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Abstract

The impairment of speech impediment affects 6.9% of Bangladesh’s population.
This is a condition in which people cannot communicate vocally with others or
hear what they are saying, causing them to rely on nonverbal means of commu-
nication. For such persons, sign language is a common way of communication in
which they communicate with others by making various hand gestures and mo-
tions. The biggest problem is that not everyone understands sign language. Many
people cannot converse using sign language, making communication between them
problematic. Even though translators and interpreters are available to assist with
communication, a more straightforward method is required. We propose a method
which uses deep learning combined with some computer vision techniques to detect
and classify Bangla sign languages to close this gap. Our custom-made CNN model
can recognize and classify Bangla sign language characters from the Ishara-Lipi
dataset with a testing accuracy of 99.21%. To recognize the precise indications of a
hand gesture and understand what they mean, we trained our model with sufficient
samples by augmenting and preprocessing the Ishara-Lipi dataset using various data
augmentation techniques.

Keywords: Bangladeshi Sign Language(BdSL); Deep Learning; Convolutional Neu-
ral Network; Image Processing; Image Classification
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Chapter 1

Introduction

For a long time, computer vision has been a field of research. However, with the
introduction of deep neural networks, this progress has accelerated. It is a process
in which a machine is trained to recognize specific aspects from video or images
provided to it as data and then performs various tasks based on the aspects detected
in the data. This may be found in almost everything, from the simplest to the most
sophisticated. It’s even included in the face detection that we use on our phones,
where the phone’s camera is used to save different elements of our faces, and then
our faces are matched with the saved image every time we unlock the phone using
facial recognition. Again, we see the use of computer vision in complex things like
self-driving cars, where the machine is fed data and taught in such a way that it can
make instantaneous choices, ensuring that no accidents occur.

To detect and infer the identified signs into the desired language, most existing sys-
tems use either a vision-based or a sensor-based technique. Using a video source,
vision-based techniques gather images or video of hand gestures. Sensor-based tech-
niques, on the other hand, use sensors and instruments like gyroscopes, accelerome-
ters, flex sensors, Microsoft Kinect, ultrasonic, mechanical, and others to determine
the location, motion, and velocity of the hands. In recent years, research on recog-
nizing BdSL has made great progress and shown promising results.

1.1 Motivation and Goals

Nowadays, computer vision is not only limited to one or two sectors and is being used
widely, even for small pet projects, since information regarding this is publicly and
widely available. One of the problems that computer vision is also used for is sign
language detection. As hearing and speech-challenged people are unable to commu-
nicate orally or through other ways, sign language is the most important means of
communication for them. A considerable percentage of people suffer from speech
impediments; they rely on sign language for communication. Hand gestures, bodily
postures, and face emotions of various kinds are used in this communication ap-
proach, each communicating a different meaning. American Sign Language (ASL),
Japanese Sign Language (JSL), British Sign Language (BSL), Austrian Sign Lan-
guage (GS), Bangladeshi Sign Language (BdSL), Australian Sign Language (AUS-
LAN) and other sign languages are used all over the world. There are several sorts of
sign language representations: single-handed, double-handed, static, and dynamic.
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1 Sign language solves the problem to a certain extent, but another problem that
persists is the fact that not a lot of people understand sign language and because
of that, there needs to be a way so that both parties understand what the other
is saying for swift communication. An intermediary who can translate for both is
a solution for this and that is exactly what we are proposing for this paper, but
the purpose of our work is that instead of the intermediary being a person, we will
automate it using computer vision where a computer can understand and classify
sign language to Bengali alphabets.

1.2 Problem Statement

Sign language is the mode of communication for the deaf and dumb(D&D). A uni-
versal sign language does not exist and just like spoken languages, differs from region
to region. Sign languages are also separate languages, consisting of its own grammar
and linguistic rules. Approximately 70 million deaf and general people in the world
use sign language as their primary mode of expression. In particular, Bangladesh
has around 2.6 million individuals who are not able to communicate by speaking
[28]. General people who are fluent in sign language can translate it for those who
do not know sign language, but it would be a very tedious process. The D&D people
cannot even understand the lip reading of the general people, which means there is
no alternative to sign language for the D&D to communicate with regular people
[1]. Furthermore, for essential communication, D&D people do not usually prefer to
write the standard text because the composition of the sign language differs from
that of the normally written text [4]. As a result, the D&D people are often ignored
in many situations, creating a severe communication gap in society. To eradicate
this gap, language and speech learning institutions in Bangladesh mostly follow
the formal sign language developed by the Centre for Disability in Development
(CDD). This will allow better communication to take place between the D&D and
the general people as the formal sign language ensures a centralized communication
platform for both parties.

The field of machine learning combined with computer vision is advancing and reach-
ing into various sectors to help ease human life. Nowadays, it is being used to help
the D&D community by improving the sign language recognition techniques. There
are multiple sign languages all over the world of which some of them are American
Sign Language (ASL), British Sign Language (BSL), French Sign Language (LSF)
and Japanese Sign Language (JSL), all of which were independently architectured
and are different from each other [27]. Hence, Bangladeshi Sign Language (BdSL)
also differs from others, so it will also require a different dataset for a sign language
detector to train the model of BdSL. This requirement of separate datasets for dif-
ferent sign languages has created scarcity in datasets in this area of research. Hence,
some researchers have come up with their own customized datasets which cater to
their specific objectives.
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1.3 Research Objective

Here we discuss the primary objectives that we hope to achieve through our research.
First of all, we obtain multiple open-access datasets for our problem across and
choose the dataset most suitable to use. Then we apply various pre-processing
and augmentation techniques to the images in the dataset. Afterwards we train,
validate and test our CNN model on the chosen dataset with the pre-processed and
augmented images. This will ensure that our model performs in various settings and
is versatile enough to be used under different spatial scenarios and computational
environments. We aim to achieve a reasonable accuracy for our model over our
chosen dataset. A higher accuracy would be preferred but not essential as we are
exploring new, efficient techniques and additions to our CNN model.

Lastly, we aim to build a model that can provide results better than the past it-
erations of BdSL detection models. This means our model would need to require
less computational effort, potentially translating to lower latency in detecting hand
gestures. Combined with our model, these open-access datasets will enable future
researchers to work on our problem and provide further iterations to our approach
to solving this critical problem. This dataset will also be used to train, verify and
test our new model to ensure that it reaches the same accuracy levels as the other
datasets.
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Chapter 2

Literature Review

2.1 Core Technologies

This section will present some of the fundamental technologies and concepts used in
our research methodologies. Among the mentioned technologies and concepts, there
are also many others used that we do not feel the necessity to explicitly mention and
define as they have been in use in this area of research for an extended period and
are not “core” to this particular experiment. Some examples of such which are not
mentioned but have been used for this research are Artificial Intelligence, Machine
Learning, Matplotlib, NumPy and pandas.

2.1.1 Computer Vision

Computer vision refers to any methodology or technology using which computers
or intelligent machines gather important information from images, videos or other
visual inputs. Using this information, the computer can either choose to gather it
for further analysis or can be used to take actions based on those inputs. In order to
train a computer vision machine, a lot of visual data has to be fed to it, after which
it can decide on its own what it needs to do. The decisions these machines have
to make are spontaneous, for which the data it is taking has to be analyzed using
fast algorithms and this can only be achieved with proper training of the machine.
Image classification, object detection and image segmentation are typical examples
of a computer vision problem that can be solved by machine learning algorithms
such as Deep Learning, SVM, etc.

