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ABSTRACT 
 

 

Grid computing is designed to use free cycles of computer to perform large calculations by using 

free cycles of computer. Grid computing does not need dedicated computers to perform 

calculations instead it uses free cycles of computer in a network. It works like a virtual super 

computer, but it doesn’t involve extra hardware cost. As, it’s a cost effective its popularity is 

increasing day by day.  Now a day’s popular applications are being made to support grid 

computing. For example Oracle database 10g is designed to support grid computing.  

Although grid computing is so popular, but implementing software for grid based system is 

tough. It needs task distribution among computers. So it uses different programming techniques 

and needs to use special API. The software we are currently using may not support grid 

environment. Software companies need to convert their programs to support grid environment 

that involves development cost. On other hand users are not able to use their current software in 

grid environment. So, they need to buy another program that involves extra cost. 

The objective of this project is to run traditional programs in grid system without any 

modification, so that we can run any executable program in grid system with parallel speeding 

performance. It will increase program compatibility and reduce cost. 
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Introduction 

 

1.1 Background  

Increased network bandwidth, more powerful computers, and the acceptance of the Internet have 

driven the on-going demand for new and better ways to compute. Commercial enterprises, 

academic institutions, and research organizations continue to take advantage of these 

advancements, and constantly seek new technologies and practices that enable them to seek new 

ways to conduct business. However, many challenges remain. Increasing pressure on 

development and research costs, faster time-to-market, greater throughput, and improved quality 

and innovation are always foremost in the minds of administrators - while computational needs 

are outpacing the ability of organizations to deploy sufficient resources to meet growing 

workload demands.  

On top of these challenges is the need to handle dynamically changing workloads. The truth is, 

flexibility is key. In a world with rapidly changing markets, both research institutions and 

enterprises need to quickly provide compute power where it is needed most. Indeed, if systems 

could be dynamically created when they are needed, teams could harness these resources to 

increase innovation and better achieve their objectives. That is why grid computing is getting 

popular. It gives user the flexibility of processing, upgradeability and reliability in a cost 

effective way. It ensures the best use of idle resource in large network. 

 

1.2 Aim 

The aim of our project to increase compatibility of program that is used in non-grid environment 

to grid environment without hampering performance. 

 

1.3 Objectives  

There should be a specific objective of a project. The project objective consists of the benefits 

that an organization or person expects to achieve as a result of spending time and exerting effort 

to complete a project. As this is an academic project it has strict deadline in which the objective 

have to be fulfilled.  

The objectives of the project are defined below: 

 To establish a successful grid computing network based on existing system. 
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 Analyzing the system to identify its limitations.  

 Develop our own grid based system that may be able to improve the system. 

 Testing the system and determine its ability and limitations. That is if it is able to fulfill 

our goal. 

 To produce detailed documentation and report on the project and the tool for future 

reference and use. 

 

1.4 Motivation  

In grid computing, the idea is to build an infrastructure that will make distributed computational 

resources available as easily as electric power is through the electricity distribution grid. Part of 

the original motivation for grid computing came from the problems in processing scientific data, 

where the use of dedicated supercomputers is expensive and frequently infeasible. Large 

networks of much cheaper and less powerful processors have long been touted as a natural 

alternative to such dedicated devices, but there has never been a technology capable of exploiting 

such distributed computational resources. The aim of grid computing is to provide such 

technologies. The "plumbing" for grid computing is essentially in place: we already have large-

scale networks of distributed computers, connected by a (comparatively) reliable network using 

data communication protocols (TCP/IP etc) that are commonly agreed and widely used. The 

challenges in grid computing therefore lie in developing the software to drive the grid. 

 

Grid applications (multi-disciplinary applications) couple resources that cannot be replicated at a 

single site even or may be globally located for other practical reasons. These are some of the 

driving forces behind the inception of grids. In this light, grids let users solve larger or new 

problems by pooling together resources that could not be coupled easily before. 

 

But, implementing software for grid based system is costly. If any project can make it possible to 

run general purpose software to run on grid, it will be cost effective for developers and end users 

as well. 

 

1.5 Scope  

The scope of any successful project must be determined at the beginning of the project. Far too 

many projects fail to achieve success because of ill‐defined scopes. Due to the fact that this is an 
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academic project the scope of the project is very closely related to the aim, objectives and 

deliverables of the project. 

 

The scope of the project is defined by the following: 

 Our project deals with task distribution in grid computing. It deals with incompatibility to 

run general software to run on grid by distributing its load. 

 This project works on input files which are solvable by the program by splitting and 

possible to combine the outputs in to complete output.  

 The tool developed only deals with programs that can be run as batch job and input and 

output method is file. 

 Although the project is grid based, this project does not deal with management and 

security features in grid. 
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Literature Review  
 

 

2.1. What is Grid Computing 

Grid computing is a method of harnessing the power of many computers in a network to solve 

problems requiring a large number of processing cycles and involving huge amounts of data. 

In a grid network every node is a complete computer. Grid network is not limited with in a 

firewall or geographic region. The objective to use grid computing is to gain high throughput. 

Sun defines a computational grid as "a hardware and software infrastructure that provides 

dependable, consistent, pervasive, and inexpensive access to computational capabilities." Grid 

computing can encompass desktop PCs, but more often than not its focus is on more powerful 

workstations, servers, and even mainframes and supercomputers working on problems involving 

huge datasets that can run for days. And grid computing leans more to dedicated systems, than 

systems primarily used for other tasks.[1] 

 

 

Grid is a type of parallel and distributed system that enables the sharing, selection, and 

aggregation of geographically distributed "autonomous" resources dynamically at runtime 

depending on their availability, capability, performance, cost, and users' quality-of-service 

requirements. It creates a "virtual supercomputer" by using a network of geographically 

dispersed computers. Volunteer computing, which generally focuses on scientific, mathematical, 

and academic problems, is the most common application of this technology. 

 

2.2 Grid Vs Other System 

http://en.wikipedia.org/wiki/Volunteer_computing
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There are different types of computing. Grid computing is one of those computing system. Now 

we discuss those systems and compare with Grid Computing below. 

 

2.2.1 Distributed Computing 

 Distributed computing is a method of computer processing in which different parts of a 

program are run simultaneously on two or more computers that are communicating with each 

other over a network. Distributed computing is a type of segmented or parallel computing, but 

the latter term is most commonly used to refer to processing in which different parts of a 

program run simultaneously on two or more processors that are part of the same computer. While 

both types of processing require that a program be segmented—divided into sections that can run 

simultaneously, distributed computing also requires that the division of the program take into 

account the different environments on which the different sections of the program will be 

running. For example, two computers are likely to have different file systems and different 

hardware components. 

An example of distributed computing is BOINC (Berkeley Open Infrastructure for Network 

Computing), a framework in which large problems can be divided into many small problems 

which are distributed to many computers. Later, the small results are reassembled into a larger 

solution. 

