-of-words as basic or as complex as you like. Determining
how to define the vocabulary of well-known words (or tokens) and how to determine
if known terms are present are challenging decisions.

Bag-of-Words Model designed by 3 steps. Those are-

1. Collecting Data

2. Designing Vocabulary

3. Creating Document Vectors

3.4.1 Step 1: Collecting Data

Let’s take some random sentences of our regular climate. For examples-
-it is the best semester of my life
-it is the worst semester of my life
-it is the last semester of my graduation
-it is the last course of my graduation
Let’s consider the four lines as our whole collection of articles for the purposes of
this little example and each line as a distinct ”document.”

3.4.2 Step 2: Designing Vocabulary

We can now create a list of every word in our theoretical language.
In this sentence, the special words are (ignoring case and punctuation):

· It
· Is
·The
·Best
·Semester
· of
·my
·Life
·Graduation
·Course
·Last
·Worst

From a corpus of 32 words, that corresponds to a vocabulary of 12 words.

13

3.4.3 Step 3: Creating Document Vectors

The following stage involves scoring each document’s words.

Every piece of free text will be converted into a vector that can be used as either
an input or an output for a machine learning model. We may use a fixed-length
document representation of 10 with one spot in the vector for each word since we are
aware that the vocabulary comprises 12 words. Giving each word a boolean value to
indicate its existence or absence (0 for absence, 1 for presence) is the simplest way
to score text. We can walk through the first document (”It was the best of times”)
and turn it into a binary vector since the phrases in our lexicon may be put in any
sequence.

The following is how the document would be scored:

· It = 1
· Is = 1
·The = 1
·Best = 1
·Semester = 1
·Of = 1
·My = 0
·Life = 0
·Graduation = 0
·Course = 0
·Last = 0
·Worst = 0

This would appear as a binary vector, as follows:

1 1 1 1 1 1 0 0 0 0 0 0

[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]

The remaining three documents would resemble the following:

1. “it is the worst semester of my life” = [1, 1, 1, 0,1 1, 0, 0, 1, 0, 0, 0]

2. “it is the last semester of my graduation” = [1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0]

3. “it is the last course of my graduation “= [1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0,1]

The word orders are all theoretically ignored, and we can consistently extract char-
acteristics from every document in our corpus that is prepared for modeling.

14

It is nevertheless possible to encode new texts that contain terms that fall outside
the known vocabulary but overlap with it, as long as just the occurrence of known
words is scored and unknown words are ignored.

We can see how this may logically scale to larger documents and vocabularies.

3.4.4 Managing Vocabulary

The vector representation of documents expands together with the language. The
document vector in the preceding example has a length equal to the number of
recognized words. You may imagine that the length of the vector could be thousands
or even millions of locations for a very large corpus, such as thousands of books.
Additionally, a very small number of the vocabulary’s well-known words may appear
in each document. This produces a sparse vector or sparse representation, which is
a vector containing a lot of zero scores. Traditional methods may find it difficult
to describe sparse vectors because of the enormous number of places or dimensions.
Sparse vectors also require more memory and processing power. As a result, when
utilizing a bag-of-words approach, pressure is put on the vocabulary to be smaller.

As a starter, there are easy text cleaning methods that can be employed, like:

1. Ignoring the issue.
ignoring typical terms that don’t offer much information, such as ”the,” ”of,”
and related stop words.

2. Correcting spelled-out words.

3. Words are reduced to their stems using stemming algorithms (for example,
”play” from ”playing”).

Establishing a lexicon of grouped terms is a sophisticated technique. The vocabu-
lary’s scope is changed as a result, and the bag-of-words is able to glean a little bit
more meaning from the text.

· It is
· Is the
·The best
·Best semester
·Semester of
·Of my
·My life

Trigram models, which track word triplets, are used for vocabulary, while the n-
gram model, which describes the overall strategy, is used when there are many
words in a group. A basic bigram method is usually more effective than a 1-gram
bag-of-words model for applications like document classification. A bag-of-bigrams
representation is sometimes fairly challenging to overcome and is far more powerful
than a bag-of-words representation.

15

3.4.5 Scoring Words

After choosing a vocabulary, sample documents must have their word usage evalu-
ated. In the last example, we saw one rather simple method of scoring: a binary
score of the presence or absence of words.

Basic scoring algorithms that are not complex include:

Counts: Count the instances of each word in a document. Frequencies: Determine
the proportion of a document’s overall words that each word occupies.

3.4.6 Word Hashing

As we would remember from computer science, a hash function is a mathematical
procedure that converts data to a fixed size collection of integers.

In programming, It might be used in hash tables where names might be changed to
numbers for quick lookup.We can represent known terms in our lexicon as hashes.
The issue of a very wide vocabulary for a large text corpus is resolved by setting
the size of the hash space, which defines the size of the vector representation of the
document.

Words are deterministically hashed to the same integer index in the target hash
space. It is then possible to grade the word using a binary score or count. This is
referred to as ”feature hashing” or the ”hash trick.” The difficulty is choosing a hash
space that can accommodate the specified vocabulary size while reducing collision
risks and achieving a balance between sparsity.

3.4.7 TF-IDF

The drawback of word frequency scoring is that frequent keywords tend to dominate
the text (larger score), yet these phrases could not give the model as much ”infor-
mational content” as infrequent but possibly domain-specific words. One approach
is to rescale keywords’ frequency based on how frequently they appear across all
publications, punishing words like ”the” that are regularly used throughout several
texts.

Term Frequency - Inverse Document Frequency, or TF-IDF for short, is a method
of scoring that considers:

1. The phrase ”term frequency” is used to rate the frequency of a word inside
the current document.

2. Inverse Document Frequency is a metric for gauging a term’s rarity across
documents.

16

The ratings reflect a weighted assessment because not all words are equally impor-
tant or engaging. The results highlight words in a given document that stand out
or provide important information.

3.5 TF-IDF

Use the TF-IDF (term frequency-inverse document frequency) algorithm to deter-
mine the importance or relevance of string representations (words, phrases, lemmas,
etc.) in a document relative to a set of documents (also known as a corpus). A score
is often assigned to each word to show how significant it is to the corpus and content.
This approach is often used in information retrieval and text mining applications.

There are two parts to the TF-IDF. (Term Frequency) and IDF are the acronyms for
(Inverse Document Frequency). First, we’ll talk about TF (Term Frequency). By
looking at how frequently a certain phrase is used in connection to the document,
term frequency is calculated. There are many different definitions and measures for
frequency. instances of the term in the text (raw count). adjusted for term frequency
(raw count of occurrences divided by word count in the document) and document
length. After that, it applies a logarithmic scaling on frequency (for example, log(1
+ raw count)). After that, use Boolean frequency (for instance, 1 if the phrase
occurs in the document and 0 otherwise). Since TF is specific to each document
and word, we may write it out as follows:

tf(t, d) =
countoftind

numberofwordsind

So now the question is, Why not just use TF to determine the relevance between
documents if we have already computed the TF value and this creates a vectorized
representation of the document. On this point we will talk about the IDF(Inverse
Document Frequency). We require IDF since terms like ”of,” ”as,” ”the,” etc. com-
monly arise in an English corpus and need to be corrected. As a result, we may
decrease the weighting of common phrases while boosting the relevance of infrequent
terms by employing inverse document frequency. Inverse document frequency ana-
lyzes the frequency (or absence) of a phrase in the corpus. IDF is determined using
the following formula, where N is the number of documents (d) in the corpus and
t is the term (word) we’re seeking to estimate the frequency of (D). Thenumber of
papers that contain the phrase ”t” serves as the denominator.

idf(t,D) = log
N

count(d ∈ D : t ∈ d)

In IDFs there is a chance that a term won’t be found anywhere in the corpus, which
could lead to a divide-by-zero error. Consider adding 1 to the current count to
solve this. the denominator becomes (1 + count). IDFs can also be derived from a
background corpus, which corrects for sample bias, or from the dataset being utilized
in the current experiment.

17

In a nutshell, the essential idea behind TF-IDF is that the importance of a phrase
is inversely associated with its frequency across texts. A term’s frequency in a doc-
ument is revealed by TF, while its relative rarity within the collection of documents
is revealed by IDF. We may calculate our final TF-IDF value by averaging these
numbers.

tfidf(t, d,D) = tf(t, d) · idf(t,D)

Textual input must first be turned into a vector of numerical data via a process
known as vectorization, which machine learning approaches typically utilize, before
being used in any natural language processing (NLP) activity, a subfield of ML/AI
that works with text. The TF-IDF may be used by a search engine to rank search
results according to relevance; results that are more pertinent to the user will have
higher TF-IDF scores. This is due to the fact that TF-IDF can advise you of the
term’s pertinent relevance based on a document. Because TF-IDF weights words
according to relevance, one may use this approach to determine that the words with
the highest relevance are the most important. Using this, you may select keywords
(or even tags) for a document or more accurately sum up articles.

However, TF-IDF has a number of drawbacks: In the word-count space, where it
computes document similarity directly, it may be slow for large vocabularies. It is
predicated on the idea that word counts serve as independent proof of similarity. -
It does not make use of word semantic similarity.

To avoid these problems, we have to find some new models which can make our
work more sufficient.

3.6 Logistic Regression

A supervised learning technique is logistic regression. The result of a dependent
variable can be predicted using the statistical technique known as logistic regression
based on prior data. It is a typical approach for resolving binary classification issues
and is a subset of regression analysis. Logistic regression works with continuous
data as well as discrete data.

In the field of machine learning, logistic regression has grown to be a crucial tech-
nique. It permits machine learning algorithms to categorize incoming data based on
prior data in applications. The algorithms get more accurate at predicting classes
within data sets as more relevant data is included. However, it can use model coef-
ficients to determine the significance of a characteristic and give good accuracy for
many simple datasets whereas Logistic Regression is easier to implement, interpret
and very efficient to train.

18

3.7 Long Short-Term Memory (LSTM)

To tackle the gradient vanishing issue, the LSTM model was first introduced. This
model approaches a typical recurrent neural network with a hidden layer, although
instead of regular nodes, each memory cell acts as a node in the hidden layer. Each
memory cell has a node with a self-connected recurrent edge of fixed weight one,
which enables the gradient to go over several time steps without evaporating or
exploding.

Weights operate as long-term memory in simple recurrent neural networks. In order
to encode generic information about the data, the weights gradually change through-
out training. Additionally, they have ephemeral activations that go from one node
to the next, serving as their short-term memory. For this reason, It was phrased as
”long short-term memory”.

To manage this information flow, the memory cells in LSTM use special multiplica-
tive units called gates. Each memory block featured an input gate and an output
gate in the original design.

The LSTM method’s gates are one of its distinctive features. A gate is a sigmoidal
unit that, like an input node, gets activation from the current data point x as well
as the hidden layer from the previous time step (t). The input gate regulates how
input activations go into the input. If its value is 0, it acts as a gate, stopping flow
from the other node. If the gate’s value is one, then all flow flows through.

