
A Hybrid Deep Learning Model and Explainable AI-based Bengali
Hate Speech Multi-label Classification and Interpretation

by

Mahmudul Hasan Shakil
21166034

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

M.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
BRAC University
September 2022

© 2022. BRAC University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

5. I would like to request the embargo of my thesis for 6M from the submission
date due to a journal publication of my research.

Student’s Full Name & Signature:

Mahmudul Hasan Shakil

21166034

i

Approval
The thesis titled “A Hybrid Deep Learning Model and Explainable AI-based Bengali
Hate Speech Multi-label Classification and Interpretation” submitted by

1. Mahmudul Hasan Shakil (21166034)

Of Summer, 2022 has been accepted as satisfactory in partial fulfillment of the
requirement for the degree of Master of Science in Computer Science and Engineering
on September 29, 2022.

Examining Committee:

External Expert Examiner:
(Member)

Dr. Ashis Talukder, Ph.D.

Associate Professor
University of Dhaka

Internal Expert Examiner:
(Member)

Dr. Md Khalilur Rhaman

Associate Professor
Department of Computer Science and Engineering

BRAC University

Internal Expert Examiner:
(Member)

Dr. Md. Ashraful Alam

Assistant Professor
Department of Computer Science and Engineering

BRAC University

ii

Supervisor:
(Member)

Md.Golam Robiul Alam, Ph.D.

Professor
Department of Computer Science and Engineering

BRAC University

Program Coordinator:
(Member)

Amitabha Chakrabarty, Ph.D.

Associate Professor
Department of Computer Science and Engineering

BRAC University

Head of Department:
(Chair)

Sadia Hamid Kazi, Ph.D.

Chairperson and Associate Professor
Department of Computer Science and Engineering

BRAC University

iii

Abstract
Data innovation has moved quickly in recent years, and various unfavorable alter-
ations have been made to the network medium. Social media platforms like Face-
book, Twitter, and Instagram are becoming more and more popular because they
allow users to express their opinions through messages, photographs, and notes. In
particular, in Bangladesh and other locations where the Bengali language is spoken.
In any case, it has regrettably turned into a space with toxic remarks, cyberbully-
ing, and unidentified hazards. Numerous studies have been conducted in this area,
but none have produced accurate results. Some effective pre-trained transformer
models have been introduced. To identify Bengali malicious and non-malicious text
at an early stage using simple Natural Language Processing (NLP). This study sug-
gests a Convolutional Neural Network with Bi-Directional Long Short-Term Memory
(CNN-BiLSTM) hybrid strategy. This model can also classify any Bengali text data
into six levels. Additionally, the transformed dataset is subjected to several conven-
tional Machine Learning methods using an estimator, and Explainable AI interprets
these techniques (XAI). In the last stage, Stacking Classifier which is superior to
any prior activity is used to ensemble all classifiers and the estimator.

Keywords: Cyberbully; Natural Language Processing; Transformer; CNN; Bi-
LSTM; Machine Learning; Explainable AI.

iv

Acknowledgement
This is the work of Mahmudul Hasan Shakil – a student of the CSE department
of BRAC University. The paper has been prepared as an attempt to consolidate
the information I have acquired during these two years of education and to create a
final thesis that discusses one of the most urgent problems currently terrorizing our
planet in an imaginative way.
All thanks to the Almighty, the creator and lord of this world, the most benevolent,
beneficent, and gracious, who gave me inspiration, strength, and ability to complete
this analysis.
I am particularly grateful to my thesis supervisor, Md. Golam Robiul Alam, Ph.D.,
for his immense assistance, encouragement, and support in completing my research.
I am also grateful to the BRAC University Faculty Staff of Computer Science and
Engineering, who have been a light of guidance for me throughout the BRAC Uni-
versity study era, particularly in educating and enhancing my knowledge.
Finally, I would like to express my heartfelt gratitude to my dear parents for their
love and care and our friends’ continued support and encouragement.

v

Table of Contents

Declaration i

Approval ii

Ethics Statement iv

Abstract iv

Dedication v

Acknowledgment v

Table of Contents vi

List of Figures ix

List of Tables xii

Nomenclature xiii

1 Introduction 1
1.1 Background Research . 1
1.2 Research Problem . 2
1.3 Research Objective . 2
1.4 Research Contributions . 3
1.5 Thesis Report Outline . 4

2 Literature Review and Related Works 5
2.1 Bengali Speech related works . 5
2.2 Hate Speech related works . 7

3 Methodology 14
3.1 Initial Architecture . 14

3.1.1 Data Preprocessing . 15
3.1.2 Word Embedding . 15
3.1.3 CNN Architecture for Classification 16
3.1.4 Applying Classifiers . 16
3.1.5 Generate Explainable AI . 16
3.1.6 Appending Classifiers . 17
3.1.7 Ensemble Model . 18

vi

3.2 Developed Architecture . 18
3.2.1 Data Preprocessing . 18
3.2.2 Word Embedding . 19
3.2.3 CNN with LSTM Architecture for Classification 19
3.2.4 Supervised Machine Learning Algorithms 20
3.2.5 Explainable AI - SHAP . 21
3.2.6 Ensemble Model . 21

3.3 Final Architecture . 21
3.4 Dataset . 22
3.5 Data Cleaning . 23

3.5.1 Stop words Removal . 23
3.5.2 Punctuation Removal . 23
3.5.3 Symbol Removal . 24

3.6 Feature Extraction . 24
3.6.1 Text Classification using CNN 24
3.6.2 Text Classification using Bi-LSTM 27

3.7 Proposed CNN-BiLSTM based Hybrid Model 28
3.7.1 Internal Architecture . 28
3.7.2 Model Compilation . 29
3.7.3 Multi-label Classification . 30

3.8 Pre-Trained Transformer Based Models 30
3.9 Data Sampling . 32
3.10 Applying Machine Learning Algorithms 32

3.10.1 XGBoost Classifier . 33
3.10.2 Random Forest Classifier . 33
3.10.3 Decision Trees Classifier . 33
3.10.4 AdaBoost Classifier . 34
3.10.5 Gradient Boosting Classifier 34
3.10.6 Extra Trees Classifier . 34
3.10.7 Light GBM Classifier . 34
3.10.8 Cat Boost Classifier . 35
3.10.9 Logistic Regression . 35

3.11 Model Explanation with XAI . 35
3.11.1 Locally Interpreted Model-agnostic Explanations 35
3.11.2 SHapley Additive exPlanations 36

3.12 Ensemble Model . 36

4 Result and Analysis 38
4.1 Dataset Visualization . 38
4.2 Model Tuning . 40
4.3 Comparison with Transformer Models 42
4.4 Applying Machine Learning Algorithms 47

4.4.1 Feature Analysis . 47
4.4.2 Explainability of ML Models 71

4.5 Ensemble Modeling . 86

vii

5 Conclusion 88
5.1 Conclusion . 88

5.1.1 Future work . 88
5.1.2 Scope and Limitations . 89

Bibliography 96

viii

List of Figures

3.1 The first phase of the workflow . 15
3.2 The second phase of the workflow . 17
3.3 The final phase of the workflow . 17
3.4 First Stage of the workflow . 18
3.5 Second Stage of the workflow . 20
3.6 Top Level Overview of the Proposed Model 22
3.7 A portion of Dataset . 23
3.8 CNN Architecture . 27
3.9 Bi-LSTM Architecture . 28
3.10 Proposed Architecture . 28
3.11 Internal Architecture . 29
3.12 Layer and Output Shape . 30
3.13 BERT Model . 31
3.14 Processed Dataset . 33

4.1 Length of Comments . 38
4.2 Frequency of Labels . 39
4.3 Frequency of both Labels . 39
4.4 Visual representation of correlation between classes 40
4.5 Bangla Word cloud . 40
4.6 Model Loss . 41
4.7 Model Accuracy . 41
4.8 Model Loss vs Epoch . 41
4.9 Model Accuracy vs Epoch . 42
4.10 Epoch vs Loss (All Models) . 47
4.11 Model vs Accuracy (All Models) . 47
4.12 Feature Importance of XGBoost . 48
4.13 Feature Importance of Random Forest 48
4.14 Feature Importance of Decision Trees 49
4.15 Feature Importance of AdaBoost . 49
4.16 Feature Importance of Gradient Boosting 49
4.17 Feature Importance of Extra Trees 50
4.18 Feature Importance of Light GBM 50
4.19 Feature Importance of Cat Boost . 50
4.20 Confusion Matrix of XGBoost . 51
4.21 Confusion Matrix of Random Forest 52
4.22 Confusion Matrix of Decision Trees 52
4.23 Confusion Matrix of AdaBoost . 53

ix

4.24 Confusion Matrix of Gradient Boosting 54
4.25 Confusion Matrix of Extra Trees . 54
4.26 Confusion Matrix of Light GBM . 55
4.27 Confusion Matrix of Cat Boost . 56
4.28 Recursive Feature Elimination of XGBoost 57
4.29 Recursive Feature Elimination of Random Forest 57
4.30 Recursive Feature Elimination of Decision Tree 58
4.31 Recursive Feature Elimination of AdaBoost 58
4.32 Recursive Feature Elimination of Gradient Boosting 59
4.33 Recursive Feature Elimination of Extra Trees 59
4.34 Recursive Feature Elimination of Light GBM 60
4.35 Cross-validation scores of XGBoost 60
4.36 Cross-validation scores of Random Forest 61
4.37 Cross-validation scores of Decision Trees 61
4.38 Cross-validation scores of AdaBoost 62
4.39 Cross-validation scores of Gradient Boosting 62
4.40 Cross-validation scores of Extra Trees 63
4.41 Cross-validation scores of Light GBM 63
4.42 Validation-curve for XGBoost . 64
4.43 Validation-curve for Random Forest 64
4.44 Validation-curve for Decision Trees 65
4.45 Validation-curve for AdaBoost . 65
4.46 Validation-curve for Gradient Boosting 66
4.47 Validation-curve for Extra Trees . 66
4.48 Validation-curve for Light GBM . 67
4.49 Learning curves for XGBoost . 67
4.50 Learning curves for Random Forest 68
4.51 Learning curves for Decision Trees 68
4.52 Learning curves for AdaBoost . 69
4.53 Learning curves for Gradient Boosting 69
4.54 Learning curves for Extra Trees . 69
4.55 Learning curves for Light GBM . 70
4.56 Learning curves for Cat Boost . 70
4.57 Machine Learning Model Comparison 71
4.58 LIME explanation of XGBoost . 71
4.59 LIME explanation of Random Forest 72
4.60 LIME explanation of Decision Trees 72
4.61 LIME explanation of AdaBoost . 72
4.62 LIME explanation of Gradient Boosting 73
4.63 LIME explanation of Extra Trees . 73
4.64 LIME explanation of Light GBM . 73
4.65 LIME explanation of Cat Boost . 74
4.66 SHAP summary plot of XGBoost . 74
4.67 SHAP summary plot of Random Forest 75
4.68 SHAP summary plot of Decision Trees 75
4.69 SHAP summary plot of Gradient Boosting 76
4.70 SHAP summary plot of Extra Trees 76
4.71 SHAP summary plot of Light GBM 77

x

4.72 SHAP summary plot of Cat Boost 77
4.73 SHAP force plot of Random Forest 77
4.74 SHAP force plot of Decision Trees . 78
4.75 SHAP force plot of Extra Trees . 78
4.76 SHAP force plot of Light GBM . 79
4.77 SHAP waterfall plot of Random Forest 79
4.78 SHAP waterfall plot of Decision Trees 80
4.79 SHAP waterfall plot of Extra Trees 80
4.80 SHAP waterfall plot of Light GBM 81
4.81 SHAP dependence plots of Random Forest 81
4.82 SHAP dependence plots of Decision Trees 82
4.83 SHAP dependence plots of Extra Trees 83
4.84 SHAP dependence plots of Light GBM 83
4.85 SHAP decision plots of Random Forest 84
4.86 SHAP decision plots of Decision Trees 84
4.87 SHAP decision plots of Extra Trees 85
4.88 SHAP decision plots of Light GBM 85
4.89 Confusion Matrix of Voting Classifier 86
4.90 Cross-validation scores of Voting Classifier 86
4.91 Classification report of Voting Classifier 87
4.92 LIME explanation of Voting Classifier 87

xi

List of Tables

4.1 Neural Space RoBERTa . 42
4.2 Neural Space BERT . 43
4.3 Bangla ELECTRA . 43
4.4 Bangla BERT base . 44
4.5 Indic BERT . 44
4.6 BERT multilingual base . 44
4.7 Neural Space DistilBERT . 45
4.8 Neural Space XLM-RoBERTa . 45
4.9 Hybrid Deep Learning . 46
4.10 Hybrid Deep Learning (Binary) . 46

xii

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

AdaBoost Adaptive Boosting

AI Artificial Intelligence

AUC Area Under Curve

BERT Bidirectional Encoder Representations from Transformers

Bi− LSTM Bi-Directional Long Short-Term Memory

CNN Convolutional Neural Network

FN False-negative

FP False positive

GBM Gradient Boosting Machine

LIME Local Interpretable Model-agnostic Explanations

LSTM Long Short-Term Memory

ML Machine Learning

NLP Natural Language Processing

ROC Receiver Operating Characteristics Curve

SHAP Shapley Additive Explanations

SVM Support Vector Machine

TFIDF Term frequency-inverse document frequency

TN True negative

TP True positive

XAI Explainable Artificial Intelligence

XGBoost Extreme Gradient Boosting

xiii

Chapter 1

Introduction

This chapter contains some key information about the topic of my thesis. I’ve
discussed my motivations for conducting this study, especially in the background
section. The names of the algorithms I’m using are included in the research subject.
In the section on the research objective, I discussed the essential components I want
to incorporate in my writing.

1.1 Background Research
Cyberbullying is a form of bullying or intimidation that uses electronic media to
target victims. Cyberbullying has become widespread among younger generations
in recent years due to the rapid expansion of the digital world. Like domestic
violence, cyberbullying against women has also increased during the COVID-19
pandemic. Bangladesh has laws and regulations to prevent this and the penalties
are very strict. However, the process is often too long or difficult. In addition, lack of
awareness of the issue and slow processes and adjudication remain major challenges.
This fact was mentioned at the ”International Fortnight to Resist Violence against
Women” round table held in Dhaka in November 2021. Technology has risen to the
status of a basic necessity in our current age. The internet has evolved into a massive
knowledge base that millions of people access and rely on every day as the pace of
technological advancement quickens. Abuse through online means of communication
has grown to be a significant global issue as a result of the enormous growth in social
connections and confidentiality in online social networks. Digitalization shifts human
interaction to online platforms, which has certain advantages but also leaves the
potential for harmful online behavior including abuse, harassment, and hate speech.
On several websites, including online gaming, YouTube, and others, harassment of
children and teenagers as well as adults is prevalent. According to the 2014 large-
scale EU youth internet report [2], 20% of 11 to 16-year-olds have access to hateful
content online. In addition, children were 12% more likely in 2014 than in 2010
to be exposed to cyberbullying, indicating that the problem is only getting worse.
Building models that define cyberbullying is crucial because one of the main issues
with online harassment studies is the lack of sufficient dataset accessibility. Several
researchers have created their repositories from social media platforms including
YouTube, Form Spring, Kaggle, Twitter, Instagram, MySpace, and ASKfm that are
susceptible to bullying content using the datasets that have been made public in
recent years [10]. The necessary measures against hate speech have been attempted

1

by social media sites, and they are still looking for ways to automate the process.
Around 1% of students reported being singled out for discrimination based on their
sexual orientation, gender, or race [4].

1.2 Research Problem
The rapid growth of Internet usage in Bangladesh has been a steady trend over
the past decade. However, harassment of women is believed to be on the rise due
to widespread patriarchal attitudes and norms and the lack of adequate legal pro-
tections. According to a survey [61] sponsored by ActionAid Bangladesh, 50% of
Bangladeshi women have complained of online harassment. Over 62% of the victims
are under 25 years old. Interestingly, victims cited Facebook as the platform under
the most pressure. About 25% of these women victims did not take action against
the perpetrators. 76% of women experienced psychological problems such as de-
pression and anxiety as a result of these problems. Some 48% of victims felt it was
not worth filing a complaint, and 52% reported it to the government’s Cybercrime
Investigation Department. 30% of women did not know where to apply. Because
of technology improvements, cyberbullying or online harassment using derogatory,
offensive, or cruel language has become quite simple for this generation. However,
these offensive remarks he can potentially make the target mentally ill, and some y
even begin to have anxieties. In this study, I used deep learning to look for offensive
remarks on social media sites and then categorized them into Not-bully, Religious,
Sexual, Threat, Troll, and Slang categories. Additionally, I made an effort to gauge
how effective each algorithm’s datasets were.

1.3 Research Objective
Modern technology has made it much too simple to engage in online harassment
or provocation using repressive, bigoted, or hurtful rhetoric. Online media has
developed into a hub of information and photos about the area as a result of its
availability and accessibility. Everyone was motivated to become involved before the
others, thanks to it. Unfortunately, while still placing them at risk for injury, this
stage hates and scrutinizes people who develop a range of sexual identities, paths,
and orientations. A variety of customers may have actual worries as a result of online
bullying and provocative behavior, which may also result in major psychological
issues including melancholy and self-destruction. During the pandemic, students’
online activity has increased several times. Fake accounts are often created by
collecting photos of victims from social networks. Many accounts are also hacked
and offensive material is uploaded for public viewing. However, most students do
not know how to stay safe online and have little or no understanding of cyberbully or
online bullying. Orientation and training sessions on these issues for all stakeholders
in relevant institutions can go a long way in reducing these online threats. Parental
monitoring and supervision can play a positive role in preventing or correcting online
bullying, so parents and guardians, in addition to students, should be involved in
this process.

This research aims to make sure that online media does not contain any objection-
able content or remarks. The goal of this study is to apply comprehensive infor-

2

mation to identify the presence of hostile remarks on a web-based media network.
It shouldn’t be labeled as poisonous, very toxic, profane, insulting, threatening, or
hateful of anyone’s identity. I also made an effort to assess the accuracy of the
data set used in each computation. In the beginning, I tried to apply some pre-
trained Bengali transformers mechanisms and got some predicted outcomes. After
that, I am using Natural Language Processing (NLP) and Convolutional Neural Net-
works (CNN) with Bi-directional Long Short-Term Memory (Bi-LSTM). To create
the recommended architecture, data preprocessing techniques were combined with
NLP techniques like tokenization and stemming to turn words into vectors. This
architecture is capable of identifying speech and categorizing it into five groups.
Then, using a baseline estimate for binary classification in the following phase, I
applied conventional classifiers to the collection of processed data from the initial
phase. I used a variety of explainable AIs to understand these classifiers. I used sev-
eral Machine Learning Classifiers to categorize the produced dataset. As a baseline
estimator, I utilized logistic regression. Local Interpretable Model-agnostic Expla-
nations (LIME) and Shapley Additive Explanations (SHAP) are the two terms I
picked to explain. The accuracy I obtained after combining such machine learning
classifiers with Stacking classifiers is remarkable to any earlier study.

1.4 Research Contributions
In this work, we have introduced a Hybrid model based on Convolutional Neural
Network (CNN) and Bi directional Long Short-Term Memory (Bi-LSTM) with Nat-
ural Language Processing (NLP) for Bengali hate speech classification. Later on,
we have implemented various Machine Learning Models along with Explainabilty.
Specifically, the main contributions of the paper are summarized as follows:

• We modified the data set to multi-label data from single-label data. So, it can
classify more accurately according to the comment. A sentence may express
both the Sexual and the Religious sentiment, by multi-label classification we
can detect both of the sentiments.

• We added a new class and named it as ’Slang’. Before this, it was not possible
to detect slang type comment. Now, slang type comment detection can be
possible.

• Our hybrid model performs better than most of the pre-trained transformer
based models. Pre-trained models add bias from the pre training to the model.
As a result, our trained model performs better.

• After model fitting, we got a processed data set and applied it through mul-
tiple machine learning models which addressing a fusion in Bengali Machine
Learning studies.

• We have applied Explainable AI’s to these machine learning models and eval-
uated classification reports. It is a revolutionary work for Bengali data set
explanation.

3

• We made an ensemble model after stacking all the Machine Learning Models.
There is no previous work in the field of Bengali Machine Learning where
anyone addressed this kind of ensemble learning model.

1.5 Thesis Report Outline
The remaining sections of this research study are as follows.

The background analysis and literature review are both included in Chapter 2. The
various machine learning techniques and ongoing research on these topics will be
shown.

The technique in Chapter 3 shows the overall format of our efforts. It will display the
whole cycle of my suggested model with the proper outlines. This section will provide
details about the datasets, information preprocessing, and a model for highlight
extraction and categorization.

The model’s analysis and outcomes will be discussed in chapter 4. It will go over
the results with a categorization report and a disorganized grid. This section will
outline the parameters for determining the connection between our results and the
conclusions drawn from them.

Chapter 5 will conclude the paper by summarizing all we’ve done. We have outlined
our research in chapter 5 and discussed its scope, limits, and future directions.

