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Abstract
Moiré artifacts is a special type of noise which is rarely considered in deep learning
based image processing tasks. But with the increasing number of digital screens like
TV, laptop, desktop screens etc. it is becoming common to take pictures of these
screens to quickly save information and a common aliasing effect in these screen cap-
ture images is moiré pattern. These kinds of artifacts in images appear when two
repetitive patterns interfere with one another. Moiré patterns degrade the quality
of photos. It affects the performance of other deep learning tasks using these images
like classification, segmentation etc. As the moiré pattern is highly variant, has im-
balanced magnitude in different channels and sophisticated frequency distribution,
they are difficult to be completely removed without affecting the main information
of the underneath image. Because of its complex nature, most state-of-the-art im-
age restoration and denoising related methods fail to remove these artifacts. In this
paper I proposed an effective wavelet based deep learning model for removing moiré
patterns which outperforms all other state of the art by large margins. My pro-
posed model recovers the details of the moiré free image using the wavelet packet
transform. The Residual Dense Module Network and Dilation Convolution Network
of our model acquires moiré information from almost all frequency ranges. One for
high frequency range and other for low frequency range.

Keywords: Moiré artifact; Deep learning; Screen capture; Wavelet; Convolution
Network; Dense Network; Denoising
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Chapter 1

Introduction

1.1 Background
Because of the widespread use of social media usage and smartphone user digital
image carries a lot of useful information. These images are taken in a variety of en-
vironments. Because of that, these widely available digital images contain a variety
of noises. One such kind of noise in an image is aliasing effect [1]. A category of the
aliasing effect is moire pattern. These are the images where a person takes shots of
a program happening on their TV as shown in figure 1.1(a) our own captured image
and (b) screen captured image from TIP2018 dataset. This kind of pattern can
happen because of frequency aliasing[1]. Artificial low-frequency moire patterns can
also appear because of undersampling. Superimposed color variation into an image
can be another reason for moire pattern. Also the intercession between the pixels of
the screen and sensor of the camera can produce these artifacts as it is seen in the
figure 1.2[22]. In general moire patterns can be seen in the photographs of fabrics,
architecture, any fine patterns as well as capturing images of a TV screens/ Monitors.

Figure 1.1: Moiré artifacts in (a) my own screen captured image and the picture (b)
is a screen captured image from TIP2018 dataset.

In figure 1.3 we can see the moiré artifacts in pattern structures in texture images.
where (a) shows moiré artifacts because of the placement of two different directional
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Figure 1.2: LCD subpixel structure (left) and camera Bayer CFA (right)

gratings over each other. Where in (b) we can see moiré artifacts on a pattern like
texture photos taken by a digital camera. As we can see there are wave-like color
structures in the textured image and if we decompose it in RGB channels we can
see the different moiré patterns with different characteristics.

Figure 1.3: (a) shows moire patterns because of the placement of two different
gratings. Illustrated from left to right, cosine grating image as i1 ,cosine grating
image as i2 , combined image i3 consist of images i1 and i2 and lastly moire pattern
separated from image i3. In (b) from left to right: a color textured image with moire
artifacts, and the red (R), green(G), blue (B) channels of the image.
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1.2 Research Problem
To reduce the moire pattern some cameras have a low pass filter or anti-aliasing fil-
ter on them, which compromises the image quality. Moreover this filter has limited
capabilities. There are some approaches like low rank and sparse matrix decom-
position[13] . But these methods are unable to remove complex moire patterns.
In some cases deep learning approaches fail if the images in datasets contain im-
ages from a variety of camera setups. The main challenge of moire pattern then
any other noise is it varies from image to image. Most of the time the direction
of moire patterns changes depending on the different locations in an image as well
as different frequencies in the same image. Because of this particular property of
moire pattern, deep convolutional neural networks based approaches fail because
for any deep convolutional neural network requires similar pairs of moire pattern
affected images. All these complex properties of moire pattern creates a difficult
challenge to remove the pattern from an image. On one such approach by Liu et.al
[22] they determined the main structure of moire patterns while capturing an im-
age of a screen. This approach may fail to remove moire artifacts from any other
type of images. All these moire patterns eventually degrade the quality of images.
It becomes hard to do other deep learning tasks using these images like classification.