Figure 3.4: LSTM architecture

Cell activations are controlled by the output gate in terms of how they leave the
cell and enter the rest of the network. It is typical to first pass the internal state
through a tanh activation function in order to give the output of each cell the same
dynamic range as an ordinary tanh hidden unit.

The forget gate was later added to the memory block. It was addressed that LSTM
models cannot handle continuous input streams that are not broken up into subse-
quences. The forget gate adaptively clears or resets the cell’s memory by scaling the
internal state of the cell before adding it as input through the cell’s self-recurrent
link.

The present LSTM architecture additionally includes peephole connections from its
internal cells to the gates in the same cell to enable precise timing analysis of the

19

outputs. The equation to calculate the internal state during the forward pass while
utilizing forget gates is :

s(t) = g(t)i(t) + f(t)s(t1)

Figure 3.5: LSTM memory cell with a forget gate

The vector h(t) reflects the value of the hidden layer of the LSTM at time t, whereas
h(t1) represents the values that each memory cell in the hidden layer output at
time t1. Notably, only the forget gate is included in these calculations and not
peephole connections. The calculations for the simpler LSTM without forget gates
are completed by setting f (t) = 1 for each t. We use the tanh function on the input
node g.

Formally defined, computation in the LSTM model moves forward in accordance
with the calculations that are carried out at each time step. The whole algorithm
for a contemporary LSTM with forget gates is given by these equations:

gt = θ(W gxxt +W ghht−1 + bg)

it = σ(W ixxt +W ihht−1 + bi)

ft = σ(W fxxt +W fhht−1 + bf)

ot = σ(W oxxt +W ohht−1 + bo)

st = gt · it · st−1 · f t

ht = θ(st) · ot

20

3.8 BERT

BERT is one of the best natural language processing models developed in recent
years.. It is a transformer-based machine learning model which is capable of a
mechanism called “self-attention”, making it a very popular and capable model in
the field sentiment analysis and deep learning. BERT works with a layer of encoders
for self-attention in which it processes data in sequence among the connected encoder
layers.

3.8.1 Pre-Training

The BERT model’s architecture is broken down into two phases: pre-training and
finetuning. The two components of pre-training are MLM (Masked Language Mod-
elling) and NSP (Next Sentence Prediction).

Masked Language Modelling (MLM)

In MLM, we substitute a random fraction of words with tokens (Mask). The model
then uses the context derived from the remaining words to attempt to forecast
the actual inputs from the hidden words. For this prediction, the encoder output
must be layered with a classification layer, and the output vectors must then be
multiplied by an embedding matrix in order to transform them into the vocabulary
dimension. Each word in the vocabulary’s probability may be calculated using
Softmax. However, not all of the cloaked words are really replaced by the BERT. If
we mask 15% of a text, roughly 80% of the words will be replaced by a token, 10%
of the tokens will be replaced with a random token, and the remainder will be kept
unaltered.

Next Sentence Prediction (NSP)

In order to understand the relationship between two phrases and to determine if
the second sentence in the pair is the first sentence’s concluding sentence, BERT
employs NSP. Assume A and B are the two supplied sentences; 50% of the time, B
will be the original second sentence that follows A, and 50% of the time, B will be a
random sentence from the corpus. The goal is to get the random statement sound
unrelated to the first one. As a result, a BERT model is anticipated to return 0
if the second sentence B follows the first sentence A and 1 if the first sentence A
follows the second sentence B during training.

3.8.2 Fine-tuning

Fine-tuning is simple because of the transformer’s self-modeling mechanism, which
allows BERT to simulate a wide range of downstream jobs. We just plug in the exact
inputs and outputs into BERT and fine-tune all of the settings for each activity.

21

3.8.3 Transformer

The BERT architecture uses transformers. The researchers show [6] that transform-
ers use the self-attention mechanism to get a better knowledge of a language. The
machine has to understand the context of each word in a text. To do that, the
model must store the memory for a long period of time. It is when a self-attention
mechanism is needed. “I purchased a pen yesterday,” for example. I misplaced it at
school.” The machine must remember a few parts from the first phrase to recognize
that “it” refers to the pen in the second sentence.

Instead of focusing just on self-attention, BERT utilizes a technique known as multi-
head attention. The model may simultaneously attend to input from different rep-
resentation subspaces at different places thanks to multi-head attention. By using
one attention head, averaging avoids this.

There are two distinct mechanics in a transformer. The first is an encoder, which
reads and processes text input, and the second is a decoder, which generates task
predictions. The transformer in BERT, on the other hand, only requires encoders
because this type operates in both directions (left-to-right and right-to-left) at the
same time. As a consequence, the model will be able to anticipate a word’s context
based on the context of all other words.

The BERT encoder has two models: BERT base and BERT big. It is a multi-layer
bidirectional transformer encoder. The 12 encoders that make up the BERT base’s
design each include eight layers, four multi-head self-attention layers, and four feed
forward levels. For the classification, we must add a fully linked layer and a softmax
layer.[15] BERT large doubled layers compared to the base model. Here, to predict
the sentiments in text, we are going to use the BERT base model.

3.8.4 The input and output

Input

BERT is a model that receives inputs and creates outputs. The BERT uses cer-
tain unique tokens to generate the input. For instance, [CLS] and [SEP]. The first
sentence begins with the token [CLS], and the last sentence ends with the token
[SEP].

Token Embeddings: Token embeddings are numerical representations of the input
sentence’s words. Larger or more complicated words are also broken down into
simpler words, which are subsequently converted into tokens by BERT. For example,
the word ”playing” is broken down into ”play” and ”##ing,” resulting in token
embeddings. BERT does not regard complex words as new words in this case, but
rather uses them in the context of the complex term.

Segment Embeddings: The purpose of segment embeddings is to aid BERT in
distinguishing between two separate sentences in a single input. The embedding vec-

22

Figure 3.6: Embedding Layers in BERT

tor’s elements are identical for words in the same phrase. So, if there are two phrases,
one is ”I went to the zoo.” and the other is ” I was alone”. The tokenizer will begin by
tokenizing the sentences [’[CLS]’,’[I]’,’[went]’,’[to]’,’[the]’,’[zoo]’,’[SEP]’,’[I]’,’[was]’,’[alone]
,’[SEP]’]. The segment embeddings will then be [0,0,0,0,0,0,0,1,1,1,1]. The identical
element 0 will be used in the first sentence, and element 1 will be used in the second
phrase.

Mask TOKEN: The mask tokens assist BERT in determining if all of the inputs
are relevant or not, as well as which ones are purely for padding. A 512-dimensional
input is required for BERT. We have 12 words, for example. As a result, the final
size padding will be 512-12=500. When BERT generates, it will use padding to
provide a token size of 512. The index will include 1s if it is relevant to the words,
and 0s if it is padding.

Position Embedding: Position Embeddings are generated internally in BERT and
provide a feeling of order to the incoming data.

Output

Although the BERT base generates a 768-dimensional output, it is not required
for all embeddings for classification. As a result, by default, BERT only analyzes
the output corresponding to the first token [CLS] and ignores all other tokens. In
a text, BERT can quite accurately anticipate spam. Token embeddings, segment
embedding, and mask tokens for the input are generated and then passed to BERT.
BERT will then produce a 768-dimensional output. Finally, the output is fed into
a feed-forward network with the softmax activation function.

3.9 Naive Bayes

The Naive Bayes algorithm is a probabilistic classification method that can be used
to classify text or other types of data. It is an easy-to-use algorithm that has been
effective in many applications, including spam filtering and document categorization.
Specifically, the algorithm works by treating all of the words in a piece of text as
independent events and assigning a probability to each word based on how frequently

23

it appears in text. Because it ignores the context in which words are employed, it
is referred described as ”naive.”

Naive Bayes is a classification algorithm that uses Bayes’ theorem to make predic-
tions based on the relationships between variables.

The equation for Naive Bayes is:

posteriorprobability =
conditionalprobability × priorprobabilityevidence

evidence

The general notation of posterior probability can be written in the following equation
form:

P (A|B) =
P (B|A)P (A)

P (B)

Here, A is the label of interest and B is an attribute being used to predict whether
or not something will have label A.

The event is whether a given message contains spam or not. The algorithm uses the
frequency of each word in both spam and non-spam messages as well as all of their
other characteristics, such as capitalization and punctuation, to make predictions
about whether a given message is spam.

The algorithm works by assigning probabilities to each word and then taking all
those probabilities into account when calculating the overall probability for a given
message being spam or not.

Naive Bayes is the most popular algorithm used in machine learning. It has an easy
to understand concept, is simple to implement, and is effective in a wide range of
applications.

The algorithm starts by looking at the words in a sentence and assigning them a
probability for each possible word class. For example, when trying to classify emails
as spam or not-spam, there might be classes like ”sports,” ”travel,” ”business,” and
”personal.” For each word in the sentence, it will use frequencies from training data
to calculate its probability of belonging to each class. Finally, it will combine the
probabilities of all the words together to produce an overall classification score.

There are many different ways of calculating these probabilities and even more ways
of combining them into an overall score. However, they all come down to one thing.
The model tries hard not to make mistakes by using as much information as possible.

In order to classify new text using Naive Bayes, it is first required to make an
assumption about the distribution of the feature variables. Then train or fit the
model using training data and evaluate it using testing data.

The training data set consists of a bunch of documents (sentences) that have already
been classified into one category or another (i.e., spam or not spam). The training
set includes both positive and negative examples, where a positive example contains
words that are likely to appear in spam messages, while a negative example contains
words that are unlikely to appear in spam messages.

24

The Naive Bayes classifier is pretty straightforward: it assumes that if some features
are present in both the positive and negative examples, then those features must be
important for classifying new instances correctly. Otherwise, they are not important.

3.10 Confusion Matrix

The classification model’s accuracy in classifying instances into distinct groups is
summarized in a table called the confusion matrix. The model’s predicted label is
on one axis of the confusion matrix, while the true label is on the other. When
comparing several models, we may use the confusion matrix to assess how well each
one predicted true positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN). We chose a model as our base model if it accurately predicted TP
and TN compared to other models.