4

Chapter 2

Literature Review and Related
Works

The proliferation of online media, the misuse of internet activity, and the usage of
obscene language have recently become issues. To resolve this issue, no significant
actions have been performed. Here is a sample of the documents I am looking at:

2.1 Bengali Speech related works
This study [72] mostly focuses on BNLP subfields such as sentiment analysis, speech
recognition, optical character recognition, and text summarization. A thorough
analysis of the most modern BNLP tools and techniques appears to be lacking in
resources. Because of this, the authors analyze 75 BNLP research papers in-depth
in this paper and group them into 11 categories: information extraction, machine
translation, named entity recognition, parsing, parts of speech tagging, question
answering system, sentiment analysis, spam, and fake detection, text summarization,
word sense disambiguation, and speech processing and recognition.

A deep learning-based implementation for speech emotion identification is presented
by the authors in this work [73]. The system combines a time-distributed flatten
(TDF) layer with a deep convolutional neural network (DCNN) and a bidirectional
long-short-term memory (BLSTM) network. The recently constructed audio-only
Bangla emotional speech corpus SUBESCO has been used to test the suggested
model. All the models mentioned in this study were examined in a series of ex-
periments for baseline, cross-lingual, and multilingual training-testing setups. The
experimental results show that the model with a TDF layer outperforms other
cutting-edge CNN-based SER models that are capable of representing emotions
both temporally and sequentially.

The goal of this project [71] is to gather data on Bangla comments posted on so-
cial media sites to build a classifier model that can rapidly and accurately deter-
mine whether a remark is social or anti-social. From Facebook and YouTube, two
well-known social media channels, 2000 comments were collected. To discriminate
between rude and polite remarks, their study used supervised machine learning clas-
sifiers including Logistic Regression (LR), Random Forest (RF), Multinomial Naive
Bayes (MNB), and Support Vector Machine (SVM) as well as artificial neural net-
work models like Gated Recurrent Unit (GRU). Finally, in their study, language

5

models such as unigrams, bigrams, and trigrams have been used.

This article [28] uses a convolutional neural network to create a Bangla number
recognition system from a spoken stream (CNN). The proposed method uses Mel
Frequency Kepstrum Coefficient (MFCC) analysis to extract relevant characteristics
from speech signals. The speech dataset, which comprises 6000 utterances of 10
isolated Bangla digits (5 utterances for every 120 speakers), was produced. After
that, CNN is trained using the voice signal’s characteristics as input.

In another study [12], several Deep Neural Network (DNN-HMM) and Gaussian
Mixture Model-Hidden Markov Model (GMM-HMM) based models for speech recog-
nition in Bangla were examined to construct a voice search module for the Pipilika
1 search engine. For this effort, a small corpus of 9 hours of voice recordings from
49 distinct speakers with a vocabulary of 500 unique words was assembled.

This article [44] describes how to identify Bangla broadcast speech using support
vector machines (SVM). This approach is based on the MATLAB platform and
linear kernel SVM. In this experiment, four different forms of noisy broadcast voice
samples are employed, and SVM produces a decent result.

This study [25] shows a Bangla corpus that has been open-source licensed and has
been designed with sentiment analysis in mind1. Over 10,000 texts have been gath-
ered and carefully annotated with sentiment polarity. They then switched to the
Word domain and added sentiment polarity annotations to more than 15,000 words
that were produced from these phrases. To guarantee the quality, at least two and
occasionally three annotators have cross-annotated every entry in the corpus. They
had to develop a secondary corpus for Bangla word stemming as a need for produc-
ing a high-quality sentiment analysis corpus, and for cross-validation by at least two
and occasionally three annotators to guarantee quality.

They [17] need the Bangla datasets to complete the work. The Bangla dataset,
however, is not accessible. They thus gathered information from Facebook. It takes
a lot of work to get data from social networks. The information includes grammatical
errors and many languages. So, they formed a team to gather the information.
Processing the data fell to a different crew. The data was then classified as hate
speech or not. The group’s members knew enough about hate speech. They had
no bias towards the information. Their data includes hate speech directed against
women, the disabled, the community, culture, ethnicity, race, and sex. For their
task, a machine learning method is perfect. For the study, they utilized the SVM
and Nave Bayes methods.

They provide [14] an extensive collection of methods to recognize sentiment and ex-
tract emotions from Bangla texts in this article. To categorize a Bangla phrase with
a three-class (positive, negative, neutral) and a five-class (strongly positive, positive,
neutral, negative, highly negative) sentiment label, they develop deep learning-based
models. Additionally, they create models that can identify any one of the six funda-
mental emotions in a Bangla text (anger, disgust, fear, joy, sadness, and surprise).
They assess the effectiveness of their model using a fresh dataset of comments from
various YouTube videos in Bangla, English, and Romanized Bangla.

In this study [52], they put forth DeepHateExplainer, a comprehensible method for

6

hate speech identification from the under-resourced Bengali language. They use a
neural ensemble method using transformer-based neural architectures (i.e., monolin-
gual Bangla BERT-base, multilingual BERT-cased/uncased, and XLM-Roberta) to
classify Bengali writings into political, personal, geopolitical, and religious dislikes
after thoroughly preprocessing them. Then, using sensitivity analysis and layer-wise
relevance propagation, important (most and least) phrases are determined (LRP).
To assess the quality of explanations about fidelity, they finally compute compre-
hensiveness and sufficiency ratings.

Since Bengali text hasn’t been studied in this specific field, the authors of this
research [64] intend to develop a model that can evaluate the Bengali text and
determine if the reviews are positive or negative. Surveys, various social media
evaluations, ratings, and other methods are used to gather the data, which is then
labeled. The data were trained in DL (Deep Learning) and ML (Machine Learning)
models after cleaning and extracting several characteristics. By comparison, the
Long-Term Short-Term (LSTM) model outperforms other models, it is discovered
in the conclusion.

In this project [67], the team wants to develop a machine learning model to assess
the reviews’ sentiment. Internet users are growing daily in Bangladesh. So, they
decided to create the Bangla language model. They couldn’t find any meal review
datasets in Bangla that they could utilize for their project. Then they gathered and
classified more than a thousand evaluations of Bangla cuisine from several websites,
like Food panda, Hungrynaki, Shohoz food, Pathao food, etc. They have taken
different characteristics from cleaned data after the appropriate preprocessing, and
they have utilized these features to train and evaluate machine learning and deep
learning models.

2.2 Hate Speech related works
The author of this article [24] blends CNN and LSTM, or a modified version of it. a
text classification model known as NA-CNN-LSTM or NA-CNN-COIF-LSTM with-
out activation function is made available to CNN. The suggested model outperforms
conventional CNNs or LSTMs, according to experimental results on subjective data
sets and text categorization goals.

A DC (twin) technique that is much superior to CNN-LSTM is presented in this
article [39]. Two channels are employed in this DC system to gain input at the
word and character levels, respectively. It is advised to combine the current state
of the unit of time and the current state of the spending hours for hybrid attention
before focusing on the weight calculation. Weighted conclusions are produced after
determining the probability distribution of the input weights for each time step.
The input data from each time step is then trained to increase the generality of the
model learning.

A CNN-LSTM hybrid model-based text categorization technique was put forth by
the author [13]. Words are represented as vectors by the algorithm using Word2vec’s
Skip-Gram and CBOW templates, local text features are shown by CNNs, and
context snippets are produced by LSTMs, which store historical data. Using the

7

SoftMax classifier for text dependence and classification, CNN replaces the output of
opportunity vectors as an LSTM input. A test on the algorithm’s ability to increase
text classification accuracy was done on the Chinese news site Sogou.com.

In a different paper [69], the authors developed a stacking classifier in which they
combined six existing classifiers—the Support Vector Machine, Artificial Neural Net-
work, Logistic Regression, Decision Tree, Random Forest, and Gaussian Naive Bayes
classifiers—into a single model that represents the logistic regression classification
used for the six fundamental models tuned by hyperparameters.

According to the compatibility of the section, the authors of this research [62] pro-
vided a strategy that modifies the classification results using the stack classifier
model. The inside is also described as being difficult to navigate for regular meet-
ings. In the end, this strategy provides the desired classification outcomes straight-
forwardly and affordably.

Naive Bayes, SkLearn, Support Vector Machine, MultinominalNB, GaussianNB,
and BernoulliNB were among the classification techniques employed by the authors
[37] in this study. They pick diverse qualities to comprehend the precise position
of various algorithms (numbers or digits). To select the algorithm with the highest
accuracy, they tested the proposed algorithm and utilized ensemble learning to merge
multiple categorization algorithms.

The effectiveness of the categorization of managed learning models in Turkish texts
with various parameters was examined in this context [9]. These examples were
used to test the system’s ability to categorize novelties into five specified classes
after the system had been trained using a variety of training materials. This is done
by comparing and elucidating the classification performances of the Multinomial
Naive Bayes, Bernoulli Naive Bayes, Support Vector Machine, K-Nearest Neighbor,
and Decision Trees algorithms in Turkish news texts with various settings.

With the use of the audio from YouTube videos, they created [51] their dataset
and evaluated it using several training models in this work. They explored certain
deep learning strategies as well as machine learning models. They concluded their
trials that the deep learning GRU model and logistic regression produce the greatest
accuracy on the available dataset.

Due to people’s disrespect for proper spelling, grammar, and punctuation, while
posting comments online, the suggested solution requires a significant amount of
preprocessing. They gathered [20] feedback and likes from public Facebook pages
to create the dataset. They employed Unigrams, Bigrams, the number of likes, the
categories of emojis, emotion scores, the number of abusive terms in each remark,
as well as the offensive and threatening words that were used in the comments and
were discovered using their suggested method. Profanity can also be detected using
the method outlined above.

It is simple to locate the mistakes in conventional neural network-based short text
classification algorithms for sentiment categorization. The Word Vector Model
(Word2vec), Bidirectional Long-Term and Short-TermMemory networks (BiLSTM),
and convolutional neural network (CNN) are coupled to provide a solution to this
issue. The experiment [46] demonstrates that the Word2vec word embedding-

8

associated CNN-BiLSTM model’s accuracy was 91.48%. This demonstrates that
in brief text, the hybrid network model outperforms the single-structure neural net-
work.

Based on enhanced BiLSTM-CNN, this research [38] suggests a sentiment catego-
rization method. First, the user’s words are turned into vectors by word frequency
in the text, and then BiLSTM is used to extract the text’s sequence characteristics.
The data is then subjected to further feature extraction using CNN so that higher
dimensional user information can be utilized for categorization. The experimental
findings demonstrate that the model built using this strategy efficiently optimizes
conventional algorithms while accounting for the link between various elements in
the text. The performance is somewhat better when compared to similar conven-
tional network models for text sentiment categorization.

A model of feature fusion[43] using convolutional neural networks (CNN) and bidi-
rectional long short-term memories (BiLSTM) is presented to address the issue that
the neural network structure utilized in the current text sentiment analysis job can-
not extract the key characteristics of the text. The local features of the text vector
are extracted using CNN, while the global features of the text context are extracted
using BiLSTM. The issue of gradient disappearance or gradient diffusion in conven-
tional recurrent neural networks (RNN) is effectively avoided, and the single CNN
model no longer overlooks the semantic and grammatical information of words in
the context. After the corpus has been preprocessed, the text is represented as a
two-dimensional word vector matrix, and the CNN is then used to extract the local
information features. The BiLSTM is then utilized as the input to understand the
connection between the order of words and sentences. Then an attention mecha-
nism is presented to draw attention to critical information. emotion’s impact on
text. The suggested feature fusion model effectively increases the accuracy of text
categorization, according to experimental data.

In this research[56], they provide a novel approach to sentiment analysis that applies
text categorization using the CNN-BiLSTM framework to the Bangla dataset. The
text is categorized in this categorization scheme as either positive or negative. To
create a deep learning model, they employed a dataset on Bangla news comments,
which was composed of Bangla postings. They have prepossessed their dataset,
which includes language translation, stop word deletion, tokenization, and high-
frequency word extraction, to obtain accurate analytical findings. Then, layers of
CNN and LSTM are created in such a way that they have accomplished their high
accuracy to build the sentiment analysis model.

The Bert model is used in this structure as the text information extractor[74]. Once
the Bert model has produced its output features, multi-head attention and the
TEXT-CNN model are used to extract additional feature information. Finally, low-
dimensional feature vectors with more dense semantic information are generated
and combined to increase the information entropy of text vectors. Lastly, the loss
function with flooding mechanism is used to perform backpropagation to further pre-
vent the model’s over-fitting problem on smaller data sets and improve the model’s
generalizability. The BiLSTM with self-attention is used to extract the information
of various words in text information and then classify the text information.

9

This study suggests[59]a sentiment classification model for barrage text that in-
cludes the attention mechanism, the BiLSTM, and the ALBERT pre-training lan-
guage model. Utilize the BiLSTM network to extract the text context relationship
features, the ALBERT pre-training language model to obtain the dynamic feature
representation of the barrage text, the attention mechanism to dynamically adjust
the feature weights, and the SoftMax classifier to determine the sentiment category
of the barrage text. Studies on the barrage text data set collected by the crawler
reveal that the W2V-Att-CNN and W2V-Att-LSTM models with attention mecha-
nism are compared by the ALBERT-ATT-BiLSTM model.

This study examines[49] the application of Bayesian and Random Forest to au-
tomatically optimize BiLSTM-CNN systems. They developed the ASR using the
BiLSTM-CNN model and altered its hyperparameter values to take into account
their low-hardware requirements when optimizing it. Additionally, they acquired
1,000 voice data snippets from different movies and categorized them into mood
and stress groups. They employed the bigram textual feature and transcription of
their voice data to achieve contextual-level comprehension in their ASR.

In this article[11], text placement is perhaps the most widely used sign language
to prepare for innovation. Typical applications of content curation include spam
identification, news text clustering, data retrieval, sentiment investigation, target
discovery, and more. it includes. Thanks to the deep learning network, these de-
ficiencies are greatly improved, avoiding difficult component extraction measures,
and having strong learning ability and high prediction accuracy. An example is the
Convolutional Neural Network (CNN). This article introduces text ordering cycles
and demonstrates a deep learning model used for content clustering.

The mechanization of data mining from the skill models in this article[5] provides
findings that successfully use the data for automated retrieval in clinical databases.
Most eligibility standards contain variable data related to terms and conditions.
The company is developing a new natural language processing (NLP) pipeline that
extracts and describes ad-hoc data in order from current, royalty-free, in-memory
models of text.

In another article[21], content sequencing is the main initiative in natural language
processing (NLP) that is expected to gain relative classification capabilities. A mes-
sage with many classes. Today, neural tissue models are widely used in the field of
NLP and have produced surprising results in content clustering. In any case, due
to the large spatiality of textual data, standard languages have impressive linguis-
tic, square dimensions. Different directions of development in the organizational
structure of text placement so far. To accommodate the aforementioned problem,
this paper proposes a different organizational structure that includes bidirectional
long-term memory (LSTM) combined with a progressive balance system. in the
organizational structure. The information is passed into bidirectional LSTMs after
one-hot encoding, and the output is subject to incremental revision. Finally, a Soft-
Max classifier is used to cluster the processed parametric data. Test results show a
high degree of accuracy in structure when grouping content.

In another article[27], the innovation and rapid expansion of electronic exchanges
have made e-mail a truly specialized device. In many applications, such as business

10

correspondence, updates, scientific notices, website page engagement, and email,
email is an important communication method. Ignoring spam messages leaves a lot
of messages every day. You must examine the subject or content of each email to
determine the meaning of the message you received. In this study, we proposed
an unassisted framework that describes the received message. The direction of an
incoming message is determined by a common language processing strategy called
Word2Vec computation. e.g., trained information refers to calculations using indi-
vidually trained k-models.

In another article[32], text classification is a key part of NLP. This means that the
classes for a particular record must be placed in a particular sequence frame. There
are several ways to identify highlights and feature patterns. However, most experts
prefer to use methods implemented in external libraries to achieve their goals.

In this work[78], the generation of logical structures is a key problem in natural lan-
guage processing (NLP), because most AI models cannot provide explanations for
prediction. Existing methodologies for intelligent AI frameworks typically deal with
revenue or the relationship between data sources and revenue. However, detailed
data is often overlooked and frameworks do not provide clear explanations. To alle-
viate this problem more easily, they propose a new generative enhancement system
that determines how to resolve layout choices while generating detailed interpreta-
tions. They would clarify the basic approach to logical factors and risk preparation,
which will determine how more important interpretations can be made.

These are just a few of the articles written on this topic. One of these few articles
was created for text classification using CNNs. Kim et al.[1] Show sentence-level
classification performed using CNN. The authors describe how minimal tuning and
static vectorization can produce observable results across multiple benchmarks sug-
gested by them. This model is load dependent and uses static vectors. The authors
also demonstrated the importance of pre-trained and unsupervised word vectors in
NLP. As internet users and social networks proliferate, so does the level of toxicity
of social platforms. Hateful comments about victims of cyberbullying have become
a major concern, and the industry and analytics community are working hard to find
economic models to predict cyberbullying comments online due to the importance
of interactive online communication between users.

Here in this paper, Georgakopoulos, S. V, and others[8] solved the problem of classi-
fying toxic comments using a CNN model. Their research focuses mainly on recent
research. An approach to word representation and text classification using con-
volutional neural networks. For their study, they used a dataset collected from a
Kaggle competition for editing Wikipedia talk pages. The authors used word em-
bedding and CNNs to compare the BoW approach with a set of highly successful
text classification algorithms. The main dataset was transformed into subsets for
more consistent analysis and thus used for binary classification to filter out toxic
comments.

Zhang et al[15] proposed a novel method that combines a convolutional neural net-
work (CNN) and a gated recurrent network (GRU) to improve classification accuracy
empirically. In this article, the term ”hate” is replaced by a word that means insult,
hostility, or abuse, but it seems that hate speech cannot be equated with oppressive

11

language. The authors created their dataset by collecting datasets from the pub-
licly available Twitter dataset as well as tweets about refugees and Muslims. This
tweet has been designated for media use thanks to Total at the time of writing.
Some recent events. The author applied preprocessing to the tweets and worked the
model using CNN + GRU architecture in the subsequent layers, word embedding
layers, 1D convolutional layers, 1D max-pooling layers, GRU, and SoftMax layers.
They performed a comparative study on the dataset and showed how the proposed
method outperformed the benchmark and produced better results than other dataset
reporting methods. Set the current standard as follows: Scores from 1 to 13% in F1
for 6 out of 7 datasets.

The paper[7] presents a deep learning framework for clustering text on Twitter. The
rating assigns each Tweet one or more of four predefined ratings: racist, misogynis-
tic, hateful (fantasy and sexist), or non-hate speech. Four variants of convolutional
neural networks are ready to answer. 4-gram symbols, word vectors support lin-
guistically broken word2vec, randomly generated word vectors, and word vectors
related to n-gram symbols. The feature list was narrowed down using the SoftMax
operation used by organizations to account for maximum aggregation and tweets.
The cross-validated model with 10 overlays added to the Word2vec embedding per-
formed best in our review, with high accuracy and an F-score of 78.3%. With the
successful development of Internet users for informal long-distance communication,
individuals speak their minds every day. Concepts like notes, photos, videos, and
speeches. Classifying the text was a huge challenge because these large texts came
from different sources and different perspectives from different groups of people.
As a result, the understanding is wrong, contradictory, noisy, and even in differ-
ent dialects. salvage. Indeed, NLP et al. Deep neural tissue techniques are often
used to address these issues. In this regard, Word2Vec Word Implantation and
Convolutional Neural Network (CNN) techniques should be applied to the clustered
content. The model presented in this paper perfectly cleans information from pre-
trained Word2Vec models, generates word vectors, and uses CNN layers to better
remove short sentence markers [41]. Engineering and Implementation of Convo-
lutional Neural Networks (CNN). The main conclusions of the study. However,
related terms and vocabulary are rarely used, and CNN fails to capture general as-
pects of sentences[16]. To do this, we use verbal input, comment input, and lexical
input to encode the message, three special attention, attention vectors, long-short-
term memory (LSTM) thinking, and mind integration with a CNN model. This
article. We also examine words and locations to highlight the importance of words
that represent revenue generated. To improve the performance of three different
CNN models, constant cross-regression (CCR) and continuous learning techniques
are introduced. It is important to see the first uses of CCR and mobile learning in
high-text sensory research. Finally, analysis of two separate datasets showed that
the CNN model performed the simplest or best compared to the progressive model
using predictive inference.

Since XGBoost is relatively new, not much work has been done on text classifi-
cation. However, we find in this article[22] that the author works with XGBoost
to detect false information which is almost similar to the kind of work we do, and
XGBoost uses LSTM, Random Forest and others to retrieve data sets, but it works
like XGBoost finder. The authors used an attention-based model that uses only

12

textual information from other articles. The results show that the XGBoost model
improved by 16.4% and 13.1% over the best baseline in terms of accuracy.

In another paper[29], the authors recognize and prevent online media hostility in
mixed English-Indian and Hindi-English datasets. The developers used features like
word vectors, power words, mood scores, parts of speech, and emoticons to work
with the layout. They mentioned several ways to describe AI such as XGBoost,
Support Vector Machine (SVM), and Gradient Boosting Classifier (GBM). Among
them, is the best way to order XGBoost. Facebook, Twitter, etc. Send messages,
share photos, make video calls or save appointments. Despite these ideals, he has
a negative attitude that leads to hatred of a certain residential area. Therefore, it
is necessary to sense and avoid this hostility, which is a major cause of unsympa-
thetic online media behavior. In this paper, we have discussed Hindi, English and
Hindi-English mixed datasets. This operation is usually suitable for Support Vector
Machines (SVM). The performance of the three classifiers in the multiple-prediction
survey format yielded independent f-scores of 68.13, 54.82, and 55.31 for the mixed
data set.