Distributed computing is a natural result of using networks to enable computers to communicate 

efficiently. But distributed computing is distinct from computer networking or fragmented 

computing. The latter refers to two or more computers interacting with each other, but not, 

typically, sharing the processing of a single program. The World Wide Web is an example of a 

network, but not an example of distributed computing. 

There are numerous technologies and standards used to construct distributed computations, 

including some which are specially designed and optimized for that purpose, such as Remote 

Procedure Calls (RPC) or Remote Method Invocation (RMI) or .NET remoting.[2] 

2.2.2 Parallel Computing 

http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/BOINC
http://en.wikipedia.org/wiki/Computer_networking
http://en.wikipedia.org/wiki/Remote_Procedure_Call
http://en.wikipedia.org/wiki/Remote_Procedure_Call
http://en.wikipedia.org/wiki/Remote_Procedure_Call
http://en.wikipedia.org/wiki/Remote_Method_Invocation
http://en.wikipedia.org/wiki/.NET_Remoting
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 Parallel computing is the simultaneous execution of some combination of multiple 

instances of programmed instructions and data on multiple processors in order to obtain results 

faster. The idea is based on the fact that the process of solving a problem usually can be divided 

into smaller tasks, which may be carried out simultaneously with some coordination. The 

technique was first put to practical use by ILLIAC IV in 1976, fully a decade after it was 

conceived. 

 A parallel computing system is a computer with more than one processor for parallel 

processing. In the past, each processor of a multiprocessing system always came in its own 

processor packaging, but recently-introduced multicore processors contain multiple logical 

processors in a single package. There are many different kinds of parallel computers. They are 

distinguished by the kind of interconnection between processors (known as "processing 

elements" or PEs) and memory. Flynn's taxonomy, one of the most accepted taxonomies of 

parallel architectures, classifies parallel (and serial) computers according to: whether all 

processors execute the same instructions at the same time (single instruction/multiple data—

SIMD) or whether each processor executes different instructions (multiple instruction/multiple 

data—MIMD). 

One major way to classify parallel computers is based on their memory architectures. Shared 

memory parallel computers have multiple processors accessing all available memory as global 

address space. They can be further divided into two main classes based on memory access times: 

Uniform Memory Access (UMA), in which access times to all parts of memory are equal, or 

Non-Uniform Memory Access (NUMA), in which they are not. Distributed memory parallel 

computers also have multiple processors, but each of the processors can only access its own local 

memory; no global memory address space exists across them. Parallel computing systems can 

also be categorized by the numbers of processors in them. Systems with thousands of such 

processors are known as massively parallel. Subsequently there are what are referred to as "large 

scale" vs. "small scale" parallel processors. This depends on the size of the processor, e.g. a PC 

based parallel system would generally be considered a small scale system. Parallel processor 

machines are also divided into symmetric and asymmetric multiprocessors, depending on 

whether all the processors are the same or not (for instance if only one is capable of running the 

operating system code and others are less privileged). 

http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/ILLIAC_IV
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/w/index.php?title=Processor_packaging&action=edit
http://en.wikipedia.org/wiki/Multicore
http://en.wikipedia.org/wiki/Flynn%27s_taxonomy
http://en.wikipedia.org/wiki/SIMD
http://en.wikipedia.org/wiki/MIMD
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Uniform_Memory_Access
http://en.wikipedia.org/wiki/Non-Uniform_Memory_Access
http://en.wikipedia.org/wiki/Distributed_memory
http://en.wikipedia.org/wiki/Massively_parallel_processing
http://en.wikipedia.org/wiki/Multiprocessing
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A variety of architectures have been developed for parallel processing. For example, ring 

architecture has processors linked by a ring structure. Other architectures include hypercubes, fat 

trees, systolic arrays, and so on.[3] 

 

2.2.3 Super computers 

 "Distributed" or "grid computing" in general is a special type of parallel computing which 

relies on complete computers (with onboard CPU, storage, power supply, network interface, etc.) 

connected to a network (private, public or the Internet) by a conventional network interface, such 

as Ethernet. This is in contrast to the traditional notion of a supercomputer, which has many 

CPUs connected by a local high-speed computer bus. 

The primary advantage of distributed computing is that each node can be purchased as 

commodity hardware, which when combined can produce similar computing resources to a 

many-CPU supercomputer, but at lower cost. This is due to the economies of scale of producing 

commodity hardware, compared to the lower efficiency of designing and constructing a small 

number of custom supercomputers. The primary performance disadvantage is that the various 

CPUs and local storage areas do not have high-speed connections. This arrangement is thus well-

suited to applications where multiple parallel computations can take place independently, 

without the need to communicate intermediate results between CPUs. 

The high-end scalability of geographically dispersed grids is generally favorable, due to the low 

need for connectivity between nodes relative to the capacity of the public Internet. Conventional 

supercomputers also create physical challenges in supplying sufficient electricity and cooling 

capacity in a single location. Both supercomputers and grids can be used to run multiple parallel 

computations at the same time, which might be different simulations for the same project, or 

computations for completely different applications. The infrastructure and programming 

considerations needed to do this on each type of platform are different, however.[4] 

There are also differences in programming and deployment. It can be costly and difficult to write 

programs so that they can be run in the environment of a supercomputer, which may have a 

custom operating system, or require the program to address concurrency issues. If a problem can 

http://en.wikipedia.org/wiki/Hypercube
http://en.wikipedia.org/wiki/Fat_tree
http://en.wikipedia.org/wiki/Fat_tree
http://en.wikipedia.org/wiki/Fat_tree
http://en.wikipedia.org/wiki/Systolic_array
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Ethernet
http://en.wikipedia.org/wiki/Supercomputer
http://en.wikipedia.org/wiki/Computer_bus
http://en.wikipedia.org/wiki/Commodity_hardware
http://en.wikipedia.org/wiki/Economies_of_scale
http://en.wikipedia.org/wiki/Scalability
http://en.wikipedia.org/wiki/Concurrency
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be adequately parallelized, a "thin" layer of "grid" infrastructure can cause conventional, 

standalone programs to run on multiple machines (but each given a different part of the same 

problem). This makes it possible to write and debug programs on a single conventional machine, 

and eliminates complications due to multiple instances of the same program running in the same 

shared memory and storage space at the same time. 

 

 

 

 

 

 

 

 

 

 

Figure 1: Grid Vs Others 

 

In short we can say, grid and distributed computing either overlap, or distributed computing is a 

subset of grid computing. Parallel computing uses multiple processors in a single computer and 

super computer uses array of processors connected with high speed buses and needs custom 

operating system and applications. 