3.11 Precision

In terms of positive observations, precision is the proportion of correctly predicted
observations to all expected positive observations. The classifier’s capacity to refuse
to classify a negative sample as positive comes intuitively. 1 is the best value, while
0 is the worst. Low false positive rates are related to high accuracy. The formula of
precision is:

Precision =
TP

TP + FP

3.12 Recall

The recall is determined as the number of true positives divided by the total number
of true positives and false negatives. This differs from precision, which counts the
proportion of accurate positive predictions among all positive predictions given by
models. The machine learning model is more adept at recognizing both positive
and negative samples the higher the recall score. To gain a comprehensive perspec-
tive of the model’s performance, the recall is sometimes combined with additional
performance measures like precision and accuracy. Its formula is as follows:

Recall =
TP

TP + FN

25

3.13 F1-Score

A weighted average of recall and precision makes up the F1 score. As an alter-
native to accuracy measures, F1-score is a machine learning model performance
statistic that equally weights Precision and Recall when assessing how accurate the
model is. The harmonic mean of recall and accuracy is known as the F1-score. An-
other method of determining an ”average” of values is the harmonic mean, which
is typically seen as more suited for ratios (such as recall and accuracy) than the
conventional arithmetic mean. The formula of the f1-score is:

F1Score = 2× (Recall × Precision)

(Recall + Precision)

3.14 Accuracy

The simplest performance metric to understand is accuracy, which is just the pro-
portion of correctly predicted observations to all observations. A model is considered
to be good if its accuracy rate is high. But accuracy is only a valuable statistic when
the datasets are symmetric and the values of false positives and false negatives are
about equal. As a result, the performance of the model must also be evaluated using
the other parameters.

Accuracy =
TP + TN

TP + FP + FN + TN

26

Chapter 4

Methodology

This work’s major goal is to employ a review dataset suitable for sentiment analysis
of various human judgment and emotion spectrums that captures the ranges between
the positive and negative poles. This is done to predict and detect emotions as accu-
rately as possible; as the human mind is complex and so is human judgment which
can only be satisfied through spectrum classification rather than simply the binary
classification of whether the customers/ audiences were satisfied by the products
they reviewed or not. In order to do so, the system needed to design a process where
the machine respectively takes the input data, processes the dataset, predicts, ana-
lyzes and classifies the data and produces the correct output not only through word
vectorization and token predictions but also through more layered and structured
domains of text classification and context understanding. To achieve this we took 5
models that can fall under the following categories in three pairs namely Primitive/
simple models namely, TF-IDF and Bag of Words; Mid complexity model which
is Naive Bayes and advanced context-identifying model namely LSTM and BERT.
Textual documents are used for classification models to train the polarity and are
represented by vectors to adopt the machine learning approach. Through trials on
two datasets that include Spotify App Reviews, Coursera’s Course Reviews Dataset,
the sentiment classification problem is analyzed. The suggested textual phenomena
and the changes in language-specific expressions need little computational resources,
which may have an influence on automating sentiment identification and retrieval.

4.1 Datasets

To perform our experiment, we have used two different datasets which were collected
from the renowned Kaggle site. We have used two datasets containing 64k Spotify
App Reviews and 100K Coursera’s Course Reviews Dataset. These datasets were
used in various experiments by other researchers from time to time. Aspect-based
sentiment analysis in music: a case study with Spotify and Alternative Methods
for Deriving Emotion Metrics in the Spotify Recommendation Algorithm, the 100K
Spotify App Reviews dataset was utilized in both articles. Reviews of Coursera’s
offerings A Bayesian CNN-LSTM Model for Sentiment Analysis in Massive Open

27

Figure 4.1: Overview of Methodology

28

Online Courses MOOCs and an Analysis of Learners’ Affective and Cognitive Traits
in Context-Aware Recommender Systems (CARS) utilizing Feature Interactions and
Factorization Machines (FMs) both utilized the dataset.

For Spotify App Review Dataset, Coursera Course Review Dataset, we kept 10000
reviews for each algorithm. However, as we used a pre-trained model in BERT
algorithm that is why we kept 2000 reviews. We trained and tested on this size of
datasets. For each of these datasets: we have chosen the columns that contains the
reviews of the users and the ratings they have given to these courses/app/movie.
From the coursera datasets, we have chosen the ‘Review’, ‘Label’ columns, from
spotify datasets, we have chosen the ‘Review’ and ‘Rating’, and renamed each of
these pairs of columns as ’review’ and ’sentiments’ respectively of all two datasets
for the ease of coding. These datasets were selected as each of them contain labels
comprising of the rating score 1 - 5 which is helpful for detailed sentiment analysis
as we can derive these scores as such - 1: negative, 2: somewhat negative,
3: neutral, 4: somewhat positive and 5: positive. Classifications of such
variations allow for analysis along the spectrums of positive and negative aka the
grey area between both extremes. After working with five label classification, we
decided to simplify our sentiment category of five labels into three labels, namely 1:
negative, 2: neutral and 3: positive.We did this by relabeling our initial
five sentiment categories such that 5: 3, 4: 3, 3: 2, 2: 1, 1: 1 where 3, 2,
1 are categorized as positive, neutral and negative respectively.

4.2 Data Pre-Processing

The datasets that we used in our paper were not fulfilling all the necessary require-
ments to run through the codes. That is why we needed to clean the datasets first
by removing the special characters by importing and applying regular expression
operation and also kept all the alphabets in lower case. Then pre-processing started
where we used df.shape operation to know the shape of our dataset. We also collect
the number of unique values of the sentiment column. To find out about the null
values, we used df.isnull().sum(). Then, we needed to remove all the unnecessary
rows and columns from our datasets. For doing this, we used df.drop() function. To
drop an unnecessary column we had to keep the axis as 1 and for dropping the rows,
we need to keep the axis as 0. By the end of all the pre-processing, we can get the
datasets that we actually going to use for our codes.

4.3 TF-IDF Model Explanation

Firstly, we performed the data pre-processing steps and removed all the unnecessary
special characters, rows and columns from the dataset. After doing these, we need
to download the stop words after installing nltk and select the language in English
as our dataset is in English. Then, we removed all the stopwords from review.
Stopwords are those words which do not carry any sentimental value. For example,

29

‘I’, ‘You’ do not carry any sentiment in a sentence so for our models these words
are unnecessary. That is why we removed them. Then we had to perform the
lemmatization process. The Lemmatization process is where the code removes any
parts of speech attached with words. For instance, if there is ‘songs’ word in the
dataset, by applying lemmatization this word would turn into its true form which
is ‘song’. After the lemmatization process, the column ‘review’ was renamed as
‘review processed’.

Moreover, to perform train- test split, at first we had to assign two variables where x
would store review processed and y would store sentiment. Later, train test split()
method was used to separate the data to train and test. In this particular method
x, y, random state set as 42, test size set as 0.20, shuffle set as true and stratify set
as y. The test size = 0.20 means 20% of the reviews are going to be used for testing
purpose only and the rest 80% is for training. By using the shape function again,
we got to know the shape of x train and x test.

Furthermore, TfidfVectorizer has been imported from sklearn.feature extraction.text
and it would compute the word counts, idf and tf-idf values all at once. Then, fit the
x train and transform this into tv train transformed by using tvectorizer.fit transform()
function. With the help of tvectorizer.transform(), x train was transformed into
tv test transformed. As we know that TF-IDF can only vectorize the dataset but
for obtaining the accuracy we had to perform logistic regression operation. In lo-
gistic operation, we needed to have these parameters and they are penalty as l2,
max iter as 1000, C as 1 and random state as 5. Then, fit this train datasets by
using the fit function in the logistic regression model. By using the predict function,
we predicted the transformed tv test transformed. Now, we can find the accuracy
score with the help of y test and y pred. We would use them to figure out the
classification report and the accuracy for five labels.

As the datasets we used are biased, we had to perform different techniques to get a
better performance such as class weight assigning and oversampling. For the class
weight assignment, it had to import from sklearn library. Then, the sentiment which
was in a list is now stored in unique classes. An empty out dict is being called and for
each unique class, the classes were stored in out dict where the applied formula was
df.shape[0] / ((df.loc[df[’sentiment’] == classes].shape[0]) * len(unique classes)).
Then, printed the out dict. Again by using logistic regression where class weight
is balanced and max iter is 500, we fit the tv train transformed and y train in it.
In the following line, the class weight.compute class weight was being set where
the parameters were class weight is balanced, classes set in np.unique(y train) and
y was set as y train. After that, we predicted the transformed x test. At last,
figured out the classification report. On the other hand, to increase the number of
minority data points, the oversampling approach duplicates them at random. Only
the value counts of y train are now transferred in each count class of five labels.
Then, we applied the Concat function on the x train, y train, and also kept the axis
as 1. Then the five sentiments of the training part were moved to the five different
classes. Now, in the sampling process where we took the class 5 and replaced it with
the classes from 1 to 4 for oversampling. Again, by using the Concat function all the
oversampled classes and class 5 and axis as 0. Now, we assigned the oversampled
train dataset into new X train and Y train accordingly. After fitting the training

30

parts in the logistic regression model and also predicting the tv test transformed1.
Lastly, the classification report was used to get the performance result and now the
model is predicting better than before.

When we label the sentiment into three (Positive, Neutral and Negative) instead
of five, we get a better accuracy score which is 78% however, the model could
not predict the neutral sentiment. For the weight class assignment, improvement
was noticeable. After performing the oversampling, the accuracy was 73% and the
neutral sentiment was predicted well than before.

4.4 Bag of Words Model Explanation

At the start, we performed the cleaning and data pre-processing on our dataset.
After completing these steps, we deleted stopwords and select English as the lan-
guage because our dataset was in English. The lemmatization method was done.
The lemmatization procedure involves removing any attached parts of speech from
the code.

Additionally, in order to do a train-test split, we first had to assign two variables
to which x would hold review-processed and y would store sentiment. The data for
training and testing had been separated using the train test split() method. In this
specific approach, the random state is set to 42, the shuffle set to true, stratify set
to y, X, Y, and test size is also set to 0.20. The test size value of 0.20 indicates that
only 20% of the reviews will be used for testing, with the remaining 80% being used
for training. We learned the shapes of the x train and x test by utilizing the shape
function once more.

We vectorize the code for the bag of words after importing CountVectorizer from
sklearn.feature extraction.text. Then, fit the x train and transform this into tv train
transformed by using cvectorizer. transform(x train). As far as we are aware, bag
of words can only vectorize the dataset; however, in order to gain accuracy, logistic
regression had to be used. These settings, which are penalty as l2, max iter as 500,
C as 1, and random state as 5, are necessary for logistic operations. Then use fit
function to fit this model. We forecast the converted x test using the predict func-
tion. With the aid of y pred and y test, we can now determine the accuracy score.
The accuracy we obtain when we utilize them to determine the classification report.

We had to employ several strategies, such as class weight assigning and oversam-
pling, to improve performance because the datasets we used were biased. For the
class weight assignment, it had to import from sklearn library. We kept the man-
ual weights as 5: 5, 4: 20, 3: 30, 2: 40, 1: 20 . Again by using logistic re-
gression where class weight was manual weights and max iter was 500, we fit the
cv train transformed and y train in it. In the following line, we predicted the trans-
formed x test. At last, figured out the classification report where the improvement
in performance was noticeable. On the other hand, in oversampling, only the value
counts of y train are now transferred in each count class of five labels. Then, we ap-
plied the Concat function on the x train, y train, and also kept the axis as 1. Then

31

the five sentiments of the training part were moved to the five different classes.
Now, in the sampling process where we took the class 5 and replaced it with the
classes from 1 to 4 for oversampling. Again, by using the Concat function all the
oversampled classes and class 5 and axis as 0. Now, we assigned the oversampled
train dataset into the new X train and Y train accordingly. After fitting the training
parts in the logistic regression model and also predicting the cv test transformed1.
Lastly, the classification report was used to get the performance result and now the
model is predicting each sentiment better than before.