2.1.2 Deep Learning

Deep Learning is a subset of Machine Learning which uses different algorithms
inspired by the human brain or, in other words, neural networks. That means it
imitates how human beings gain knowledge and uses it to teach a machine. Using
these algorithms, the machine learns from a large amount of data and this data
helps the machine to gradually improve the outcome that it gives. Deep learning
is being used in different sectors nowadays, for example, customer experience, Text
generation and Medical Research. Essentially a very deep neural network is referred
to as Deep Learning.
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2.1.3 ANN

Biological neural networks establish the structure of the human brain, and the phrase
“Artificial Neural Network” is taken from them. Artificial neural networks, like the
human brain, include neurons that are coupled to one another at various levels of the
networks. From a mathematical standpoint, a neural network is a machine learning
algorithm that uses a network of composite mathematical functions to understand
and translate input data into some form of output. Figure 2.1 shows a visual rep-
resentation of a very simple neural network with three types of layers: input layer,
hidden layer and output layer. This essentially means that neural networks are
nothing but a massive and complex composite function with the ability to approxi-
mate almost any form of function, which can produce very accurate results for many
use-cases.

Figure 2.1: Architecture of an Artificial Neural Network

Input Layer

Input nodes are the inputs from the outside world that the model uses to learn and
draw conclusions. The information from input nodes is passed to the next layer,
which is the Hidden layer. It takes data in a variety of formats specified by the
programmer.

Hidden Layer

The input data from the previous layer is processed by the hidden layer, consisting
of a group of neurons. One or more hidden layers can exist in a neural network.
The most basic neural network comprises only one hidden layer. If we have a closer
look inside a neuron in figure 2.2, we can see many mathematical notations and
calculations being performed. This particular neuron has three inputs and weights
and their weighted sum is being calculated using equation 2.1. This weighted sum
is then passed through an activation function to produce the output of this neuron.
This process is repeated for every neuron in the hidden layer(s) in a neural network.

n∑
i=1

Wi ∗Xi + b (2.1)
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Figure 2.2: Mathematical Computations inside a Neuron

Output Layer

The output layer is the model’s conclusion, which is generated from all of the pre-
ceding layers’ computations. The output layer might have a single or several nodes.
The number of output nodes in a binary classification problem is only one; however,
the output nodes might be more than one in a multi-class classification problem.

2.1.4 CNN

Convolutional Neural Network is a type of multilayer perceptron network commonly
used in computer vision and, in certain situations, natural language processing. The
layers of a CNN are as follows: an input layer, output layer, and hidden layer(s) with
numerous convolutional layers, pooling layers, fully connected layers, and optional
normalization or batch normalization layers. When an image is fed as input to
CNN, each layer of the model generates many activation maps, also known as feature
maps. These feature maps emphasize the most important aspects of an image. Basic
characteristics such as horizontal, vertical, and diagonal edges are usually detected
by the initial layers of the CNN(layers close to the input layer). The output of
the preceding layer is fed to the next layer as input, which extracts much more
complicated features like corners and edge combinations. The deeper a convolution
layer is in a convolutional neural network(closer to the output layer), the more
complex features it detects like objects, faces, and other things. Figure 2.3 shows
a typical representation of a CNN model. CNNs are much more computationally
efficient and accurate than ANNs in image classification due to their ability to
only learn important image features that matter when classifying between different
images.

Figure 2.3: Visual Representation of a CNN Model
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Convolution Layer

The convolutional layer is the backbone of a CNN and it is where the layer works
to build filters to decipher certain features from images. It needs input data and a
kernel filter, which produces feature maps of an image containing the features used
to recognize objects of interest. The kernel filter slides through the whole array of
pixels within the image to extract meaningful features such as edges and curves.
This methodology is termed as convolution. This is done by calculating the dot
product of the input pixels and the kernel values according to figure 2.4. The final
output is a set of feature maps containing useful features detected from the image.

Figure 2.4: An image being convolved in the convolution layer

Pooling Layer

Pooling layers downsample or reduce the dimensionality of the input from the convo-
lution layer. The pooling process slides a kernel filter across the entire feature map,
similar to the convolution layer. However, the maximum or average pixel value is
taken from the kernel filter instead of taking the dot product to reduce the input’s
dimensions. There are two types of pooling: max pooling and average pooling.
They aid in reducing complexity, increasing efficiency, and reducing the possibility
of overfitting. Figure 2.5 shows how a 2x2 filter of stride 2 downsamples a 4x4 input
image into 2x2.

Figure 2.5: Visual Representation of Max Pooling

Fully Connected Layer

This layer performs classification tasks based on the feature maps, which are fed in
as input by preceding convolutional layers. This layer is essentially an ANN that
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acts as a classifier. After the pooling layer, the pixels are flattened to a 1-D vector
in figure 2.3 which is analogous to ANN. This flattening layer acts as an input layer
for the classifier, where it contains the features extracted from the convolution and
pooling layers in the previous stages of the model. This flattened layer is usually
connected to one or more hidden layers with an output layer at the end.

2.1.5 Core Libraries

This section describes some of the fundamental libraries that we employed in our
research. Some of the data visualization libraries we used, which are not “core” to
this research, such as Matplotlib, seaborn and OpenCV are not explicitly mentioned
in the following subsections.

Augmentor

Augmentor is a Python library that helps with image data augmentation and ar-
tificial generation for machine learning applications. It primarily serves as a data
augmentation tool and provides elementary image pre-processing capabilities. To
augment images, the Augmentor library employs a stochastic, pipeline-based tech-
nique. This pipeline technique allows users to connect augmentation operations like
skew, shears, rotations, zooming and cropping together and feed images through
the pipeline to generate new augmented data. All operations in the pipeline are
stochastically applied, both in terms of the likelihood of the operations being ap-
plied to each image as it goes through the pipeline and in terms of the parameters
of each operation, which are also randomized within user-defined ranges [14]. This
allows sampling from a set of potential images created at runtime by the pipeline.
The Augmentor library is available to use on Python and Julia only. Source codes
are available on GitHub and complete documentation is available on their official
webpage.

TensorFlow

TensorFlow is an open-source machine learning library. Machine learning and deep
learning applications are implemented with it. The Google team designed Tensor-
Flow to explore and investigate exciting artificial intelligence concepts. Since Ten-
sorFlow is written in Python, it is a very user-friendly library for small pet projects.
It uses Python to create a front-end API for developing applications, which is then
executed in the super-fast C++ language.

Keras

Keras is a high-level Python API for building neural networks. It is based on open-
source machine learning libraries such as TensorFlow, Theano, and the Cognitive
Toolkit. Since it is built on Python, it gives a high-level Python frontend flexibility of
different backends for computation, making its implementation user-friendly. How-
ever, this makes Keras slower than other deep learning frameworks. Keras has been
chosen as TensorFlow’s official high-level API and is now embedded on TensorFlow.
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2.2 Bangladeshi Sign Language Datasets

One of the most essential steps in ensuring the model’s versatility and robustness is
selecting the dataset used to train it. The model’s ability to effectively train itself
and attain high validation and test accuracies is dependent on the size and diversity
of the dataset. However, gathering this information is a time-consuming operation
requiring a significant amount of human labor. With numerous data augmentation
tools, this work has become more accessible. In the context of computer vision
data, data augmentation entails skewing, rotating, translating, and a variety of other
transformations to add variation to the data. We may also alter the background
and add image artifacts to help the model recognize photos that have been warped
in some way.

Before taking a look at the different datasets available for Bangla Sign Language,
let us first look at how they can be categorized. In general, sign language datasets
can be categorized into four categories: single-handed, double-handed, static, and
dynamic. Single-handed and double-handed are sign language categories based on
the hands used in the communication process. At the same time, static and dynamic
are categories based on the type of input to the machine. Figure 2.6 shows a visual
representation of the distribution of current datasets of BdSL in terms of single-
handed and double-handed.