1.3 Research Objective
In this paper our aim is to develop an effective and efficient method for removing
moire patterns. The research objectives are as follows:

• Build a model to remove screen captured moire effects from a wider range of
frequencies.

• Recovering structural details of noise free images using wavelet packet decom-
position.

• Removing coloured moiré artifacts.

• Recovering texture patterns from original images without losing any details.

1.4 Research contribution
In this research paper I have shown an efficient moire effect removal method called
DeepWPD. The main findings and outcomes of this paper are given below.

• My proposed DeepWPD network removes moiré patterns in both spatial and
temporal domains by finding the frequencies of moire pattern in the affected
image and eventually separating it from the original image.

• Although the focus of this research is mainly on removing moire artifacts from
screen captured images I am hopeful that it will work successfully on non
screen images too, where all the existing methods can not do. (Tested in a
small number of non screen images
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• This model first decomposes an image into 48 frequency bands or sub-bands.
Then the sub-bands go through a Residual Dense Module Network and Di-
lation Convolution Network. Because of decomposing the image into a wide
range of bands , detailed characteristics of the moire pattern can be extracted.
Which can be a basis to create more advanced models for removing similar
types of noise.

• Because of Residual Dense Module Network and Dilation Convolution Network
the model preserves both high frequency and other low frequency components.

• The proposed DeepWPD architecture shows improved performance in the
TIP2018 dataset, which is currently the biggest dataset of moire images ac-
cording to my research.

1.5 Document Outline
The structure of my paper is as follows. The demoiréing can be categorized as one
kind of image restoration in a complex case. So, in the Chapter 2 or literature review
we covered different works done in this domain like Restoration based work, Tex-
tured specific restoration and lastly we discussed some deep learning based research
works. In chapter 3 we discussed all the methodology of our proposed architecture,
starting from decomposing the input image into sub-bands using Wavelet Packet
Decomposition (WPT) following the Dilation Convolution Network(DCN) and Di-
rectional Residual Dense Network (DRDN). It is noted that the DCN and DRDN
are separate neural networks working in parallel. Lastly, I gave a detailed overview
of our DeepWPD architecture. Chapter 4 discusses my experimental set up and all
about my training-testing dataset. Quality Evaluation Matrix is another major part
of this chapter as I will compare the performance of my model with other models
based on this evaluation matrix. For comparison and discussion in chapter 5 I used
the evaluation matrix which was discussed in chapter 4 in detail. As with only some
numbers it is difficult to understand the effectiveness of our model, I also gave a
Visual Comparison by comparing the demoring result of sample images generated
using my model to other state-of-the-art like CFNet , MuiltiscaleNet, Pix2pix and
MobNet. Also, some results with my own screen capture moiré affected image are
shown. In the end Chapter 6 concludes the effectiveness of my proposed model and
how it can be improved further.
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Chapter 2

Related Work

In this chapter, we will be discussing some work done by others in the field of image
demoiring or related to demoiring.

2.1 Restoration based work
Image Demoiring can be categorized in different ways like color correction, tex-
ture removal, anti-aliasing etc. because of its complex nature. Work on removing
moiré patterns is relatively new. One of the earliest works was done using convolu-
tional neural networks for compression artifacts reduction[23][10]. They used Super-
Resolution Convolutional Neural Network reducing different compression artifacts
from an image. Some later research improved this model by increasing the network
depth[27][12][21], by using ResNet like skip connections[9] and residual learning.
Zhang et al.[25] replaced the RRCNN type connection in the memory block by a
dense connection. According to the author, the most deep CNN super resolution
model for image super-resolution (SR) can not make full use of the pyramid like
features from the low quality images because of that they have relatively-low per-
formance and their residual dense block based residual dense network gives better
performance than other state-of-the-art methods.