When we label the sentiment into three (Positive, Neutral and Negative) instead of
five, we get a better accuracy score which is 77% because of fewer layers however,
the model could not predict the neutral sentiment well. For the weight class assign-
ment, we also predict the neutral sentiment. After performing the oversampling,
the accuracy was 73% and the neutral sentiment was predicted well than before.

4.5 LSTM Model Explanation

We have set num words and a variable X to 600 and 0 correspondingly at the start
of the LSTM. After that, the model has been called tokenizer() method to keep
the maximum number of words from the review in the tokenizer with the help of
tokenizer.fit on texts() function. Now that we have done with our tokenization, it
would be easy to convert them into integer by using tokenizer.texts to sequences().
Next, we have performed the padding as we have different length for different re-
views. To have them all same space, we had to apply pad sequences(). It would
make the process easy and better. We have use vocab a variable which stores a
word index as it maps words to some number.

Later, in the code, we have tried to create the LSTM model and taken embed dim
and lstm out as 128 and 196 respectively. After that, the model has been defined as
a sequential model stacking multiple layers. To add the first layer, firstly embedding
is done and the length of input has been defined as X.shape[1]. Then, to make it
easier to process, we used the SpatialDropout1D() function as 0.4 where it is used
to drop the entire 1D feature maps instead of an individual element. After that, a
dropout layer is added in the code section. A dropout layer prevents the overfitting
of the model and robust the model’s performance. The layer randomly drops some
inputs. Furthermore, the dropout rate is specified while adding the layer. In this
model the rate is 0.2 and the recurrent dropout is also 0.2. In the following in of
code, Dense() is called and the mentioned parameter is activation. Here softmax
function is used as the activation potential.

In addition, before training the model, the learning process must be set up. A
compile procedure with three parameters is invoked to do it. The loss function is
the first input. The effectiveness of the algorithm in modeling the supplied dataset
is examined by this function. Categorical crossentropy is the most suitable loss
function since we utilized softmax as an activation function. An optimizer is used as
the second parameter to lower the model’s losses. The learning rate in this instance
of the Adam optimization method is 0.0001. Metrics make up the third variable.

32

This model employs an accuracy metric. This measure calculates the overall forecast
accuracy rate. The final step is to return the model.

Then, by using one hot encoding with the help of get dummies for sentiment and
we could call the train-test split method to split the dataset into two for training
and testing the reviews. In this code, we have kept the test size = 0.2 as we need
20% of the data to test and the rest to train and also the random state as 42. To
fit the model, the batch size kept as 128, epochs as 7 and verbose as 1. Epochs are
used to run the dataset again and again to achieve higher accuracy.

For the prediction, model.predict() is being used and x test and y test. With argmax
function from numpy the pred and axis=1are stored in y pred and then took the
y test and axis=1 and stored it in y test . The target name is [’1’, ’2’, ’3’, ’4’, ’5’].
Then, call the classifier report and return the y test and y test .

When we performed the class weight assignment, unique classes was taking a list
of sentiment. By taking the manual weights= 4: 5, 3: 20, 2: 25, 1: 50, 0: 10
, we assigned the weights. Then compute all the class weights. Now, we had to
fit this in history with the epochs is 7, batch size=batch size, verbose is 1. Then,
print the history. The predict method is called and applied argmax function which is
stored in y 1 and y test1. The classification report and accuracy were printed. After
oversampling, we did the same process, however, x was being tokenized. Y needed to
do one hot encoding and that was done by using get dummies from pandas. Again,
train, test split happened and then fitted the model.

Additionally, we wanted to check if we do not divide our dataset into 5 parts but
rather 3 parts such as positive, neutral and negative, then how much will change in
accuracy. That’s why, we label 1 and 2 = -1(Negative), 3 = 0(Neutral) and 4 and
5 = 1(Positive). This changed dataset would go through all the same processes as
the previous dataset was done. Finally, the accuracy score has been increased and
it is 78% now(for the Spotify reviews dataset). Then after adding class weight, and
after oversampling were performed.

4.6 Naive Bayes Model Explanation

For conducting preprocessing operations like changing all words to lowercase and
deleting special characters, unnecessary rows and columns. Then, CountVectorizer
implies breaking down a phrase or any text into words. Textual data has to be
vectorized since NLP algorithms only take numerical data and cannot interpret
language.

Then, we stored the review in a variable x and the sentiment of the dataset was
stored in another variable called y. Now, with the help of the train test split()
function, we split the whole dataset into two and the parameters are such as x, y,
random state is 42, test size is 0.20. The test size is 20% in this code means that
20% of this dataset is for testing and the rest of the 80% reviews of the dataset is
for training.

33

Moreover, for getting accuracy we applyed MultinomialNB() classifier. When ana-
lyzing categorical text data, one of the most well-liked supervised learning classifiers
is Multinomial Naive Bayes. Using the Bayes principle, it makes an educated pre-
diction about a text’s tag, like ”story.” It determines the likelihood of each tag for a
certain sample and produces the tag with the highest likelihood. While fit function
is scaling all the training data, the x test is transformed into vectorizer and stored in
cv test transformed. The predict function is working with the cv test transformed
in it and stored it in y pred. By applying accuracy score and classification report
functions, we got an accuracy and that is 62%

Complement Naive Bayes is used when there is an imbalanced dataset and when
Naive Bayes can not do that. So, in this case, we used it. At first, importing Com-
plementNB from sklearn library and also import class weight. Then, class weight=
’balanced’, classes=np.unique(y train), y = y train were the parameters of class
weight.compute class weight. Then, we fit the necessary parameters by weighted
model.fit. With the help of predict function, we took cv test transformed. With
accuracy score, we got the accuracy. After applying oversampling, the value counts
of y train are now transferred in each count class of five labels. Then, we applied the
Concat function on the x train, y train, and also kept the axis as 1. Then the five
sentiments of the training part were moved to the five different classes. Now, in the
sampling process where we took the class 5 and replaced it with the classes from 1 to
4 for oversampling. Again, by using the Concat function all the oversampled classes
and class 5 and axis as 0. Now, we assigned the oversampled train dataset into
the new X train and Y train accordingly and X test = x test and Y test = y test
. After fitting the training part and then transformed in cv train transformed1. In
the following line, the training dataset got fitted in the classifier and also predicted
the cv test transformed1. Lastly, the accuracy was called to get the performance
result and now the model is predicting each sentiment more accurately.

If we label the ratings of sentiment 1 and 2 as 1, 3 as 2 and 4 and 5 as 3, that means
we now we divided our dataset into positive, neutral and negative sentiment. As we
apply the MultinomialNB() classifier, it gives the accuracy of 78% for sentiment label
3. However, class weight performed well. After oversampling all three sentiments
prediction performed well.

4.7 BERT Model Explanation

Firstly, we used AutoTokenizer from pre-trained bert model (nlptown/bert-base-
multilingual-uncased-sentiment) and download them. Then, we load the dataset
by using pandas. We also performed the cleaning and pre-processing the dataset.
We use the encode plus() method and in it we got the following parameters and
their values: review, add special tokens = True, truncation = True, padding =
”max length”, return attention mask = True, return tensors=’pt’.

Then, we take reviews as reviews and count as 0. Now, running a for loop where
count=count+1 and drop the unnecessary columns from from dataset and also used
lower case.So, for the prediction part, num=0 and in another for loop reviews are

34

rows and it has global num in it. Again, with the help of encode plus () method, we
have rows, add special tokens = True, truncation = True, padding = ”max length”,
return attention mask = True, return tensors=’pt’. Now num=num+1. With the
appended function we predict the (int (torch.argmax (result.logits)) + 1). At
last print the num. Review will be stored in sentiment score.

We need to import accuracy score, confusion matrix, classification report from the
sklearn library. When we code for classification report and accuracy model it gives
accuracy of 60% for Spotify dataset.

For sentiment simplification into three categories (positive, negative, neutral) from
five, we get the accuracy of 77% which is significantly higher than before.

35

Chapter 5

Result and Analysis

Google Collab has been used to run all the algorithms. In this research, we have
shown the accuracy rate of all the models where the precision, recall and f1-score
are also there.

The two datasets used for analysis were imbalanced in terms of the chunks of each
sentiment classes, i.e., total numbers of reviews that fall under a single sentiment
score class. For Coursera’s Course Review dataset, we see that out of 10000 samples
the total number of samples of reviews with score 5 are 7141, score 4 are 1777, score
3 are 495, 2 are 260 and 1 are 328. From this we understand that a huge number
of samples fall under sentiment class 5 followed by 4 so most reviews are positive
or somewhat-positive, whereas the 3, 2, 1 sentiment which are neutral, somewhat-
negative and negative are very little in sample. In the same way for Spotify App
Review dataset, we find 4181 samples for 5, 1352 for 4, 1021 for 3, 920 for 2 and 2526
for 1 so we see class 5 holds the highest number of samples here as well and class 1
comes in second while sample 2 is lowest in number so this dataset also carries some
imbalance for neutral and mid pole classes (4, 2) however, it is much more leveled
in comparison to the one for Coursera. Coursera has too few samples for any of the
algorithms to be familiarized with reviews that are not positive or along its poles. In
such imbalanced circumstances observed for both datasets, the algorithms/ models
used are more likely to be predominantly biased towards positive reviews than the
rest; for Spotify they are able to predict the negative reviews too for it being the
second highest sample but cannot perform much for the other three classes. As a
result of this we get skewed accuracy, especially in terms of precision, recall and f1
score if we run the data without any sort of bias handling. We also observe the
same for 3 labels, Sentiment 1: 470, Sentiment 2: 401, Sentiment 3: 7129 samples
for Coursera and sentiment 1: 2777 samples, sentiment 2: 829 samples, sentiment 3:
4394 samples for Spotify dataset respectively. So, classes 1 and 2 sample size being
overwhelmingly lower than class 3 for Coursera and Class 2 having lowest sample
but class 1 and 3 having more balanced distribution for Spotify. As a result, this
also skews our prediction rate for 3 labels before bias handling is done.

We have used a technique known as Oversampling or Up-sampling to address the
imbalance that exists in our datasets. Here we increase the sample size of the other

36

classes to the sample size of the class with the highest sample, the majority class. In
both our datasets, sentiment class of positive, 5, for 5-label-categorization or 3, for
3-label-categorization, contains the highest number of samples of all other classes.
Therefore, the rest of the classes are each resampled to the sample size of class posi-
tive, 5 or 3 depending on the number of label category, and then the algorithms are
trained with the resampled data where each class contain equal number of samples
now. Such gives an equal ground to all the sentiment target classes in our data for
better and more precise evaluation from the implemented models.