Figure 2.6: Pie chart of research work based on different datasets in BdSL

2.2.1 Single handed sign language datasets

Single-handed sign language is a type of sign language where in order to communi-
cate, only one hand is used. For this sort of communication, people use their domi-
nant hand mainly. This is not as common but there are datasets as well as people
who communicate in sign language using only their hand. When Control-Engine and
Microsoft Voice Command take user input and turn it into text, this is one exam-
ple. The text is cross-referenced with existing annotations, and a three-dimensional
graphical hand motion is displayed in accordance with the text. However, the intel-
ligent assistant’s precision is 82 percent, with the system understanding just discrete
phrases and displaying only one hand signal.[23]
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2.2.2 Double handed sign language datasets

This is a more common mode of communication among the people who use sign
language for communicating. Here, both hands are used to show different signs and
facial expressions used for communicating. This type of dataset is utilized in systems
that assess the angles between different hand and body portions and compare them
to values in the database. These values are saved while manually teaching the system
with various hand movements.[23]

2.2.3 Static Datasets

These include static images with no time frame. Static datasets have images of finger
spelled signs and these types of datasets can be either single or double-handed. These
datasets have specific machines that can interpret them and be used early on in the
Bangla sign Language recognition process. Based on the findings, there are seven
systems that can recognize static BdSL gesture graphics. Four can detect static two-
handed hand movements, whereas two others can distinguish static single-handed
hand gestures.

2.2.4 Dynamic Datasets

These are continuous and real-time hand motion inputs. Different letter instances
cannot be compared using typical Euclidean space when comparing due to temporal
deviation. We will need to employ advanced filtering and algorithms to compute
similarity likelihood. These kinds of datasets were made in order to get over the
shortcoming of the static datasets and the inaccuracy and inefficiency created due
to the static datasets.

2.2.5 Open Source Datasets

Moving on to the available datasets of BdSL that are open-source, we can see a
few that we can work with. The datasets available can be categorized into single-
handed and double-handed and sometimes a mixture of both. 60% of the datasets
are a mixture of both single-handed and double-handed, while the rest 40% is divided
equally at 20% each for single-handed and double-handed, as we see from the figure.
Mentioned below are the different open source datasets that are available for BdSL.

BdSL-D1500

In this dataset, Bengali sign alphabets, numbers, and gestures are represented in
both one-hand and two-hand versions. There are a total of 87 classes. There are 38
classes for one-hand BdSL representation, 36 classes for two-hand BdSL representa-
tion, 12 classes for numerals, and one class for a miscellaneous gesture. There are
around 1517 RGB photos in each class [26].

BdSL36

To realize the real-life use case of a BdSL recognition, the authors of BdSL36 set
out to create a versatile dataset with over 4 million images that mimic a person’s
situation using the model with their device. BdSL was created with the help of 10
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volunteers, with 1200 initial images however, with the use of data augmentation,
the number of images to be used increased to 4 million. BdSL36 stands out from
the other datasets as it is built outside of a controlled lab environment [21].

IsharaLipi

The authors of Ishara Lipi saw a lack of available open access datasets for the
sole purpose of BdSL recognition. Most papers that worked on this problem used
their own dataset that was created by them and did not make it publicly available
for use in research. IsharaLipi [17] incorporates scripts to manipulate the images
by cropping them, resizing them and converting them to grayscale. This dataset
contains 50 sets for each of the 36 signs found in BdSL.

KU-BdSL

The KU-BdSL(Khulna University Bengali Sign Language dataset) [22] is a Bengali
sign language dataset with three versions. The versions are as follows: Uni-scale Sign
Language Dataset (USLD), Multi-scale Sign Language Dataset (MSLD) and Anno-
tated Multi-scale Sign Language Dataset (AMSLD). Images representing single-hand
motions for BdSL alphabets make up the dataset. Many different smartphones were
used to acquire photographs from 33 individuals(25 males and 8 females). Each
version has 30 classes that correspond to the 39 Bengali consonants. Each version of
the dataset has a total of 1,500 samples in jpg format. To have different brightness
and contrast, the images were clicked on uniform surfaces at varying times of the
day. Each picture in USLD is 512*512 pixels in size. The majority of examples in
this dataset had the intended hand position in the middle. In MSLD, the raw photos
are saved so that researchers can edit the dataset according to their needs. AMSLD
has multi-scale annotated data, which could be helpful in tasks such as classification
and localization. YOLO DarkNet annotation was used to annotate the images in
the dataset.

2.3 Related Works

This section will look into some previous and existing research on this topic. Initially,
we will discuss the origins of Sign Language Recognition and notable breakthroughs
in the field. Then we will move on to more novel approaches that are state-of-the-
art and bring significant impact on the world, which are divided into subsections
according to different technologies used. The previous technologies that we will see
have used both the same and different approaches compared to our approach.

Existing researches of sign language detection techniques use various machine learn-
ing algorithms such as fuzzy logic [2], Artificial Neural Network [12] [8], Princi-
pal Component Analysis (PCA) [10] [5], Hidden Markov Model (HMM) [6] [3], K-
Nearest Neighbor (KNN) [9], SVM [13], Convolutional Neural Networks (CNN) [15]
[18] [19] [25] [20] and Contour Analysis [11]. to train the model using existing or cus-
tomized datasets. All the mentioned algorithms have their benefits and drawbacks
in terms of their time and space complexity. This implies that some algorithms may
perform well in certain situations while others may perform poorly in others. As
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a result, it all comes down to the situation at hand, namely the picture quality of
the sign language and the datasets used to train the model to recognise certain sign
languages.

Much work has been done on the use of CNNs and gesture recognition as a re-
sult. The image-based approach used in one such paper created their own dataset
of images containing the Bengali sign gestures and implemented a VGG19 based
CNN which eventually achieved a test accuracy of 89.6%. A similar challenge was
faced in this paper as the researchers were working on a limited number of datasets,
while CNNs typically can give better results when they train on very large datasets.
Another paper introduced a real-time computer vision-based Bangla sign language
recognition technique using faster R-CNN(Region-Based Convolutional Neural Net-
work) [16] which is just an extension of the classic CNN used for object detection.
A specialized dataset, named BdSLImset, was generated by the researchers to meet
their specific research requirements. This paper compares the output accuracy with
four other related works which used different image detection algorithms. The men-
tioned papers obtained accuracies of 96.46%, 98.99%, 97% and 95.80% respectively.
Most of the papers that we have reviewed have done some sort of data preprocess-
ing to ensure that the size and quality of the data are being maintained and the
performance of the models are optimized. The feature set may also have to be
standardized in some cases to properly work with the model in use.

2.3.1 Fuzzy Logic

Using an adaptive fuzzy logic system, the paper [2] proposes a Hand Sign Clas-
sification (HSC) system that uses information about the hand motions to classify
them as Australian Sign Language. The posture data is classified to recognize the
initial and final hand postures as AUSLAN basic hand forms. The start and end
postures and the mobility that happened between them are used to classify signs.
Both the posture and sign classifications use the same fuzzy procedure, which in-
volves fuzzifying the kinematic input data, rule activation and calculation of match-
ing postures/signs and accompanying likelihood values. The matched rule’s output
likelihood value indicates the likelihood that the input is the posture or indication
that the rule represents.

2.3.2 Artificial Neural Network

The research [12] proposed a Bangla Sign Language Recognition system that trained
an artificial neural network using photographs of fingertip location. This method
employed position vectors to train an artificial neural network to recognize the rela-
tive tip positions of five fingers in a two-dimensional space. Although ANN takes a
substantial amount of time and resources to train, it was tested on a custom dataset
of 518 photos of 37 indicators and obtained 99% classification accuracy. The au-
thors also offer a method for identifying static alphabet hand gestures in BdSL in
[8], which involves training an ANN with sign alphabet features using a feed-forward
back-propagation learning algorithm. This method requires photographs of the bare
hand for recognition, therefore no gloves or visual marking systems are required. It
had a test accuracy of 80.902% on average. In [7], a unique system is proposed
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involving Neural Network Ensemble(NNE) where multiple neural networks are com-
bined to form a large network which was used as feature extractor and classifier to
detect and classify Bangla sign languages with an accuracy rate of 93%.