2.3 Advantages of Grid Computing 
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2.3.1 Cost effective: No need to buy large six figure SMP servers for applications that can be 

split up and farmed out to smaller commodity type servers. Results can then be 

concatenated and analyzed upon job(s) completion  

 

2.3.2 Use of idle resource: Much more efficient use of idle resources. Jobs can be farmed out 

to idle servers or even idle desktops. Many of these resources sit idle especially during 

off business hours. Policies can be in place that allows jobs to only go to servers that are 

lightly loaded or have the appropriate amount of memory/CPU characteristics for the 

particular application. 

 

 

2.3.3 Modularity: Grid environments are much more modular and don't have single points of 

failure. If one of the servers/desktops within the grid fails there are plenty of other 

resources able to pick the load. Jobs can automatically restart if a failure occurs.  

 

 

2.3.4 Failsafe: Don't have single points of failure. If one of the node (each computer) crash, 

then rest of the system will work as before.  

 

2.3.5 Easy management: Policies can be managed by the grid software. The software is really 

the brains behind the grid. A client will reside on each server which sends information 

back to the master telling it what type of availability or resources it has to complete 

incoming jobs. 
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2.3.6 Plug n play: This model scales very well. Need more compute resources? Just plug them 

in by installing grid client on additional desktops or servers. They can be removed just as 

easily on the fly. This modular environment really scales well. 

 

 

2.3.7 No downtime: Upgrading can be done on the fly without scheduling downtime. Since 

there are so many resources some can be taken offline while leaving enough for work to 

continue. This way upgrades can be cascaded as to not affect ongoing projects. 

 

2.3.8 Performance: Jobs can be executed in parallel speeding performance. Grid environments 

are extremely well suited to run jobs that can be split into smaller chunks and run 

concurrently on many nodes. Using things like MPI will allow message passing to occur 

among compute resources. 

 

2.4 Reliability Of Grid Computing In Real Time 

In grid system every node is a complete computer and every computer has its own work to do, so 

it’s unreliable for real time systems.  

Its reliability doesn’t depend on hardware. It is not reliable because it only uses the free cycles. 

When the machine is busy, then it has to be waiting.   

In Table 1 shows the reliability for the non grid system. There, servers or small clusters are 

reliable for approximately hundred percent. In Table 2 shows the grid system. Which shows, 

three grid systems reliability. There are more than 10% times jobs are fails in DAS-2, 20 to 44 % 

time jobs are fails in TerraGrid and in grid3 system 27% time fails after 5 to 10 retries.  

System Type Reliability 
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Server 99.99999% 

Small Cluster 99.999% 

 

 

System Name Reliability 

DAS-2 >10% Job Fails 

TerraGrid 20-44% Failures 

Grid3 
27% Failures, 

5-10 Retries 

 

 

So, grid based system are not suitable for real time system, but we don’t always need real time 

system. For example if we need to run hundreds or thousands of simulations within small time 

then if we use single pc then it’ll take several days may be months, but if we submit the same 

problems to a grid based system then it will use free cycles of multiple computer and complete 

the task in less time.[5] 

 

2.5 Disadvantages 

 Incompatibility: All programs are not compatible with grid. For example if we want to 

run a simple program that is designed to run in a single computer in grid, then the grid 

system cannot split the program and distribute it among its other nodes. Programs written 

for grid based system are complex and multithreaded. Often it needs extra library 

functions to write the code. 

 Slower for smaller tasks: Small tasks may take more time than usual processing. 

Table 2: Grid systems 

 

Table 1: Non-grid 

systems 
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In the above equations,  

T = total time,  

ExecT = execution time,  

N  = number of computers connected in execution time,  

SplitT  = time to split the task,  

IdleT  = time to find out the idle resources,  

.ComT  = time to communication like TCP connection and  

.CombT   = time to combine the total project.  

When the task is small, in the single computer (where n=1) and four additional 

time, 0..  CombComIdleSplit TTTT , execution time will take less than in the grid system. Here 

overhead will increase and total execution time will increase as well as. But, when the task is 

large then grid system’s execution time will be less. It depends on number of computers 

connected at a time, if it increases (N), time will decrease. 

 

 License restriction: licensing across many servers may make it prohibitive for some 

applications. 

 

2.6 Works on grid computing 
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2.6.1 Hungarian Cluster Grid and Super Grid systems 

As a result of the ClusterGrid project a significant high-performance computing Grid 

infrastructure has been created in Hungary. The ClusterGrid currently connects about 600 PCs of 

13 higher educational institutions. The system is constantly grows and the final goal is to connect 

more than 2000 PCs by the end of 2004. Although the ClusterGrid already works as a regular 

infrastructure service it raises several problems to be solved. 

The basic goal of this project to solve the problems by providing new functions for the 

ClusterGrid like  

 

 checkpoint handling for PVM and MPI programs,  

 Grid brokering,  

 workflow management,  

 high-level user interfaces,  

 Grid monitoring,  

 handling large data files and databases in the Grid,  

 accounting system support,  

 Application of VPN and IPv6 technologies.  

In order to provide these new features we adapt the results of the Hungarian SuperGrid 

project.[12] 
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2.6.2 Project Ganglia 

Ganglia is a scalable distributed monitoring system for high-performance computing systems 

such as clusters and Grids. It is based on a hierarchical design targeted at federations of clusters. 

It leverages widely used technologies such as XML for data representation, XDR for compact, 

portable data transport, and RRD tool for data storage and visualization. It uses carefully 

engineered data structures and algorithms to achieve very low per-node overheads and high 

concurrency. The implementation is robust, has been ported to an extensive set of operating 

systems and processor architectures, and is currently in use on thousands of clusters around the 

world. It has been used to link clusters across university campuses and around the world and can 

scale to handle clusters with 2000 nodes.[7] 

Ganglia is an open-source project that grew out of the University of California, Berkeley 

Millennium Project which was initially funded in large part by the National Partnership for 

Advanced Computational Infrastructure (NPACI) and National Science Foundation RI Award 

EIA-9802069. NPACI is funded by the National Science Foundation and strives to advance 

science by creating a ubiquitous, continuous, and pervasive national computational 

infrastructure: the Grid. Current support comes from Planet Lab: an open platform for 

developing, deploying, and accessing planetary-scale services. 

 

Figure 2 : analysis of Project Ganglia 

http://www.millennium.berkeley.edu/
http://www.npaci.edu/
http://www.npaci.edu/
http://www.npaci.edu/
http://www.nsf.gov/
http://www.nsf.gov/
http://www.planet-lab.org/
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2.6.3 TeraGrid  

The TeraGrid is the largest cyber infrastructure facility available for non-classified use in the US. 