English Wikipedia[26] has worked on cyberbullying and spam classification. The
dominance of online communities is a hallmark of today’s digital landscape. Cy-
berbullying is one of the constant threats to the ideals of free-flowing sharing in
this society. From derogatory comments to personal attacks to spam, contribu-
tors analyzed the challenge online. Here, Wikipedia astronauts are protected by
people to identify online behavior. They offer a structure for understanding En-
glish abuses and English in this article. They explore resources available for free on
Wikipedia. They believe that Wikipedia’s XML dumps need advanced information
research capabilities to be used for ad hoc literature research, and as an alterna-
tive, they propose a web scraping procedure to gather consumer-level information
and provide a wide range of research information resources. Investigate to get the
highlights. Percentage of clients previously blocked for malicious activity. We use
this information to generate misuse identification models that use conventional lan-
guage processing procedures such as letter and word n-grams, rating descriptions,
and pattern rankings, and to generate used highlights. Predict violence in mod-
els based on AI calculations as data sources. Best badger appearance model using
XGBoost feature model, AUC score of 84%

In this paper[45], the authors observed depression using XGBoost. Depression is
debilitating and widespread. It can be treated, but usually goes undiagnosed. Re-
mote pain scans are desirable, but there are security concerns about using informa-
tion from smartphones and online media. They suggest that message response lag
may provide useful data in depression screening based on the recognized association
between hopelessness and low data processing speed. They distinguish nine latency-
related characteristics of meta-information, namely public sponsored chat messages.
Address security vulnerabilities by checking text metadata, not content. We review
several machine learning techniques that focus on key areas of inactivity to predict
relevant screening summary ratings. Their results show that the XGBoost model
with a key segment achieves an F1 score of 0.67, an AUC of 0.72, and an accuracy
of 0.69. Thus, they argue that responses to blank messages are offered as a way to
sort out despair.

13

Chapter 3

Methodology

Previously, I applied Hate Speech Classification Implementing NLP and CNN with
Machine Learning Algorithm Through Interpretable Explainable AI. After that, I
applied Toxic Voice Classification Implementing CNN-LSTM & Employing Super-
vised Machine Learning Algorithms Through Explainable AI-SHAP. In both cases,
I tried English hate speech classification. Finally, I tried Bengali hate speech clas-
sification and evaluate this with machine learning explainability.
To classify Bengali hate speech, I have used a hybrid deep learning model that has
been combined with Convolutional Neural Network (CNN) and Bi-directional Long
Short-Term Memory (Bi-LSTM). Primarily, I have collected the dataset from the
research gate. After collecting the dataset, I divided the dataset into multilabel
with existing data annotation. Secondly, I have added more data with proper an-
notation to the existing dataset. For comparison, I have used multiple pre-trained
transformer-based models. After getting an improved accuracy, I used the processed
dataset through multiple machine learning algorithms. I tried to show the Explain-
ability of these machine learning models. Finally, I stacked all the machine learning
classifiers and made an ensemble model with an outstanding accuracy rate. In the
following sections, I will be discussing my chosen methods and how they work.

3.1 Initial Architecture
The main period of the proposed approach’s work process is pictured in Figure.
3.1 flowchart shows that subsequent to bringing in the dataset[79] and parting it
into preparing and testing sets, the work process is shown. Following that, the
dataset goes through a preprocessing stage that incorporates information purging,
tokenization, stemming, and word implanting. We tried three notable word inserting
procedures and observed that the outfit in addition to the CNN classifier was the
most reliable. The CNN design utilizes parallel grouping to recognize regardless
of whether remarks are poisonous and afterward predicts subclass poisonous levels
assuming that the remarks are destructive.

14

Figure 3.1: The first phase of the workflow

3.1.1 Data Preprocessing
Data Cleaning

Data cleaning is fundamental for producing better outcomes and quicker handling by
eliminating abnormality from the dataset. Stop words are taken out, accentuations
are taken out, all words are changed to bring down the case, copy words are taken
out, URLs, emoticons, or shortcodes of emoticons are eliminated, numerals are
taken out, one person based word is taken out, and images are taken out. Normal
Language Tool stash (NLTK) is a python library for an assortment of dialects that
we utilized in our model to further develop classification and precision.

Tokenization

It is the most common and vital part of NLP, where a sentence brimming with
words is isolated or broken into individual words, every one of which is alluded to
as a token. For making an interpretation of the word to a vector number, a model
called FastText is used.

Stemming

Stemming is a method for planning words by erasing or bringing down the emphasis
types of words like playing, played, and perky to find the root, otherwise called a
lemma. There are additions, prefixes, tenses, sexual orientations, and other linguistic
structures in these words. Moreover, assuming we inspect a gathering of words and
observe a root that isn’t of a similar sort, we think of it as a different class of that
word, known as a lemma. For a better result, we apply the lemma approach in our
model.

3.1.2 Word Embedding
The portrayal of a vector constructed utilizing brain networks is learned through
word installation. It’s for the most part used to control word vector portrayals in

15

a significant other option. Word implanting changes vector portrayals for mathe-
matical words by making an interpretation of semantic information to an inserted
space.

3.1.3 CNN Architecture for Classification
Considering its innate ability to utilize two factual characteristics known as ’local
stationarity’ and ’compositional structure,’ Convolutional Neural Network, or CNN,
has been broadly used to tackle picture order issues. The main rule is to execute
CNN for harmful remark order, sentences should be encoded prior to being taken
care of to CNN engineering. To work on the situation, the methodology of involv-
ing jargon in a media of record containing words, which has sets of texts planned
into number lengths going from 0 to 1, was utilized. From that point forward, the
cushioning approach is utilized to fill the archive network with zeros to accomplish
the most extreme length, as CNN engineering requires contact input dimensional-
ity. The subsequent stage is to change over the encoded reports into networks, with
each column compared to a solitary term. The inserting layer, in which a thick
vector changes any word (column) into a portrayal of low aspects, moves the frame-
works created. Our CNN configuration is contained a 50 unit completely connected
(thick) layer with a part size of five out of 128 channels for five-word embeddings.
The inserting strategy utilizes fixed thick word vectors created with programs like
FastText, word2vec, and GloVe, which were talked about in the past segment. We
utilize the ADAM analyzer and twofold cross-entropy misfortune to prepare our
model, which we assess with paired precision in the principal stage prior to contin-
uing to multi-class arrangement for a dangerous evening out. We utilize four ages
for high register power, skewering the preparation informational index into small
clusters of 64 examples, with 70% of the information being utilized for preparing
and 30% for testing.

3.1.4 Applying Classifiers
After getting the processed data set that is collected through the CNN Classifiers,
we deploy this on five different classifiers. We have used Extreme Gradient Boosting
(XGBoost) classifier, Random Forest classifier, Decision Trees classifier, AdaBoost
classifier, Gradient Boosting classifier. We dropped the one-of-a-kind id esteem and
took just the worth of six classes. Then, at that point, we split the informational
index into train and test where 60% of the information is utilized for preparing and
40% for testing. Furthermore, we take the worth of an irregular state as 7. From
that point forward, we change the informational collection into the test and train
the informational index that is prepared to apply through classifiers. Figure 3.2 is
showing the second period of our exploration work.

3.1.5 Generate Explainable AI
Artificial Intelligence (AI), a huge topic, has exploded in popularity in recent years.
AI models have begun to surpass human intelligence at a rate no one could have
imagined, as more and more complex models are released each year. Explainable AI
refers to a set of approaches or strategies for explaining the decision-making process

16

Figure 3.2: The second phase of the workflow

of a particular AI model. With more and more advanced strategies emerging each
year, this relatively new branch of AI has shown immense promise. We used one Ex-
plainable AI (XAI) method for the result evaluation of these classifiers. We choose
the LIME model for applying the XAI method. Local Interpretable Model-Agnostic
Explanations (LIME) is an acronym for Local Interpretable Model-Agnostic Expla-
nations [19]. We take the positive comment as well as a negative comment that was
previously trained through all five classifiers. And apply those comments through
the LIME model and get different results.

3.1.6 Appending Classifiers
In the last stage, we affix this large number of classifiers into one rundown and
count the F1-weighted score for every classifier. Then, at that point, we utilize
K-fold cross-validation where n split is 10 and random state is 12. Cross-validation
is a resampling strategy for assessing AI models on a little example of information.
That is, little example size is utilized to assess how the model would act overall
when it is utilized to create forecasts on information that was not utilized during
preparation. It’s a well-known technique since it’s not difficult to handle and creates
a less slanted or hopeful gauge of model skill than different methodologies, like a
basic train/test split.

Figure 3.3: The final phase of the workflow

17

3.1.7 Ensemble Model
From that point onward, we present outfit realization which is displayed in Figure
3.3. Gathering learning is a far-reaching nonexclusive method for AI that joins the
forecasts from various models to work on prescient execution. Group approaches
are models that are made in products and afterward consolidated to come by better
outcomes. Much of the time, gathering approaches give more exact outcomes than a
solitary model. In various AI rivalries, the triumphant arrangements utilized troupe
draws near. We utilized a Voting Classifier to outfit every one of the classifiers.
A Voting Classifier is an AI model that gains from an outfit of many models and
predicts a result (class) in view of the greatest likelihood of the result being the
picked class. Rather than developing separate devoted models and deciding their
precision, we make a solitary model that is prepared by various models and predicts
yield in view of their total larger part of decisions in favor of each result class. We
utilize delicate deciding in favor of our outfit model and get various measurements
of exactness, review, f1 score, and accuracy.

3.2 Developed Architecture
Figure 3.4 shows the main process time for the proposed approach. This process
shows the work after collecting the database and dividing it into a train and test.
The dataset then goes through pre-processing steps, including data cleaning, tok-
enization, and stemming. After trying three important word-inserting methods, we
found that the elements and ratings of CNN are very reliable. CNN uses parallel
aggregation to determine the toxicity of observations and predict the toxicity of
segmentation, which are destructive observations.

Figure 3.4: First Stage of the workflow

3.2.1 Data Preprocessing
Data cleaning is the basis for optimal results and fast management by eliminating
deviations from the database. Remove pause words, highlight, replace all lowercase
letters, repeat words, delete URLs, emojis, or short emoji codes, remove numbers,
and photograph people talking. This is the most common and important part of

18

NLP, in which the whole sentence is divided into isolated or individual words, each
of which is called a token. A template called FastText is used to define word vector
numbers. Stemming is a method for planning words by erasing or bringing down the
emphasis types of words like playing, played, and playful to find the root, otherwise
called a lemma. There are additions, prefixes, tenses, sexual orientations, and other
linguistic structures in these words.

3.2.2 Word Embedding
FastText is a word embedding method developed based on the word2vec model.
Instead of directly studying word vectors, fastText calls each word an n-gram char-
acter. Helps to understand the meaning of short words and helps to insert to un-
derstand suffixes and prefixes. Once the word is identified by the letter n-gram, the
grammar model is arranged for online learning. This model is a model of words
with a sliding window at the top of the word because the internal structure of the
word is not considered. While there are characters in this window, the n-gram table
is not a bar. FastText works well with rare words. So even if a word is not found
in the textbook, it can be divided into n-grams to get the results. Both Word2vec
and GloVe cannot display words that are not in the sample dictionary. This is the
biggest advantage of this method.

3.2.3 CNN with LSTM Architecture for Classification
The proposed architecture is a combination of a convolutional neural network (CNN)
and a long-short-term memory (LSTM) network, briefly described below.

Convolutional Neural Network

A special type of multilayer perceptron is a CNN, but a simple neural network
cannot learn complex features despite its deep learning structure. CNNs have proven
effective in many applications such as image classification, object recognition, and
clinical image analysis. The basic idea of CNN is to extract local features from the
input layer of the upper layer and transform them into lower layers for complex
features. CNNs consist of convolutional, pooling, and fully connected layers.

Long Short-Term Memory

Long short-term memory is the long-term evolution of recurrent neural networks
(RNN). LSTM provides memory modules instead of regular RNN modules. Adds
state to a cell and keeps the state for a long time. The main difference is RNN. LSTM
networks can store historical information and combine it with received data. The
LSTM is connected to three valves: intake, exhaust, and exhaust. x¬t represents
the current input. Ct and Ct-1 represent the new and previous cell status, and ht
and ht-1 represent the current and previous versions, respectively.

CNN-LSTM Network

In this hybrid model, CNN is the basic rule for malicious reference sequences, sen-
tences must be encrypted before being watched by CNN Engineering. The embed-
ding method uses standard dense word vectors created by programs such as FastText,

19

word2vec, and GloVe, which were discussed in the previous section. In our CNN
configuration, there is a fully connected layer of 32 layers, which is 4 epochs for
every 64-batch size for word embedding. In the convolutional layer, we used kernel
size as 3 and used ‘Relu’ as activation. We use the ‘Adam analyzer and ‘binary cross
entropy to prepare our model, which we evaluate using a previous parsing in the
initial phase before performing a multi-class classification in a hazardous era. After
the max pooling layer, it performs through the LSTM layer. And finally, we used
‘SoftMax’ as activation in the dense layer.

3.2.4 Supervised Machine Learning Algorithms
Figure 3.5 shows the next process for the proposed approach. Supervised learning
allows you to collect data and generate data from previous experience. This helps
to improve performance through experience.

Figure 3.5: Second Stage of the workflow

Machine learning under inspection can help solve various computer problems in the
real world. We used two supervised machine learning algorithms.

Random Forest

Random forest is a supervised machine learning algorithm widely used in classifica-
tion and regression tasks. The decision tree is built on different models and averages
the best votes in the case of classification and regression. One of the most impor-
tant features of the Random Forest algorithm is that it can handle datasets with
continuous variables. This provides better results for classification problems.

Extremely Randomized Trees

Extra Trees Classifier is an ensemble learning method that combines the results of
several unrelated decision trees from the ”forest” to obtain a classification result.
Conceptually, a decision tree is very similar to a random forest classification, except
that it is a forest structure. Additional Trees Each final forest tree consists of the
original training sample. Each tree in each experimental node receives a random

20

sample of Q features from a set of features selected for the best diagnosis accord-
ing to some mathematical criteria. This arbitrary function model produces many
connected finite trees.

3.2.5 Explainable AI - SHAP
SHAP stands for SHapley Additive exPlanations. The purpose of this method is
to calculate the provided/received forecast by calculating the contribution of each
feature to the forecast. SHAP has many visualization tools for explaining the model,
but we covered a few, each of which has its own specificities. We have shown a
summary plot, decision plot, force plot, and waterfall plot for the random forest
classifier and extra trees classifier.

3.2.6 Ensemble Model
Stack classification or generalization is a group method of machine learning. Uses
machine learning algorithms to learn how best to combine predictions from two or
more basic machine learning algorithms. The advantage of aggregation is that it
utilizes models that work well in classification or regression problems and makes
predictions that work better than any other model in the set. We used a stacking
classifier to ensemble our model.

3.3 Final Architecture
In this section, we are discussing about dataset, data cleaning, CNN architecture,
Bi-LSTM architecture, our proposed model, an architecture comparison with trans-
former model, some supervised machine learning algorithms, a details visualization
of these machine learning models, machine learning model explanation with XAI,
and finally an ensemble learning model is introduced in the following sections. We
have taken eight machine learning models for explainability. We took XGBoost
cllassifer, Random Forest classifier, Decision Trees classifier, AdaBoost classifier,
Gradient Boosting classifier, Extra Trees classifier, Light GBM classifier, and Cat-
Boost classifier. For explanation we took local interpretable model-agnostic expla-
nations (LIME) and Shapely Additive Explanations (SHAP). For ensembling all
the classifiers, we choose a stacking model. We used voting classifier for stacking
all the machine learning classifiers. The figure 3.6 indicates the architecture of our
proposed workflow. All components are explained in the following sections:

21

Figure 3.6: Top Level Overview of the Proposed Model

3.4 Dataset
I am using a dataset consisting of around 45,000 different types of Bengali comments.
Initially, I collected the dataset from the research gate[76]. I have separated the
comments for the multi-label classification from the existing annotation. There are
five classes in that dataset. I collected some extra annotated data and inserted it
into the existing dataset with an additional class called ”Slang”. So, there are a
total of 7 columns in this dataset. The first is the comment column and the rest
of the six is a label for a particular comment. Figure 2 shows the model training
dataset. The dataset contains a total of six classes (Not Bully, Religious, Sexual,
Threat, Troll, Slang). I ran this dataset in my code. Then I got results based on
the training dataset.

22

Figure 3.7: A portion of Dataset

In Figure 3.7, you can see that all the comments are labeled with binary no 0 and
1. Where 0 represents no and 1 represents yes.

3.5 Data Cleaning
Data cleaning is a data processing technique used to transform raw knowledge into
useful and effective controls. Empirical knowledge is often insufficient, inconsistent,
not defined in specific procedures or programs, and may contain various errors.
Data processing can be an undeniable technique to solve such problems[23]. Data
preprocessing prepares the raw data for further processing. I have included several
types of data processing steps. These include data cleaning, stop words removal,
punctuation removal, symbol removal, missing data management, and more.

3.5.1 Stop words Removal
Stop words are words of any language that do not add much meaning to the sentence.
You can safely remove them without damaging the meaning of the sentence. For
some search engines, these are the most common short service words, such as at,
which, etc. This can cause problems when searching for sentences with stop words.
If we have a task of text classification or sentiment analysis, we must remove stop
words because they do not provide any information to our model, that is, they do
not introduce unnecessary words into our set, but if the task is language translation.
We have to stop talking. effective, they must be translated into other words.
There are no hard and fast rules about when to remove stop words. But if you need
to do something related to language classification, spam filtering, topic generation,
automatic tagging, sentiment analysis, or text classification, I recommend removing
the stop words. I have used a list of Bengali stop words that have been frequently
used in Bengali literature. For example, 'হইেব', 'ৈহেল', 'হইয়া', 'হেচ্ছ', 'হত', 'হেত', 'হেতই', 'হেব',
'হেবন', 'হেয়িছল', 'হেয়েছ', 'হেয়েছন', 'হেয়', 'হয়িন', 'হয়', 'হেয়ই', 'হয়েতা', 'হল', 'হেল', 'হেলই', 'হেলও', 'হেলা',
'িহসােব', 'হওয়া', 'হওয়ার', 'হওয়ায়', 'হন', 'েহাক'

3.5.2 Punctuation Removal
A second commonly used text processing method is to remove punctuation from
text data. The process of removing punctuation makes all text look the same. For

23

example, data and words! After the deletion process, punctuation marks are treated
in the same way.
You have to be careful with the text when you remove the punctuation marks because
abstract words don’t make sense if you remove them[3]. Depending on what you set
in the parameter, it will change to ”shouldn’t” or ”can’t”, like ”don’t”. You should
also be careful when choosing a list of punctuation marks to remove based on data
usage. There are a total of 32 basic punctuation marks. The string module can be
used directly with regular expressions to replace punctuation marks in text with an
empty string. The 32 points that this road module gives us.

3.5.3 Symbol Removal
Sometimes, depending on your use case, the number may not contain important
information from the text. Therefore, it is better to get rid of them than to keep
them. For example, if you’re doing sentiment analysis and the numbers don’t repre-
sent your data, but if you’re doing NER (Name Entity Recognition) or POS (Part
of Speech tagging), use the number removal method carefully.
You can see the data, but it is better to remove the extra space because it will
not save extra memory. With the increase in the number of users on social media
platforms, the use of emojis in our daily life has increased significantly. Removing
emoticons when parsing text is sometimes the right thing to do. Because sometimes
it contains no information. If you do text analysis of Twitter and Instagram data,
you will often see these emojis, but there are very few texts without them today.

3.6 Feature Extraction
As I am researching Bengali text classification, I need some features based on
dataset. Therefore, the following section is a discussion based on the techniques
used for feature extraction.

3.6.1 Text Classification using CNN
Convolutional neural network(CNN) is one of the class of Deep Neural Networks
which is most often applied to image processing problems.Besides this, CNN is being
applied in text classification, sentiment classification,signal processing.Convolution
Neural Networks are biologically inspired variants of Multilayer Neural Network
[77].The reason behind the heavy use of CNN is its learning parameters.There are
several applications of text classification like hate speech detection, intent classi-
fication, and organizing news articles. Text classification may be a classic topic
for language process and a vital element in several applications, like internet look-
ing out, info filtering, topic categorization and sentiment analysis.[18]. The basic
structure of CNN is described below-

Input Layer

The very first thing we need to do for text classification is to give input for contin-
uing the further steps, which we can call as Input layer. Input layer works as the
initialization of the whole CNN. The input layer of a CNN is made out of counterfeit

24

input neurons and carries the underlying information into the framework for addi-
tional preparation by ensuing layers of fake neurons. Along these lines, this layer
begins the work process for the CNN classifier. The information layer might be a
sentence involved linked word2vec word inserting that is trailed by a convolutional
layer with numerous channels, at that point a maximum pooling layer, and at last
a Softmax classifier. The data are preprocessed in the word embedding layer of the
NLP before we feed its review into CNN as input. Precisely it can be said that the
Embedding layer output works as input here. We slide over input data the convolu-
tion to extract features. An n-length sentence (and padding can be used according
to needs/requirements) can be represented as-

x1 : n = x1 ⊕ x2 ⊕ · · ·+ xn (3.1)

Here, xi ϵ Rk is the vector of a word in the text with k as the dimension.