2.3.3 Principal Component Analysis

Using Principal Component Analysis, the research [10] presents a real-time approach
for recognizing and classifying ten English hand sign alphabets (PCA). As patterns
in data can be difficult to identify in high-dimensional data, a graphical represen-
tation is not an option. PCA can be considered as a useful tool for analyzing such
data since it can be used to reduce the dimensionality of the feature space in order
to uncover the often hidden, simplified structures that lie behind it without much
loss of important information. A video clip collected static frames of hand motions
at 3 frames per second. Images in a database containing photographs in the same
lighting situation and setting were matched using PCA. In a real-time scenario,
the system attained 90% accuracy. Another paper [5] also used PCA to classify 6
Bengali vowels and 10 Bengali numeric characters from sign language to its corre-
sponding written symbol, which amounts to a total of 16 different hand gestures.
They preprocessed the original RGB images into HSV color space, taken from a
video camera. Afterwards, the images were converted to a binary(black and white)
depending on the range of Hue value within the image. These binary images were
again converted into grayscale, which were then fed as input to the recognizer. They
achieved an average precision and recall rate of 70.5% and 68% for Bengali vowels
and 83.7% and 83.6% respectively for Bengali numbers.

2.3.4 Hidden Markov Model

The various techniques range from using the Kinect sensor and its various depth-
mapping capabilities to extract 20 features from the feed and train a 4-state Hidden
Markov Model that is then used to determine the phrase that is implied by a specific
gesture. This model is one of the early attempts to recognize sign languages and
at that same time, much other research was done on other sign languages. This
approach could achieve an accuracy of 51.5% and 76.12% while sitting or standing.
Some of the other drawbacks also include the need for proprietary hardware, being
the Kinect, to enable this approach [6]. The paper [3] presents a method for contin-
uous American Sign Language (ASL) recognition that uses three-dimensional arm
motion data as input. To obtain accurate three-dimensional movement parameters
of ASL sentences selected from a 53-sign vocabulary. Afterwards, these parameters
were used as features for HMM to detect hand gestures and classify them as ASL.

2.3.5 K-Nearest Neighbor

The research in [9] describes a system that recognizes Bengali Sign Language (BdSL)
in real-time using computer vision. The system recognizes a possible area of interest
from the collected image from a camera, a hand in this case. In order to identify the
hand in each frame, the system employs Haar-like feature-based cascaded classifiers.
The hand sign is located and classified from the identified hand region based on
Hue and Saturation values matching human skin color. The hand sign is converted
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to a binary picture after normalization. The binary pictures are then categorized
using the K-Nearest Neighbors (KNN) Classifier and compared to pre-trained bi-
nary images of hand signs. The system recognizes 6 Bengali vowels and 30 Bengali
consonants. The system is trained using 3600 training photographs, then is tested
with additional 3600 photos. Vowel identification accuracy was 98.17 percent, while
consonant recognition accuracy was 94.75 percent.

2.3.6 Support Vector Machine

In [13], the authors provided a framework for utilizing Support Vector Machine to
recognize Bangla Sign Language (BSL). The recognition system was trained and
tested using the Bangla hand sign alphabets. Bangla sign alphabets are identified
by comparing and studying the elements that distinguish each sign. Hand signs
are translated to HSV color space from RGB images. Afterwards, the appropriate
hand sign characteristics are then acquired using Gabor filters. Since the Gabor
filter produces a high-dimensional feature vector, Kernel PCA was utilized to lower
the dimensionality without losing much valuable information. Finally, two big SVM
classifiers were used for vowel and consonant categorization, respectively. Two dif-
ferent datasets were used for training and testing purposes, respectively. The first
dataset contained 2400 images on which the SVM classifier was trained upon. The
second dataset also contained 2400 images and these were used to evaluate the
model’s performance before deploying it. They successfully achieved an accuracy
rate of 97.7%.

2.3.7 Convolutional Neural Network

The papers [15], [20], [18], [25] and [19] all used a Convolutional Neural Network-
based approach to solve the problem of detecting and classifying Bengali sign lan-
guages. [18] and [15] are classical CNN approaches where the input image is pre-
processed and fed directly to the CNN model for feature extraction. After feature
extraction, the features are fed into a neural network that acts as a classifier to dis-
tinguish between different sign languages. [18] and [20] used a custom-made model,
in which the number of filters and layers of the CNN model is set manually. However,
[19] uses a widely known pre-trained model known as VGG19, which was trained on
the ImageNet dataset. In contrast, [15] proposed a hybrid approach that involves
using Leap Motion Controller (LMC) for detecting hand gestures instead of using
raw images. Afterwards, the frames from the LMC are segmented from the time
series using Hidden Markov Model. Lastly, the segmented images were fed into a
custom-built CNN model to classify them into Bengali sign languages.

2.3.8 Contour Analysis

This study [11] uses contour analysis to demonstrate a computer vision-based Ben-
gali sign word recognition system. A Haar-like feature-based cascaded classifier is
utilized to locate the predetermined hand posture from the collected image from a
camera, which is confined by a bounding box that is initialized as an area of interest
(ROI). The method then separates skin-like regions from the ROI using Hue and
Saturation values from the normalized image. The system then removes noises using
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morphological procedures and Gaussian smoothing before converting the picture to
grayscale. The system detects sign words based on the maximum relevance of the
extracted contours. The system was trained and evaluated using 1800 contour tem-
plates from 10 signers for 18 Bengali sign words, with an accuracy rate of 90.11%
and a computational cost of 26.063 milliseconds per frame.
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Chapter 3

Methodology and System
Implementation

3.1 Dataset

3.1.1 Dataset Collection

For our intents, we have decided to use the IsharaLipi dataset and will therefore
analyze the characteristics of this dataset. From figure 3.1, it is clear that the
original dataset is relatively small and is not enough for a deep learning model to
learn and generalize necessary features. However, some desirable characteristics of
this dataset include the balance it provides and the variability in its background.

Figure 3.1: Original Samples from IsharaLipi Dataset

From figure 3.2 we can take a glance at each sample from the dataset and conclude
that each sign language gesture present in it has been under varying environments
and features such as different lighting, angle, skin color, background and clothing.
This variability ensures that our model can generalize the key features from the
images, which are the hands’ orientation, position and overlap.
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Figure 3.2: One sample from each class of the original dataset
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3.1.2 Data Preprocessing

As mentioned in the previous section, the dataset in use is not robust enough for our
use cases due to its small average sample size of 20 per class. Therefore, we must
resort to various data augmentation techniques to increase the size of our dataset
and change the nature of the images so our model may be better equipped to learn
only the necessary features from the image.

For this, we used the Augmentor Python library that can take images as input and
output them by applying various types of image manipulation algorithms on them.
This includes randomly changing the brightness, contrast and colors of the image
while also warping the image in certain areas causing random distortions with a
probability of 0.4. Moving on we also applied a few transformations on the image
such as rotation, shear, skew and zoom with a probability of 0.2, keeping in mind
that transforming the images too much may take away from the semantic meaning
of the image and cause the model to underperform.

Figure 3.3: Data Augmentation Workflow to produce 1000 samples of images per
class where P is the probability of an augment operation
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Lastly, we applied a uniform histogram equalization with a probability of 0.3, which
is a technique to make the edges of the image crisper that may assist the model
when detecting edges.