2.2 Textured specific image demoiréing
As discussed before, fine patterns in an image can create different kinds of moiré
artifacts. Most of the boundary detecting image decomposition methods assume
that image detail is a relatively low difference variation. So, they apply filters that
highlight features with increasing variation as following layers of detail elements.
Because of that, such methods can not differentiate between high contrast and de-
tailed features that needed to be intact. Using a local filter[5][11] is one of the best
ways to remove these types of textures. Subr et al.[5] used local maxima of the input
picture to extract the information about fluctuations. Fluctuations between local
minima and maxima defines the detailed information. This method can distinguish
between highly differing image textures and boundaries.
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2.3 Image demoireing
The dataset we used for our training is from a paper from Sun et al.[24].They pro-
posed a multiresolution fully connected convolutional neural network for removing
moiré Patterns. In the initial stage, the input image is converted to multiple feature
maps in different levels with different resolutions. The dataset they created has
130,307 pairs of images. This is currently the largest dataset with moiré pattern im-
age. So, we naturally used this dataset to train our model, which is called TIP2018.
Their model uses different kernels, slides and scale sizes for down sampling layers
and up sampling layers. In this paper the proposed deep multiresolution network
is compared to other denoising methods like RTV, SDF, IRCNN, DnCNN, VDSR,
PyramidCNN, U-Net, V-Concate. None of these methods are specially designed
for Image demoireing. In film to video transfer using telecine devices, Sidorov et
al.[14] suppresses moiré patterns using a spectral method. Sur et al. developed a
model to remove a more simple and regular type of noise called quasi-periodic noise.
Wang et al.[26] proposed a framework called MopNet which makes use of property
oriented learning for removing moiré patterns. To define the complex frequency of
moiré patterns they used multiscale feature accumulation, followed by a channel
wise target boundary predictor which exploits imbalanced magnitude among color
channels and lastly to characterize the various appearance of moiré patterns they
used a quality aware classifier. A two-step deep convolutional based neural networks
model was proposed by Liu[22] for this particular task. It has two networks, a fine
scale network and a coarse scale network. In the first step, the model takes an input
RGB image, which is then down sampled. In the next step, it uses stacked residual
blocks to remove the moiré patterns. In the last step to get the original resolution
back, a fine scale network samples the demoiréd low resolution image.
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Chapter 3

Methodology

In this chapter we will discuss each subnetwork inside our proposed DeepWPD ar-
chitecture starting from how we implement Wavelet Packet Transform to decompose
images to different su-bands following Dilation Convolution Network (DCN) and Di-
rectional Residual Dense Network(DRDN) for image demoiréing. Then we will give
an overview of our complete DeepWPD architecture.

3.1 Wavelet Packet Transform(WPT)
We are using Wavelet Packet Transform (WPT) and choosen the Haar wavelet as
the basis for the wavelet transform [7] to decompose our image into wavelet coef-
ficients. In each level of WPT each image is decomposed into four sub bands or
co-officiants which are horizontal , vertical, diagonal and detailed co-officiants. We
used 2 level decomposition for our image. So, total 16 sub-bands or co-officiants
will be produced. In figure 3.1(b) we can see an example of 2 level wavelet packet
decomposition of the Lena image using Haar basis [7]. In figure 3.1(a) and 3.1(c),
cA, cH, cV and cD represents Low frequency or Approximation Coefficients, High
frequency coefficients or Horizontal Coefficients, Vertical Coefficients and Diagonal
Coefficients respectively.

So, figure 3.2 shows what it looks like after applying the same 2 level WPT to a moiré
affected gray level image from the TIP2018 dataset . Figure 3.2 (a) shows moiré
free image or ground truth representation, (b) is the sub-bands of the same image
with moiré patterns and (c)is the difference between a and b. Using the equation of
sub-bands from [2], discrete wavelet transform (DWT) iteratively applies low-pass
filter and high p-pass filter for computing the wavelet coefficients. Here, the value
of low-pass filter is (1/2, 1/2) and the value of high-pass filter is (1/2, - 1/2). As we
can see from figure 3.2(c) moire pattern is prominent in only certain subbands like
cV1, cA3 and cV3.