The TeraGrid is a centerpiece of the efforts of the US National Science Foundation (NSF) to 

enable new, 21st century science innovations. The TeraGrid provides a network of 

supercomputers with more than 250 teraflops of computing power, data storage facilities to store 

more than 30 peta bytes of data, high-resolution visualization environments, and toolkits for grid 

computing, all connected through a very high-capacity network. If you need access to more 

computing power, storage capabilities, or advanced consulting support to advance your scientific 

research, consider getting a TeraGrid account.[13] 

 

 

 

 

 

 

 

Figure 3: This image shows the geographic locations of current TeraGrid 

Resource Providers and the 10Gb/s network links that interconnect them. The 

TeraGrid is a virtual facility for scientific research that integrates 

computational, storage, information, and data analysis resources at the San 

Diego Supercomputer Center, the Texas Advanced Computing Center, the 

University of Chicago/Argonne National Laboratory, the National Center for 

Supercomputing Applications, Purdue University, Indiana University, Oak 

Ridge National Laboratory, the Pittsburgh Supercomputing Center, and the 

National Center for Atmospheric Research. As a TeraGrid Resource Provider, 

NCAR is committed to offering a highly distributed network of computational, 

data, and knowledge resources to multidisciplinary groups of researchers, 

students, educators, impact and assessment communities, and policy makers 

around the world. 
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2.6.4 SETI@home 

SETI (Search for Extraterrestrial Intelligence) is a scientific area whose goal is to detect 

intelligent life outside Earth. One approach, known as radio SETI, uses radio telescopes to listen 

for narrow-bandwidth radio signals from space. Such signals are not known to occur naturally, so 

detection would provide evidence of extraterrestrial technology.  

Radio telescope signals consist primarily of noise (from celestial sources and the receiver's 

electronics) and man-made signals such as TV stations, radar, and satellites. Modern radio SETI 

projects analyze the data digitally. More computing power enables searches to cover greater 

frequency ranges with more sensitivity. Radio SETI, therefore, has an insatiable appetite for 

computing power.  

 

Previous radio SETI projects have used special-purpose supercomputers, located at the telescope, 

to do the bulk of the data analysis. In 1995, David Gedye proposed doing radio SETI using a 

virtual supercomputer composed of large numbers of Internet-connected computers, and he 

organized the SETI@home project to explore this idea. SETI@home was originally launched in 

May 1999. 

With over 5.2 million participants worldwide, the project is the distributed computing project 

with the most participants to date. The original intent of SETI@home was to utilize 50,000-

100,000 home computers. Since its launch on May 17, 1999, the project has logged over two 

million years of aggregate computing time. On September 26, 2001, SETI@home had performed 

a total of 1021 floating point operations. It is acknowledged by the Guinness World Records as 

the largest computation in history. With over 334,155 active computers in the system (1.8 

million total) in 210 countries, as of August 04, 2008, SETI@home has the ability to compute 

over 528 Teraflops. For comparison, Blue Gene (one of the world's fastest supercomputers) 

peaks at just over 596 Teraflops with sustained rate of 478 Teraflops.[14] 
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Figure 4: data analysis 

 

Figure 5: Seti@home Clients 
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2.6.5 Grid3/Grid 2003 

The Grid3 collaboration has deployed an international Data Grid with dozens of sites and 

thousands of processors. The facility is operated jointly by the U.S. Grid projects iVDGL, 

GriPhyN and PPDG, and the U.S. participants in the LHC experiments ATLAS and CMS. [15] 

Project highlights include:  

 Participation by more than 25 sites across the US and Korea which collectively provide 

more than 2000 CPUs  

 Resources used by 7 different scientific applications, including 3 high energy physics 

simulations and 4 data analyses in high energy physics, bio-chemistry, astrophysics and 

astronomy  

 More than 100 individuals are currently registered with access to the Grid  

 A peak throughput of 500-900 jobs running concurrently with a completion efficiency of 

approximately 75%  

 

2.6.6 IBM and grid 

IBM has a long and thorough involvement with both the technology and the business issues that 

have led to the grid computing evolution. "Virtualization" — the driving force behind grid 

computing — has been a key factor since the earliest days of electronic business computing. 

IBM put the main in mainframe, in part, by creating virtual memory, virtual storage and the 

virtual processor. This development enabled the computer to do many processing jobs 

simultaneously for hundreds and eventually thousands of users. Users got mainframe-strength 

computing; businesses got greater leverage from an expensive and powerful asset.  

Fast forward to today. Almost every organization is sitting on top of enormous, unused 

computing capacity, widely distributed. This is an intolerable situation for customers. (Imagine 

an airline with 90% of its fleet on the ground, an automaker with 40% of its assembly plants idle, 

a hotel chain with 95% of its rooms unoccupied.) Once again, virtualization can help.[8] 
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Grid computing represents this advanced development in virtualization — and IBM Grid 

Computing continues IBM's history of IT innovation for business. Taking a significant role in the 

growing grid community, IBM offers a full line of products and services that continue to be 

developed for both grid customers and those ready for next steps. 

 

2.6.7 Search for Extraterrestrial Intelligence 

SETI (the Search for Extraterrestrial Intelligence) is a scientific effort to discover intelligent life 

elsewhere in the universe, primarily by attempting to discover radio signals that indicate 

intelligence. Cornell astronomer Frank Drake is credited with being the first to "listen" for 

intelligent signals with a radio telescope in 1960. Although NASA has funded some study in the 

past, current efforts are privately funded, in part by Arthur C. Clarke, Microsoft co-founder Paul 

Allen, Intel founder Gordon Moore, and Hewlett-Packard cofounders David Packard and 

William Hewlett.  

The SETI Institute's Project Phoenix is using computers to search about 1,000 stars within 200 

light-years of our solar system for radio signals beamed toward us or any other location. Project 

Phoenix's 140-foot radio telescope in Green Bank, West Virginia aims at one star at a time while 

astronomer-monitored computers search each 1,000 band from 1,000 to 3,000 MHz for a signal 

limited to a narrowband range. Scientists believe that a signal focused within a narrow frequency 

band would suggest an intelligent source.  

About two-thirds of the first 1,000 stars have been searched with no success yet reported. There 

are, however, over 400 billion stars in our own galaxy so the study may last quite a long time. 

The directors of the project are soliciting volunteers to help analyze the radio telescope data at 

their home computers. 
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2.6.8 Grid Computing At Hartford Life 

Grid computing, which is already being used in some academic and research communities, is 

making its way to the life insurance industry. Essentially grid computing involves sharing 

computing, data, storage, application, or network resources, to ultimately allow companies to 

solve large-scale, complex computational problems.  

Hartford Life is among the first life insurance companies to implement grid computing. Resource 

recently talked with Vic Severino, senior vice president and CIO, Hartford Life, about how The 

Hartford is using grid computing to help manage the risk for income protection benefits 

associated with its variable annuities. 

Resource: Why did The Hartford decide to implement grid computing technology? 

Scenario: It really was out of pure necessity. We have some complex products that require a 

high level of computing power. Essentially we had a very pressing business need—and I would 

say this was probably one of our most important business initiatives—to essentially manage the 

risk as a result of these complex products. We needed a lot of accessible and stable computing 

power. So we did some research and talked to some of our investment banking partners; the 

investment banks have been using grid computing for a few years. We decided to embrace grid 

computing for ourselves. What got us into it was just the fact that we had a very pressing 

business need. 