This resulted in a uniform dataset of 1000 images for each class, as seen in figure 3.4
which is much better than the previously available original dataset. Before feeding
this augmented dataset into our model for training, we made sure to convert each
image into greyscale images resulting in the images seen in figure 3.5 for each class.

Figure 3.4: Class distribution of augmented samples
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Figure 3.5: One sample from each class of the augmented dataset
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3.2 Model Overview

3.2.1 Intuition Behind the Model

Here we discuss the model architecture that was used as the primary method of
recognizing the gestures of the Bangla sign language present in our dataset.

The model architecture that we propose in this paper came with a few goals in mind
involving accuracy, efficiency and its number of parameters. Most importantly, we
aimed for our model to be exceptionally accurate in giving predictions in a wide
array of environments. Over here, the environment may include lighting, angle,
orientation and other objects. Secondly, our model has a very low number of pa-
rameters making it light and responsive when making these predictions. This will
ensure that the model can run on low-end devices, including mobile phones, IoT
devices, microcontrollers, and web applications(i.e., Zoom or Google Meet) while
maintaining precise inferences with lower power consumption.

In order to achieve our goals for this sign language detection model, there are some
intuitions that come from knowing about neural networks. Neural networks gen-
erally offer better accuracy when they can train over a large dataset. There is no
exact number as to how much data a neural network may actually need. However,
when a neural network is inferring on a wider range of classes, it must have a larger
training data on each class to make meaningful features and differentiate between
the classes. Moreover, to ensure that the model is lightweight and fast, the overall
architecture of the model must be built with a lower number of parameters that the
prediction depends on.

3.2.2 Model Architecture

To ensure our primary objectives of increased model efficiency and decreased model
size, we opted for a CNN model with 4 convolutional layers, along with 3 max-
pooling layers for the feature extractor and 2 dense layers with 256 nodes in the
hidden layer and 36 output nodes in the output layer. Each convolutional layer
also went through a batch normalization layer to reduce the impact that exploding
gradients may have on the model, which can lead to a better generalization on the
dataset. This architecture resulted our model to consist of only around 75,000 train-
able parameters. The layered architecture of the proposed model and its parameter
count are illustrated in tables 3.1 and 3.2 respectively.

Let us dive deeper into the hyperparameters of this architecture. We denote the
Input Layer as the top and the Output layer as the bottom. Except the last dense
layer, all the layers use the Rectified Linear Unit(ReLU) activation function. The
last layer, also called the classification layer, uses the softmax activation function.
Next, the convolutional layers have a filter number of 32, 48, 68 and 84 going from
the top to the bottom, with a kernel size of (2,2) and a stride of 1 for all convolutional
layers except the first one which has a kernel size of (3,3). All Max Pooling layers
have pool size of (2,2) and a stride of 2. All convolutional layers have ’same’ padding
except for the third layer from the top which used ’valid’ padding. Lastly, we added 3
Dropout layers with probabilities of 0.2, 0.2 and 0.4 from top to bottom respectively.
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# Layer Name Layer Type Filters/Nodes Kernel/Pool Size Stride Padding Output Shape
1 input 1 InputLayer N/A N/A N/A N/A (None, 64, 64, 3)
2 conv2d Conv2D 32 (3, 3) 1 same (None, 64, 64, 32)
3 batch normalization BatchNormalization N/A N/A N/A N/A (None, 64, 64, 32)
4 conv2d 1 Conv2D 48 (2, 2) 1 same (None, 64, 64, 48)
5 max pooling2d MaxPooling2D N/A (2, 2) 2 valid (None, 32, 32, 48)
6 batch normalization 1 BatchNormalization N/A N/A N/A N/A (None, 32, 32, 48)
7 conv2d 2 Conv2D 68 (2, 2) 1 valid (None, 31, 31, 68)
8 batch normalization 2 BatchNormalization N/A N/A N/A N/A (None, 31, 31, 68)
9 max pooling2d 1 MaxPooling2D N/A (2, 2) 2 valid (None, 15, 15, 68)
10 dropout Dropout N/A N/A N/A N/A (None, 15, 15, 68)
11 conv2d 3 Conv2D 84 (2, 2) 1 same (None, 15, 15, 84)
12 batch normalization 3 BatchNormalization N/A N/A N/A N/A (None, 15, 15, 84)
13 max pooling2d 2 MaxPooling2D N/A (2, 2) 2 valid (None, 7, 7, 84)
14 dropout 1 Dropout N/A N/A N/A N/A (None, 7, 7, 84)
15 global average pooling2d GlobalAveragePooling2D N/A N/A N/A N/A (None, 84)
16 dense Dense 256 N/A N/A N/A (None, 256)
17 dropout 2 Dropout N/A N/A N/A N/A (None, 256)
18 classification Dense 36 N/A N/A N/A (None, 36)

Table 3.1: Sequential architecture and hyperparameters of our proposed model

A simplified 3D-layered architecture of our model can also be observed in 3.6 where
the dropout layers are typically used in the later parts of the model since this is
where the model usually specializes over the dataset, which may lead to overfitting.

Figure 3.6: Summarized Plot and Propagation from Layer to Layer

3.2.3 Model Efficiency Considerations

Now let us go over how we worked on these two aspects of building our model
architecture. Firstly, since we are building a model on Bengali Sign Language de-
tection, we had to collect many images of Bengali sign language gestures that were
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Total Parameters 75,084
Trainable parameters 74,620
Non-trainable parameters 464

Table 3.2: Parameter count of our proposed model

annotated with the proper classes. We aggregated several datasets that we will be
using for our own purposes and later pre-processed all the images using the same
technique. Secondly, to make our model lightweight, we built a relatively shallow
neural network model with a reduced number of layers and then focused extensively
on hyperparameter tuning to increase the accuracy of our model.

Additionally, from a general understanding of the problem of sign language detec-
tion, we have recognized that color in images is not a necessity for recognizing the
gesture[6]. The features we may need from an image are the outline of a hand, the
position of the hands with respect to each other and skin color. The skin color may
help identify lighting conditions and depth of field. However, for our purposes, it
would not help differentiate it from the background. Therefore, after preprocessing
our images, the images are of dimensions 64x64 and in greyscale color scheme.

Along with this, we used data augmentation before the training phase to make our
data more robust to any kind of environment. To keep it relevant to real world
scenarios, the data augmentation phase will only mutate the images in minor ways
by randomly rotating, shearing and zooming the images. These steps will help
reduce overfitting as much as possible, which is a major issue when deploying a
model in the real world. Notably, we have used histogram equalization to ensure
that the outlines of the hands are more prominent.

3.3 System Workflow

Now that we have established the base goal for our model we may move onto the
implementation. The detailed workflow for our model has been illustrated in figure
3.7 where we clarify each step that goes into building and improving our model.

Firstly, we created a base model keeping in mind the goals we wanted to achieve
for this problem. Later, we compiled the dataset with the Adam optimizer and a
learning rate of 0.001. After training for 10 epochs, we evaluate whether the model
is overfitting or not by observing the validation accuracy and loss.

After that, when we reach a high validation acccuracy with our model, that is over
99%, we can experiment and tune the hyperparameters so it may achieve similar
results with the testing set as well. In this stage, it is critical to ensure that the
model does not overfit on validation data which is quite possible if the model is
tuned according to it.

Lastly, the model may be deployed and used in practice as it is proven to work with
acceptable accuracy over the various subsets of the dataset.
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Figure 3.7: Workflow of creating, tuning and building our custom model
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3.4 Model Training and Testing

3.4.1 Overfitting & Under fitting

During our experimentation, our results pointed towards one major problem when
working small datasets that is overfitting. Primarily, when working with CNNs the
process of feature extraction is effective enough to learn the underlying features
from images; however, they are not always generalized to the problem at hand.
To alleviate this, we have used various techniques such as regularization and some
specific callback functions when training our model.