Additionally, there is the natural phenomena of most ML algorithms being able to
predict binary data of positive and negative better than neutral and mid pole ones
as these are tricky to predict for being abstract in nature. This is why we have
first run our models with imbalanced data and then then applied biased handling
techniques to our data and run them again for both 5 and 3 label categorizations.
The results are compared below for both just accuracy score and then a detailed
analysis of the classification report we get for each evaluation.

From the above tables we can see the accuracy scores, classification metrices of the
models for two distinct division of labels: 5 label and 3 label classification before
and after imbalance handling. Let us look at the scores for each of them.

For 5 label sentiment classes:

Models
Original value without any sort

of imbalance addressing
(5 labels)

After imbalanced dataset addressing
through Oversampling/ Up-sampling

(5 labels)
Coursera’s Course

Review
Spotify App

Review
Coursera’s Course

Review
Spotify App

Review
TF-IDF

(Logistic Regression)
74.11% 61.25% 63.31% 52.35%

BoW
(Logistic Regression)

73.36% 58.5% 65.36% 52.75%

Naive Bayes
(Multinomial-NB)

74.81% 61.9% 67.52% 52.95%

LSTM 74.76% 62.7% 81.30% 61.15%
BERT

(base-uncased-
multilingual-sentiment)

68.24% 60.21%

Table 5.1: Accuracy Table for Sentiment 1-5

Accuracy score analysis: For 5 labels, we can see that the accuracy before im-
balanced/ bias handling is higher than the accuracy that came after balancing the
data by oversampling the training samples to the size of the highest chunk amongst
the classes, i.e., of class 5(positive). This happens because accuracy score is the
simplest metric for scoring performance and works best incase of equal distribution
of data, however, accuracy score proves to be highly unreliable when it comes to
imbalanced datasets because it only considers the number of correct predictions as
opposed to number of total predictions. What happens in case of imbalanced dataset
such as ours is that if the models fail to or does not attempt to make predictions
for minority classes and makes very accurate prediction for the majority class then

37

accuracy will give a high score as majority of the predictions made were correct and
it does not have a penalty for bias handling and ignores failure for minority classes.
The f1 score metric is the one to be relied upon for imbalanced datasets as it has
a weight metric that effectively calculates for both majority and minority class by
considering true positives against false positives and false negatives. Despite the
high accuracy scores before bias handling, the f1 scores are very low for the lower
sampled class for our models and this indicates a failure in performance. For Cours-
era, the most imbalanced dataset, we observe higher accuracy scores than Spotify
but f1 scores of 0s for Tf-idf and Näıve bayes for class 2; where Spotify managed to
make some predictions, whether correct or not, under the same instances. This low-
ers the accuracy score for Spotify but the f1 score increases and it indicates clearly
that Spotify performed better for having comparatively more data in the chunks for
the classes. In case of oversampling the data for equal distribution, we see lesser
accuracy score but improved precision, recall and f1 scores for minority class which
indicates more attempts at predicting those classes and better performance as the
f1 scores increases by some amount. Before Oversampling, state-of-the-art models
LSTM and pretrained BERT (base-multilingual-uncased) performed best despite
lower accuracy scores than TF-IDF, BOG and Näıve Bayes as they have higher f1
scores for neutral class (3) and mid polar class (2, 4), such is expected as these are
complex context-understanding models and will perform better than simple word-
vectorizing algorithms and prediction based näıve bayes despite great imbalance in
the class samples. After Oversampling, LSTM still performs the best against the
other three.

38

Models
Original value without any sort of imbalance addressing

(5 labels)
After imbalanced dataset addressing through

Oversampling/ Up-sampling (5 labels)
Coursera’s Course

Review
Spotify App

Review
Coursera’s Course

Review
Spotify App

Review
TF-IDF
(Logistic

Regression)

Senti-
ment

Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score

1 0.43 0.09 0.15 0.56 0.82 0.67 0.35 0.45 0.39 0.60 0.52 0.56
2 0.00 0.00 0.00 0.28 0.06 0.10 0.15 0.17 0.16 0.18 0.27 0.22
3 0.75 0.06 0.11 0.23 0.07 0.11 0.17 0.27 0.21 0.18 0.24 0.21
4 0.47 0.24 0.31 0.35 0.17 0.23 0.29 0.38 0.33 0.25 0.26 0.26
5 0.77 0.97 0.86 0.72 0.89 0.79 0.86 0.75 0.80 0.83 0.74 0.78

BoW

(Logistic
Regression)

1 0.53 0.30 0.38 0.59 0.68 0.63 0.38 0.42 0.40 0.59 0.50 0.54

2 0.14 0.06 0.08 0.20 0.14 0.16 0.15 0.19 0.17 0.13 0.17 0.15
3 0.26 0.18 0.22 0.19 0.12 0.15 0.17 0.24 0.20 0.18 0.22 0.20
4 0.41 0.23 0.30 0.30 0.18 0.23 0.31 0.35 0.33 0.28 0.28 0.28
5 0.80 0.94 0.87 0.73 0.87 0.79 0.85 0.79 0.82 0.80 0.78 0.79

Naive
Bayes

(Multinomial-
NB)

1 0.75 0.05 0.09 0.52 0.87 0.65 0.31 0.36 0.34 0.61 0.50 0.55

2 0.00 0.00 0.00 0.23 0.03 0.06 0.14 0.19 0.16 0.18 0.33 0.24
3 0.18 0.02 0.04 0.15 0.03 0.05 0.19 0.35 0.25 0.19 0.23 0.21
4 0.42 0.29 0.34 0.46 0.26 0.33 0.37 0.41 0.39 0.29 0.34 0.32
5 0.80 0.97 0.88 0.77 0.86 0.81 0.89 0.80 0.84 0.87 0.73 0.79

LSTM 1 0.45 0.44 0.45 0.58 0.82 0.68 0.82 0.75 0.78 0.71 0.59 0.65
2 0.38 0.06 0.10 0.18 0.06 0.09 0.69 0.66 0.67 0.25 0.40 0.31
3 0.27 0.20 0.23 0.30 0.25 0.27 0.50 0.64 0.56 0.27 0.36 0.31
4 0.45 0.26 0.33 0.44 0.28 0.34 0.55 0.52 0.54 0.41 0.46 0.43
5 0.82 0.94 0.88 0.80 0.84 0.82 0.90 0.90 0.90 0.89 0.77 0.82

BERT

(base-
uncased-

multilingual-
sentiment)

1 0.60 0.39 0.47 0.62 0.73 0.67

2 0.24 0.49 0.32 0.26 0.33 0.29
3 0.31 0.42 0.36 0.26 0.30 0.28
4 0.33 0.47 0.39 0.38 0.34 0.36
5 0.90 0.78 0.83 0.88 0.75 0.81

Table 5.2: Precision, Recall and F1-Score (1-5) of Models

Classification report analysis: For 5 label classification: For Coursera course
review dataset, the sentiment classes of 1-4 for precision, recall and f1-score are all
low when the model is Tf-Idf (LR). For class 2, all the three metrices are 0% which
means the algorithm could not predict it at all. Class 1 and 3 gives f1 score of 15
and 11% where for class 4 it is 31% as the sample for this class higher after class 5.
However, for sentiment rating 5 (positive) having the highest sample, the Tf-Idf-LR
algorithm has done well with the precision, recall and f1-score of 0.77, 0.97 and
0.86 which is drastically higher. After Oversampling for equalizing samples, we see
some increase in f1 scores of the classes with low scores but they are still less than
40%. For Spotify dataset, it gives the highest score for class 5, 79% and class 1,
67% as the positive and negative samples were more balanced and low scores for
class 2-4 with low samples. After Oversampling we see improvements in the scores
for 2-4 but still below 30% and the scores of classes 1 and 5 have decreased by
a tiny bit but the precision increased and recall decreased which means better at
identifying false positives but became worse at identifying false negatives for these
two classes. For Coursera, Bag-of-Words (LR) behaves similarly to Tf-Idf as both of
these algorithms predict sentiment through word vectorization which makes them
of similar nature. Among these two algorithms BOW-LR performs better than tf-
idf-LR as the f1 scores are overall better for BOW. The precision, recall and f1
scores improves after oversampling. In addition, for Naive Bayes in Coursera, using

39

the MultinomialNB classifier, the results for sentiment classes from 1-3 are very
low where all of them are below 10% although for class 1 we see precision of 75%
which means it does not predict many False Positives, the recall is only 5% meaning
it predicts many false negatives and the recall values for these three are extremely
low. Class 4 managed a f1 score of 30% with 41% precision and 23% recall. However,
for sentiment 5 the precision, recall and f1-score are fairly impressive all above 80%.
After oversampling, we see an improvement in the recall and f1 scores for classes
1-4 where they reached 19-41% from the prior 0-29% in recall and 16-39% from the
prior 0-34% f1 scores. For Spotify, we see high f1 scores for class 1 and 5 where
5 being the highest 81%. Low f1 scores for 2-4 below 34%. After Oversampling,
we see 1-5% decrease in the f1 scores for 1, 4 and 5 but increase for classes 2,3
of almost 16-19% for recall and f1 scores. Furthermore, for LSTM for Coursera,
sentiment 5 has the highest score as usual, 82% precision, 94% recall and 88% f1
score while after oversampling all the scores become 90%. Class 4 performs the
second best with 44-45% precision, recall and f1 score which is subpar. From classes
1-3 all the three matrices hold low scores with f1 scores, less than 34%; the model
performed poorly for these three classes. After Oversampling we observe a drastic
improvement for the f1 scores of all classes where all are above 53% and reaches up
to 90%. Class 1, 2 and 3 has 78, 67 and 56% f1 scores now from previously seen 45,
10, 23%. For Spotify class 1 and 5 as always have given high scores for having higher
sample rate; class 2-4 low scores with low precision and recall. After oversampling all
the three classification metrices improves for these classes but we see the precision
being lower than the recall here. Class 1 and 5 have high precision than recall
after oversampling. Finally, for BERT we observe similar behavior as LSTM for
both datasets. Class 5 having the highest score 83% followed by 1, 47% which is
close to 50% but still substandard. Classes 2-4 have scores from 32-39% with lower
precision (24-33%) and higher recall (42-49%) values which means they performed
better with False negative detection than False positive. Among LSTM and BERT
if we compare the f1 scores, we see that BERT does a better job at predicting the
neutral and grey area classes 2, 3, 4 and also gives close values for class 1 and 5 before
imbalance handling. After imbalance handling, LSTM gives overwhelmingly better
performance over the pretrained BERT model used. For Sentiment 1 and 5 precision
is higher than recall which means the model can predict a sentiment rating being
of a particular class more precisely than it not being of that class. We observe an
interesting pattern here which is that all five of the models do very well for sentiment
score 5 (positive) metric but poorly for the negative metric (1); for neutral metric
(3) and the ‘gray areas’ between the poles, the models almost cannot identify them
at all. This is because the models are developing a heavy bias towards sentiment
5 due to the asymmetry in positive versus all other sentiment metrics ratio in the
Coursera dataset. Coursera dataset is such that it is filed with positive reviews (5)
and has very little negative, neutral of somewhat positive-negative review so the
ratio is screwed and the models can only identify 5 as they have not seen other
metrics much while training so that is why our algorithms could not perform well
for other sentiment classes besides positive (5). For the Spotify App Review dataset,
for sentiment 2, 3, 4 the precision, recall and f1- score are usually observed to be
very low compared to the scores of sentiment classes 1 and 5. Sentiment class 5 has
the highest scores for all the algorithms used. Sentiment class 1 gives better result
than 2,3,4 by far and usually stays at a range closely above or below 50%. For the

40

Spotify dataset we no longer observe the overwhelming positive bias that we did for
the Coursera dataset because for the Spotify dataset the ratio between positive and
negative reviews are not as asymmetrical as the former one. They are in fact more
balanced and the neutral and ‘gray area’ sentiment metrics are also present here in
fair amount so the precision, recall, f1 scores are not giving values as absurd as it
did for Coursera although we cannot term it as completely bias free since positive
reviews are still more in amount for both datasets.