 

2.6.9 Condor Project 

 This is a perfect example of virtual supercomputing service using academic network. 

This is implemented by University of Wisconsin, Madison.  

Condor is a specialized workload management system for compute-intensive jobs. Like other 

full-featured batch systems, Condor provides a job queuing mechanism, scheduling policy, 

priority scheme, resource monitoring, and resource management. Users submit their serial or 

parallel jobs to Condor, Condor places them into a queue, chooses when and where to run the 
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jobs based upon a policy, carefully monitors their progress, and ultimately informs the user upon 

completion. 

Condor can be used to build Grid-style computing environments that cross administrative 

boundaries. Condor's "flocking" technology allows multiple Condor compute installations to 

work together. Condor incorporates many of the emerging Grid-based computing methodologies 

and protocols. For instance, Condor-G is fully interoperable with resources managed by 

Globus.[9] 

 

2.7 Implementing Grid 

In grid computing a single or multiple tasks is divided among computers to get maximum output 

in less time. There are three ways to implement a grid: 

1. Run application on an available machine in grid: In this method different task divided 

among computers and all computers execute each task during their free cycle. Here each one 

is different and complete task.   

 

2. Use an application that will divide the work so that all process can be distributed: Here 

central servers divide a single task among computers in a grid. In this method the task have to 

be divisible and the program have to be written to support grid environment. Here a task 

contains multiple threads, so it is possible to divide among computers. 

 

3. Application executed many times on different machine in grid:  This method is only 

applicable for the task where the instruction is same but need to process with different data. 

In this method same program is run in multiple computers with different data. 

 

 

 

2.8 Widely Used tools available for grid computing 

 There are many tools available which provides API to program for grid environment. The 

widely used products are. 

 

 JPPF:Java Parallel Processing Framework (JPPF) is an open source Grid Computing 

platform written in Java that makes it easy to run applications in parallel, and speed up 

http://www.cs.wisc.edu/condor/doc/condorg-hpdc10.pdf
http://www.globus.org/
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their execution by orders of magnitude. Write once, deploy once and execute everywhere. 

[http://www.jppf.org] 

 

 Globus Toolkit: The open source Globus Toolkit (GTK) is a fundamental enabling 

technology for the "Grid," letting people share computing power, databases, and other 

tools securely online across corporate, institutional, and geographic boundaries without 

sacrificing local autonomy. The toolkit includes software services and libraries for 

resource monitoring, discovery, and management, plus security and file management. 

[http://www.globus.org/toolkit/] 

 

 Gridbus: Gridbus is developed by The Grid Computing and Distributed Systems 

(GRIDS) Laboratory, University of Melbourne, Australia. The Gridbus project is 

engaged in the creation of open-source specifications, architecture and a reference Grid 

toolkit implementation of service-oriented grid and utility computing technologies for 

eScience and eBusiness applications. The Gridbus software is being used in Grid-

enabling a number of applications in science, engineering, and commerce. 

[www.gridbus.org] 
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CHAPTER 3 

Condor 
 

 

We analyze condor project for understand grid system. We install it and execute this open source 

project in our lab. We try to find out where is lacking of this system. So we had to understand 

this project. 

3.1  Overview  

Condor is a software system that creates a High-Throughput Computing (HTC) environment. It 

effectively utilizes the computing power of workstations that communicate over a network. 

Condor can manage a dedicated cluster of workstations. Its power comes from the ability to 

effectively harness non-dedicated, preexisting resources under distributed ownership. 

 

A user submits the job to Condor. Condor finds an available machine on the network and begins 

running the job on that machine. Condor has the capability to detect that a machine running a 

Condor job is no longer available (perhaps because the owner of the machine came back from 

lunch and started typing on the keyboard). It can checkpoint the job and move (migrate) the jobs 

to a different machine which would otherwise be idle. Condor continues job on the new machine 

from precisely where it left off. 

 

In those cases where Condor can checkpoint and migrate a job, Condor makes it easy to 

maximize the number of machines which can run a job. In this case, there is no requirement for 

machines to share file systems (for example, with NFS or AFS), so that machines across an 

entire enterprise can run a job, including machines in different administrative domains. 
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Condor can be a real time saver when a job must be run many (hundreds of) different times, 

perhaps with hundreds of different data sets. With one command, all of the hundreds of jobs are 

submitted to Condor. Depending upon the number of machines in the Condor pool, dozens or 

even hundreds of otherwise idle machines can be running the job at any given moment. 

 

Condor does not require an account (login) on machines where it runs a job. Condor can do this 

because of its remote system call technology, which traps library calls for such operations as 

reading or writing from disk files. The calls are transmitted over the network to be performed on 

the machine where the job was submitted. 

 

Condor provides powerful resource management by match-making resource owners with 

resource consumers. This is the cornerstone of a successful HTC environment. Other compute 

cluster resource management systems attach properties to the job queues themselves, resulting in 

user confusion over which queue to use as well as administrative hassle in constantly adding and 

editing queue properties to satisfy user demands. Condor implements ClassAds, a clean design 

that simplifies the user’s submission of jobs. 

 

ClassAds work in a fashion similar to the newspaper classified advertising want-ads. All 

machines in the Condor pool advertise their resource properties, both static and dynamic, such as 

available RAM memory, CPU type, CPU speed, virtual memory size, physical location, and 

current load average, in a resource offer ad. A user specifies a resource request ad when 

submitting a job. The request defines both the required and a desired set of properties of the 

resource to run the job. Condor acts as a broker by matching and ranking resource offer ads with 

resource request ads, making certain that all requirements in both ads are satisfied. During this 

match-making process, Condor also considers several layers of priority values: the priority the 

user assigned to the resource request ad, the priority of the user which submitted the ad, and 

desire of machines in the pool to accept certain types of ads over others.[9] 
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3.2 The Different Roles of a computer in a network 

 

3.2.1 Central Manager 

There can be only one central manager for your pool. The machine is the collector of 

information, and the negotiator between resources and resource requests. These two halves of the 

central manager’s responsibility are performed by separate daemons, so it would be possible to 

have different machines providing those two services. However, normally they both live on the 

same machine. This machine plays a very important part in the Condor pool and should be 

reliable. If this machine crashes, no further matchmaking can be performed within the Condor 

system (although all current matches remain in effect until they are broken by either party 

involved in the match). Therefore, choose for central manager a machine that is likely to be up 

and running all the time, or at least one that will be rebooted quickly if something goes wrong. 

The central manager will ideally have a good network connection to all the machines in your 

pool, since they all send updates over the network to the central manager. All queries go to the 

central manager. 