Regularization

The primary regularization methods that may be used are L1 Regularization, L2
Regularization and using Dropout Layers. L1 and L2 regularization help curb over-
fitting by penalizing input weights that contribute very highly towards the overall
activation of a node. Dropout layers randomly drop inputs to a node, forcing the
model to extract only the important features from a dataset, leading to better gen-
eralization.[24]

Callbacks

The main callback functions we used were Early Stopping and Learning Rate Re-
duction. Early Stopping helps stop model training before the model overfits by
halting training when the validation accuracy and training accuracy start diverging.
Learning Rate Reduction reduces the learning rate when the training loss plateaus
to a global or local minima value so that it may not be overshoot the minima loss
value, leading to decreased validation accuracy.

3.5 Model Deployment Considerations

As discussed before, the model must be lightweight in order to be accessible to a
wider range of people. However, it is not practical or efficient to host the entire model
on the consumer end device. Instead, these models will be hosted and deployed on
cloud platforms such as AWS and Heroku, where they will be called via an API to
process any data and give meaningful inferences. This workflow makes the most
sense if we want close to real-time performance for mobile devices. Of course, this
brings the limitations that the device must always be connected to the internet.
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Chapter 4

Experimental Results and Analysis

4.1 Experimental Results and Analysis

From the previous analysis of alternative models and problems, we could extrapolate
that the major drawback of building a model for sign language recognition was the
scarcity of datasets that cater to this particular problem. However, using regular-
ization and data augmentation techniques, we overcame this issue and developed a
model that acquired 99% validation accuracy on our augmented dataset.

4.2 Model Accuracy and Loss

From figures 4.1 and 4.2 we can clearly see that the model slowly transitions from a
low accuracy to a high accuracy over the span of 10 epochs. The disparity between
the validation and training accuracy/loss can be attributed to the Batch Normal-
ization and Dropout layers being inactive during validation.

Figure 4.1: Transition of Model Accuracy over 10 epochs
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Figure 4.2: Transition of Model Loss over 10 epochs using Categorical Crossentropy

4.3 Model Evaluation

This section will highlight the methods we used to further evaluate the performance
of our model.

4.3.1 Confusion Matrix

The confusion matrix in figure 4.3 gives us a clear picture of how many images were
correctly classified, denoted by the diagonal of the matrix. We can also see the ones
that were incorrectly classified by looking at the matrix cells outside of the diagonal.
For this specific problem, the confusion matrix may not give us enough context to
explain what the model got wrong since sign labeled as 5 may or may not be similar
to sign labeled as 6.
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Figure 4.3: Confusion Matrix for our Custom Model

4.3.2 Other Metrics

For the other metrics, we have used recall, precision, f1-score and support as a
measure of how well the model has performed over the whole dataset. From table
4.1, we can have a very clear representation of all the metrics for each class of our
dataset. From the average precision and recall, we can say that the model works
well in avoiding false positives as well as false negatives. It is also evident that our
model has a high mean value of precision and recall, indicating our model is robust
and accurate enough to detect and classify all the different hand gestures of the
Bangladeshi sign language.
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Class Pecision Recall f1-score Support
0 0.98 1.00 0.99 198
1 0.99 0.98 0.99 200
2 0.99 0.99 0.99 192
3 1.00 0.99 0.99 214
4 0.99 1.00 0.99 199
5 0.98 0.99 0.99 192
6 1.00 1.00 1.00 194
7 1.00 0.99 0.99 221
8 0.99 1.00 0.99 212
9 1.00 1.00 1.00 220
10 0.99 0.99 0.99 196
11 1.00 1.00 1.00 205
12 0.99 1.00 0.99 195
13 1.00 0.98 0.99 185
14 0.98 1.00 0.99 208
15 1.00 1.00 1.00 217
16 0.99 0.99 0.99 201
17 1.00 0.99 1.00 209
18 0.99 0.98 0.99 200
19 1.00 0.98 0.99 204
20 1.00 1.00 1.00 208
21 0.99 0.99 0.99 196
22 0.98 0.98 0.98 195
23 1.00 0.99 1.00 189
24 1.00 0.98 0.99 180
25 1.00 1.00 1.00 198
26 0.99 0.99 0.99 181
27 0.99 1.00 0.99 191
28 1.00 0.99 1.00 198
29 1.00 1.00 1.00 202
30 0.99 1.00 0.99 206
31 0.98 1.00 0.99 197
32 0.99 0.96 0.98 194
33 0.98 0.98 0.98 203
34 0.97 1.00 0.99 186
35 0.99 1.00 0.99 214

accuracy 0.99 7200
macro avg 0.99 0.99 0.99 0.99
weighted avg 0.99 0.99 0.99 0.99

Table 4.1: Classification Report on Testing Dataset
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Chapter 5

Conclusion

5.1 Conclusion

We present a system that combines deep learning with computer vision methods to
recognize and categorize Bangla sign languages. With a test accuracy of 99.21%,
our custom-built CNN model can detect and categorize Bangla sign language sym-
bols from the Ishara-Lipi dataset. We trained our model with enough samples by
enriching the Ishara-Lipi dataset using various data augmentation techniques to
distinguish the specific signals of a hand gesture and grasp what they signify. Our
model is a classical CNN approach based on the vanilla CNN architecture, which
is flexible enough to work in a variety of scenarios, as we plan to train the model
on other datasets, potentially improving the validity accuracy. More research on
this topic could lead to the detection of complete phrases from gestures detected by
similar models.

5.2 Practical Implications

From this work, we are very specifically working on the character classification part
of the problem when approaching this paper. Our model is designed to classify single
or double-hand Bengali Sign Language gestures and output the corresponding letter.
This solution may be used to facilitate environments where there is a lack of proper
instruments for sign language users to communicate. This may also be used in
education to train all people the skill of sign language without the intervention of a
teacher. Lastly, this may be paired with technologies akin to stenography to create
keyboard-less environments for sign language users so they may communicate easily
using phonetic language and word prediction rather than spelling out entire words
using characters.

5.3 Future Work

For future work, we hope to see our model being used in the final pipe when classi-
fying static Bengali Sign Language characters after it has been boxed using various
object detection methods. We may also use NLP models to string together charac-
ters and from words on the fly, using the character output from our model. More
work needs to be done to recognize individual words and sentences using moving
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hands, bodies, and faces in the sign language realm. The release of a dataset con-
taining video files of these moving gestures and relevant body parts may be the first
step to achieving this feat.

31



Bibliography

[1] B. d. Gelder, J. Vroomen, and L. van der Heide, “Face recognition and lip-
reading in autism,” en, European Journal of Cognitive Psychology, vol. 3, no. 1,
pp. 69–86, Jan. 1991, issn: 0954-1446, 1464-0635. doi: 10.1080/09541449108406220.
[Online]. Available: http://www.tandfonline.com/doi/abs/10.1080/09541449108406220.

[2] Eun-Jung Holden, G. Roy, and R. Owens, “Adaptive classification of hand
movement,” in Proceedings of ICNN’95 - International Conference on Neural
Networks, vol. 3, Perth, WA, Australia: IEEE, 1995, pp. 1373–1378, isbn:
9780780327689. doi: 10.1109/ICNN.1995.487358. [Online]. Available: http:
//ieeexplore.ieee.org/document/487358/.

[3] C. Vogler and D. Metaxas, “Adapting hidden Markov models for ASL recog-
nition by using three-dimensional computer vision methods,” in 1997 IEEE
International Conference on Systems, Man, and Cybernetics. Computational
Cybernetics and Simulation, vol. 1, Orlando, FL, USA: IEEE, 1997, pp. 156–
161, isbn: 9780780340534. doi: 10.1109/ICSMC.1997.625741. [Online]. Avail-
able: http://ieeexplore.ieee.org/document/625741/.