Although we show only 16 sub-bands for a gray level image as our input of our
model will be RGB images the number of sub-bands after wavelet transform will be
3×16 = 48. In the wavelet domain the height and width of the image is reduced
to ¼ of the original size. 1×1 convolution is used to increase the 48 channels to 64
feature maps. So, the final dimension will be (64,64).
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Figure 3.1: Discrete Wavelet Packet Transformation (DWPT). (a) Structure of a
2 Level wavelet packet decomposition using Haar basis, (b) 2 level wavelet packet
decomposition of the Lena image using Haar basis, (c) 2–Level wavelet packet de-
composition quad tree.
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Figure 3.2: Sixteen wavelet subbands of (a) Ground truth, (b) moiré effected im-
age, (c) Difference between a and b. (d) Structure of a 2 Level wavelet packet
decomposition.
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3.2 Dilation Convolution Network(DCN)
The Dilation Convolution Network contains two elements. A 3×3 dilated convolu-
tion layer followed by a 3×3 convolution layer as shown in figure 3.3. The dilated
convolution layer overcomes the problem of losing details while pooling in convolu-
tion.

Figure 3.3: Dilation Convolution Network(DCN) architecture.

Dilated Convolutions are a type of convolution method that inserts gaps or skips
pixels while taking pixels from the image where dilation will be applied. The math-
ematical formula of dilated convolution is[15]:

Let,

F : Z2 → Rbeadiscretefunction.
Ωr = [−r, r]2 ∩ Z2

k : Ωr → R
If a discrete filter of size (2r + 1)2.

The discrete convolution operator * will be defined as:

(F ∗ k)(p) =
∑s+t=p F (s)k(t)

If l a dilation factor and ∗l will be:

(F ∗l k)(p) =
∑

s+lt=p F (s)k(t)

But fixed size of dilation rate can create gridding problems[20] as illustrated in figure
3.4 . So, the seven dilation rate for our seven consecutive DCN is 1, 2, 3, 5, 8, 13,
21. The extra 3 × 3 convolution layer after the dilated convolution layer reduces
the remaining gridding effect.

3.3 Directional Residual Dense Network (DRDN)
Directional Residual Dense Network (DRDN) as illustrated in figure 3.5 is respon-
sible for finding high frequency moire patterns. Each DRDN contains two DRDN
blocks .I used the Residual Dense Block (RDB) from “Residual Dense Network for

10



Figure 3.4: Different dilation rate to reduce gridding problems. From left to right:
In the convolution layers with kernel size 3 × 3 the blue pixels do the convolution
calculation of the center red pixel. (a) dilation rate is set to 2 for all convolutional
layers. (b) taking dilation rates 1, 2 and 3 for subsequent convolutional layers.

Image Super-Resolution” [25] paper as my DRDN blocks. The original architecture
is shown in figure 3.5.

Figure 3.5: Residual dense block (RDB) architecture[25]

The densely connected convolutional layers of RDB blocks highlight the local fea-
tures. In this design, there are direct connections from the current RDB to all the
RDB, which ultimately gives the network a contiguous memory allocation. Because
of the memory allocation technique, RDB effectively learns more features from all
the local features from different layers. All this contributes to the stability of the
training. Stochastic depth improves the training of deep residual networks because
of skip connections similar to ResNets[17] in RDB. ResNets have achieved impressive
performance by reducing the problem of vanishing gradient. ResNet uses a so-called
“identity shortcut connection” or “skip connection” that skips one or more layers.
The main goal of the residual network are:

• Identity mapping of ResNet prevents degradation of the accuracy and error
rate in the deeper layers of the neural network

11



• To match the predicted with the ground truth, it keeps learning the residuals.

Figure 3.6: Directional Residual Dense Network (DRDN) architecture.

The output of the Directional block as well as each DRDN block are multiplied,
weighted by �, and then the result is summed with the input. Then the summed
output is taken as an input for the second DRDN block. This architecture helps to
find the positions of high frequency moiré patterns.

3.4 The combined DeepWPD architecture

Figure 3.7: The proposed DeepWPD architecture.