Convolutional Layer

As the input layer is concatenated with word embedding of NLP, in some researches
it’s not enclosed as a layer of CNN. on it context, main layering of CNN is started
from Convolutional Layer. The Convolutional layer is sometimes the primary layer
for CNN wherever we have a tendency to convolute image or data normally victim-
isation filters or kernels.in another word, to form a 3rd relation, it’s a mathematical
combination of 2 relationships that use 2 sets of data.
While adding a convolutional layer to a model, it additionally required to specify
what percentage filters one desires the layer to possess. Filters square measure little
units that we have a tendency to apply across the information through a window.
A filter will technically consider as a comparatively little matrix that we have a
tendency to decide range, the amount, the quantity of rows and therefore the number
of columns that this matrix has. The depth of the filter is same as input matrix.
breadth of the filter are same because the breadth of embedded matrix, whereas
the filter height could vary[18].As the filter is applied over input and several other
feature maps square measure generated, AN activation operate named ReLu is left
out the output to supply a non-linearity for output.
Only non-linear activation functions ar used between consequent convolutional net-
works. If we have a tendency to simply use linear activation functions, there will
not be any learning. thanks to the associativity property of convolutional, these 2
layers ar effective even as single layer. In some researches, they consider activation
as a single layer. Some on the other hand, refers it as a part of convolutional layer.
Activation is not necessarily executed after convolution. Most of the papers follow
the sequence like convolution→ activation→pooling. This is not strictly the case as:

relU(MaxPool(Conv(M))) = MaxPool(reLu(Conv(M))) (3.2)

The feature map generated by the convolutional layer is taken by activation function
to generate the output activation map. We can represent a feature map which as-

c = [c1, c2, c3,cn − h+ 1] (3.3)

25

If a layer output is processed as an input for next layer, it is necessary to propagate
the output of the previous layer through an activation function to use an extreme
value of the output. The length of input and output is maintained by padding.
[56] The output of ReLU is clipped to zero on condition that convolution output is
negative.

If xi:i+j is used for showing the concatenation of words xi,xi+1, . . . ,xi+j and
wϵRhk, is used as a h words window that generates new feature, then a generated
feature ci can be represented like this-

xi : i+ h− 1byci = f(wxi : i+ h− 1 + b) (3.4)

Here bϵR is an inclination term and f is a non-linear capacity, for example, the
hyperbolic tangent. This channel is applied to every conceivable window of words
in the sentence to create a component map.

ci = [c1, c2, c3 , cn − h + 1] (3.5)

with
c ∈ Rn− h+ 1 (3.6)

Pooling Layer

The output of the convolution layer is then used because the input of pooling layer.
it’s used when every convolution layer. Pooling involves a down sampling of options.
Typically, there area unit 2 hyper parameters within the pooling layer. the primary
parameter is that the dimensions of the spatial extent that is especially reducing
the spatiality of feature map and therefore the second layer is stride that is what
percentage options the window skips on the dimension and height. goop pool layer
uses 2*2 max filter with the stride of two that may be a non-overlapping filter. A max
filter returns the most price that area unit the options within the regions. Average
filters that returns the common of options may also be used however the max pooling
works higher in observe. For this reason, max pooling is employed principally. Since
pooling is applied through each layer within the 3D volume, the feature map’s depth
won’t amendment when pooling. Max pooling can be represented as -

c′ = max[c] |] (3.7)

where ci is feature map

ci = [c1, c2, c3 , cn − h + 1] (3.8)

Fully Connected layer

The last layer of the CNN classifier is the fully connected layer. The output of the
pooling layer that is 3D feature map, is the input for this layer. But that input

26

is a one-dimensional feature vector. The depth of 3D feature map is high and the
reason of this increased depth is the increased number of kernels that are used in the
previous layers. To convert this into one dimension, the output width and height
should be made to 1 using flattening. Flattening means converting the 3D matrix
into a 1D vector. This activation function is used for characterizing the generated
features of the input into different classes based on the training dataset. At the end

Figure 3.8: CNN Architecture

of this layer is the Soft max and Logistic layer. For binary classification, logistics is
used, and Soft max is for multi-classification.Figure 3.8 shows the basic architecture
of CNN model.

3.6.2 Text Classification using Bi-LSTM
Bi-LSTM is the process of constructing neural networks so that sequential informa-
tion can be stored either backward (from future to past) or forward (from past to
future).

In both directions, the input flows in both directions, which is different from a
typical bidirectional LSTM. Generic LSTMs allow you to make the input flow one-
way forward and backward. However, the two-way approach allows input to flow in
both directions, preserving future and historical information. Let’s take an example
to explain better.

You cannot fill in the blanks in the sentence ”Boys...”. But in the future, if you have
the phrase ”the kids are coming home from school,” it’s easy to predict what you
want to do with an empty space pattern from the past, and bidirectional LSTMs
allow neural networks to do just that.

27

Figure 3.9: Bi-LSTM Architecture

In the diagram in figure 3.9, we can see the flow of information in the reverse
and forward layers. BI-LSTMs are commonly used when sequencing operations are
required. These networks can be used for text classification, speech recognition and
predictive models.

3.7 Proposed CNN-BiLSTM based Hybrid Model
In this work, I employed a hybrid deep learning model with Convolutional Neural
Network (CNN) and Bi directional Long Short-TermMemory (Bi-LSTM). Figure 3.6
shows the hybrid architecture that I made by CNN along with Bi-LSTM architecture.

Figure 3.10: Proposed Architecture

3.7.1 Internal Architecture
At first, we defined a sequential model for our desired model. Then, we added an
embedding layer from CNN architecture. We found the length of vocab size is 74438,
the longest comment size is 200, the average comment size is 11.348549410698096,

28

the standard deviation of comment size is 15.254202939669483, and the max com-
ment size is 57 from our dataset. We used pad sequence from keras. Here, we took
maxlen = 57, padding = ’post’, truncating = ’post’. In the embedding layer, we took
embedding size = 74438+1, embedding dim = 600, input length = 57, trainable =
true. After that, we added a convolutional layer from CNN architecture. As it is
an 1D matrix, we took Conv1D where filter size = 128, kernel size = 3, padding
= ‘same’, activation = ‘relu’. Then, we added Maxpooling1D size = 3. Then, we
added Batch Normalization. In the second step, we added bi -directional LSTM
layer where the input gate size is 100. After that, we added fully connected layers.
We added drop out layer and the value are 0.5. Finally, we added a dense layer
where dense size is 6 because we have total 6 classes in our dataset. Here, we took
‘sigmoid’ as an activation. In the end, we summarized our model with summary
function.Figure 3.11 shows the overall model architecture of our proposed model.

Figure 3.11: Internal Architecture

3.7.2 Model Compilation
We compiled our model where we took ’binary cross entropy’ as a loss function,
’Adam’ as an optimizer, metrics = ’accuracy’. Then, we fitted our model. We took
a batch size of 32. We did total 100 epochs for fitting our model. We used early
stopping function where in max mode, we monitored roc auc value of our model.
Figure 3.12 shows the layer and output shape of our proposed model.
This model can predict any Bengali comment and classify them into six classes.
It can detect whether the comment is Religious, or Sexual, or Threat, or Troll, or

29

Figure 3.12: Layer and Output Shape

Slang, or Not Bully. And it gives a predicted percentage value of any comment
according to these six classified sections. In our result part, we would show some
output results of our model prediction.

3.7.3 Multi-label Classification
After fitting our model, we predicted the value of every comment in our dataset
with prediction function. As we are performing a multi-label classification[34], we
got total of 6 multi class values. Certain classification tasks require predicting more
than one class label. This implies that classes are not mutually exclusive. These
tasks are known as multi-label classification or multiple-label classification for short.
In multi-label classification, zero or more labels are required as output for each input
sample. The outputs are required to be mutually exclusive. The assumption is that
the output labels are dependent on the input. After that, we made this to binary
classification. We took the value of every class and got cross validated values for
every comment. We marked 1 as a Bully comment and 0 as a Not Bully comment.
And exported the dataset in data frame using panadas library.

3.8 Pre-Trained Transformer Based Models
A transformer model is a neural network that learns context and thus derives mean-
ing by following relationships in sequence data (such as the words in this sentence).
Transformer models increasingly use a mathematical technique called attention or
self-awareness[68] to detect even subtle ways in which data elements are placed.
Nowhere in the chain of influence and interdependence. Transfiguration translates
text and speech in near real-time, opening up meetings and classes to many hearing-
impaired participants. Transformers are the most advanced type of model available

30

today for sequence processing. Perhaps the most important application of these
models is in word processing tasks, the most important of which is a machine trans-
lation. Indeed, transformers and their conceptual descendants have permeated every
criterion of Natural Language Processing (NLP), from question-answering to gram-
matical correctness. In many ways, the transformer architecture is undergoing an
evolution similar to the Convolutional Neural Network (CNN) we saw after the Im-
ageNet competition in 2012, both for better and for worse. A transformer can be
understood from its three components:

• The encoder encodes the input string into a state vector.

• The attention mechanism allows our transformer model to focus on finer as-
pects of sequential input currents. It is used several times by encoders and
decoders to help them contextualize the input data.

• The decoder decodes the state representation vector to produce the target
output sequence.

I tried multiple pre-trained BERT transformer models in our dataset to compare the
performance evaluation with our proposed model. BERT stands for Bi-Directional
Encoder Representation from Transformers. Figure 3.13 shows the BERT architec-
ture for our dataset. It is intended to jointly adapt the left and right contexts to
pre-train two-dimensional representations from unlabeled text. Thus, state-of-the-
art models for a variety of NLP applications may be created by simply adding an
extra output layer to a pre-trained BERT model.

Figure 3.13: BERT Model

First off, BERT stands for the term ”Bidirectional Encoder Representation from
Transformers,” which is easily understood. Each word in this sentence has a specific
meaning, which we shall explore in this essay. At the moment, this family’s key
benefit is that BERT is built on the Transformer design.
Second, all of Wikipedia (which has 2,500 million words!) and the Book Corpus are
included in the enormous untagged corpus on which BERT is already trained (800
million words). The pre-training stage is half of BERT’s success. In fact, as we train
a model on a huge corpus, our model starts to comprehend the language more and
more deeply.
Third, the BERT model is ”deeply two-dimensional.” Bidirectional refers to the fact
that during the training phase, BERT gathers knowledge from both the left and
right sides of the token context.

31

3.9 Data Sampling
After that, we exported the predicted processed dataset. And we applied it through
different machine learning algorithms. In machine learning, class imbalance is a
frequent issue, particularly in classification issues[42]. The accuracy of the model
can be greatly impacted by unbalanced data. The majority of machine learning
algorithms work best when there are nearly equal numbers of examples in each
class. This is so because accuracy maximisation and error minimization are the
two main considerations while designing algorithms. In contrast, if the data set is
unbalanced, you may predict the majority class with a decent amount of confidence.
The dominant class will be captured, but the minority class—which is frequently the
objective of the model—will not be captured. Resampling is a method frequently
used to handle datasets that are severely imbalanced. Removing samples from the
majority class is necessary.
Before applying, we performed dataset resampling. We used SMOTE technique for
data resampling. The synthetic minority over-sampling technique, or SMOTE for
short, is a preprocessing technique used to address a class imbalance in a dataset.
In the real world, we often find ourselves trying to train a model on a dataset with
few examples of a given class[47], which results in poor performance. Due to the
sensitive nature of the data, occurrences are so uncommon I want to talk to you
about something serious., it’s not always realistic to go out and acquire more. One
way to resolve this issue is to under-sample the majority class. We would exclude
rows corresponding to the majority class such that there is roughly the same number
of rows for both the majority and minority classes. However, in doing so, we would
lose out on a lot of data that could be used to train our model and improve its
accuracy. Another alternative is to oversimple the minority class. We artificially
increase the number of observations from the minority class by randomly duplicating
observations. The issue with this approach is that it leads to over-fitting because
the model learns from the same examples. This is where SMOTE comes into play.
The SMOTE algorithm can be described as follows:

• Take the difference between the sample and its nearest neighbor.

• A random integer between 0 and 1 should be multiplied by the difference
between the two values.

• You can add this difference to the sample to generate a new synthetic example
in the feature space.

• Continue with the next nearest neighbor up to a user-defined number.

After performing SMOTE technique, we got a balanced dataset. Previously, original
dataset shape Counter is ’1’: 28581, ’0’: 15539. Now, resample dataset shape
Counter is ’1’: 28581, ’0’: 28581

3.10 Applying Machine Learning Algorithms
After data balancing, we split the processed dataset into training and testing. We
took a test size of 0.4 and random state = 7. We got a processed dataset which
indicates binary classification. Figure 3.14 shows the processed dataset that we got.

32

Figure 3.14: Processed Dataset

We have applied XGBoost Classifier, Random Forest Classifier, Decision Trees Clas-
sifier, AdaBoost Classifier, Gradient Boosting Classifier, Extra Trees Classifier, Light
GBM Classifier and Cat Boost Classifier along with an estimator named logistic re-
gression through this processed dataset. Now, we are discussing about these machine
learning models.

3.10.1 XGBoost Classifier
A scalable and distributed Gradient Boosted Decision Tree (GBDT) machine learn-
ing package is called XGBoost, or Extreme Gradient Boosting. It uses tree alignment
and is the leading machine learning library for regression, classification and rank-
ing problems. To understand XGBoost[36], it is important to first understand the
machine learning concepts and algorithms that make up XGBoost: supervised ma-
chine learning, decision trees, ensemble learning, and gradient boosting. Supervised
machine learning uses algorithms to train a model to find patterns in a dataset with
labels and features. In the classifier, we considered max depth=2, random state=1,
n estimators=100 as parameters.

3.10.2 Random Forest Classifier
A popular supervised machine learning technique for classification and regression
applications is random forest[40]. It creates decision trees based on several models
and, in the case of regression, relies on a majority vote for categorization and aver-
aging. The Random Forest algorithm’s ability to handle datasets with continuous
variables is one of its key characteristics. Better outcomes for categorization issues
are produced by doing this. We used the parameters max depth = 2, random state
= 1, and n estimators = 100 in the classifier.

3.10.3 Decision Trees Classifier
A decision tree is a supervised learning method that may be used to classification
and regression issues, while classification issues are frequently favoured[19]. It is
a tree-like classifier in which core nodes stand in for dataset properties, branches
for decision rules, and leaf nodes for individual decisions. A decision node and a
termination node are the two nodes in a decision tree. While leaf nodes are the
outcomes of those decisions and have no other branches, decision nodes are utilised
to make decisions and have numerous branches. Based on the qualities of a particular
collection of data, a conclusion or experiment is drawn. We used the parameters
max depth = 2 and random state = 1 in the classifier.

33

3.10.4 AdaBoost Classifier
The AdaBoost algorithm, also known as adaptive boosting, is a boosting approach
used in machine learning as an ensemble method[54]. This is called adaptive scaling
because weights are reassigned to each sample and misclassified samples have higher
weights. Boosting is used to reduce the bias and variance of supervised learning. It
works on the principle that students develop constantly. With the exception of the
first, each subsequent student develops from the previous one. Simply put, weak
students become strong. The AdaBoost algorithm works on the same principle as
Boost, with a slight difference. In the classifier, we considered random state=1, n
estimators=100 as parameters.

3.10.5 Gradient Boosting Classifier
Gradient boosting is a type of ensemble method where you build several weak models
(often decision trees) and combine them to get better overall performance[35]. In
gradient boosting, each predictor tries to improve its previous version by minimizing
errors. But the interesting idea behind gradient boosting is that instead of fitting a
predictor to the data at each iteration, it actually fits a new predictor to the residual
errors of the previous predictor. In the classifier, we considered max depth=2,
random state=1, n estimators=100 as parameters.

3.10.6 Extra Trees Classifier
An ensemble learning approach known as a highly randomised tree classifier (also
known as a redundant tree classifier) combines the classification outcomes of several
unconnected decision trees gathered in a ”forest” to obtain a final result[33]. It differs
mainly in how the decision trees in the forest are built, conceptually speaking, from
a random forest classifier. further trees The first training sample is used to build
each decision tree in the forest. The decision tree must then decide which feature to
use to partition the data according to some mathematical criterion after receiving a
random sample of k features from the feature set at each test node (usually the Gini
index). This arbitrary feature selection results in many associated decision trees. In
the classifier, we considered max depth=2, random state=1, n estimators=100 as
parameters.

3.10.7 Light GBM Classifier
LightGBM is an ensemble gradient boosting method implemented with the Auto ML
tool in training and based on decision trees[30]. LightGBM uses a histogram-based
method where the data is grouped using a distribution histogram. Instead of each
data point, containers are used to copy data, calculate percentages and distribute.
This method can also be extended to spatial datasets. Another feature of LightGBM
is its proprietary function, in which the algorithm combines proprietary functions
to reduce dimensionality, making it faster and more efficient. In the classifier, we
considered max depth=2, random state=1, n estimators=100 as parameters.

34

3.10.8 Cat Boost Classifier
Gradient-based decision trees are the foundation of CatBoost. A succession of de-
cision trees are built one after the other during training[75]. Compared to earlier
trees, each tree is formed with less loss. The output parameters determine how
many trees are planted. Use an additional detector to avoid matches. If provoked,
the trees will refuse to build. The CatBoost algorithm is a powerful and greedy
new gradient gain implementation. This feature allows CatBoost to learn faster
and make predictions 13-16 times faster than other algorithms. In the classifier, we
considered max depth=2, random state=1, n estimators=100 as parameters.

3.10.9 Logistic Regression
Logistic regression is a model for predictive modeling of binary classification[31].
The parameters of a logistic regression model can be estimated using a probability
system called maximum likelihood estimation. According to this framework, a prob-
ability distribution (class label) for the target variable must be assumed, and then
a probability function must be defined that calculates the probability of observing
the result given the input data and the model. This function can be optimized to
find the parameter set that gives the largest sum in the training dataset.

3.11 Model Explanation with XAI
A collection of procedures and methods known as Explainable Artificial Intelligence
(XAI) enables consumers to comprehend and believe the findings and conclusions
reached by machine learning algorithms. In descriptive AI[53], the AI model, its an-
ticipated effects, and any potential biases are all described. It helps model accuracy,
fairness, transparency and outcomes in AI-based decision-making. Interpretable AI
is critical for an organization to build trust and confidence when building AI models.
Understanding AI allows an organization to approach AI development responsibly.

As artificial intelligence becomes more sophisticated, humans are challenged to un-
derstand and rethink how algorithms produce results. The entire computer process
is often referred to as a ”black box” that is almost impossible to interpret. These
black box models are generated directly from the data. Furthermore, even the en-
gineers or data scientists who create the algorithm cannot understand or explain
exactly what is happening inside them or how the AI algorithm arrived at a certain
result. We have used LIME and SHAP both XAI methods for a model explanation.

3.11.1 Locally Interpreted Model-agnostic Explanations
LIME, or locally interpreted model-agnostic explanations, is a method that reliably
interprets the predictions of any classifier or regression by approximating them lo-
cally with an explanatory model. The model changes the data by changing the
attribute values and observes the effect on the result[57]. It plays the role of an ”ex-
plainer” to explain the predictions of each data model. The LIME output is a set
of descriptors representing the contribution of each feature to the model prediction,

35

which is a form of the local descriptor. In the result section, the detailed LIME
explanation is shown for every machine learning algorithm.

3.11.2 SHapley Additive exPlanations
SHAP (Shapley Additive Explanations) is a method for interpreting individual pre-
dictions based on the optimal Shapley value in game theory[63]. The Shapley value
is a widely used method in cooperative game theory and has desirable properties.
Data instance eigenvalues act as federation members. The Shapley value is the av-
erage minimum contribution of the eigenvalues across all possible coalitions. In the
result section, the detailed SHAP explanation is shown for every machine learning
algorithm.

3.12 Ensemble Model
Ensemble modeling is the process of running two or more related but separate an-
alytical models and then combining the results into a single estimate or extension
to improve the accuracy of predictive analytic and data mining applications. In
predictive modeling and other types of data analysis, individual models based on
data models may suffer from biases, high variability, or inaccuracies that affect the
reliability of the analysis results[65]. Similar disadvantages can occur when special
modeling methods are used. By combining different models or analyzing multiple
models, data scientists and other data analysts can reduce the impact of these limi-
tations and better inform business decision makers. Integrated modeling is gaining
popularity as more organizations use the computing resources and advanced analytic
software required to run these models. In addition, advances in Hadoop and other
big data technologies have enabled companies to store and analyze large amounts
of data, giving them more opportunities to run analytical models on different types
of data.

We used voting classifier for ensemble all the machine learning classifiers with an
estimator[55]. We chose voting = ‘soft’ in the voting classifier and cross-validated all
the models where we took k fold as cross-validator.A voting classifier is a machine
learning model that predicts an output (class) based on the likelihood that the class
will be chosen as the output. It is trained on an ensemble of models. The output
class is simply predicted based on the voting classifier’s largest majority of votes
after the results of each classifier that was provided to it have been aggregated.
The goal is to create a model that is trained using those models and predicts the
outcome based on their majority votes for each output class rather than creating
individual-specific models and determining each model’s correctness. The voting
classifier accepts two different voting methods.