[4] S. J. F. Fudickar and K. Nurzynska, “A User-Friendly Sign Language Chat,”
in Conference ICL2007, September 26 -28, 2007, M. E. Auer, Ed., Villach,
Austria: Kassel University Press, 2007, 7 pages. [Online]. Available: https :
//telearn.archives-ouvertes.fr/hal-00197225.

[5] S. Begum and M. Hasanuzzaman, “Computer vision-based bangladeshi sign
language recognition system,” in 2009 12th International Conference on Com-
puters and Information Technology, IEEE, 2009, pp. 414–419.

[6] Z. Zafrulla, H. Brashear, T. Starner, H. Hamilton, and P. Presti, “Amer-
ican sign language recognition with the kinect,” en, in Proceedings of the
13th international conference on multimodal interfaces - ICMI ’11, Alicante,
Spain: ACM Press, 2011, p. 279, isbn: 9781450306416. doi: 10.1145/2070481.
2070532. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2070481.
2070532.

[7] B. ChandraKarmokar, K. Md. Rokibul Alam, and M. Kibria Siddiquee, “Bangladeshi
Sign Language Recognition Employing Neural Network Ensemble,” Interna-
tional Journal of Computer Applications, vol. 58, no. 16, pp. 43–46, Nov. 2012,
issn: 09758887. doi: 10.5120/9370-3846. [Online]. Available: http://research.
ijcaonline.org/volume58/number16/pxc3883846.pdf.

[8] M. A. Rahman, “Recognition of Static Hand Gestures of Alphabet in Bangla
Sign Language,” IOSR Journal of Computer Engineering, vol. 8, no. 1, pp. 07–
13, 2012, issn: 22788727, 22780661. doi: 10 .9790/0661/0810713. [Online].

32

https://doi.org/10.1080/09541449108406220
http://www.tandfonline.com/doi/abs/10.1080/09541449108406220
https://doi.org/10.1109/ICNN.1995.487358
http://ieeexplore.ieee.org/document/487358/
http://ieeexplore.ieee.org/document/487358/
https://doi.org/10.1109/ICSMC.1997.625741
http://ieeexplore.ieee.org/document/625741/
https://telearn.archives-ouvertes.fr/hal-00197225
https://telearn.archives-ouvertes.fr/hal-00197225
https://doi.org/10.1145/2070481.2070532
https://doi.org/10.1145/2070481.2070532
http://dl.acm.org/citation.cfm?doid=2070481.2070532
http://dl.acm.org/citation.cfm?doid=2070481.2070532
https://doi.org/10.5120/9370-3846
http://research.ijcaonline.org/volume58/number16/pxc3883846.pdf
http://research.ijcaonline.org/volume58/number16/pxc3883846.pdf
https://doi.org/10.9790/0661/0810713


Available: http : / / www . iosrjournals . org / iosr - jce / papers / Vol8 - Issue1 /
B0810713.pdf.

[9] M. A. Rahaman, M. Jasim, M. H. Ali, and M. Hasanuzzaman, “Real-time
computer vision-based Bengali Sign Language recognition,” in 2014 17th In-
ternational Conference on Computer and Information Technology (ICCIT),
Dhaka, Bangladesh: IEEE, Dec. 2014, pp. 192–197, isbn: 9781479962884. doi:
10.1109/ICCITechn.2014.7073150. [Online]. Available: http://ieeexplore.ieee.
org/document/7073150/.

[10] A. Saxena, D. K. Jain, and A. Singhal, “Sign language recognition using prin-
cipal component analysis,” in 2014 Fourth International Conference on Com-
munication Systems and Network Technologies, IEEE, 2014, pp. 810–813.

[11] M. A. Rahaman, M. Jasim, M. H. Ali, and M. Hasanuzzaman, “Computer vi-
sion based Bengali sign words recognition using contour analysis,” in 2015 18th
International Conference on Computer and Information Technology (ICCIT),
Dhaka, Bangladesh: IEEE, Dec. 2015, pp. 335–340, isbn: 9781467399302. doi:
10.1109/ICCITechn.2015.7488092. [Online]. Available: http://ieeexplore.ieee.
org/document/7488092/.

[12] S. T. Ahmed and M. A. H. Akhand, “Bangladeshi Sign Language Recognition
using fingertip position,” in 2016 International Conference on Medical Engi-
neering, Health Informatics and Technology (MediTec), Dhaka, Bangladesh:
IEEE, Dec. 2016, pp. 1–5, isbn: 9781509054213. doi: 10.1109/MEDITEC.
2016 . 7835364. [Online]. Available: http : / / ieeexplore . ieee . org /document /
7835364/.

[13] M. A. Uddin and S. A. Chowdhury, “Hand sign language recognition for
Bangla alphabet using Support Vector Machine,” in 2016 International Con-
ference on Innovations in Science, Engineering and Technology (ICISET),
Dhaka, Bangladesh: IEEE, Oct. 2016, pp. 1–4, isbn: 9781509061228. doi:
10.1109/ICISET.2016.7856479. [Online]. Available: http://ieeexplore.ieee.
org/document/7856479/.

[14] M. D Bloice, C. Stocker, and A. Holzinger, “Augmentor: An Image Augmen-
tation Library for Machine Learning,” The Journal of Open Source Software,
vol. 2, no. 19, p. 432, Nov. 2017, issn: 2475-9066. doi: 10.21105/joss.00432.
[Online]. Available: http://joss.theoj.org/papers/10.21105/joss.00432.

[15] F. Yasir, P. W. C. Prasad, A. Alsadoon, A. Elchouemi, and S. Sreedha-
ran, “Bangla Sign Language recognition using convolutional neural network,”
in 2017 International Conference on Intelligent Computing, Instrumentation
and Control Technologies (ICICICT), Kerala State,Kannur, India: IEEE, Jul.
2017, pp. 49–53, isbn: 9781509061068. doi: 10.1109/ICICICT1.2017.8342533.
[Online]. Available: http://ieeexplore.ieee.org/document/8342533/.

[16] O. B. Hoque, M. I. Jubair, M. S. Islam, A.-F. Akash, and A. S. Paulson,
“Real Time Bangladeshi Sign Language Detection using Faster R-CNN,” in
2018 International Conference on Innovation in Engineering and Technology
(ICIET), Dhaka, Bangladesh: IEEE, Dec. 2018, pp. 1–6, isbn: 9781538652299.
doi: 10.1109/CIET.2018.8660780. [Online]. Available: https://ieeexplore.ieee.
org/document/8660780/.

33

http://www.iosrjournals.org/iosr-jce/papers/Vol8-Issue1/B0810713.pdf
http://www.iosrjournals.org/iosr-jce/papers/Vol8-Issue1/B0810713.pdf
https://doi.org/10.1109/ICCITechn.2014.7073150
http://ieeexplore.ieee.org/document/7073150/
http://ieeexplore.ieee.org/document/7073150/
https://doi.org/10.1109/ICCITechn.2015.7488092
http://ieeexplore.ieee.org/document/7488092/
http://ieeexplore.ieee.org/document/7488092/
https://doi.org/10.1109/MEDITEC.2016.7835364
https://doi.org/10.1109/MEDITEC.2016.7835364
http://ieeexplore.ieee.org/document/7835364/
http://ieeexplore.ieee.org/document/7835364/
https://doi.org/10.1109/ICISET.2016.7856479
http://ieeexplore.ieee.org/document/7856479/
http://ieeexplore.ieee.org/document/7856479/
https://doi.org/10.21105/joss.00432
http://joss.theoj.org/papers/10.21105/joss.00432
https://doi.org/10.1109/ICICICT1.2017.8342533
http://ieeexplore.ieee.org/document/8342533/
https://doi.org/10.1109/CIET.2018.8660780
https://ieeexplore.ieee.org/document/8660780/
https://ieeexplore.ieee.org/document/8660780/


[17] M. Sanzidul Islam, S. Sultana Sharmin Mousumi, N. A. Jessan, A. Shahariar
Azad Rabby, and S. Akhter Hossain, “Ishara-Lipi: The First Complete Mul-
tipurposeOpen Access Dataset of Isolated Characters for Bangla Sign Lan-
guage,” in 2018 International Conference on Bangla Speech and Language
Processing (ICBSLP), Sylhet: IEEE, Sep. 2018, pp. 1–4, isbn: 9781538682074.
doi: 10.1109/ICBSLP.2018.8554466. [Online]. Available: https://ieeexplore.
ieee.org/document/8554466/.