For 3 label sentiment classes:

Models
Original value without any sort

of imbalance addressing (3 labels)
After imbalanced dataset addressing
through Oversampling (3 labels)

Coursera’s Course
Review

Spotify App
Review

Coursera’s Course
Review

Spotify App
Review

TF-IDF
(Logistic Regression)

91% 78.25% 87% 72.75%

BoW
(Logistic Regression)

90.06% 77% 86.50% 72.55%

Naive Bayes
(Multinomial-NB)

90.25% 78.2% 85.10% 72.2%

LSTM 89% 78.3% 96.45% 75.5%
BERT

(base-uncase-
multilingual-sentiment)

91.2% 77%

Table 5.3: Accuracy Table for Sentiment 1-3

Accuracy score analysis: For 3 labels, we can see TF-IDF-LR gives 91% accu-
racy score which is higher than BOW-LR, Multinomial-Näıve Bayes and LSTM and
neck-to-neck with the pretrained BERT scoring 91.2% for Coursera Dataset. Fur-
thermore, for Spotify scores 78.25%, which is again higher than BOW, Näıve Bayes
and BERT and 0.5% less than LSTM with the accuracy of 78.3%. It is interesting to
see a simple algorithm like TF-IDF-LR gain on advanced state-of-the-art language
models like BERT and improved neural network model like LSTM but we should
also remember that accuracy score, no matter how high the score may be is a poor
judge of performance when it comes to imbalanced datasets along with the fact that
both of the datasets used for this research were more or less imbalanced so such
unusual accuracy can be explain through closely analyzing the precision, recall and
f1 scores for 3 labels. We can also see that after imbalanced handling the accuracy
score went down a few notches for our models and this indicates how the algorithms
really behaves when the class samples in the datasets are balanced. LSTM scores
the best after bias-addressing our datasets and overall, judging the three signifi-
cant classification report metrices, both BERT and LSTM performs better than
the three primitive models (TF-IDF-LR, BOW-LR, Multinomial-Näıve Bayes) seen
previously.

41

Models
Original value without any sort of imbalance addressing

(3 labels)
After imbalanced dataset addressing through

Oversampling/ Up-sampling (3 labels)
Coursera’s Course

Review
Spotify App

Review
Coursera’s Course

Review
Spotify App

Review
TF-IDF
(Logistic

Regression)

Senti-
ment

Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score

1 0.86 0.27 0.41 0.72 0.83 0.77 0.51 0.66 0.57 0.75 0.67 0.71
2 0.33 0.03 0.06 0.25 0.02 0.04 0.15 0.22 0.18 0.22 0.39 0.28
3 0.91 1.00 0.95 0.83 0.90 0.86 0.96 0.91 0.94 0.89 0.82 0.85

BoW
(Logistic

Regression)
1 0.69 0.50 0.58 0.74 0.77 0.76 0.48 0.60 0.53 0.74 0.68 0.71

2 0.21 0.10 0.14 0.23 0.11 0.15 0.14 0.18 0.16 0.21 0.31 0.25
3 0.93 0.98 0.96 0.83 0.89 0.86 0.95 0.92 0.94 0.86 0.83 0.84

Naive
Bayes

(Multinomial-NB)
1 0.66 0.26 0.38 0.69 0.86 0.77 0.48 0.71 0.58 0.75 0.70 0.72

2 0.50 0.01 0.02 0.25 0.02 0.04 0.19 0.38 0.26 0.22 0.42 0.29
3 0.91 0.99 0.95 0.86 0.87 0.87 0.97 0.89 0.93 0.91 0.79 0.85

LSTM 1 0.53 0.36 0.43 0.73 0.82 0.77 0.92 0.81 0.86 0.78 0.76 0.77
2 0.17 0.13 0.15 0.30 0.09 0.14 0.79 0.65 0.71 0.24 0.46 0.32
3 0.93 0.97 0.95 0.85 0.89 0.87 0.97 0.99 0.98 0.93 0.80 0.86

BERT
(base-

uncased-
multilingual-
sentiment)

1 0.58 0.71 0.64 0.71 0.86 0.78

2 0.31 0.42 0.36 0.26 0.30 0.28
3 0.98 0.95 0.96 0.93 0.80 0.86

Table 5.4: Precision, Recall and F1-Score (1-3) of Models

Classification report analysis: For 3 label classification of Coursera course
review dataset, the sentiment class 2 for precision, recall and f1-score are all low
33%, 3%, 6% respectively, when the model is Tf-Idf (LR). For class 1, the f1 score is
41% with high precision and a low recall rate of 26%. Class 3 gives f1 score of 95%,
the highest of the three with precision of 91% and 100% recall which means it does
not predict any false negatives. After oversampling Class 2 f1score increases to 28%
with increase in precision and recall rates; class 1 increases to 71% f1 score. For
Spotify App Review dataset, it gives the high scores for class 1 and 5, 77 and 86%
but class 2 lies at the lowest f1 score 4% which is disappointing. After oversampling,
class 2 score increases, class 1 scores decreases and class 3 reaches a whopping 94%.
For Coursera, Bag-of-Words (LR) perform better Tf-Idf in accordance to their f1
and recall scores. Class 2 is still below 15% while class 1 and 5 are above 55% and
95%. The precision, recall and f1 scores does not improve much after oversampling
but only by 4 or 5%. Moreover, For Spotify, the algorithm gives similar results
before and after imbalance handling although the scores for Spotify in classes 1 and
2 are better than that of Coursera. In addition, for Naive Bayes (MultinomialNB)
behaves the same way as TF-IDF-LR and BOW-LR for the three classes prediction.
For class 1, 2 and 3 - 38%, 2% and 95% f1 scores respectively. For Coursera it gives
higher precision, recall than BOW in class 1 while lower for the same metrics under
Spotify. After Oversampling, however, the changes are higher than that of BOW
after oversampling for both datasets. The f1 score for class 2 increases to 26% and
29% respectively. Furthermore, for LSTM for Coursera, sentiment 3 has the highest
score as usual, 93% precision, 97% recall and 95% f1 score while after oversampling
all the scores reach up to 98%. Class 1 performs close to 45% which is less than 50%
so it can be considered subpar. The model performed poorly for the neutral class
(2) - 15%. After Oversampling we observe a drastic improvement for the f1 scores of
all classes where all are above 60% and reaches up to 99% in recall with impressive
f1 scores – 86% 71%, 98%. For Spotify, Class 1, 3 perform above 75% which is

42

satisfactory but class 2 score is only 14% which is very low and it improved after
oversampling by 20% at least, while f1 score stays the same for class 1 and deceases
by 1 % for 3. Finally, for BERT class 1 haves the highest score for Coursera which
is 64% and 2, 3 gives low f1 score of 36% each. The recall values are higher for class
1 and 2 than precision and for class 3 precision is higher than recall. For Spotify
class 1 and 3 are showing high performance; class 5 has the highest score amongst
the three and class 2 as usual gives lower performance. The recall value is higher
than precision for this class so the model did a little bit better at not predicting false
negatives than false positives for 2 sentiment score. Amongst the five models LSTM
and BERT gives the best performances overall at predicting the neutral class 2, along
with the positive (3) and negative class (1) before imbalance handling. Comparing f1
scores of LSTM and BERT, BERT is better. After imbalance handling, LSTM does
better than BERT especially for Coursera dataset and for Spotify predicts neutral
class at a higher rate comparatively.

We see that all the models perform significantly higher for the simplified 3 label clas-
sification of positive, negative and neutral than the previously 5 label classification
of positive, somewhat positive, neutral, somewhat negative and negative. This is
because reviews under the labels ‘somewhat positive’ and ‘somewhat negative’ can
greatly confuse the algorithm as such concepts are abstract and subjective and the
models and arrange data into positive and negative but get confused where to put
reviews that are not entirely positive or negative, especially with the presence of
‘neutral’ label there. So, basically most algorithms, no matter how complex, cannot
fully grasp the concept of ‘gray areas’ between the two poles/ extremes and do not
seem to understand neutral data either, therefore they mis-predict such data.

Imbalance Handling in Dataset:

The datasets we used for our research has asymmetric number of samples for each
class especially where there is a big different in the distribution of the classes and
this causes our ML models to develop a bias towards the class with the highest
number of samples and this bias works against other classes with lesser number of
samples respectively. As a result, our accuracy score becomes skewed and unreliable
as the ML algorithms develop the tendency to predict the dominant classes while
ignoring the minority class. Such events run the risk of algorithms entering an ac-
curacy paradox which is such a state where the accuracy score gives a high accuracy
giving the impression of high performance but in actuality the model just predicts
the class with the most information available, i.e., the most data available in the
training set and is the easiest to predict and predicts those classes predominantly
to acquire the highest accuracy score. The two datasets we used for this research,
the Coursera Course Review Dataset in particular is one such that there is a huge
difference among the distribution of the most frequent classes such as the positive
class (5) and the least frequent classes such as class 2 (somewhat-negative). The
Spotify App Review dataset also carries such imbalances but in Spotify classes 5 and
1 have lesser difference among their sample size compared to Coursera but the rest
of the classes prove to have bigger differences in their sample sizes being compared
to the majority class. Simple algorithms such as TF-IDF, BOW, Logistic Regression
and Näıve Bayes do not have reliable mechanisms in them internally to be able to
handle the problems that arises with imbalanced data chucks. Since we are observ-

43

ing the behavior of the five types of models we used on certain text classification
problems in sentiment analysis, a skewed, unreliable and incorrect prediction rate is
of little value. Therefore, we have decided to address this imbalance with the help
of two techniques: 1. Class-weight computation and 2. Randomly oversampling/
Up-sampling the samples belonging to the minority classes to the sample size of the
majority class. In Class weight computation, we assign certain weight to the classes
present in our dataset such that different weights are assignment for the majority
and minority classes. The difference in weights will influence the classification of the
classes during the training phase. The whole purpose is to penalize the misclassifi-
cation made by the minority class by setting a higher class weight and at the same
time reducing weight for the majority class. We imported the class weight from the
‘sklearn.utils’ library and used the ‘compute class weight’ method which automati-
cally sets the class weights for the classes present in accordance to their sample size
such that the most frequent and easy to predict class gets the least precedence over
the class with the lowest samples and hardest to predict. Misclassification of the
classes is penalized in accordance to the weights set. In random Oversampling we
increase the sizes of the minority classes each to that of the majority class or the
most frequent class in the dataset by randomly resampling them to the size of the
most frequent class in the training data. This gives us an equal distribution of all
the classes present in the dataset to work with during train then we test the ML
algorithm with some testing data to evaluate the changes in precision, recall and f1
scores. Below is given two tables comparing the accuracy score and classification
metrics of these two data-balancing techniques used on four of our models, TF-IDF-
LR, BOW-LR, Multinomial Näıve Bayes and LSTM to observe the improvements
in prediction rate.