3.2.2 Execute 

Any machine in your pool (including your Central Manager) can be configured for whether or 

not it should execute Condor jobs. Obviously, some of your machines will have to serve this 

function or your pool won’t be very useful. Being an execute machine doesn’t require many 

resources at all. About the only resource that might matter is disk space, since if the remote job 

dumps core, that file is first dumped to the local disk of the execute machine before being sent 

back to the submit machine for the owner of the job. However, if there isn’t much disk space, 

Condor will simply limit the size of the core file that a remote job will drop. In general the more 

resources a machine has (swap space, real memory, CPU speed, etc.) the larger the resource 

requests it can serve. However, if there are requests that don’t require many resources, any 

machine in your pool could serve them. 
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3.2.3 Submit 

Any machine in your pool (including your Central Manager) can be configured for whether or 

not it should allow Condor jobs to be submitted. The resource requirements for a submit machine 

are actually much greater than the resource requirements for an execute machine. First of all, 

every job that you submit that is currently running on a remote machine generates another 

process on your submit machine. So, if you have lots of jobs running, you will need a fair 

amount of swap space and/or real memory. In addition all the checkpoint files from your jobs are 

stored on the local disk of the machine you submit from. Therefore, if your jobs have a large 

memory image and you submit a lot of them, you will need a lot of disk space to hold these files. 

This disk space requirement can be somewhat alleviated with a checkpoint server, however the 

binaries of the jobs you submit are still stored on the submit machine. 

 

3.2.4 Checkpoint Server 

One machine in your pool can be configured as a checkpoint server. This is optional, and is not 

part of the standard Condor binary distribution. The checkpoint server is a centralized machine 

that stores all the checkpoint files for the jobs submitted in your pool. This machine should have 

lots of disk space and a good network connection to the rest of your pool, as the traffic can be 

quite heavy. 
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Figure 6: Condor V7.1.0 

 

3.3 Our Installed system: 

We installed condor in both Windows and Linux PC. In both cases we use one central manager 

and two execute and submit hosts. We didn’t install any checkpoint server because of limitations 

of resources. The configurations of the PCs are as follows: 

 

Processor Chipset Memory OS 

Pentium 4 2.4GHz Intel 845G 512MB Fedora core 5 

Table 3: Linux 
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Processor Chipset Memory OS 

Pentium D 2.4GHz Intel 945G 512MB Windows 2000 

Table 4: Windows 

 

3.4 The Condor Daemons 

The following list describes all the daemons and programs that could be started under Condor 

and what they do: 

 

3.4.1 Condor master: This daemon is responsible for keeping all the rest of the Condor 

daemons running on each machine in your pool. It spawns the other daemons, and periodically 

checks to see if there are new binaries installed for any of them. If there are, the master will 

restart the affected daemons. In addition, if any daemon crashes, the master will send e-mail to 

the Condor Administrator of your pool and restart the daemon. The condor master also supports 

various administrative commands that let you start, stop or reconfigure daemons remotely. The 

condor master will run on every machine in your Condor pool, regardless of what functions each 

machine are performing. 

 

3.4.2  Condor startd: This daemon represents a given resource (namely, a machine capable of 

running jobs) to the Condor pool. It advertises certain attributes about that resource that are used 

to match it with pending resource requests. The startd will run on any machine in your pool that 

you wish to be able to execute jobs. It is responsible for enforcing the policy that resource 

owners configure which determines under what conditions remote jobs will be started, 

suspended, resumed, vacated, or killed. When the startd is ready to execute a Condor job, it 

spawns the condor starter, described below. 
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3.4.3  Condor starter: This program is the entity that actually spawns the remote Condor job on 

a given machine. It sets up the execution environment and monitors the job once it is running. 

When a job completes, the starter notices this, sends back any status information to the 

submitting machine, and exits. 

 

 

 

3.4.4 Condor schedd: This daemon represents resource requests to the Condor pool. Any 

machine that you wish to allow users to submit jobs from needs to have a condor schedd running. 

When users submit jobs, they go to the schedd, where they are stored in the job queue, which the 

schedd manages. Various tools to view and manipulate the job queue (such as condor submit, 

condor q, or condor rm) all must connect to the schedd to do their work. If the schedd is down on 

a given machine, none of these commands will work. The schedd advertises the number of 

waiting jobs in its job queue and is responsible for claiming available resources to serve those 

requests. Once a schedd has been matched with a given resource, the schedd spawns a condor 

shadow  to serve that particular request. 

 

 

3.4.5 Condor shadow: This program runs on the machine where a given request was submitted 

and acts as the resource manager for the request. Jobs that are linked for Condor’s standard 

universe, which perform remote system calls, do so via the condor shadow. Any system call 

performed on the remote execute machine is sent over the network, back to the condor shadow 

which actually performs the system call (such as file I/O) on the submit machine, and the result 

is sent back over the network to the remote job. In addition, the shadow is responsible formaking 

decisions about the request (such as where checkpoint files should be stored, how certain files 

should be accessed, etc). 

 

 

3.4.6 Condor collector: This daemon is responsible for collecting all the information about the 

status of a Condor pool. All other daemons periodically send ClassAd updates to the collector. 

These ClassAds contain all the information about the state of the daemons, the resources they 
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represent or resource requests in the pool (such as jobs that have been submitted to a given 

schedd). The condor status command can be used to query the collector for specific information 

about various parts of Condor. In addition, the Condor daemons themselves query the collector 

for important information, such as what address to use for sending commands to a remote 

machine. 

 

 

3.4.7 Condor negotiator: This daemon is responsible for all the match-making within the 

Condor system. Periodically, the negotiator begins a negotiation cycle, where it queries the 

collector for the current state of all the resources in the pool. It contacts each schedd that has 

waiting resource requests in priority order, and tries to match available resources with those 

requests. The negotiator is responsible for enforcing user priorities in the system, where the more 

resources a given user has claimed, the less priority they have to acquire more resources. If a 

user with a better priority has jobs that are waiting to run, and resources are claimed by a user 

with a worse priority, the negotiator can preempt that resource and match it with the user with 

better priority. 

 

3.4.8 Condor kbdd: This daemon is only needed on Digital Unix. On that platforms, the condor 

startd cannot determine console (keyboard or mouse) activity directly from the system. The 

condor kbdd connects to the X Server and periodically checks to see if there has been any 

activity. If there has, the kbdd sends a command to the startd. That way, the startd knows the 

machine owner is using the machine again and can perform whatever actions are necessary, 

given the policy it has been configured to enforce. 

 

 

3.4.9 Condor ckpt: server This is the checkpoint server. It services requests to store and retrieve 

checkpoint files. If your pool is configured to use a checkpoint server but that machine (or the 

server itself is down) Condor will revert to sending the checkpoint files for a given job back to 

the submit machine. 
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3.4.10 Condor quill: this daemon builds and manages a database that represents a copy of the 

Condor job queue. The condor q and condor history tools can then query the database. 