[18] M. S. Islalm, M. M. Rahman, M. H. Rahman, M. Arifuzzaman, R. Sassi, and
M. Aktaruzzaman, “Recognition Bangla Sign Language using Convolutional
Neural Network,” in 2019 International Conference on Innovation and Intelli-
gence for Informatics, Computing, and Technologies (3ICT), Sakhier, Bahrain:
IEEE, Sep. 2019, pp. 1–6, isbn: 9781728130125. doi: 10.1109/3ICT.2019.
8910301. [Online]. Available: https://ieeexplore.ieee.org/document/8910301/.

[19] A. M. Rafi, N. Nawal, N. S. N. Bayev, L. Nima, C. Shahnaz, and S. A. Fat-
tah, “Image-based Bengali Sign Language Alphabet Recognition for Deaf and
Dumb Community,” in 2019 IEEE Global Humanitarian Technology Confer-
ence (GHTC), Seattle, WA, USA: IEEE, Oct. 2019, pp. 1–7, isbn: 9781728117805.
doi: 10.1109/GHTC46095.2019.9033031. [Online]. Available: https://ieeexplore.
ieee.org/document/9033031/.

[20] L. K. S. Tolentino, R. O. S. Juan, A. C. Thio-ac, M. A. B. Pamahoy, J. R. R.
Forteza, and X. J. O. Garcia, “Static sign language recognition using deep
learning,” International Journal of Machine Learning and Computing, vol. 9,
no. 6, pp. 821–827, 2019.

[21] O. B. Hoque, M. I. Jubair, A.-F. Akash, and S. Islam, “Bdsl36: A dataset for
bangladeshi sign letters recognition,” in Proceedings of the Asian Conference
on Computer Vision, 2020.

[22] Abdullah Al Jaid Jim, KU-BdSL: Khulna University Bengali Sign Language
dataset, Type: dataset, Sep. 2021. doi: 10.17632/SCPVM2NBKM.1. [Online].
Available: https://data.mendeley.com/datasets/scpvm2nbkm/1.

[23] A. Khatun, M. S. Shahriar, M. H. Hasan, K. Das, S. Ahmed, and M. S.
Islam, “A Systematic Review on the Chronological Development of Bangla
Sign Language Recognition Systems,” in 2021 Joint 10th International Con-
ference on Informatics, Electronics & Vision (ICIEV) and 2021 5th Inter-
national Conference on Imaging, Vision & Pattern Recognition (icIVPR),
Kitakyushu, Japan: IEEE, Aug. 2021, pp. 1–9, isbn: 9781665449236. doi:
10 . 1109 / ICIEVicIVPR52578 . 2021 . 9564157. [Online]. Available: https : / /
ieeexplore.ieee.org/document/9564157/.

[24] M. Al-Qurishi, T. Khalid, and R. Souissi, “Deep Learning for Sign Language
Recognition: Current Techniques, Benchmarks, and Open Issues,” IEEE Ac-
cess, vol. 9, pp. 126 917–126 951, 2021, issn: 2169-3536. doi: 10.1109/ACCESS.
2021 .3110912. [Online]. Available: https :// ieeexplore . ieee .org/document/
9530569/.

34

https://doi.org/10.1109/ICBSLP.2018.8554466
https://ieeexplore.ieee.org/document/8554466/
https://ieeexplore.ieee.org/document/8554466/
https://doi.org/10.1109/3ICT.2019.8910301
https://doi.org/10.1109/3ICT.2019.8910301
https://ieeexplore.ieee.org/document/8910301/
https://doi.org/10.1109/GHTC46095.2019.9033031
https://ieeexplore.ieee.org/document/9033031/
https://ieeexplore.ieee.org/document/9033031/
https://doi.org/10.17632/SCPVM2NBKM.1
https://data.mendeley.com/datasets/scpvm2nbkm/1
https://doi.org/10.1109/ICIEVicIVPR52578.2021.9564157
https://ieeexplore.ieee.org/document/9564157/
https://ieeexplore.ieee.org/document/9564157/
https://doi.org/10.1109/ACCESS.2021.3110912
https://doi.org/10.1109/ACCESS.2021.3110912
https://ieeexplore.ieee.org/document/9530569/
https://ieeexplore.ieee.org/document/9530569/


[25] A. S. M. Miah, J. Shin, M. A. M. Hasan, and M. A. Rahim, “BenSignNet:
Bengali Sign Language Alphabet Recognition Using Concatenated Segmenta-
tion and Convolutional Neural Network,” en, Applied Sciences, vol. 12, no. 8,
p. 3933, Apr. 2022, issn: 2076-3417. doi: 10 . 3390/app12083933. [Online].
Available: https://www.mdpi.com/2076-3417/12/8/3933.

[26] BdSL-D1500, en. [Online]. Available: https://www.kaggle.com/kanchonkantipodder/
bdsld1500.

[27] Deaf in America — Carol Padden, Tom Humphries, en. [Online]. Available:
https://www.hup.harvard.edu/catalog.php?isbn=9780674194243.

[28] National Activities - Bangladesh. - Bangladesh Sign language Day. [Online].
Available: http://www.dpiap.org/national/article.php?countryid=017&id=
0000029&country=Bangladesh..

35

https://doi.org/10.3390/app12083933
https://www.mdpi.com/2076-3417/12/8/3933
https://www.kaggle.com/kanchonkantipodder/bdsld1500
https://www.kaggle.com/kanchonkantipodder/bdsld1500
https://www.hup.harvard.edu/catalog.php?isbn=9780674194243
http://www.dpiap.org/national/article.php?countryid=017&id=0000029&country=Bangladesh.
http://www.dpiap.org/national/article.php?countryid=017&id=0000029&country=Bangladesh.

	Declaration
	Approval
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivation and Goals
	Problem Statement
	Research Objective

	Literature Review
	Core Technologies
	Computer Vision
	Deep Learning
	ANN
	CNN
	Core Libraries

	Bangladeshi Sign Language Datasets
	Single handed sign language datasets
	Double handed sign language datasets
	Static Datasets
	Dynamic Datasets
	Open Source Datasets

	Related Works
	Fuzzy Logic
	Artificial Neural Network
	Principal Component Analysis
	Hidden Markov Model
	K-Nearest Neighbor
	Support Vector Machine
	Convolutional Neural Network
	Contour Analysis


	Methodology and System Implementation
	Dataset
	Dataset Collection
	Data Preprocessing

	Model Overview
	Intuition Behind the Model
	Model Architecture
	Model Efficiency Considerations

	System Workflow
	Model Training and Testing
	Overfitting & Under fitting

	Model Deployment Considerations

	Experimental Results and Analysis
	Experimental Results and Analysis
	Model Accuracy and Loss
	Model Evaluation
	Confusion Matrix
	Other Metrics


	Conclusion
	Conclusion
	Practical Implications
	Future Work

	Bibliography