Models Class-Weight(5 labels)
Random Oversampling
/ Up-sampling (5 labels)

Class-Weight (3 labels)
Random Oversampling/
Up-sampling (3 labels)

Coursera’s
Course
Review

Spotify App
Review

Coursera’s
Course
Review

Spotify App
Review

Coursera’s
Course
Review

Spotify App
Review

Coursera’s
Course
Review

Spotify App
Review

TF-IDF
(LR)

64.96.11% 51.15% 63.31% 52.35% 86.30% 69.3% 87% 72.75%

BOW
(LR)

65.36% 50.5% 65.36% 52.75% 85.95% 68.7% 86.50% 72.55%

Naive Bayes
(Multinomial-NB/
complement-NB)

74.81% 61.9% 67.52% 52.95% 90.04% 78.05% 85.10% 72.2%

LSTM 74.76% 62.7% 81.30% 61.15% 86% 73.7% 96.45% 75.5%

Table 5.5: Accuracy Table for Class Weight and Oversampling of Models

Accuracy analysis: From the above tables we can see that the accuracy of these
two techniques go neck-to-neck which means that both class-weight and Random
oversampling give close results for the two datasets. For Coursera dataset, we can
see that TF-IDF-LR generates higher accuracy score for 5 labels with class weights
than using random oversampling technique which is 1.6% higher. However Random
oversampling gives 0.7% higher score than class-weights for 3 label classification.
BOW-LR gives the same results for both for 5 label classification. For 3 labels,
oversampling performs better. For Näıve bayes class-weights give better accuracy
for both 5 label and 3 label sentiment classification with almost 5-7% gain over ran-
dom oversampling. For LSTM Random oversampling gives better results than class
weights by a drastic 7-10% increase in comparison. For Spotify dataset, TF-IDF-LR

44

gives better score for oversampling than being weighted by balanced class weights in
both cases of labels. BOW-LR also gives better results for oversampling than class-
weights by 2-4%. For Complement-Näıve Bayes, a variation of Multinomial Näıve
bayes specifically designed to handle class/ sample weights, we see higher value of
class weights than oversampling for both labels. For LSTM for 5 labels oversampling
gives better accuracy while for 3 labels oversampling gives better results.

Models Class-weight Computation (5 labels) Random Oversampling/ Up-sampling (5 labels)
Coursera’s Course

Review
Spotify App

Review
Coursera’s Course

Review
Spotify App

Review
TF-IDF
(Logistic

Regression)

Senti-
ment

Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score

1 0.40 0.21 0.28 0.54 0.59 0.56 0.35 0.45 0.39 0.60 0.52 0.56
2 0.16 0.12 0.13 0.15 0.20 0.17 0.15 0.17 0.16 0.18 0.27 0.22
3 0.20 0.23 0.20 0.18 0.21 0.19 0.17 0.27 0.21 0.18 0.24 0.21
4 0.29 0.41 0.32 0.26 0.29 0.27 0.29 0.38 0.33 0.25 0.26 0.26
5 0.84 0.78 0.81 0.85 0.68 0.76 0.86 0.75 0.80 0.83 0.74 0.78

BOG

(Logistic
Regression)

1 0.41 0.29 0.34 0.54 0.59 0.56 0.38 0.42 0.40 0.59 0.50 0.54

2 0.15 0.15 0.15 0.15 0.20 0.17 0.15 0.19 0.17 0.13 0.17 0.15
3 0.19 0.23 0.21 0.18 0.21 0.19 0.17 0.24 0.20 0.18 0.22 0.20
4 0.29 0.37 0.33 0.26 0.29 0.27 0.31 0.35 0.33 0.28 0.28 0.28
5 0.85 0.79 0.82 0.85 0.68 0.76 0.85 0.79 0.82 0.80 0.78 0.79

Naive
Bayes

(Multinomial-
NB/

Complement
NB)

1 0.20 0.50 0.29 0.62 0.57 0.59 0.31 0.36 0.34 0.61 0.50 0.55

2 0.10 0.27 0.14 0.21 0.30 0.21 0.14 0.19 0.16 0.18 0.33 0.24
3 0.14 0.29 0.19 0.19 0.17 0.18 0.19 0.35 0.25 0.19 0.23 0.21
4 0.30 0.28 0.29 0.30 0.28 0.27 0.37 0.41 0.39 0.29 0.34 0.32
5 0.88 0.71 0.79 0.82 0.75 0.79 0.89 0.80 0.84 0.87 0.73 0.79

LSTM 1 0.26 0.17 0.20 0.61 0.71 0.66 0.82 0.75 0.78 0.71 0.59 0.65
2 0.19 0.50 0.28 0.21 0.24 0.23 0.69 0.66 0.67 0.25 0.40 0.31
3 0.14 0.16 0.15 0.27 0.31 0.29 0.50 0.64 0.56 0.27 0.36 0.31
4 0.29 0.28 0.29 0.37 0.38 0.37 0.55 0.52 0.54 0.41 0.46 0.43
5 0.85 0.82 0.83 0.87 0.72 0.79 0.90 0.90 0.90 0.89 0.77 0.82

Table 5.6: Precision, Recall and F1-Score (1-5) of Models for Class-weight compu-
tation and Random Oversampling

Models Class-weight Computation (3 labels) Random Oversampling/ Up-sampling (3 labels)
Coursera’s Course

Review
Spotify App

Review
Coursera’s Course

Review
Spotify App

Review
TF-IDF
(Logistic

Regression)

Senti-
ment

Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score

1 0.51 0.38 0.44 0.67 0.72 0.69 0.51 0.66 0.57 0.75 0.67 0.71
2 0.17 0.28 0.21 0.21 0.36 0.26 0.15 0.22 0.18 0.22 0.39 0.28
3 0.95 0.93 0.94 0.91 0.74 0.81 0.96 0.91 0.94 0.89 0.82 0.85

BOG
(Logistic

Regression)
1 0.47 0.37 0.42 0.67 0.68 0.67 0.48 0.60 0.53 0.74 0.68 0.71

2 0.15 0.24 0.18 0.21 0.34 0.26 0.14 0.18 0.16 0.21 0.31 0.25
3 0.95 0.93 0.94 0.87 0.76 0.81 0.95 0.92 0.94 0.86 0.83 0.84

Naive
Bayes

(Multinomial-NB
/

Complement NB)

1 0.50 0.69 0.58 0.69 0.86 0.76 0.48 0.71 0.58 0.75 0.70 0.72

2 0.23 0.09 0.13 0.24 0.03 0.05 0.19 0.38 0.26 0.22 0.42 0.29
3 0.95 0.96 0.95 0.87 0.87 0.87 0.97 0.89 0.93 0.91 0.79 0.85

LSTM 1 0.42 0.64 0.51 0.73 0.78 0.75 0.92 0.81 0.86 0.78 0.76 0.77
2 0.16 0.20 0.18 0.22 0.36 0.28 0.79 0.65 0.71 0.24 0.46 0.32
3 0.96 0.91 0.93 0.92 0.78 0.84 0.97 0.99 0.98 0.93 0.80 0.86

Table 5.7: Precision, Recall and F1-Score (1-3) of Models for Class-weight compu-
tation and Random Oversampling

45

Confusion Matrix and Heat-maps:

Here, all five models’ confusion matrices and heat maps are given below to visualize
their overall performances. On the left side, sentiment 1-5 confusion matrices and
on the other side, sentiment 1-3 confusion matrices are placed to compare. The
X axis of each graph represents the True sentiments classes in the test portion of
the datasets for each model. By iterating through the heat-map row-wise, for each
row summing the column values we will get the total number of sample distribution
of that particular class in the test set. By iterating through the heat-map column-
wise, for each column summing the row values we will get the total number of sample
distribution of that particular class in the prediction set made by our models. If
we compare both the distributions in the test set versus the prediction set, we will
understand the pattern in which models predicted the given text data and how
accurate they may be with such predictions. The colour scale from lighter to darker
represents how accurate the predictions are- darker or brighter colours represents
high accuracy, lighter or dull colours represent low accuracy. If we go diagonally
through the heat map cells, we will get the actual accuracy of the model for those
particular classes. The normalized values from 0 - 1 represents the accuracy of
predictions made.

At first, all the original sentiment confusion matrices are placed. Then, all the class
weight matrices are on the left and the oversampling confusion matrices are on the
right side. So that we can compare the performance and improvement at once.