 

3.4.11 Condor dbmsd: This daemon assists the condor quill daemon. 

 

3.4.12 Condor gridmanager: This daemon handles management and execution of all grid 

universe jobs. The condor schedd invokes the condor gridmanager when there are grid universe 

jobs in the queue, and the condor gridmanager exits when there are no more grid universe jobs in 

the queue. 

 

 

3.4.13 Condor had: This daemon implements the high availability of a pool’s central manager 

through monitoring the communication of necessary daemons. If the current, functioning, central 

manager machine stops working, then this daemon ensures that another machine takes its place, 

and becomes the central manager of the pool. 

 

 

3.4.14 Condor replication: This daemon assists the condor had daemon by keeping an updated 

copy of the pool’s state. This state provides a better transition from one machine to the next, in 

the event that the central manager machine stops working. 
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Figure 7: Graphical representation Pool Architecture 

 

 

 

3.5  Installation Preparation 

Before installation, make a few important decisions about the basic layout of your pool. The 

decisions answer the questions: 

1. What machine will be the central manager? 

2. What machines should be allowed to submit jobs? 

3. Will Condor run as root or not? 

4. Who will be administering Condor on the machines in your pool? 

5. Will you have a Unix user named condor and will its home directory be shared? 

6. Where should the machine-specific directories for Condor go? 
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7. Where should the parts of the Condor system be installed? 

• Configuration files 

• Release directory 

– user binaries 

– system binaries 

– lib directory 

– etc directory 

• Documentation 

8. Am I using AFS? 

9. Do I have enough disk space for Condor? 

 

 

3.6  Platform-Specific Information 

The Condor Team strives to make Condor work the same way across all supported platforms. 

However, because Condor is a very low-level system which interacts closely with the internals of 

the operating systems on which it runs.  This system supports Linux, Windows, and UNIX. 

  

3.6.1 Linux 

 

This section provides information specific to the Linux port of Condor. Linux is a difficult 

platform to support. It changes very frequently, and Condor has some extremely system-

dependent code (for example, the check pointing library).  

 

Condor is sensitive to changes in the following elements of the system: 
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• The kernel version 

• The version of the GNU C library (glibc) 

• the version of GNU C Compiler (GCC) used to build and link Condor jobs (this only matters 

for Condor’s Standard universe which provides check pointing and remote system calls)  

 

The Condor Team tries to provide support for various releases of the distribution of Linux. Red 

Hat is probably the most popular Linux distribution, and it provides a common set of versions for 

the above system components at which Condor can aim support. Condor will often work with 

Linux distributions other than Red Hat (for example, Debian or SuSE) that have the same 

versions of the above components. However, we do not usually test Condor on other Linux 

distributions and we do not provide any guarantees about this. 

New releases of Red Hat usually change the versions of some or all of the above system-level 

components. A version of Condor that works with one release of Red Hat might not work with 

newer releases. The following sections describe the details of Condor’s support for the currently 

available versions of Red Hat Linux on x86 architecture machines. 

 

 

 

3.6.1.1 Linux Kernel-specific Information 

 

Distributions that rely on the Linux 2.4.x and all Linux 2.6.x kernels through version 2.6.10 do 

not modify the time of the input device file. This leads to difficulty when Condor is run using 

one of these kernels. The problem manifests itself in that Condor cannot properly detect 

keyboard or mouse activity. Therefore, using the activity in policy setting cannot signal that 

Condor should stop running a job on a machine. Condor version 6.6.8 implements a workaround 

for PS/2 devices. A better fix is the Linux 2.6.10 kernel patch linked to from the directions 

posted at This patch works better for PS/2 devices, and may also work for USB devices. A future 

version of Condor will implement better recognition of USB devices, such that the kernel patch 

will also definitively work for USB devices. 
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3.6.1.2 Red Hat Version 9.x 

Red Hat version 9.x is fully supported in Condor Version 7.0.1. condor compile works to link 

user jobs for the Standard universe with the versions of gcc and glibc that come with Red Hat 

9.x. 

 

3.6.1.3 Red Hat Fedora 1, 2, and 3 

Redhat Fedora Core 1, 2, and 3 now support the check pointing of statically linked executables 

just like previous revisions of Condor for Red Hat. Condor compiles works to link user jobs for 

the Standard universe with the versions of gcc that are distributed with Red Hat Fedora Core 1, 

2, and 3. 

 

However, there are some caveats: A) You must install and use the dynamic Red Hat 9.x binaries 

on the Fedora machine and B) if you wish to do run a condor compiled binary in standalone 

mode(either initially or in resumption mode), then you must pretend the execution of said binary 

with setarch i386. Here is an example: suppose we have a Condor-linked binary called myapp, 

running this application as a standalone executable will result in this command: setarch i386 

myapp. The subsequent resumption command will be: setarch i386 myapp - condor restart 

myapp.ckpt. When standard universe executables condor compiled under any currently 

supported Linux architecture of the same kind (including Fedora 1, 2, and 3) are running inside 

Condor, they will automatically execute in the i386 execution domain. This means that the exec 

shield functionality (if available) will be turned off and the shared segment layout will default to 

Red Hat 9 style. There is no need to do the above instructions concerning setarch if the 

executables are being submitted directly into Condor via condor submit. 

 

3.7  Microsoft Windows 

Windows is a strategic platform for Condor, and therefore we have been working toward a 

complete port to Windows. Our goal is to make Condor every bit as capable on Windows as it is 

on UNIX – or even more capable. 
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Porting Condor from UNIX to Windows is a formidable task, because many components of 

Condor must interact closely with the underlying operating system. Instead of waiting until all 

components of Condor are running and stabilized on Windows, we have decided to make a 

clipped version of Condor for Windows. A clipped version is one in which there is no check 

pointing and there are no remote system calls. 

3.7.1 Limitations under Windows 

In general, this release for Windows works the same as the release of Condor for UNIX. 

However, the following items are not supported in this version: 

• The standard job universe is not present. This means transparent process checkpoint/migration 

and remote system calls are not supported. 

 

• For grid universe jobs, the only supported grid type is condor. 

 

• Accessing files via a network share that requires a Kerberos ticket (such as AFS) is not yet 

supported. 

 

3.8 Macintosh OS X  

This section provides information specific to the Macintosh OS X port of Condor. The 

Macintosh port of Condor is more accurately a port of Condor to Darwin, the BSD core of OS X. 

Condor uses the Carbon library only to detect keyboard activity, and it does not use Cocoa at all. 

Condor on the Macintosh is a relatively new port, and it is not yet well-integrated into the 

Macintosh environment. 

Condor on the Macintosh has a few shortcomings: 

• Users connected to the Macintosh via SSH are not noticed for console activity. 



49 
 

• The memory size of threaded programs is reported incorrectly. 

• No Macintosh-based installer is provided. 

• The example start up scripts do not follow Macintosh conventions. 