There are 7 pairs of parallel networks. There are two networks in one pair, which
are Dilation Convolution Network (DCN) and Directional Residual Dense Net-
work(DRDN). The model takes an RGB image as an input. Wavelet Packet Trans-
form converts them into 48 sub-bands, which is discussed in detail at chapter 3.1.
These wavelet subbands extract all the information to recover the details feature for
moiré pattern free images.
After 1×1 convolution, it creates 64 feature maps from 48 channels, and it is copied
into two. One goes to DCN and another to DRDN as an input.
Dilated convolution or DCN is used to restore the information loss in detail because
of pooling feature maps and Directional Residual Dense Network or DRDN finds
the locations of high frequency moiré patterns in the image.
The final output of the 7x dual networks is a 64 channel feature map. 64 feature
maps, again converted to 48 subbands using 1×1 convolution. Finally, an Inverse
Wavelet Packet Transform(IWPT) converts the sub-bands into an output RGB im-
age.
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Chapter 4

Implementation

4.1 Data preparation
The largest benchmark right now with moiré pattern is TIP2018[24]. The benchmark
contains 130,307 pairs of images. In each pair there is one image with moiré artifact
and its corresponding noise free image or ground truth. The images used for creating
this dataset are from ImageNet ISVRC 2012[4] dataset. From 130,307 pairs of
images, 90% is used for training and 10% for testing. All the images in the TIP2018
dataset have a black border because black color is least affected by moiré artifacts.
Every image is cropped to, 256×256 from the original resolution. Each image has 3
channels corresponding to RGB.

Figure 4.1: Some images from the TIP2018 dataset.
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4.2 Experimental setup
We have fully implemented our proposed Deep learning based Wavelet Packet De-
composition using Pytorch on an NVIDIA GeForce RTX 3060 Ti 8 GB GPU. The
entire dataset is divided into train and test. I used 1,18,456 images for training and
11,851 images for testing. The entire training process took 5 days on average. We
use a batch size of 10. Initial learning rate is 0.0002. The value of is 0.2. Adam opti-
mizer[8] is used to search the minimum of the loss function value. Adam optimizer is
an efficient stochastic optimization which only requires first-order gradients, which
consumes much less memory space. Adaptive Moment Estimation or Adam deter-
mines the adaptive learning rates for all the parameters of the optimization. It is the
most used optimizer for deep learning based models because of its computational
efficiency and less memory requirement.

4.3 Loss Function
The equation of total loss function of the network is given below
L = L1 + Lp + Lw

L1 = smooth l1 loss between the image and its ground-truth in the RGB Domain
Equation of L1loss:

L1={1/2*a2for|a| <= 1, δ(a− 1/2)otherwise}

Here,
a = y − ŷ

y=true label

ŷ=predicted label

δ=hyperparameter to control the smoothness of the loss function

Lp = perceptualloss[19]

Lw = waveletloss = lMSE + ldetail

lMSE = Y1

∑3
i=1 |ĉi − ci|+ Y2

∑N
i=4 |ĉi − ci|2

ldetail =
∑N

i=4max
(
α|ci|2 − |ĉi| , 0

)

Here,
ci = ith ground truth
ĉi = ith sub band

14



4.4 Quality Evaluation Matrix
To make comparisons with other state-of-the-art models, we used the widely used
metric for image quality evaluation called PSNR and SSIM.

Peak signal to noise(PSNR)[3] measured in dB,
PSNR = 10.log10

(
MAX2

l /MSE
)

Structural similarity index measure (SSIM)[6],
SSIM(x,y) = ((2µxµy + c1) + (2σxy + c2))/((µ

2
x + µ2

y + c1)(σ
2
x + σ2

y + c2))

Here,
x = the pixel sample mean of x
y = the pixel sample mean of y
σ2
x = the variance of x

σ2
y = the variance of y

σxy = the covariance of x and y
c1 = (k1L)

2, c2 = (k2L)
2 two variables to stabilize the division with weak denomi-

nator
L = the dynamic range of the pixel-values
k1 = 0.01
k2 = 0.03

4.5 State of the art methods
We compared the result of our method against the state of the art methods related
to Moiré Photo Restoration. Most recent work in this field is MopNet [26] which
was done in 2019. Other state of the art methods are CFNet [22] , MuiltiscaleNet
[24] and Pix2pix [18] . To make the comparison reliable, I trained on the widely
used TIP2018 data set, using the settings from [24].
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Chapter 5

Comparison and discussion

5.1 Quantitative evaluation
We used PSNR and SSIM as our Evaluation Matrix which is discussed in chapter
4.3. Quantitative similarity between our DeepWPD and other state of the art meth-
ods is shown in Table 5.1.