Figure 5.1: Sentiment 1-5 for Coursera
in Tf-IDF

Figure 5.2: Sentiment 1-3
for Coursera in Tf-IDF

46

Figure 5.3: Sentiment 1-5 for Coursera
in BOW

Figure 5.4: Sentiment 1-3
for Coursera in BOW

47

Figure 5.5: Sentiment 1-5 for Coursera
in Naive Bayes

Figure 5.6: Sentiment 1-3
for Coursera in Naive Bayes

Figure 5.7: Sentiment 1-5 for Coursera
in LSTM

Figure 5.8: Sentiment 1-3
for Coursera in LSTM

48

Figure 5.9: Sentiment 1-5 for Coursera
in BERT

Figure 5.10: Sentiment 1-3
for Coursera in BERT

Figure 5.11: Sentiment 1-5 for Spotify
in Tf-IDF

Figure 5.12: Sentiment 1-3
for Spotify in Tf-IDF

49

Figure 5.13: Sentiment 1-5 for Spotify
in BOW

Figure 5.14: Sentiment 1-3
for Spotify in BOW

50

Figure 5.15: Sentiment 1-5 for Spotify
in Multinomial-Naive Bayes

Figure 5.16: Sentiment 1-3
for Spotify in Multinomial-
Naive Bayes

Figure 5.17: Sentiment 1-5 for Spotify
in LSTM

Figure 5.18: Sentiment 1-3
for Spotify in LSTM

51

Figure 5.19: Sentiment 1-5 for Spotify
in BERT

Figure 5.20: Sentiment 1-3
for Spotify in BERT

52

Figure 5.21: Sentiment 1-5 for Cours-
era in TF-IDF after Class-weighting

Figure 5.22: Sentiment 1-5
for Coursera in TF-IDF af-
ter Oversampling

53

Figure 5.23: Sentiment 1-3 for Cours-
era in TF-IDF after Class-weighting

Figure 5.24: Sentiment 1-3
for Coursera in TF-IDF af-
ter Oversampling

54

Figure 5.25: Sentiment 1-5 for Cours-
era in BOW after Class-weighting

Figure 5.26: Sentiment 1-5
for Coursera in BOW after
Oversampling

55

Figure 5.27: Sentiment 1-3 for Cours-
era in BOW after Class-weighting

Figure 5.28: Sentiment 1-3
for Coursera in BOW after
Oversampling

56

Figure 5.29: Sentiment 1-5 for Cours-
era in Multinomial-Naive Bayes after
Class-weighting

Figure 5.30: Sentiment
1-5 for Coursera in
Multinomial-Naive Bayes
after Oversampling

57

Figure 5.31: Sentiment 1-3 for Cours-
era in Multinomial-Naive Bayes after
Class-weighting

Figure 5.32: Sentiment
1-3 for Coursera in
Multinomial-Naive Bayes
after Oversampling

Figure 5.33: Sentiment 1-5 for Cours-
era in LSTM after Class weighting

Figure 5.34: Sentiment 1-5
for Coursera in LSTM after
Oversampling

58

Figure 5.35: Sentiment 1-3 for Cours-
era in LSTM after Class weighting

Figure 5.36: Sentiment 1-3
for Coursera in LSTM after
Oversampling

Figure 5.37: Sentiment 1-5 for Spotify
in TF-IDF after Class-weighting

Figure 5.38: Sentiment 1-5
for Spotify in TF-IDF after
Oversampling

59

Figure 5.39: Sentiment 1-3 for Spotify
in TF-IDF after Class-weighting

Figure 5.40: Sentiment 1-3
for Spotify in TF-IDF after
Oversampling

60

Figure 5.41: Sentiment 1-5 for Spotify
in BOW after Class-weighting

Figure 5.42: Sentiment 1-
5 for Spotify in BOW after
Oversampling

61

Figure 5.43: Sentiment 1-3 for Spotify
in BOW after Class-weighting

Figure 5.44: Sentiment 1-
3 for Spotify in BOW after
Oversampling

62

Figure 5.45: Sentiment 1-5 for Spo-
tify in Multinomial-Naive Bayes after
Class-weighting

Figure 5.46: Sentiment 1-5
for Spotify in Multinomial-
Naive Bayes after Oversam-
pling

63

Figure 5.47: Sentiment 1-3 for Spo-
tify in Multinomial-Naive Bayes after
Class-weighting

Figure 5.48: Sentiment 1-3
for Spotify in Multinomial-
Naive Bayes after Oversam-
pling

Figure 5.49: Sentiment 1-5 for Spotify
in LSTM after Class weighting

Figure 5.50: Sentiment 1-5
for Spotify in LSTM after
Oversampling

64

Figure 5.51: Sentiment 1-3 for Spotify
in LSTM after Class weighting

Figure 5.52: Sentiment 1-3
for Spotify in LSTM after
Oversampling

65

Chapter 6

Conclusion

People in the modern world spend a lot of time on social media. Here we have
many platforms to interact with people to convey our thoughts and feelings. But
sometimes by reading a text it is quite difficult to understand the feelings as we
cannot see the person’s expression. Emotions in people are sentimental states which
is connected to physiological reactions. Many real-world applications that use sen-
timent identification use a person’s emotional state as an indication to how well the
machine learning system is working. Although it may seem difficult, it is frequently
necessary to infer a person’s emotional state from an analysis of a text they have
written because textual expressions are frequently the result of the interpretation
of the meaning of concepts and the interaction of concepts stated in the text docu-
ment. In our project our work is to recognize sentiments in Text by Using Machine
Learning. Many different applications, such as speech recognition, email filtering,
computer vision, and medicine, use machine learning algorithms when it is difficult
or impossible to develop standard algorithms to do the necessary tasks. To identify
our text-based sentiments, we use Bag of Words, TF-IDF, LSTM, Naive Bayes, and
BERT. Our work was to find out the best model which will fit in our project. After
using all of the models we found the BERT Model which is alright for our project.
Though our field of work is still new and there are lots of new things to explore.
So there are still some limitations that are yet to be resolved and in future we will
work on it if we find something better then Bert. We do not want to stop our work
here. In this case we are wishing to work on Sentence-Bert (SBERT). A variation of
the pre-trained BERT network called Sentence-Bert (SBERT) creates semantically
meaningful sentence embedding that may be assessed using cosine-similarity. It does
this by using Siamese and triplet network architectures. Alternatively, SBERT is
utilized as a sentence encoder, and similarity is tested using the cosine-similarity
between both the gold labels and the sentence embedding. Lastly we want to make
our research paper more efficient and resourceful for other people. So that in future
people can use our paper for their own research. That’s how our project will be
more enriched and can be helpful for future researchers.

66

Bibliography

[1] J. Ramos et al., “Using tf-idf to determine word relevance in document queries,”
in Proceedings of the first instructional conference on machine learning, Cite-
seer, vol. 242, 2003, pp. 29–48.

[2] C. O. Alm, D. Roth, and R. Sproat, “Emotions from text: Machine learning
for text-based emotion prediction,” in Proceedings of human language tech-
nology conference and conference on empirical methods in natural language
processing, 2005, pp. 579–586.

[3] C. Boulis and M. Ostendorf, “Text classification by augmenting the bag-of-
words representation with redundancy-compensated bigrams,” in Proc. of the
International Workshop in Feature Selection in Data Mining, Citeseer, 2005,
pp. 9–16.

[4] S. N. Shivhare and S. Khethawat, “Emotion detection from text,” arXiv
preprint arXiv:1205.4944, 2012.

[5] Z. C. Lipton, J. Berkowitz, and C. Elkan, A critical review of recurrent neural
networks for sequence learning, Oct. 2015. [Online]. Available: https://arxiv.
org/abs/1506.00019.

[6] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,” Ad-
vances in neural information processing systems, vol. 30, 2017.

[7] A. Yadollahi, A. G. Shahraki, and O. R. Zaiane, “Current state of text sen-
timent analysis from opinion to emotion mining,” ACM Computing Surveys
(CSUR), vol. 50, no. 2, pp. 1–33, 2017.

[8] J. Brownlee, A gentle introduction to the bag-of-words model, Aug. 2019. [On-
line]. Available: https://machinelearningmastery.com/gentle- introduction-
bag-words-model/#:∼:text=A%5C%20bag%5C%2Dof%5C%2Dwords%5C%
20is,the%5C%20presence%5C%20of%5C%20known%5C%20words..

[9] D. Mehta, M. F. H. Siddiqui, and A. Y. Javaid, “Recognition of emotion
intensities using machine learning algorithms: A comparative study,” Sensors,
vol. 19, no. 8, p. 1897, 2019.

[10] N. Reimers and I. Gurevych, Sentence-bert: Sentence embeddings using siamese
bert-networks, Aug. 2019. [Online]. Available: https://arxiv.org/abs/1908.
10084.

[11] F. A. Acheampong, C. Wenyu, and H. Nunoo-Mensah, “Text-based emo-
tion detection: Advances, challenges, and opportunities,” Engineering Reports,
vol. 2, no. 7, e12189, 2020.

67

[12] Baeldung, Introduction to emotion detection in written text, 2020. [Online].
Available: https://www.baeldung.com/cs/ml-emotion-detection.

[13] B. I. C. Education, What is machine learning? Jul. 2020. [Online]. Available:
https://www.ibm.com/cloud/learn/machine-learning.

[14] A. F. A. Nasir, E. S. Nee, C. S. Choong, et al., “Text-based emotion prediction
system using machine learning approach,” in IOP Conference Series: Materials
Science and Engineering, IOP Publishing, vol. 769, 2020, p. 012 022.

[15] A. Chiorrini, C. Diamantini, A. Mircoli, and D. Potena, “Emotion and senti-
ment analysis of tweets using bert.,” in EDBT/ICDT Workshops, 2021.

[16] M. Krommyda, A. Rigos, K. Bouklas, and A. Amditis, “An experimental anal-
ysis of data annotation methodologies for emotion detection in short text
posted on social media,” in Informatics, Multidisciplinary Digital Publishing
Institute, vol. 8, 2021, p. 19.

[17] M. M. Mutlu and A. Özgür, “A dataset and bert-based models for targeted
sentiment analysis on turkish texts,” arXiv preprint arXiv:2205.04185, 2022.

[18] Reinforcement learning, Aug. 2022. [Online]. Available: https://www.geeksforgeeks.
org/what-is-reinforcement-learning/.

[19] Digital around the world - datareportal – global digital insights. [Online]. Avail-
able: https://datareportal.com/global-digital-overview.

[20] K. Dnyaneshwar, R. Ratnadeep, R. Ajay, and L. Troiano, “Evaluation of se-
meval 2016 restaurant and laptop reviews data for emotion and aspect classi-
fication,”

[21] Sentiment analysis guide. [Online]. Available: https : / /monkeylearn . com/
sentiment-analysis/.

[22] A. Beliba, “Challenges of emotion recognition in images and video. apriorit,”
https://datareportal.com/global-digital-overview, 1 June 2021.

68

	Declaration
	Approval
	Ethics Statement
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Research Problems
	Research Objectives

	Related Works
	Background Studies
	Natural Language Processing (NLP)
	Sentiment Analysis
	Machine Learning (ML)
	Decision Process
	Error Function
	Model Optimization Process
	Supervised Machine Learning
	Unsupervised Machine Learning
	Semi-Supervised Learning

	Bag of Words
	Step 1: Collecting Data
	Step 2: Designing Vocabulary
	Step 3: Creating Document Vectors
	Managing Vocabulary
	Scoring Words
	Word Hashing
	TF-IDF

	TF-IDF
	Logistic Regression
	Long Short-Term Memory (LSTM)
	BERT
	Pre-Training
	Fine-tuning
	Transformer
	The input and output

	Naive Bayes
	Confusion Matrix
	Precision
	Recall
	F1-Score
	Accuracy

	Methodology
	Datasets
	Data Pre-Processing
	TF-IDF Model Explanation
	Bag of Words Model Explanation
	LSTM Model Explanation
	Naive Bayes Model Explanation
	BERT Model Explanation

	Result and Analysis
	Conclusion
	Bibliography

		2022-10-19T16:52:51+0000
	1014:Client Cert