• Hard Voting: The class with the biggest majority, or the class with the
highest probability predicted by each classifier, is the projected exit class in
hard voting. If three classifiers are used, the majority of them will predict A
as the output in this case (A, A, B). A will thus be the last forecast.

• Soft voting: The output class is a forecast based on the typical value of that
class’s probability. The three models’ projected probabilities for classes A =

36

(0.30, 0.47, 0.53) and B = (0.30, 0.47, 0.53) are based on certain input data
(0.20, 0.32, 0.40). Class A is the winner because it has the highest average
probability, with a mean of 0.4333 compared to class B’s average of 0.3067.

Finally, we measured performance metrics and evaluated the detailed results of this
ensemble learning model.

37

Chapter 4

Result and Analysis

In this section, the results of our proposed models and analyzes will be discussed.
Here, the resulting segment will contain the general implementation of the proposed
model with a presentation boundary. The analysis will include comparing our re-
sults and evaluating our results, as well as an in-depth discussion of our overall
performance and model.

4.1 Dataset Visualization
In our dataset, there are almost 44,120 rows and 7 columns are specified. First
row contains the title of each column. Rest of the rows indicate different comments
along with labeling. First column is ‘Comments’ column. Rest of the 6 columns are
‘Not Bully’, ‘Religious’, ‘Sexual’, ‘Threat’, ‘Troll’, and ‘Slang’. Figure 4.1 shows the
Comment length of the overall dataset.

Figure 4.1: Length of Comments

As we are doing multi-label classification, each class is identical with binary value
of 0 and 1. Where 1 depicts that the comment belongs to particular of that class
and 0 depicts that the comment does not belong to particular of that class.

38

Figure 4.2: Frequency of Labels

Figure 4.2 shows label frequency of each class where the label value is 1. On the
other side, figure 4.3 shows both label frequency of each class where the label value
is 1 and 0.

Figure 4.3: Frequency of both Labels

The correlation coefficients between variables are displayed in a table called a corre-
lation matrix. The association between two variables is displayed in each cell of the
table. Data are compiled using the correlation matrix, which is also utilised as an
input for advanced analysis and as a diagnostic for that analysis. Figure 4.4 shows
that ‘Sexual’, comments are most strongly correlated with ‘Threat’ and ‘Religious’
class. Moreover ‘Not Bully’ and all other classes have weak correlation. It also
shows the class ‘Slang’ has the weakest correlation with all classes.

39

Figure 4.4: Visual representation of correlation between classes

There are lots of comments containing in our data set. These comments contain
some common religious words also. Because of this re occurrence of words, we have
tried to show them in Word Cloud.

Figure 4.5: Bangla Word cloud

These Word Cloud images will show those common Bengali religious words that are
using in day-to-day life. Figure 4.5 is an example of Word Cloud of our Bengali
dataset.

4.2 Model Tuning
Visualizing the performance of any machine learning model is an easy way to un-
derstand the data generated by the model and make informed decisions about pa-

40

rameters that affect the machine learning model or changes that need to be made
to higher parameters.

Figure 4.6: Model Loss

The original data set is divided so that 40% of the total data is designated as the
test set and the rest is left as the training set. The trainer is redistributed so that
40% of the trainer is assigned as the validation set and the rest is used for training
purposes.

Figure 4.7: Model Accuracy

Of the total dataset, 60% is considered as the training set and 40% as the validation
set. Model accuracy and loss data for each period is stored in the history object.
Figure 4.6 plots the graph of the training loss vs. validation loss over the number of
25 epochs. On the other hand, Figure 4.7 plots the graph of the training accuracy
vs. validation accuracy over the number of 25 epochs.

Figure 4.8: Model Loss vs Epoch

As we set 25 epochs on our model fitting, figure 4.8 shows the graph of the training
loss over the number of 25 epochs.

41

Figure 4.9: Model Accuracy vs Epoch

Here again, figure 4.9 shows the graph of the training accuracy over the number of
25 epochs.

4.3 Comparison with Transformer Models
As we discussed in the methodology section that we have used our dataset on mul-
tiple pre-trained transformer models[66]. We have used a couple of same sentences
to predict the result. Here, we stacked all the model results along with our hybrid
deep learning model to see the comparison of the prediction. Table 4.1 depicts the
prediction of the neural space reverie Indic transformers bn RoBERTa pre-trained
model.

Comments Not Bully Religious Sexual Threat Troll Slang
সব মালাউন খারাপ 1% 93% 1% 3% 1% 0%
ডানা কাটা পির 1% 93% 1% 3% 1% 0%

জবাই কইরা িদেবা শালাের 0% 0% 4% 1% 95% 0%
শালী নািস্তেকর বাচ্চা 1% 99% 1% 1% 1% 0%
শািলর ফািস চাই 7% 4% 2% 92% 3% 0%

আমােদর েদশ সুন্দর 99% 0% 0% 0% 1% 0%
িদচ ইচ চুদা কিবর 1% 1% 97% 1% 3% 22%

আপনার ডাক নাম নািক িপৰ্য়া 45% 1% 1% 0% 43% 0%

Table 4.1: Neural Space RoBERTa

This is a RoBERTa language model pre-trained on a single language training set of
6 GB. The pre-training data is mostly taken from OSCAR. This model can be con-
figured for various low-level tasks such as text classification, POS tagging, question
answering, etc. Embedding this model can also be used for feature-based learning.
Table 4.2 depicts the prediction of the neural space reverie Indic transformers bn
BERT pre-trained model.

42

Comments Not Bully Religious Sexual Threat Troll Slang
সব মালাউন খারাপ 3% 47% 1% 1% 59% 0%
ডানা কাটা পির 40% 0% 16% 1% 40% 0%

জবাই কইরা িদেবা শালাের 4% 3% 2% 93% 8% 0%
শালী নািস্তেকর বাচ্চা 3% 70% 10% 1% 15% 0%
শািলর ফািস চাই 2% 12% 1% 89% 6% 0%

আমােদর েদশ সুন্দর 95% 3% 1% 3% 1% 0%
িদচ ইচ চুদা কিবর 7% 2% 58% 0% 30% 16%

আপনার ডাক নাম নািক িপৰ্য়া 9% 27% 5% 0% 14% 3%

Table 4.2: Neural Space BERT

This is a BERT language model pre-trained on a single language training set of 3
GB. The pre-training data is mostly taken from OSCAR. This model can be con-
figured for various low-level tasks such as text classification, POS tagging, question
answering, etc. Embedding this model can also be used for feature-based learning.
Table 4.3 depicts the prediction of the monsoon NLP Bangla ELECTRA pre-trained
model.

Comments Not Bully Religious Sexual Threat Troll Slang
সব মালাউন খারাপ 4% 62% 16% 7% 6% 0%
ডানা কাটা পির 8% 14% 8% 6% 63% 0%

জবাই কইরা িদেবা শালাের 13% 7% 11% 10% 80% 0%
শালী নািস্তেকর বাচ্চা 8% 83% 8% 11% 8% 3%
শািলর ফািস চাই 4% 9% 19% 8% 53% 4%

আমােদর েদশ সুন্দর 92% 6% 6% 4% 7% 0%
িদচ ইচ চুদা কিবর 12% 7% 81% 10% 15% 31%

আপনার ডাক নাম নািক িপৰ্য়া 25% 4% 9% 4% 67% 0%

Table 4.3: Bangla ELECTRA

This is the second trial of a Bengali/Bengali language model trained by Google
Research’s ELECTRA. The pre-training data is mostly taken from OSCAR. This
model can be configured for various low-level tasks such as text classification, POS
tagging, question answering, etc. Embedding this model can also be used for feature-
based learning. Table 4.4 depicts the prediction of the Sagor Sarkar Bangla BERT
Base pre-trained model.

43

Comments Not Bully Religious Sexual Threat Troll Slang
সব মালাউন খারাপ 1% 98% 1% 0% 1% 0%
ডানা কাটা পির 35% 0% 9% 1% 43% 0%

জবাই কইরা িদেবা শালাের 4% 2% 1% 95% 2% 0%
শালী নািস্তেকর বাচ্চা 1% 99% 1% 1% 1% 0%
শািলর ফািস চাই 3% 2% 2% 94% 2% 4%

আমােদর েদশ সুন্দর 99% 0% 1% 1% 1% 0%
িদচ ইচ চুদা কিবর 0% 1% 97% 0% 2% 1%

আপনার ডাক নাম নািক িপৰ্য়া 58% 0% 2% 0% 45% 0%

Table 4.4: Bangla BERT base

The Sagor Sarkar Bangla Part Base Model is a natural language processing (NLP)
model implemented in the Transformer library, typically using the Python program-
ming language. Bangla-BERT-BASE is a pre-trained Bengali language model that
uses the masked language model described in BERT. Table 4.5 depicts the prediction
of the Indic BERT pre-trained model.

Comments Not Bully Religious Sexual Threat Troll Slang
সব মালাউন খারাপ 1% 6% 6% 26% 65% 0%
ডানা কাটা পির 25% 0% 8% 1% 61% 0%

জবাই কইরা িদেবা শালাের 5% 0% 60% 1% 34% 0%
শালী নািস্তেকর বাচ্চা 2% 4% 1% 96% 2% 0%
শািলর ফািস চাই 1% 1% 16% 4% 74% 0%

আমােদর েদশ সুন্দর 98% 1% 1% 1% 1% 0%
িদচ ইচ চুদা কিবর 5% 0% 88% 1% 8% 25%

আপনার ডাক নাম নািক িপৰ্য়া 68% 1% 3% 2% 26% 0%

Table 4.5: Indic BERT

Assamese, Bengali, English, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya,
Punjabi, Tamil, and Telugu are just a few of the main Indian languages that the
multilingual Albert model, known as Indic BERT, has been taught on. Despite
having a lot less parameters than other generic models like mBERT and XLM-R,
Indic BERT can handle many jobs better. The prediction made by the BERT
multilingual base pre-trained model is shown in Table 4.6.

Comments Not Bully Religious Sexual Threat Troll Slang
সব মালাউন খারাপ 2% 71% 7% 22% 5% 0%
ডানা কাটা পির 4% 1% 6% 2% 92% 0%

জবাই কইরা িদেবা শালাের 10% 6% 4% 85% 12% 0%
শালী নািস্তেকর বাচ্চা 8% 6% 7% 82% 1% 0%
শািলর ফািস চাই 13% 9% 5% 89% 8% 0%

আমােদর েদশ সুন্দর 97% 2% 1% 1% 2% 0%
িদচ ইচ চুদা কিবর 12% 20% 29% 0% 20% 2%

আপনার ডাক নাম নািক িপৰ্য়া 12% 12% 14% 1% 59% 0%

Table 4.6: BERT multilingual base

44

Pre-trained model on the top 102 languages with largest Wikipedia using Masked
Language Modeling (MLM) target. BERT is a transform model that is pre-trained
on a large set of multilingual data in a self-supervised manner. This means that it
only pre-trains on the source texts and does not label them in any way (which is why
it can use a lot of public data) through an automatic process. Create records and
tags from these texts. Table 4.7 depicts the prediction of the neural space reverie
Indic transformers bn DistilBERT pre-trained model.

Comments Not Bully Religious Sexual Threat Troll Slang
সব মালাউন খারাপ 4% 90% 3% 3% 4% 0%
ডানা কাটা পির 30% 0% 4% 0% 66% 0%

জবাই কইরা িদেবা শালাের 2% 2% 3% 81% 18% 0%
শালী নািস্তেকর বাচ্চা 2% 75% 12% 81% 8% 0%
শািলর ফািস চাই 7% 3% 5% 89% 5% 0%

আমােদর েদশ সুন্দর 96% 2% 1% 2% 2% 0%
িদচ ইচ চুদা কিবর 15% 4% 56% 2% 37% 5%

আপনার ডাক নাম নািক িপৰ্য়া 26% 3% 3% 0% 55% 0%

Table 4.7: Neural Space DistilBERT

This is a DistilBERT language model pre-trained on a single language training set of
6 GB. The pre-training data is mostly taken from OSCAR. This model can be con-
figured for various low-level tasks such as text classification, POS tagging, question
answering, etc. Embedding this model can also be used for feature-based learning.
Table 4.8 depicts the prediction of the neural space reverie Indic transformers bn
XLM-RoBERTa pre-trained model.

Comments Not Bully Religious Sexual Threat Troll Slang
সব মালাউন খারাপ 0% 97% 0% 1% 1% 0%
ডানা কাটা পির 2% 0% 95% 1% 2% 0%

জবাই কইরা িদেবা শালাের 7% 2% 1% 94% 1% 0%
শালী নািস্তেকর বাচ্চা 1% 99% 1% 1% 1% 0%
শািলর ফািস চাই 6% 2% 1% 93% 1% 0%

আমােদর েদশ সুন্দর 99% 1% 0% 1% 1% 0%
িদচ ইচ চুদা কিবর 0% 1% 96% 0% 4% 29%

আপনার ডাক নাম নািক িপৰ্য়া 25% 0% 1% 0% 75% 0%

Table 4.8: Neural Space XLM-RoBERTa

This is an XLM-RoBERTa language model pre-trained on a single language training
set of 6 GB. The pre-training data is mostly taken from OSCAR. This model can
be configured for various low-level tasks such as text classification, POS tagging,
question answering, etc. Embedding this model can also be used for feature-based
learning.

45

Comments Not Bully Religious Sexual Threat Troll Slang
সব মালাউন খারাপ 0% 100% 0% 0% 0% 22%
ডানা কাটা পির 72% 0% 0% 0% 54% 0%

জবাই কইরা িদেবা শালাের 0% 0% 0% 100% 0% 0%
শালী নািস্তেকর বাচ্চা 0% 100% 0% 0% 0% 0%
শািলর ফািস চাই 0% 0% 0% 100% 0% 0%

আমােদর েদশ সুন্দর 100% 0% 0% 0% 0% 0%
িদচ ইচ চুদা কিবর 0% 0% 61% 0% 93% 51%

আপনার ডাক নাম নািক িপৰ্য়া 100% 0% 1% 0% 0% 0%

Table 4.9: Hybrid Deep Learning

Table 4.9 indicates the prediction of our hybrid deep learning model. Here, we can
see that this model can precisely predict the value of each sentence.

Comments Not Bully Religious Sexual Threat Troll Slang
সব মালাউন খারাপ NO YES NO NO NO NO
ডানা কাটা পির YES NO NO NO YES NO

জবাই কইরা িদেবা শালাের NO NO NO YES NO NO
শালী নািস্তেকর বাচ্চা NO YES NO NO NO NO
শািলর ফািস চাই NO NO NO YES NO NO

আমােদর েদশ সুন্দর YES NO NO NO NO NO
িদচ ইচ চুদা কিবর NO NO YES NO YES YES

আপনার ডাক নাম নািক িপৰ্য়া YES NO NO NO NO NO

Table 4.10: Hybrid Deep Learning (Binary)

Table 4.10 depicts the binary prediction of our model where 0 indicates as NO and
1 indicates as YES. And this prediction is based on previous table where a value of
each class is less than 50% is depicts as NO and otherwise it marked as YES.

46

Figure 4.10: Epoch vs Loss (All Models)

Figure 4.10 shows that the total epochs and loss of each pre-trained transformer
model including our hybrid ones. Here, we took only first 5 epochs for all the
models.

Figure 4.11: Model vs Accuracy (All Models)

Figure 4.11 shows that the accuracy of all the pre-trained models including our
hybrid deep learning model. Here, we can see that the accuracy of our model is
slightly better than other pre-trained models.

4.4 Applying Machine Learning Algorithms
As we discussed before that we are using eight machine learning algorithms. Here
is the result and the visualization for each machine learning algorithms. In this
section, we are showing feature importance, confusion matrix, validation score, etc.
As well as we are showing SHAP and LIME explanation in this section.

4.4.1 Feature Analysis
In this section we are showing the result of feature importance, confusion matrix,
cross validation score, recursive feature elimination, validation curve and learning

47

curve for particular machine learning algorithms.

Feature importance

Feature importance indicates which contexts had the greatest impact on each pre-
diction made by classification or regression analysis[70]. Each attribute importance
value has a value and a direction (positive or negative) that indicate how each field
(or data point attribute) affects a particular prediction. It assigns a score to the in-
put characteristics based on their importance in predicting the outcome. The more
features are responsible for predicting the outcome, the higher their rating. It can
be applied to classification and regression problems.

Figure 4.12: Feature Importance of XGBoost

Figure 4.12 shows the feature importance of XGBoost classifier. Here we can see
that, XGBoost classifier takes mostly Troll, Sexual, and Religious class as feature
importance.

Figure 4.13: Feature Importance of Random Forest

Figure 4.13 shows the feature importance of Random Forest classifier. Here we can
see that, Random Forest classifier takes mostly Troll, Sexual, and Religious class as
feature importance.

48

Figure 4.14: Feature Importance of Decision Trees

Figure 4.14 shows the feature importance of Decision Trees classifier. Here we can
see that, Decision Trees classifier takes mostly Troll, and Sexual class as feature
importance.

Figure 4.15: Feature Importance of AdaBoost

Figure 4.15 shows the feature importance of AdaBoost classifier. Here we can see
that, AdaBoost classifier takes mostly Troll, Threat, Sexual, and Religious class as
feature importance.

Figure 4.16: Feature Importance of Gradient Boosting

Figure 4.16 shows the feature importance of Gradient Boosting classifier. Here we
can see that, Gradient Boosting classifier takes mostly Troll, Sexual, and Religious
class as feature importance.

49

Figure 4.17: Feature Importance of Extra Trees

Figure 4.17 shows the feature importance of Extra Trees classifier. Here we can see
that, Extra Trees classifier takes mostly Troll, Sexual, and Religious class as feature
importance.

Figure 4.18: Feature Importance of Light GBM

Figure 4.18 shows the feature importance of Light GBM classifier. Here we can see
that, Light GBM classifier takes mostly Troll, Sexual, and Religious class as feature
importance.

Figure 4.19: Feature Importance of Cat Boost

Figure 4.19 shows the feature importance of Cat Boost classifier. Here we can see
that, Cat Boost classifier takes mostly Troll, Sexual, and Religious class as feature
importance.

50

Confusion Matrix

Confusion matrices show the number of predicted and actual values[48]. The ”TN”
output stands for True Negative, indicating the number of accurately classified nega-
tive samples. The term ”TP” stands for true positive, which denotes the quantity of
positively identified samples that are correctly categorised. The abbreviation ”FP”
stands for ”false positive,” which refers to the number of genuine negative samples
that were mistakenly labelled as positive. and ”FN” is the number of real positive
samples that were mistakenly labelled as negative. Accuracy is one of the most
popular categorization standards.

Figure 4.20: Confusion Matrix of XGBoost

Figure 4.20 shows the confusion matrix for the model using XGBoost where we have
used our dataset. This dataset contains only toxic and non-toxic labelled data. In
the matrix, we have true values on Y axis and predicted values on the X axis. The
values from the matrix represents as below:

TP (true positive): Here we get 7192 as our true positive which indicates at 7192
cases the classifier predicted as ‘toxic’ and actually the text was ‘toxic’.

FN (false negative): Here we get 0 as our true negative which indicates at 0 cases
the classifier predicted as ‘non-toxic’ and actually the text was ‘toxic’.

FP (false positive): Here we get 0 as our false positive which indicates at 0 cases
the classifier predicted as ‘toxic’ and actually the text was ‘non-toxic’.

TN (true negative): Here we get 7099 as our true negative which indicates at 7099
cases the classifier predicted as ‘non-toxic’ and actually the text was ‘non-toxic’.

51

Figure 4.21: Confusion Matrix of Random Forest

Figure 4.21 shows the confusion matrix for the model using Random Forest where
we have used our dataset. This dataset contains only toxic and non-toxic labelled
data. In the matrix, we have true values on Y axis and predicted values on the X
axis. The values from the matrix represents as below:

TP (true positive): Here we get 7192 as our true positive which indicates at 7192
cases the classifier predicted as ‘toxic’ and actually the text was ‘toxic’.

FN (false negative): Here we get 0 as our true negative which indicates at 0 cases
the classifier predicted as ‘non-toxic’ and actually the text was ‘toxic’.

FP (false positive): Here we get 458 as our false positive which indicates at 458
cases the classifier predicted as ‘toxic’ and actually the text was ‘non-toxic’.

TN (true negative): Here we get 6641 as our true negative which indicates at 6641
cases the classifier predicted as ‘non-toxic’ and actually the text was ‘non-toxic’.

Figure 4.22: Confusion Matrix of Decision Trees

Figure 4.22 shows the confusion matrix for the model using Decision Trees where
we have used our dataset. This dataset contains only toxic and non-toxic labelled
data. In the matrix, we have true values on Y axis and predicted values on the X
axis. The values from the matrix represents as below:

52

TP (true positive): Here we get 7192 as our true positive which indicates at 7192
cases the classifier predicted as ‘toxic’ and actually the text was ‘toxic’.

FN (false negative): Here we get 0 as our true negative which indicates at 0 cases
the classifier predicted as ‘non-toxic’ and actually the text was ‘toxic’.

FP (false positive): Here we get 2268 as our false positive which indicates at 2268
cases the classifier predicted as ‘toxic’ and actually the text was ‘non-toxic’.

TN (true negative): Here we get 4881 as our true negative which indicates at 4881
cases the classifier predicted as ‘non-toxic’ and actually the text was ‘non-toxic’.