Table 5.1: Quantitative Comparison Table

Pix2pix MuiltiscaleNet CFNet MopNet DeepWPD
PSNR
mean(dB)

25.32 26.11 25.52 26.8 27.50

PSNR gain 2.18 1.3 1.98 0.7 0
SSIM mean 0.756 0.801 0.810 0.895 0.904
SSIM gain 0.148 0.103 0.094 0.046 0

Among the state of the art image demoiring methods MopNet is most effective and
recent for removing moiré patterns. As we can see from table 5.1 our DeepWPD
model outperformed the existing state of the art MopNet by 0.7dB gain in PSNR
and 0.046 increase in SSIM value. In comparison to other methods like Pix2pix,
MuiltiscaleNet and CFNet the gain of our DeepWPD is 2.18dB, 1.3dB9, 1.98dB for
PSNR and 0.148, 0.103, 0.094 for SSIM.
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5.2 Visual result of demoiréing using DeepWPD
Figure 5.1 shows some demoiréing results using our DeepWPD model. All these
images are from test data of TIP2018 dataset.

Figure 5.1: Output result of the proposed DeepWPD demoiréing algorithm on some
camera captured screen images from TIP2018.

17



5.3 Result of colored moiré artifacts
We further experimented with texture like images separately, and it can be seen
in figure 5.2 that our DeepWPD is really effective to erase colored moiré patterns
without distorting the color or pattern of the underlying image. It is noted that
almost all the training images contain a screen captured image, and very few of
them have this colored moiré artifacts. It shows the potential of our DeepWPD
model of removing diverse moiré patterns.

Figure 5.2: Removing colored moiré artifacts from texture images using DeepWPD.

5.4 Testing demoiréing with our own captured im-
ages

I also tested our trained model with our own screen captured moiré affected images.
The image was captured with the 13 MP, f/2.0 camera of Motorola Moto G3 phone.
The monitor was a SAMSUNG LF22T350 22 inch 1920 x 1080 IPS LED Monitor.
Sample results are shown in figure 5.3.
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Figure 5.3: Restoration of screen captured moiré photos taken with Motorola Moto
G3
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Chapter 6

Conclusion and Future work

There are a very limited number of image data sets with moiré artifacts. We are
planning to build our own dataset with more scenarios. The TIP2018 dataset is
mainly of screen capture moiré affected images. Although our proposed model suc-
cessfully removes both screen capture and non-screen capture images, there is no
dataset dedicated for only non-screen capture moiré affected images. We will create
a dataset with different pattern and architecture images with high frequency pat-
tern where there is a possibility of moiré affected even if it is not screen captured.
According to our assumption, our method has the potential to Deraining and De-
raindrop any images taken on a rainy day. But more experiments are needed for
exploring this domain.

In some images we saw Moiré artifacts distorting the color, which might be an ex-
periment for our future work. Another drawback of our DeepWPD model is that it
could not clearly reduce blurriness of the input images. The author of MopNet[26]
experimented with a color distorted Moiré affected image and demoiréd it with their
trained model, which clearly failed.

I are planning to implement a directive recurrent neural network by modifying the
existing IRNN[16]. This approach may give my network the ability to detect moiré
patterns of different slopes and highlight moiré patterns in spatial distributions by
generating the attention map.

I observed that rain streaks create the same type of effect in images like moiré ar-
tifacts. According to my research, images taken on a rainy day or having any kind
of water drop can not be de-noised using traditional image denoising methods. So,
there is a potential for our model to be used in that domain also. But no particular
dataset is found. But a dataset with a rainy effect can be made in a controlled
environment. So, our model holds the potential to be used in different domains.
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