Figure 4.23: Confusion Matrix of AdaBoost

Figure 4.23 shows the confusion matrix for the model using AdaBoost where we
have used our dataset. This dataset contains only toxic and non-toxic labelled data.
In the matrix, we have true values on Y axis and predicted values on the X axis.
The values from the matrix represents as below:

TP (true positive): Here we get 7192 as our true positive which indicates at 7192
cases the classifier predicted as ‘toxic’ and actually the text was ‘toxic’.

FN (false negative): Here we get 0 as our true negative which indicates at 0 cases
the classifier predicted as ‘non-toxic’ and actually the text was ‘toxic’.

FP (false positive): Here we get 0 as our false positive which indicates at 0 cases
the classifier predicted as ‘toxic’ and actually the text was ‘non-toxic’.

TN (true negative): Here we get 7099 as our true negative which indicates at 7099
cases the classifier predicted as ‘non-toxic’ and actually the text was ‘non-toxic’.

53

Figure 4.24: Confusion Matrix of Gradient Boosting

Figure 4.24 shows the confusion matrix for the model using Gradient Boosting where
we have used our dataset. This dataset contains only toxic and non-toxic labelled
data. In the matrix, we have true values on Y axis and predicted values on the X
axis. The values from the matrix represents as below:

TP (true positive): Here we get 7192 as our true positive which indicates at 7192
cases the classifier predicted as ‘toxic’ and actually the text was ‘toxic’.

FN (false negative): Here we get 0 as our true negative which indicates at 0 cases
the classifier predicted as ‘non-toxic’ and actually the text was ‘toxic’.

FP (false positive): Here we get 0 as our false positive which indicates at 0 cases
the classifier predicted as ‘toxic’ and actually the text was ‘non-toxic’.

TN (true negative): Here we get 7099 as our true negative which indicates at 7099
cases the classifier predicted as ‘non-toxic’ and actually the text was ‘non-toxic’.

Figure 4.25: Confusion Matrix of Extra Trees

Figure 4.25 shows the confusion matrix for the model using Extra Trees where we
have used our dataset. This dataset contains only toxic and non-toxic labelled data.
In the matrix, we have true values on Y axis and predicted values on the X axis.
The values from the matrix represents as below:

54

TP (true positive): Here we get 7179 as our true positive which indicates at 7179
cases the classifier predicted as ‘toxic’ and actually the text was ‘toxic’.

FN (false negative): Here we get 13 as our true negative which indicates at 13 cases
the classifier predicted as ‘non-toxic’ and actually the text was ‘toxic’.

FP (false positive): Here we get 456 as our false positive which indicates at 456
cases the classifier predicted as ‘toxic’ and actually the text was ‘non-toxic’.

TN (true negative): Here we get 6643 as our true negative which indicates at 6643
cases the classifier predicted as ‘non-toxic’ and actually the text was ‘non-toxic’.

Figure 4.26: Confusion Matrix of Light GBM

Figure 4.26 shows the confusion matrix for the model using Light GBM where we
have used our dataset. This dataset contains only toxic and non-toxic labelled data.
In the matrix, we have true values on Y axis and predicted values on the X axis.
The values from the matrix represents as below:

TP (true positive): Here we get 7186 as our true positive which indicates at 7186
cases the classifier predicted as ‘toxic’ and actually the text was ‘toxic’.

FN (false negative): Here we get 6 as our true negative which indicates at 6 cases
the classifier predicted as ‘non-toxic’ and actually the text was ‘toxic’.

FP (false positive): Here we get 24 as our false positive which indicates at 24 cases
the classifier predicted as ‘toxic’ and actually the text was ‘non-toxic’.

TN (true negative): Here we get 7075 as our true negative which indicates at 7075
cases the classifier predicted as ‘non-toxic’ and actually the text was ‘non-toxic’.

55

Figure 4.27: Confusion Matrix of Cat Boost

Figure 4.27 shows the confusion matrix for the model using Cat Boost where we
have used our dataset. This dataset contains only toxic and non-toxic labelled data.
In the matrix, we have true values on Y axis and predicted values on the X axis.
The values from the matrix represents as below:

TP (true positive): Here we get 7180 as our true positive which indicates at 7180
cases the classifier predicted as ‘toxic’ and actually the text was ‘toxic’.

FN (false negative): Here we get 12 as our true negative which indicates at 12 cases
the classifier predicted as ‘non-toxic’ and actually the text was ‘toxic’.

FP (false positive): Here we get 28 as our false positive which indicates at 28 cases
the classifier predicted as ‘toxic’ and actually the text was ‘non-toxic’.

TN (true negative): Here we get 7071 as our true negative which indicates at 7071
cases the classifier predicted as ‘non-toxic’ and actually the text was ‘non-toxic’.

Recursive Feature Elimination

RFE is popular because it is easy to construct and use[60], and it is useful for
selecting those features (columns) in the training dataset that are most or most
related to the prediction of the target variable. There are two important tuning
parameters when using RFE: the number of features to select and the choice of
feature selection algorithm. Both of these hyperparameters can be tested, although
the effectiveness of the method does not depend on the good structure of these
hyperparameters.

56

Figure 4.28: Recursive Feature Elimination of XGBoost

Figure 4.28 shows the recursive feature elimination of cross validation for XGBoost
classifier. Here, it takes 4 no of features for recursive feature elimination and obtains
a score of 1.000.

Figure 4.29: Recursive Feature Elimination of Random Forest

Figure 4.29 shows the recursive feature elimination of cross validation for Random
Forest classifier. Here, it takes 5 no of features for recursive feature elimination and
obtains a score of 1.000.

57

Figure 4.30: Recursive Feature Elimination of Decision Tree

Figure 4.30 shows the recursive feature elimination of cross validation for Decision
Tree classifier. Here, it takes 2 no of features for recursive feature elimination and
obtains a score of 0.794.

Figure 4.31: Recursive Feature Elimination of AdaBoost

Figure 4.31 shows the recursive feature elimination of cross validation for AdaBoost
classifier. Here, it takes 4 no of features for recursive feature elimination and obtains
a score of 1.000.

58

Figure 4.32: Recursive Feature Elimination of Gradient Boosting

Figure 4.32 shows the recursive feature elimination of cross validation for Gradient
Boosting classifier. Here, it takes 4 no of features for recursive feature elimination
and obtains a score of 1.000.

Figure 4.33: Recursive Feature Elimination of Extra Trees

Figure 4.33 shows the recursive feature elimination of cross validation for Extra
Trees classifier. Here, it takes 5 no of features for recursive feature elimination and
obtains a score of 0.996.

59

Figure 4.34: Recursive Feature Elimination of Light GBM

Figure 4.34 shows the recursive feature elimination of cross validation for Light GBM
classifier. Here, it takes 4 no of features for recursive feature elimination and obtains
a score of 1.000.

Cross Validation Score

CV means Cross Validation. It is a method of using existing training data to inform
your model[6] and using that data to predict how well the model can predict new
data results. This is useful when you have a small data set and want to increase
the size of the training set after you have enough validation sets to make good
predictions about the quality of the model.

Figure 4.35: Cross-validation scores of XGBoost

Figure 4.35 shows the cross-validation score of XGBoost classifier. For cross valida-
tion, we used a k-fold approach. In this approach, the data set is divided into 10
(k=10) number of subsets, or ”folds,” before training is carried out on each subset,
but only one (k=1) subset is used to evaluate the trained model. This approach
involves 10 iterations, with a new subset set aside for testing each time. We used

60

f1-weighted for measuring scores. After performing 10 iterations, we got the mean
score of 1.0.

Figure 4.36: Cross-validation scores of Random Forest

Figure 4.36 shows the cross-validation score of Random Forest classifier. For cross
validation, we used a k-fold approach. In this approach, the data set is divided
into 10 (k=10) number of subsets, or ”folds,” before training is carried out on each
subset, but only one (k=1) subset is used to evaluate the trained model. This
approach involves 10 iterations, with a new subset set aside for testing each time.
We used f1-weighted for measuring scores. After performing 10 iterations, we got
the mean score of 1.0.

Figure 4.37: Cross-validation scores of Decision Trees

Figure 4.37 shows the cross-validation score of Random Decision Tree classifier. For
cross validation, we used a k-fold approach. In this approach, the data set is divided
into 10 (k=10) number of subsets, or ”folds,” before training is carried out on each
subset, but only one (k=1) subset is used to evaluate the trained model. This
approach involves 10 iterations, with a new subset set aside for testing each time.
We used f1-weighted for measuring scores. After performing 10 iterations, we got
the mean score of 0.794.

61

Figure 4.38: Cross-validation scores of AdaBoost

Figure 4.38 shows the cross-validation score of AdaBoost classifier. For cross vali-
dation, we used a k-fold approach. In this approach, the data set is divided into 10
(k=10) number of subsets, or ”folds,” before training is carried out on each subset,
but only one (k=1) subset is used to evaluate the trained model. This approach
involves 10 iterations, with a new subset set aside for testing each time. We used
f1-weighted for measuring scores. After performing 10 iterations, we got the mean
score of 1.0.

Figure 4.39: Cross-validation scores of Gradient Boosting

Figure 4.39 shows the cross-validation score of Gradient Boosting classifier. For
cross validation, we used a k-fold approach. In this approach, the data set is divided
into 10 (k=10) number of subsets, or ”folds,” before training is carried out on each
subset, but only one (k=1) subset is used to evaluate the trained model. This
approach involves 10 iterations, with a new subset set aside for testing each time.
We used f1-weighted for measuring scores. After performing 10 iterations, we got
the mean score of 1.0

62

Figure 4.40: Cross-validation scores of Extra Trees

Figure 4.40 shows the cross-validation score of Extra Tree classifier. For cross vali-
dation, we used a k-fold approach. In this approach, the data set is divided into 10
(k=10) number of subsets, or ”folds,” before training is carried out on each subset,
but only one (k=1) subset is used to evaluate the trained model. This approach
involves 10 iterations, with a new subset set aside for testing each time. We used
f1-weighted for measuring scores. After performing 10 iterations, we got the mean
score of 0.996.

Figure 4.41: Cross-validation scores of Light GBM

Figure 4.41 shows the cross-validation score of Light GBM classifier. For cross
validation, we used a k-fold approach. In this approach, the data set is divided
into 10 (k=10) number of subsets, or ”folds,” before training is carried out on each
subset, but only one (k=1) subset is used to evaluate the trained model. This
approach involves 10 iterations, with a new subset set aside for testing each time.
We used f1-weighted for measuring scores. After performing 10 iterations, we got
the mean score of 1.0.

63

Validation Curve

A validation curve is an important diagnostic tool that shows the sensitivity between
changes in the accuracy of a machine learning model and changes in some model
parameters[50]. A validation curve is usually drawn between some model parameters
and the model estimate. The validation curve has two curves - one for training set
estimation and one for cross-validation estimation.

The validation curve is used to evaluate an existing model based on the above
parameters, not to modify the model. This is because if we fit a model based on
a validation score, the model may be biased with respect to the specific data it is
fitted to. This is a poor estimate of the generalizability of the model.

Figure 4.42: Validation-curve for XGBoost

Figure 4.42 shows the validation-curve for XGBoost classifier. Here it shows that the
training score and validation score are in the same line. Here, we take 10 iterations
as max depth to validate the curve.

Figure 4.43: Validation-curve for Random Forest

64

Figure 4.43 shows the validation-curve for Random Forest classifier. Here it shows
that the training score and validation score are in the same line. Here, we take 10
iterations as max depth to validate the curve.

Figure 4.44: Validation-curve for Decision Trees

Figure 4.44 shows the validation-curve for Decision Tree classifier. Here it shows
that the training score and validation score are in the same line. Here, we take 10
iterations as max depth to validate the curve.

Figure 4.45: Validation-curve for AdaBoost

Figure 4.45 shows the validation-curve for AdaBoost classifier. Here it shows that
the training score and validation score are in the same line. But gradually the curve
line is going downward. Here, we take 10 iterations as max depth to validate the
curve.

65

Figure 4.46: Validation-curve for Gradient Boosting

Figure 4.46 shows the validation-curve for Gradient Boosting classifier. Here it
shows that the training score and validation score are almost in the same line. Here,
we take 10 iterations as max depth to validate the curve.

Figure 4.47: Validation-curve for Extra Trees

Figure 4.47 shows the validation-curve for Extra Tree classifier. Here it shows that
the training score and validation score are in the same line. Here, we take 10
iterations as max depth to validate the curve.

66

Figure 4.48: Validation-curve for Light GBM

Figure 4.48 shows the validation-curve for Light GBM classifier. Here it shows
that the training score and validation score are in the same line. Here, we take 10
iterations as max depth to validate the curve.

Learning Curves

For algorithms that gradually learn (optimise their internal parameters over time),
such as deep learning neural networks, learning curves are frequently employed in
machine learning[58]. A maximum criteria may be used to measure learning, in
which case larger scores indicate greater learning. Accuracy in classification is one
instance.

It is more typical to utilise a lower score, such as losses or errors, where better scores
(smaller numbers) denote more training and a value of 0.0 denotes that the training
dataset was successfully trained with no mistakes. Every stage of the machine
learning training procedure allows for the evaluation of the model’s present state.
On the basis of training data, the model may then be assessed to see how effectively it
”learns.” A dataset used for in-service validation that is separate from the training
dataset can also be used to assess it. The validation dataset evaluation provides
insight into how effectively the model ”generalises.”

Figure 4.49: Learning curves for XGBoost

Figure 4.49 shows, Learning curves for XGBoost. Keep in mind that both the

67

training score and the cross-validation score are excellent from beginning to end
and nearly identical. We can plainly see that the training score is still close to the
maximum and that adding more training samples will raise the validation score.
The second figure displays the lengths of time the models need to learn with varied
training dataset sizes. The final plot displays how long each training size took to
train the models.The performance of this model is initially increasing then remain
same to end.

Figure 4.50: Learning curves for Random Forest

Figure 4.50 shows, Learning curves for Random Forest. Keep in mind that both
the training score and the cross-validation score are excellent from beginning to end
and nearly identical. We can plainly see that the training score is still close to the
maximum and that adding more training samples will raise the validation score.
The second figure displays the lengths of time the models need to learn with varied
training dataset sizes. The final plot displays how long each training size took to
train the models. The performance of this model is gradually increasing.

Figure 4.51: Learning curves for Decision Trees

Figure 4.51 shows, Learning curves for Decision Trees. Keep in mind that both the
training score and the cross-validation score are excellent from beginning to end
and nearly identical. We can plainly see that the training score is still close to the
maximum and that adding more training samples will raise the validation score.
The second figure displays the lengths of time the models need to learn with varied
training dataset sizes. The final plot displays how long each training size took to
train the models. The performance of this model is same from start to end.

68

Figure 4.52: Learning curves for AdaBoost

Figure 4.52 shows, Learning curves for AdaBoost. Keep in mind that both the
training score and the cross-validation score are excellent from beginning to end
and nearly identical. We can plainly see that the training score is still close to the
maximum and that adding more training samples will raise the validation score.
The second figure displays the lengths of time the models need to learn with varied
training dataset sizes. The final plot displays how long each training size took to
train the models.The performance of this model is initially increasing then remain
same to end.

Figure 4.53: Learning curves for Gradient Boosting

Figure 4.53 shows, Learning curves for Gradient Boosting. Keep in mind that both
the training score and the cross-validation score are excellent from beginning to end
and nearly identical. We can plainly see that the training score is still close to the
maximum and that adding more training samples will raise the validation score.
The second figure displays the lengths of time the models need to learn with varied
training dataset sizes. The final plot displays how long each training size took to
train the models.The performance of this model is initially increasing then remain
same to end.

Figure 4.54: Learning curves for Extra Trees

69

Figure 4.54 shows, Learning curves for Extra Trees. Keep in mind that both the
training score and the cross-validation score are excellent from beginning to end
and nearly identical. We can plainly see that the training score is still close to the
maximum and that adding more training samples will raise the validation score.
The second figure displays the lengths of time the models need to learn with varied
training dataset sizes. The final plot displays how long each training size took to
train the models. The performance of this model is same from start to end.

Figure 4.55: Learning curves for Light GBM

Figure 4.55 shows, Learning curves for Light GBM. Keep in mind that both the
training score and the cross-validation score are excellent from beginning to end
and nearly identical. We can plainly see that the training score is still close to the
maximum and that adding more training samples will raise the validation score.
The second figure displays the lengths of time the models need to learn with varied
training dataset sizes. The final plot displays how long each training size took to
train the models. The performance of this model is exactly same from start to end.

Figure 4.56: Learning curves for Cat Boost

Figure 4.56 shows, Learning curves for Cat Boost. Keep in mind that both the
training score and the cross-validation score are excellent from beginning to end
and nearly identical. We can plainly see that the training score is still close to the
maximum and that adding more training samples will raise the validation score.
The second figure displays the lengths of time the models need to learn with varied
training dataset sizes. The final plot displays how long each training size took
to train the models. The performance of this model is initially increasing then
decreasing and finally again increasing.

70

Figure 4.57: Machine Learning Model Comparison

Figure 4.57 shows the Machine Learning model comparison for all the classifiers.
Here, we measured the F1-score for all the models along with 14 random state
values.

4.4.2 Explainability of ML Models
We have used both LIME and SHAP for model explanation. In this section, we are
showing the outcomes for our chosen machine learning models.

LIME

LIME provides local model descriptions. LIME modifies the data model by changing
attribute values and observing the effect on the output. This is often due to the
fact that people are interested in seeing the output of the model. We took one good
comment and one bad comment to see how each of the classifier performs.

Figure 4.58: LIME explanation of XGBoost

In figure 4.58, the model is 98% certain that the first comment is a good one. The
percentage of positive comments is increased by the class values. Next, let’s examine
a negative comment. The model predicts that the comment is unfavorable 99% of
the time, and the class values raise that probability.

71

Figure 4.59: LIME explanation of Random Forest

In figure 4.59, the model is 56% certain that the first comment is a good one. The
percentage of positive comments is increased by the class values. Next, let’s examine
a negative comment. The model predicts that the comment is unfavorable 78% of
the time, and the class values raise that probability.

Figure 4.60: LIME explanation of Decision Trees

In figure 4.60, the model is 63% certain that the first comment is a good one. The
percentage of positive comments is increased by the class values. Next, let’s examine
a negative comment. The model predicts that the comment is unfavorable 100% of
the time, and the class values raise that probability.

Figure 4.61: LIME explanation of AdaBoost

In figure 4.61, the model is 99% certain that the first comment is a good one. The
percentage of positive comments is increased by the class values. Next, let’s examine
a negative comment. The model predicts that the comment is unfavorable 99% of
the time, and the class values raise that probability.

72

Figure 4.62: LIME explanation of Gradient Boosting

In figure 4.62, the model is 98% certain that the first comment is a good one. The
percentage of positive comments is increased by the class values. Next, let’s examine
a negative comment. The model predicts that the comment is unfavorable 99% of
the time, and the class values raise that probability.

Figure 4.63: LIME explanation of Extra Trees

In figure 4.63, the model is 56% certain that the first comment is a good one. The
percentage of positive comments is increased by the class values. Next, let’s examine
a negative comment. The model predicts that the comment is unfavorable 77% of
the time, and the class values raise that probability.

Figure 4.64: LIME explanation of Light GBM

In figure 4.64, the model is 98% certain that the first comment is a good one. The
percentage of positive comments is increased by the class values. Next, let’s examine
a negative comment. The model predicts that the comment is unfavorable 99% of
the time, and the class values raise that probability.

73

Figure 4.65: LIME explanation of Cat Boost

In figure 4.65, the model is 100% certain that the first comment is a good one. The
percentage of positive comments is increased by the class values. Next, let’s examine
a negative comment. The model predicts that the comment is unfavorable 100% of
the time, and the class values raise that probability.

SHAP

A summary plot combines the importance of a function with its effects. Each point
in the abstract diagram is a Shapley value for a function and an event. The position
on the y-axis is determined by the characteristic and the Shapley value on the x-
axis. The color indicates the value of the attribute from low to high. The overlap
points are moved along the y-axis, so we get a distribution of Shapley values for
each function. Features are ranked by their importance.

Figure 4.66: SHAP summary plot of XGBoost

Figure 4.66 shows, SHAP summary plot of XGBoost. The summary plot gives you a
first hint of the relationship between feature values and their impact on predictions.

74

Figure 4.67: SHAP summary plot of Random Forest

Figure 4.67 shows, SHAP summary plot of Random Forest. The summary plot
gives you a first hint of the relationship between feature values and their impact on
predictions.

Figure 4.68: SHAP summary plot of Decision Trees

Figure 4.68 shows, SHAP summary plot of Decision Trees. The summary plot
gives you a first hint of the relationship between feature values and their impact on
predictions.

75

Figure 4.69: SHAP summary plot of Gradient Boosting

Figure 4.69 shows, SHAP summary plot of Gradient Boosting. The summary plot
gives you a first hint of the relationship between feature values and their impact on
predictions.

Figure 4.70: SHAP summary plot of Extra Trees

Figure 4.70 shows, SHAP summary plot of Extra Trees. The summary plot gives you
a first hint of the relationship between feature values and their impact on predictions.

76

Figure 4.71: SHAP summary plot of Light GBM

Figure 4.71 shows, SHAP summary plot of Light GBM. The summary plot gives you
a first hint of the relationship between feature values and their impact on predictions.

Figure 4.72: SHAP summary plot of Cat Boost

Figure 4.72 shows, SHAP summary plot of Cat Boost. The summary plot gives you a
first hint of the relationship between feature values and their impact on predictions.

You may determine which characteristics had the biggest impact on the model’s
forecast for a single observation using the SHAP force plot. This is especially helpful
if you ever need to justify something to your supervisor, like why your model told
you to reject a certain person’s loan application.

Figure 4.73: SHAP force plot of Random Forest

Figure 4.73 shows, SHAP force plot of Random Forest. In this case, the goal is to
determine if the statement is harmful or not. The model’s score for this observation
is indicated by the bold 1.0 in the plot above. Lower scores cause the model to

77

predict 0, whereas higher values cause it to predict 1. The elements that were
crucial to predicting this observation are depicted in red and blue, with red denoting
features that increased the model score and blue denoting traits that decreased the
score. The closer the feature is to the line separating red from blue, the more of
an influence it had on the score, and the size of the bar indicates how much of an
impact it had. So this particular comment is ultimately classified as toxic, because
they were pushed higher by all the factors shown in red.

Figure 4.74: SHAP force plot of Decision Trees

Figure 4.74 shows, SHAP force plot of Decision Trees. In this case, the goal is to
determine if the statement is harmful or not. The model’s score for this observation
is indicated by the bold 1.0 in the plot above. Lower scores cause the model to
predict 0, whereas higher values cause it to predict 1. The elements that were
crucial to predicting this observation are depicted in red and blue, with red denoting
features that increased the model score and blue denoting traits that decreased the
score. The closer the feature is to the line separating red from blue, the more of
an influence it had on the score, and the size of the bar indicates how much of an
impact it had. So this particular comment is ultimately classified as toxic, because
they were pushed higher by all the factors shown in red. Figure 4.75 shows, SHAP

Figure 4.75: SHAP force plot of Extra Trees

force plot of Extra Trees. In this case, the goal is to determine if the statement is
harmful or not. The model’s score for this observation is indicated by the bold 1.0
in the plot above. Lower scores cause the model to predict 0, whereas higher values
cause it to predict 1. The elements that were crucial to predicting this observation
are depicted in red and blue, with red denoting features that increased the model
score and blue denoting traits that decreased the score. The closer the feature is
to the line separating red from blue, the more of an influence it had on the score,
and the size of the bar indicates how much of an impact it had. So this particular
comment is ultimately classified as toxic, because they were pushed higher by all
the factors shown in red.

78

Figure 4.76: SHAP force plot of Light GBM

Figure 4.76 shows, SHAP force plot of Light GBM. In this case, the goal is to
determine if the statement is harmful or not. The model’s score for this observation
is indicated by the bold 10.61 in the plot above. Lower scores cause the model
to predict 0, whereas higher values cause it to predict 1. The elements that were
crucial to predicting this observation are depicted in red and blue, with red denoting
features that increased the model score and blue denoting traits that decreased the
score. The closer the feature is to the line separating red from blue, the more of
an influence it had on the score, and the size of the bar indicates how much of an
impact it had. So this particular comment is ultimately classified as toxic, because
they were pushed higher by all the factors shown in red.

The influence of a feature’s evidence on the model’s output is shown by the feature’s
SHAP value. The waterfall plot is made to show the evolution of the SHAP values
graphically. Unfortunately, we lack this knowledge. Given the evidence of all the
features, each feature shifts the model output from our previous expectation under
the background data distribution to the final model prediction. The features are
sorted by the magnitude of their SHAP values when the number of features in the
models exceeds the maximum display parameter, with the features with the smallest
magnitude clustered together at the bottom of the plot.

Figure 4.77: SHAP waterfall plot of Random Forest

Figure 4.77 shows, SHAP waterfall plot of Random Forest. Here, we use a waterfall
plot to illustrate an explanation of a single forecast. The effect of the evidence a fea-
ture provides on the model’s output is indicated by the feature’s SHAP value. With
the help of the waterfall plot, we can see clearly how the SHAP values (evidence)
of individual features change the model output from what we had first anticipated
based on the distribution of the background data to what the model predicts as a
whole when all the features are present.

79

Figure 4.78: SHAP waterfall plot of Decision Trees

Figure 4.78 shows, SHAP waterfall plot of Decision Trees. Here, we use a waterfall
plot to illustrate an explanation of a single forecast. The effect of the evidence a fea-
ture provides on the model’s output is indicated by the feature’s SHAP value. With
the help of the waterfall plot, we can see clearly how the SHAP values (evidence)
of individual features change the model output from what we had first anticipated
based on the distribution of the background data to what the model predicts as a
whole when all the features are present.

Figure 4.79: SHAP waterfall plot of Extra Trees

Figure 4.79 shows, SHAP waterfall plot of Extra Trees. Here, we use a waterfall plot
to illustrate an explanation of a single forecast. The effect of the evidence a feature
provides on the model’s output is indicated by the feature’s SHAP value. With
the help of the waterfall plot, we can see clearly how the SHAP values (evidence)
of individual features change the model output from what we had first anticipated
based on the distribution of the background data to what the model predicts as a
whole when all the features are present.

80

Figure 4.80: SHAP waterfall plot of Light GBM

Figure 4.80 shows, SHAP waterfall plot of Light GBM. Here, we use a waterfall plot
to illustrate an explanation of a single forecast. The effect of the evidence a feature
provides on the model’s output is indicated by the feature’s SHAP value. With
the help of the waterfall plot, we can see clearly how the SHAP values (evidence)
of individual features change the model output from what we had first anticipated
based on the distribution of the background data to what the model predicts as a
whole when all the features are present.

Another useful plot for interpreting the results is the dependence plot. This function
makes a simple dependence plot with feature values on the x-axis and SHAP values
on the y-axis. It is optional to color by another feature. By default, this function
makes a simple dependence plot with feature values on the x-axis and SHAP values
on the y-axis. You are welcome to use a different variable for the SHAP values on
the y-axis, and color the points by the value of a designated variable.

Figure 4.81: SHAP dependence plots of Random Forest

Figure 4.81 shows, SHAP dependence plots of Random Forest. One prediction (row)

81

from the dataset is represented by each dot. The value of the characteristic is on
the x-axis (from the X matrix). The feature’s SHAP value, which shows how much
the output of the model for the prediction of that sample changes when the value
of that feature is known, is plotted on the y-axis. The units in this model are the
prediction of toxicity in each comment. The color is associated with a secondary
feature that might interact with the feature we are graphing. A distinct vertical
pattern of coloring will appear if there is an interaction impact between this other
variable and the feature we are plotting. This implies an interaction impact between
slang and troll in the scenario.

Figure 4.82: SHAP dependence plots of Decision Trees

Figure 4.82 shows, SHAP dependence plots of Decision Trees. One prediction (row)
from the dataset is represented by each dot. The value of the characteristic is on
the x-axis (from the X matrix). The feature’s SHAP value, which shows how much
the output of the model for the prediction of that sample changes when the value
of that feature is known, is plotted on the y-axis. The units in this model are the
prediction of toxicity in each comment. The color is associated with a secondary
feature that might interact with the feature we are graphing. A distinct vertical
pattern of coloring will appear if there is an interaction impact between this other
variable and the feature we are plotting. This implies an interaction impact between
slang and troll in the scenario.

82

Figure 4.83: SHAP dependence plots of Extra Trees

Figure 4.83 shows, SHAP dependence plots of Extra Trees. One prediction (row)
from the dataset is represented by each dot. The value of the characteristic is on
the x-axis (from the X matrix). The feature’s SHAP value, which shows how much
the output of the model for the prediction of that sample changes when the value
of that feature is known, is plotted on the y-axis. The units in this model are the
prediction of toxicity in each comment. The color is associated with a secondary
feature that might interact with the feature we are graphing. A distinct vertical
pattern of coloring will appear if there is an interaction impact between this other
variable and the feature we are plotting. This implies an interaction impact between
slang and troll in the scenario.

Figure 4.84: SHAP dependence plots of Light GBM

Figure 4.84 shows, SHAP dependence plots of Light GBM. One prediction (row)
from the dataset is represented by each dot. The value of the characteristic is on
the x-axis (from the X matrix). The feature’s SHAP value, which shows how much
the output of the model for the prediction of that sample changes when the value
of that feature is known, is plotted on the y-axis. The units in this model are the

83

prediction of toxicity in each comment. The color is associated with a secondary
feature that might interact with the feature we are graphing. A distinct vertical
pattern of coloring will appear if there is an interaction impact between this other
variable and the feature we are plotting. This implies an interaction impact between
slang and troll in the scenario.

SHAP decision plots demonstrate how complex models arrive at their predictions.
The decision plot supports SHAP interaction values - first-order interactions esti-
mated from tree-based models. A dependency diagram shows a single interaction
for many predictions, whereas a decision diagram shows all major effects and inter-
actions together.

Figure 4.85: SHAP decision plots of Random Forest

Figure 4.85 shows, SHAP decision plots of Random Forest. It provides a broad
overview of the contribution to prediction as the summary plot. In order to calculate
the output values, shap values are gradually added to the model’s base value from
bottom to top of the decision plot. One can see that some of the blue-colored strings
produced a final class value of 0, while the remaining red-colored strings produced
a final class value of 1.

Figure 4.86: SHAP decision plots of Decision Trees

Figure 4.86 shows, SHAP decision plots of Decision Trees. It provides a broad
overview of the contribution to prediction as the summary plot. In order to calculate

84

the output values, shap values are gradually added to the model’s base value from
bottom to top of the decision plot. One can see that some of the blue-colored strings
produced a final class value of 0, while the remaining red-colored strings produced
a final class value of 1.

Figure 4.87: SHAP decision plots of Extra Trees

Figure 4.87 showws, SHAP decision plots of Extra Trees. It provides a broad
overview of the contribution to prediction as the summary plot. In order to cal-
culate the output values, shap values are gradually added to the model’s base value
from bottom to top of the decision plot. One can see that some of the blue-colored
strings produced a final class value of 0, while the remaining red-colored strings
produced a final class value of 1.

Figure 4.88: SHAP decision plots of Light GBM

Figure 4.88 shows, SHAP decision plots of Light GBM. It provides a broad overview
of the contribution to prediction as the summary plot. In order to calculate the
output values, shap values are gradually added to the model’s base value from
bottom to top of the decision plot. One can see that some of the blue-colored
strings produced a final class value of 0, while the remaining red-colored strings
produced a final class value of 1.

85

4.5 Ensemble Modeling
In this section, we stacked all the classifiers in a list and made an ensemble model.
We found an outstanding performance of this model. We used voting classifier to
stack all these classifiers. The output result has been shown in below figures:

Figure 4.89: Confusion Matrix of Voting Classifier

Figure 4.89 shows the confusion matrix of voting classifiers. This dataset contains
only toxic and non-toxic labelled data. In the matrix, we have true values on Y axis
and predicted values on the X axis. The values from the matrix represents as below:
TP (true positive): Here we get 7172 as our true positive which indicates at 7172
cases the classifier predicted as ‘toxic’ and actually the text was ‘toxic’.

FN (false negative): Here we get 0 as our true negative which indicates at 0 cases
the classifier predicted as ‘non-toxic’ and actually the text was ‘toxic’.

FP (false positive): Here we get 0 as our false positive which indicates at 0 cases
the classifier predicted as ‘toxic’ and actually the text was ‘non-toxic’.

TN (true negative): Here we get 7150 as our true negative which indicates at 7150
cases the classifier predicted as ‘non-toxic’ and actually the text was ‘non-toxic’.

Figure 4.90: Cross-validation scores of Voting Classifier

86

For cross validation, we used a k-fold approach. In this approach, the data set is
divided into 10 (k=10) number of subsets, or ”folds,” before training is carried out
on each subset, but only one (k=1) subset is used to evaluate the trained model.
This approach involves 10 iterations, with a new subset set aside for testing each
time. Figure 4.90 shows the cross-validation score of voting classifier. We used
f1-weighted for measuring scores. After performing 10 iterations, we got the mean
score of 1.0.

Figure 4.91: Classification report of Voting Classifier

Figure 4.91 shows the overall classification report of voting classifier. Here we mea-
sured that,the accuracy is 0.998, the precision is 0.997, the recall is 1.000 and the
f1-score is 0.991.

Figure 4.92: LIME explanation of Voting Classifier

At last, we generate the LIME model as the XAI method in our ensemble model.
We randomly select one toxic comment and one non-toxic comment. In figure 4.92,
the model is 100% certain that the first comment is a good one. The percentage of
positive comments is increased by the class values. Next, let’s examine a negative
comment. The model predicts that the comment is unfavorable 100% of the time,
and the class values raise that probability.

87

Chapter 5

Conclusion

In this chapter, we summarize the entire report of our paper and also mention some
limitations and future work in light of our work. That way, in the future, we can
add new things or use other algorithms to get more accurate results.

5.1 Conclusion
In this study, we depict the classification of Bengali hate speech, which is an im-
portant matter, but it is further complicated by the difficulty of using climbing,
network integration to intimidate operators, and wrong or harmful thoughts. How-
ever, by adding CNNs after natural language processing, including data cleaning,
tokenization, and disassembly word removal, we aim to achieve the main accuracy
of other current works. We combine CNN with Bi-LSTM to obtain a hybrid model.
We used the hosted CNN-BiLSTM dataset for eight different machine learning clas-
sifiers and explained SHAP and LIME. We also show an in-depth comparison of our
proposed model with other previously prepared transformer models. Finally, we
combine these machine learning algorithms with voice classifiers to achieve pinpoint
accuracy. We tried to convey a different calculation, different from others, which
makes our work a classic. Being involved in online media production is our greatest
asset, and access to education is not too far behind, as both are vulnerable to mass
hate and abusive comments. It is also in our interest to apply the system in the near
future to chat boxes on social media and educational platforms, which are subject
to a flood of negative and toxic comments.

5.1.1 Future work
For the future work, we will consider the following things in order to expand the
work as there is still some scope.

• Creating a large Bangla dataset and detecting toxic comment.

• Creating a large dictionary of Bengali hate word.

• A word tokenizer which will be effective for tokenizing comments that contain
hidden profanity.

• We also intend to apply fusion model which may evolve transformer model
with deep learning model for more precise result.

88

5.1.2 Scope and Limitations
Through this article, we have tried to establish a system that can categorize mali-
cious comments in Bengali from any post on the web. The intensity of online media
is so ultimately that it can make anything go viral in the blink of an eye. Certainly,
one can find different types of individuals based on race, identity, sexual orienta-
tion, religion, etc. So, it is possible to effectively visualize the spread of any hateful
or malicious substance through these steps. These can lead to major events such
as uproar, attempts at self-destruction, even psychological warfare. Either way, all
of this can be prevented at its root by depicting and acknowledging malicious or
hateful content on the web. The number of customers on the web media is gradually
increasing, and with the increasing number of customers, the number of tweets and
messages is also increasing in the same way. Controlling and observing this huge
number of comments is a colossal task. Besides the complexity of natural language
and the new method of using scorn and malicious words, this type of testing is even
more difficult.

89

Bibliography

[1] Y. Kim, “Convolutional neural networks for sentence classification,” arX-
ivpreprint, 2014. doi: arXiv:1408.5882.

[2] S. Livingstone, L. Haddon, J. Vincent, G. Mascheroni, and K. Olafsson, “Chil-
dren go mobile,” The UK report, 2014.

[3] P. Burnap and M. L. Williams, “Cyber hate speech on twitter: An applica-
tion of machine classification and statistical modeling for policy and decision
making,” 2015.

[4] T. Mowen, J. Brent, and A. Kupchik, “The handbook of measurement issues
in criminology and criminal justice,” School crime and safety, vol. 434, no. 2,
2016.

[5] A. O. G. Parthasarathy and P. Anderson, “Natural language processing pipeline
for temporal information extraction and classification from free text eligibility
criteria,” International Conference on Information Society, pp. 120–121, 2016.
doi: 10.1109/i-Society.2016.7854192.

[6] Y. Sanjay and S. Sanyam, “Analysis of k-fold cross-validation over hold-out
validation on colossal datasets for quality classification,” in 2016 IEEE 6th
International Conference on Advanced Computing (IACC), 2016, pp. 78–83.
doi: 10.1109/IACC.2016.25.

[7] B. Gamback and U. K. Sikdar, “Using convolutional neural networks to classify
hate speech,” Proceedings of the first workshop on abusive language online,
pp. 85–90, 2017.

[8] S. V. Georgakopoulos, S. K. Tasoulis, A. G. Vrahatis, and V. P. Plagianakos,
“Convolutional neural networks for toxic comment classification,” 10th Hel-
lenic Conference on Artificial Intelligence, pp. 1–6, 2018.

[9] F. Gurcan, “Multi-class classification of turkish texts with machine learning
algorithms,” 2018 2nd International Symposium on Multidisciplinary Studies
and Innovative Technologies, pp. 1–5, 2018. doi: 10 . 1109 / ISMSIT . 2018 .
8567307.

[10] C. V. Hee, G. Jacobs, C. Emmery, et al., “Automatic detection of cyberbullying
in a social media text,” vol. 13, no. 10, 2018.

[11] W. L. J. C. J. Li and J. Wang, “Deep learning model used in text classifi-
cation,” 15th International Computer Conference on Wavelet Active Media
Technology and Information Processing, pp. 123–126, 2018. doi: 10 . 1109/
ICCWAMTIP.2018.8632592.

90

https://doi.org/arXiv:1408.5882
https://doi.org/10.1109/i-Society.2016.7854192
https://doi.org/10.1109/IACC.2016.25
https://doi.org/10.1109/ISMSIT.2018.8567307
https://doi.org/10.1109/ISMSIT.2018.8567307
https://doi.org/10.1109/ICCWAMTIP.2018.8632592
https://doi.org/10.1109/ICCWAMTIP.2018.8632592

[12] J. R. Saurav, S. Amin, S. Kibria, and M. S. Rahman, “Bangla speech recog-
nition for voice search,” 2018 International Conference on Bangla Speech and
Language Processing, pp. 1–4, 2018. doi: 10.1109/ICBSLP.2018.8554944.

[13] X. She and D. Zhang, “Text classification based on hybrid cnn-lstm hybrid
model,” 2018 11th International Symposium on Computational Intelligence
and Design (ISCID), pp. 185–189, 2018. doi: 10.1109/ISCID.2018.10144.

[14] N. I. T. to and M. E. Ali, “Detecting multilabel sentiment and emotions from
bangla youtube comments,” 2018 International Conference on Bangla Speech
and Language Processing, pp. 1–6, 2018. doi: 10.1109/ICBSLP.2018.8554875.

[15] Z. Zhang, D. Robinson, and J. Tepper, “Detecting hate speech on twitter
using a convolution-gru based deep neural network,” European semantic web
conference, Springer, pp. 745–760, 2018.

[16] Z. Zhang, Y. Zou, and C. Gan, “Textual sentiment analysis via three dif-
ferent attention convolutional neural networks and cross-modality consistent
regression,” Neurocomputing, vol. 275, pp. 1407–1415, 2018.

[17] S. Ahammed, M. Rahman, M. H. Niloy, and S. M. M. H. Chowdhury, “Imple-
mentation of machine learning to detect hate speech in bangla language,” 2019
8th International Conference System Modeling and Advancement in Research
Trends, pp. 317–320, 2019. doi: 10.1109/SMART46866.2019.9117214.

[18] B. Amrutha and K. Bindu, “Detecting hate speech in tweets using different
deep neural network architectures,” 2019 International Conference on Intelli-
gent Computing and Control Systems (ICCS), IEEE, pp. 923–926, 2019.

[19] Y. Feng-Jen, “An extended idea about decision trees,” in 2019 International
Conference on Computational Science and Computational Intelligence (CSCI),
2019, pp. 349–354. doi: 10.1109/CSCI49370.2019.00068.

[20] M. Jahan, I. Ahamed, M. R. Bishwas, and S. Shatabda, “Abusive comments
detection in bangla-english code-mixed and transliterated text,” 2019 2nd In-
ternational Conference on Innovation in Engineering and Technology, pp. 1–6,
2019. doi: 10.1109/ICIET48527.2019.9290630.

[21] Y. X. J. Li and H. Shi, “Bidirectional lstm with hierarchical attention for
text classification,” IEEE 4th Advanced Information Technology, Electronic
and Aurand automation Conference (IAEAC), Chengdu, China, pp. 456–459,
2019. doi: 10.1109/IAEAC47372.2019.8997969.

[22] J. Lin, G. Tremblay-Taylor, G. Mou, D. You, and K. Lee, “Detecting fake
news articles,” 2019 IEEE International Conference on Big Data (Big Data),
IEEE, pp. 3021–3025, 2019.

[23] J. Lin, G. Tremblay-Taylor, G. Mou, D. You, and K. Lee, “Detecting fake
news articles,” 2019 IEEE International Conference on Big Data (Big Data),
IEEE, pp. 3021–3025, 2019.

[24] Y. Luan and S. Lin, “Research on text classification based on cnn and lstm,”
IEEE International Conference on Artificial Intelligence and Computer Appli-
cations (ICAICA), pp. 352–355, 2019. doi: 10.1109/ICAICA.2019.8873454.

[25] F. Rahman, “An annotated bangla sentiment analysis corpus,” 2019 Interna-
tional Conference on Bangla Speech and Language Processing, pp. 1–5, 2019.
doi: 10.1109/ICBSLP47725.2019.201474.

91

https://doi.org/10.1109/ICBSLP.2018.8554944
https://doi.org/10.1109/ISCID.2018.10144
https://doi.org/10.1109/ICBSLP.2018.8554875
https://doi.org/10.1109/SMART46866.2019.9117214
https://doi.org/10.1109/CSCI49370.2019.00068
https://doi.org/10.1109/ICIET48527.2019.9290630
https://doi.org/10.1109/IAEAC47372.2019.8997969
https://doi.org/10.1109/ICAICA.2019.8873454
https://doi.org/10.1109/ICBSLP47725.2019.201474

[26] C. Rawat, A. Sarkar, S. Singh, R. Alvarado, and L. Rasberry, “Automatic
detection of online abuse and analysis of problematic users in wikipedia,” 2019
Systems and Information Engineering Design Symposium (SIEDS), IEEE,
pp. 1–6, 2019.

[27] S. Sel and D. Hanbay, “E-mail classification using natural language pro-
cessing,” 27th Signal Processing and Communications Applications Confer-
ence(SIU), Sivas, Turkey, pp. 1–4, 2019. doi: 10.1109/SIU.2019.8806593.

[28] M. I. R. Shuvo, S. A. Shahriyar, and M. A. H. Akhand, “Bangla numeral
recognition from speech signal using convolutional neural network,” 2019 In-
ternational Conference on Bangla Speech and Language Processing, pp. 1–4,
2019. doi: 10.1109/ICBSLP47725.2019.201540.

[29] S. Si, A. Datta, S. Banerjee, and S. K. Naskar, “Aggression detection on mul-
tilingual social media text,” 2019 10th International Conference on Comput-
ing, Communication and Networking Technologies (ICCCNT), IEEE, pp. 1–5,
2019.

[30] C. Soufiane and T. Kouhyar, “Early prediction of sepsis from clinical data
using single light-gbm model,” in 2019 Computing in Cardiology (CinC), 2019,
Page 1–Page 4. doi: 10.23919/CinC49843.2019.9005718.

[31] Z. Xiaonan, H. Yong, T. Zhewen, and S. Kaiyuan, “Logistic regression model
optimization and case analysis,” in 2019 IEEE 7th International Conference
on Computer Science and Network Technology (ICCSNT), 2019, pp. 135–139.
doi: 10.1109/ICCSNT47585.2019.8962457.

[32] Y. Zheng, “An exploration on text classification with a classical machine
learning algorithm,” International Conference on Machine Learning, Big Data
and Business Intelligence (MLBDBI), Taiyuan, China, pp. 81–85, 2019. doi:
10.1109/MLBDBI48998.2019.00023.

[33] A. Y. Ahmad, A. V. Elijah, B. A. Oluwagbemiga, and A. A. Kareem, “Ai meta-
learners and extra-trees algorithm for the detection of phishing websites,”
IEEE Access, vol. 8, pp. 142 532–142 542, 2020. doi: 10.1109/ACCESS.2020.
3013699.

[34] S. Enhui, S. Lin, X. Jiucheng, and Z. Shiguang, “Multilabel feature selection
using mutual information and ml-relieff for multilabel classification,” IEEE
Access, vol. 8, pp. 145 381–145 400, 2020. doi: 10.1109/ACCESS.2020.3014916.

[35] D. J, K. Y. Woon, and D. Dalia, “Comparison of gradient boosting and ex-
treme boosting ensemble methods for webpage classification,” in 2020 Fifth
International Conference on Research in Computational Intelligence and Com-
munication Networks (ICRCICN), 2020, pp. 77–82. doi: 10.1109/ICRCICN50933.
2020.9296176.

[36] B. Junchen, “Multi-features based arrhythmia diagnosis algorithm using xg-
boost,” in 2020 International Conference on Computing and Data Science
(CDS), 2020, pp. 454–457. doi: 10.1109/CDS49703.2020.00095.

[37] R. Parveen, N. Shrivastava, and P. Tripathi, “Sentiment classification of movie
reviews by supervised machine learning approach using ensemble learning &
voted algorithm,” 2nd International Conference on Data, Engineering and
Applications, pp. 1–6, 2020. doi: 10.1109/IDEA49133.2020.9170684.

92

https://doi.org/10.1109/SIU.2019.8806593
https://doi.org/10.1109/ICBSLP47725.2019.201540
https://doi.org/10.23919/CinC49843.2019.9005718
https://doi.org/10.1109/ICCSNT47585.2019.8962457
https://doi.org/10.1109/MLBDBI48998.2019.00023
https://doi.org/10.1109/ACCESS.2020.3013699
https://doi.org/10.1109/ACCESS.2020.3013699
https://doi.org/10.1109/ACCESS.2020.3014916
https://doi.org/10.1109/ICRCICN50933.2020.9296176
https://doi.org/10.1109/ICRCICN50933.2020.9296176
https://doi.org/10.1109/CDS49703.2020.00095
https://doi.org/10.1109/IDEA49133.2020.9170684

[38] S. T. R. Ma and Z. Fu, “Text sentiment classification based on improved
bilstm-cnn,” 2020 Asia-Pacific Conference on Image Processing, Electronics,
and Computers, pp. 1–4, 2020. doi: 10.1109/IPEC49694.2020.9115147.

[39] B. Z. Y. Z. S. Liang, S. Cheng, and J. Jin, “A double channel cnn-lstm model
for text classification,” 2020 IEEE 22nd International Conference on High-
Performance Computing and Communications, pp. 1316–1321, 2020. doi: 10.
1109/HPCC-SmartCity-DSS50907.2020.00169.

[40] K. Sajib, M. Raihan, A. Nasif, et al., “Breast cancer risk prediction using xg-
boost and random forest algorithm,” in 2020 11th International Conference on
Computing, Communication and Networking Technologies (ICCCNT), 2020,
pp. 1–4. doi: 10.1109/ICCCNT49239.2020.9225451.

[41] A. K. Sharma, S. Chaurasia, and D. K. Srivastava, “Sentimental short sen-
tences classification by using cnn deep learning model with fine-tuned word2vec,”
Procedia Computer Science, vol. 167, pp. 1139–1147, 2020.

[42] M. M. Sultan, H. J. Zhexue, S. Salman, E. T. Z., and S. Kuanishbay, “A survey
of data partitioning and sampling methods to support big data analysis,” Big
Data Mining and Analytics, vol. 3, no. 2, pp. 85–101, 2020. doi: 10.26599/
BDMA.2019.9020015.

[43] F. Sun and N. Chu, “Text sentiment analysis based on cnn-bilstm-attention
model,” 2020 International Conference on Robots & Intelligent System, pp. 749–
752, 2020. doi: 10.1109/ICRIS52159.2020.00186.

[44] R. N. Swarna, “Bangla broadcast speech recognition using support vector ma-
chine,” 2020 Emerging Technology in Computing, Communication, and Elec-
tronics, pp. 1–6, 2020. doi: 10.1109/ETCCE51779.2020.9350865.

[45] M. Tlachac and E. A. Rundensteiner, “Depression screening from text mes-
sage reply latency,” 2020 42nd Annual International Conference of the IEEE
Engineering in Medicine & Biology Society (EMBC), IEEE, pp. 5490–5493,
2020.

[46] W. Yue and L. Li, “Sentiment analysis using word2vec-cnn-bilstm classifica-
tion,” 2020 Seventh International Conference on Social Networks Analysis,
Management and Security, pp. 1–5, 2020. doi: 10.1109/SNAMS52053.2020.
9336549.

[47] S. Chutimet and K. Sivakorn, “Application of natural neighbor-based algo-
rithm on oversampling smote algorithms,” in 2021 7th International Con-
ference on Engineering, Applied Sciences and Technology (ICEAST), 2021,
pp. 217–220. doi: 10.1109/ICEAST52143.2021.9426310.

[48] B. Erik, A. Vakil, L. Jia, and E. Robert, “Multimodal data fusion using canon-
ical variates analysis confusion matrix fusion,” in 2021 IEEE Aerospace Con-
ference (50100), 2021, pp. 1–10. doi: 10.1109/AERO50100.2021.9438445.

[49] A. B. Gumelar, E. M. Yuniarno, D. P. Adi, A. G. Sooai, I. Sugiarto, and M. H.
Purnomo, “Bilstm-cnn hyperparameter optimization for speech emotion and
stress recognition,” 2021 International Electronics Symposium, pp. 156–161,
2021. doi: 10.1109/IES53407.2021.9594024.

93

https://doi.org/10.1109/IPEC49694.2020.9115147
https://doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00169
https://doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00169
https://doi.org/10.1109/ICCCNT49239.2020.9225451
https://doi.org/10.26599/BDMA.2019.9020015
https://doi.org/10.26599/BDMA.2019.9020015
https://doi.org/10.1109/ICRIS52159.2020.00186
https://doi.org/10.1109/ETCCE51779.2020.9350865
https://doi.org/10.1109/SNAMS52053.2020.9336549
https://doi.org/10.1109/SNAMS52053.2020.9336549
https://doi.org/10.1109/ICEAST52143.2021.9426310
https://doi.org/10.1109/AERO50100.2021.9438445
https://doi.org/10.1109/IES53407.2021.9594024

[50] W. Hao and Z. Xuping, “Modal dynamic modelling and experimental valida-
tion of a curved extensible continuum manipulator,” in 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2021, pp. 1958–1965.
doi: 10.1109/ICRA48506.2021.9561914.

[51] M. I. H. Junaid, F. Hossain, and R. M. Rahman, “Bangla hate speech detec-
tion in videos using machine learning,” 2021 IEEE 12th Annual Ubiquitous
Computing, Electronics & Mobile Communication Conference, pp. 0347–0351,
2021. doi: 10.1109/UEMCON53757.2021.9666550.

[52] M. R. Karim, “Deephateexplainer: Explainable hate speech detection in under-
resourced bengali language,” 2021 IEEE 8th International Conference on Data
Science and Advanced Analytics, pp. 1–10, 2021. doi: 10.1109/DSAA53316.
2021.9564230.

[53] T. C. Kla and J. Jirayus, “Explainable ai for software engineering,” in 2021
36th IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), 2021, pp. 1–2. doi: 10.1109/ASE51524.2021.9678580.

[54] Y. I. Nurma, P. Erick, S. Asep, and N. Dessy, “Adaboost support vector
machine method for human activity recognition,” in 2021 International Con-
ference on Artificial Intelligence and Big Data Analytics, 2021, pp. 1–4. doi:
10.1109/ICAIBDA53487.2021.9689713.

[55] Puneet, Deepika, S. Pritpal, B. Rahul, and S. Saket, “Coronary heart disease
prediction using voting classifier ensemble learning,” in 2021 3rd International
Conference on Advances in Computing, Communication Control and Network-
ing (ICAC3N), 2021, pp. 181–185. doi: 10.1109/ICAC3N53548.2021.9725705.

[56] Sarkar, Ahamed, and Khan, “An experimental framework of bangla text clas-
sification for analyzing sentiment applying cnn & bilstm,” 2021 2nd Inter-
national Conference for Emerging Technology, pp. 1–6, 2021. doi: 10.1109/
INCET51464.9456393.

[57] S. Siddharth, O. Nikita, and S. K. K., “An approach to identify captioning
keywords in an image using lime,” in 2021 International Conference on Com-
puting, Communication, and Intelligent Systems (ICCCIS), 2021, pp. 648–651.
doi: 10.1109/ICCCIS51004.2021.9397159.

[58] verma Vivek Kumar and K. Vinod, “Optimization of regression algorithms
using learning curve in wsn,” in 2021 International Conference on Advance
Computing and Innovative Technologies in Engineering (ICACITE), 2021,
pp. 379–382. doi: 10.1109/ICACITE51222.2021.9404686.

[59] Y. Wu and J. He, “Sentiment analysis of barrage text based on albert-att-
bilstm model,” 2021 4th International Conference on Pattern Recognition and
Artificial Intelligence, pp. 152–156, 2021. doi: 10 . 1109 /PRAI53619 . 2021 .
9551040.

[60] M. A. Zaenul, A. Sumarni, P. Yoga, and A. Yuli, “The effect of recursive
feature elimination with cross-validation (rfecv) feature selection algorithm
toward classifier performance on credit card fraud detection,” in 2021 Interna-
tional Conference on Artificial Intelligence and Computer Science Technology
(ICAICST), 2021, pp. 270–275. doi: 10.1109/ICAICST53116.2021.9497842.

94

https://doi.org/10.1109/ICRA48506.2021.9561914
https://doi.org/10.1109/UEMCON53757.2021.9666550
https://doi.org/10.1109/DSAA53316.2021.9564230
https://doi.org/10.1109/DSAA53316.2021.9564230
https://doi.org/10.1109/ASE51524.2021.9678580
https://doi.org/10.1109/ICAIBDA53487.2021.9689713
https://doi.org/10.1109/ICAC3N53548.2021.9725705
https://doi.org/10.1109/INCET51464.9456393
https://doi.org/10.1109/INCET51464.9456393
https://doi.org/10.1109/ICCCIS51004.2021.9397159
https://doi.org/10.1109/ICACITE51222.2021.9404686
https://doi.org/10.1109/PRAI53619.2021.9551040
https://doi.org/10.1109/PRAI53619.2021.9551040
https://doi.org/10.1109/ICAICST53116.2021.9497842

[61] H. U. A., “Tire changes, fresh air, and yellow flags: Challenges in predictive
analytics for professional racing,” The Financial Express: Combating cyber-
bullying of women, 2022. [Online]. Available: https://thefinancialexpress.com.
bd/views/combating%20-cyber-bullying-of-women-1650466631.

[62] S. S. Ahmadi and H. Khotanlou, “A hybrid of inference and stacked classifiers
to indoor scenes classification of rgb-d images,” pp. 1–6, 2022. doi: 10.1109/
MVIP53647.2022.9738755.

[63] M. G. R. Alam, “Shapley-additive-explanations-based factor analysis for dengue
severity prediction using machine learning,” Journal of Imaging, no. 8, p. 229,
2022. doi: 10.3390/jimaging8090229.

[64] J. J. Bonny, N. J. Haque, M. R. Ulla, P. Kanungoe, Z. H. Ome, and M. I. H.
Junaid, “Deep learning approach for sentimental analysis of hotel review on
bengali text,” 2022 Second International Conference on Advances in Electrical,
Computing, Communication and Sustainable Technologies, pp. 1–7, 2022. doi:
10.1109/ICAECT54875.2022.9808001.

[65] D. Dhruti, C. Ling, and A.-M. A. M., “Long short term memory water quality
predictive model discrepancy mitigation through genetic algorithm optimisa-
tion and ensemble modeling,” IEEE Access, vol. 10, pp. 24 638–24 658, 2022.
doi: 10.1109/ACCESS.2022.3152818.

[66] “Hugging face – the ai community building the future.,” 2022. [Online]. Avail-
able: https://huggingface.co/.

[67] M. I. H. Junaid, F. Hossain, U. S. Upal, A. Tameem, A. Kashim, and A. Fah-
min, “Bangla food review sentimental analysis using machine learning,” 2022
IEEE 12th Annual Computing and Communication Workshop and Conference,
pp. 0347–0353, 2022. doi: 10.1109/CCWC54503.2022.9720761.

[68] M. Kazuki, K. Yuta, and N. Takayuki, “Simple and effective multimodal
learning based on pre-trained transformer models,” IEEE Access, vol. 10,
pp. 29 821–29 833, 2022. doi: 10.1109/ACCESS.2022.3159346.

[69] V. O. Khilwani, V. Gondaliya, S. Patel, J. Hemnani, B. Gandhi, and S. K.
Bharti, “Diabetes prediction, using stacking classifier,” 2021 International
Conference on Artificial Intelligence and Machine Vision (AIMV), pp. 1–6,
2022. doi: 10.1109/AIMV53313.2021.9670920.

[70] R. G. Krishnan, W. Shaowei, O. G. A., K. Yasutaka, and H. A. E., “The
impact of feature importance methods on the interpretation of defect classi-
fiers,” IEEE Transactions on Software Engineering, vol. 48, no. 7, pp. 2245–
2261, 2022. doi: 10.1109/TSE.2021.3056941.

[71] M. Sarker, M. F. Hossain, F. R. Liza, S. N. Sakib, and A. A. Farooq, “A
machine learning approach to classify anti-social bengali comments on social
media,” 2022 International Conference on Advancement in Electrical and Elec-
tronic Engineering, pp. 1–6, 2022. doi: 10.1109/ICAEEE54957.2022.9836407.

[72] O. Sen, “Bangla natural language processing: A comprehensive analysis of
classical, machine learning, and deep learning-based methods,” IEEE Access,
vol. 10, pp. 38 999–39 044, 2022. doi: 10.1109/ACCESS.2022.3165563.

95

https://thefinancialexpress.com.bd/views/combating%20-cyber-bullying-of-women-1650466631
https://thefinancialexpress.com.bd/views/combating%20-cyber-bullying-of-women-1650466631
https://doi.org/10.1109/MVIP53647.2022.9738755
https://doi.org/10.1109/MVIP53647.2022.9738755
https://doi.org/10.3390/jimaging8090229
https://doi.org/10.1109/ICAECT54875.2022.9808001
https://doi.org/10.1109/ACCESS.2022.3152818
https://huggingface.co/
https://doi.org/10.1109/CCWC54503.2022.9720761
https://doi.org/10.1109/ACCESS.2022.3159346
https://doi.org/10.1109/AIMV53313.2021.9670920
https://doi.org/10.1109/TSE.2021.3056941
https://doi.org/10.1109/ICAEEE54957.2022.9836407
https://doi.org/10.1109/ACCESS.2022.3165563

[73] S. Sultana, M. Z. Iqbal, M. R. Selim, M. M. Rashid, and M. S. Rahman,
“Bangla speech emotion recognition and cross-lingual study using deep cnn
and blstm networks,” IEEE Access, vol. 10, pp. 564–578, 2022. doi: 10.1109/
ACCESS.2021.3136251.

[74] E. Xu, D. Qin, J. Huang, and J. Zhang, “Multi text classification model based
on bret-cnn-bilstm,” 2022 IEEE 5th International Conference on Big Data
and Artificial Intelligence, pp. 184–189, 2022. doi: 10.1109/BDAI56143.2022.
9862653.

[75] W. Yuchen, “Personality type prediction using decision tree, gbdt, and cat
boost,” in 2022 International Conference on Big Data, Information and Com-
puter Network (BDICN), 2022, pp. 552–558. doi: 10.1109/BDICN55575.2022.
00107.

[76] M. F. Ahmed, “Bangla online comments dataset,” Mendeley Data, vol. 1, doi:
10.17632/9xjx8twk8p.

[77] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in the cat’s
striate cortex,” The Journal of physiology, vol. 148, no. 3, p. 574,

[78] H. Liu, “Towards explainable nlp: A generative explanation framework for text
classification,” arXiv.org,

[79] Toxic comment classification challenge. [Online]. Available: https : / /www.
kaggle . com/competitions/ jigsaw- toxic - comment - classification - challenge/
data.

96

https://doi.org/10.1109/ACCESS.2021.3136251
https://doi.org/10.1109/ACCESS.2021.3136251
https://doi.org/10.1109/BDAI56143.2022.9862653
https://doi.org/10.1109/BDAI56143.2022.9862653
https://doi.org/10.1109/BDICN55575.2022.00107
https://doi.org/10.1109/BDICN55575.2022.00107
https://doi.org/10.17632/9xjx8twk8p
https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/data
https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/data
https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/data

	Declaration
	Approval
	Ethics Statement
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Background Research
	Research Problem
	Research Objective
	Research Contributions
	Thesis Report Outline

	Literature Review and Related Works
	Bengali Speech related works
	Hate Speech related works

	Methodology
	Initial Architecture
	Data Preprocessing
	Word Embedding
	CNN Architecture for Classification
	Applying Classifiers
	Generate Explainable AI
	Appending Classifiers
	Ensemble Model

	Developed Architecture
	Data Preprocessing
	Word Embedding
	CNN with LSTM Architecture for Classification
	Supervised Machine Learning Algorithms
	Explainable AI - SHAP
	Ensemble Model

	Final Architecture
	Dataset
	Data Cleaning
	Stop words Removal
	Punctuation Removal
	Symbol Removal

	Feature Extraction
	Text Classification using CNN
	Text Classification using Bi-LSTM

	Proposed CNN-BiLSTM based Hybrid Model
	Internal Architecture
	Model Compilation
	Multi-label Classification

	Pre-Trained Transformer Based Models
	Data Sampling
	Applying Machine Learning Algorithms
	XGBoost Classifier
	Random Forest Classifier
	Decision Trees Classifier
	AdaBoost Classifier
	Gradient Boosting Classifier
	Extra Trees Classifier
	Light GBM Classifier
	Cat Boost Classifier
	Logistic Regression

	Model Explanation with XAI
	Locally Interpreted Model-agnostic Explanations
	SHapley Additive exPlanations

	Ensemble Model

	Result and Analysis
	Dataset Visualization
	Model Tuning
	Comparison with Transformer Models
	Applying Machine Learning Algorithms
	Feature Analysis
	Explainability of ML Models

	Ensemble Modeling

	Conclusion
	Conclusion
	Future work
	Scope and Limitations

	Bibliography