• Kerberos is not supported. 

Condor does not yet provide Universal binaries for Mac OSX. There are separate downloadable 

packages for both PowerPC (PPC) and Intel (x86) architectures, so please ensure you are using 

the right Condor binaries for the platform you are trying to run on. 

 

3.9 Limitations of condor: 

 Compatibility: There are a few jobs which can really run on Condor. They have to be 

batch; they have to seek input from an input file. 

 

 Job distribution: Another major problem is that it doesn't use the capabilities of the 

Cluster to its full potential. What it simply does is just execute a job at the most powerful 

workstation. And even if the job is multithreaded the entire job is run on a single PC. 

This is tantamount to just taking the job to the most powerful computer and take the 

result. Cluster software's should break up multi threaded jobs in order to achieve 

computational speed up. 

 

It also includes other limitations of grid computing. 
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CHAPTER 4 

Research Questions 
 

 

4.1 Can grid computing provide better performance than other computing in a lab 

environment? 

It depends on our need. If we want a real time system or a dedicated server then grid computing 

is not for this kind of work. Grid computing used in such cases when we want to use free 

resources in a network. For example, if we need to run hundreds of large scale simulation or 

calculation it will take weeks, may be months if we run it on a single computer. But if we have a 

large network with hundreds of computers we can setup a grid and submit the tasks into it. It will 

run these tasks on idle computers and reduce the running time to several hours or days. After 

completing the job it may notify the user by mail automatically. We can use mainframe or super 

computer for this kind of job but it will not be cost effective.  

 

4.2 Is there a breakpoint before which Grid computing is not efficient? 

Besides common limitations of grid computing different grid computing system has different 

limitations.  As we are focusing on task distribution, in this aspect different grid computing 

system has different task distribution method. For example Condor doesn’t split any task. 

Condor Central manager just assign each task to a execution host. The problem of this system is, 

if any task is too big the central manager will assign it to a single host and it will take huge time 

to process. In this scenario it will not show any performance improvement. 

 

4.6. What are the different techniques used in different grid based system to split task? 

Different grid based system uses different methods to split task. For some system programs are 

especially designed to run on grid system. The programs are written using special APIs and 

support multiple threads. This type of system is effective when we execute only one type of job. 

For example SETI@home is designed to analyze only radio telescopic data to search 

extraterrestrial intelligence.  
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If the grid is designed to execute different types of job then it’s not cost effective to convert all 

programs for grid based system. Condor is designed to execute any type of program in grid. It 

takes a list of job and run each job in different host. It doesn’t split any job. So, if there is a few 

job and jobs are big enough it’s not better than run jobs in a single computer. 

 

4.4 What are the techniques to improve the job distribution system?  

           

Apparently when we assign small task to different hosts it takes less time to finish the job. So in 

our approach, if the split and combine process does not take more time in theory it should take 

less time to complete bigger job. 

 

4.5 Are all types of input possible to split? 

No, it’s not possible to split all types of input. First we need to find which types of inputs are 

split able, can be run independently in different host and finally it’s possible to combine the 

output files. There are a lot of programs that can support this strategy. Out project is for those 

programs. 
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CHAPTER 5 

Design and Implementation 
 

After analyzing different grid based system what we found is, write a program for a grid based system is 

costly and it needs more resources. The three major problems that we are focusing on are: 

 

1. Compatibility: Different non- grid programs that used in desktop environment are not 

compatible with grid. We need to buy programs that support grid computing. On other hand if we 

already buy this program then we need to buy another program for grid system.  

 

2. Development: For developers, when they already have a working program, then it is needed to 

convert these programs so that it has multiple threads, Converting is not an easy process and it 

needs extra cost and time. 

 

3. Backward compatibility of grid programs: A program developed for grid system is not 

compatible with regular desktop environment. So, if we need the program for both systems we 

have to use different programs. 

 

 

5.1 Our objective: 

5.1.1 Increase Compatibility: Run traditional programs in grid system without any 

modification, so that we can run any executable program in grid system. It will increase 

program compatibility and reduce cost. 

 

5.1.2 Optimization: Optimize program execution time by dividing the program among 

different nodes in grid. It will reduce the execution time. For example:    

 If execution time of a program is : T       

 Number of nodes in grid is: N       

 Then execution time will be: T/N 
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5.1.3 High Throughput: Run task in optimized way so that we can gain high throughput. Like 

other grid system our objective is to maximize output within a certain amount of time. As 

grid system is not for real time work so, performance is not important here. What our 

objective is to reduce execution time for larger task without using powerful dedicated 

system. 

5.2 How Our System Works: 

5.2.1 Architecture of our system: 

Our designed system consists of three kinds of computer. 

 Server/Root: It’s the main server of our system we submit all tasks to this computer. Its 

job is to split and distribute jobs to each and every node in grid.  

 Node: Nodes are executing hosts. They collect job from server execute then and submit 

the output to server. There are many nodes in a grid. If we increase number of nodes then 

execution time will reduce. 

 Shared storage (Future improvement): It’s the computer that stores the input and 

output file to reduce communication overhead to root. We didn’t implement it yet, but it’s 

in our design and will be added in future improvement. It’s not compulsory but it increase 

performance in larger grid.  

 

Figure 8 
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Figure 9 

 

 

 

 

 

 

 

 

 

 



55 
 

5.3 Steps of solving a problem: 

Our designed system works in five different steps to execute traditional executable files to run on 

a grid system.  

5.3.1 Split Input: Our designed system doesn’t modify program’s executable file instead it 

splits the input file. It is not possible to modify a binary file. So, what we do is we use a 

splitter to split the input file in such way that we can easily execute each split in different 

computers. We only need to write code for the splitter or we can use third party splitter 

program like video splitter to split a large video file. 

 

 

Example: 

There are two 3X3 matrices and   a answer matrix which is also 3X3. We can solve it by 

using a generic matrix multiplication algorithm. Let’s consider the program that doesn’t 

support grid can solve this problem. 

 

 

 

 

X 

= 
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Now if we want to run this program into grid system we need to split it to run each part 

on each computer. We also have to consider that each part of input is solvable by the 

multiplication program.  

 

 

After splitting the input file we get total 9 split. Each one of them is a complete matrix 

multiplication program and solvable by previous matrix multiplication program designed 

to run in non-grid system. 

 

5.3.2 Distribution: The input files are the distributed among the computers in grid along with 

unmodified binary file so that each node can execute each task separately. When a node 

of grid is free it contacts with server. Server then starts distribution process. In this 

process server also checks if all outputs are collected. After submitting a task if output is 

not returned for any task then server submits the task again to another node. 

If shared storage is used then when nodes connect to server then server only sends 

location of shared storage and file list. After those nodes collects inputs and programs 

from that shared storage. 

 

Split- 1 Split- 2 Split- 3 

Split-8 Split-7 

Split- 6 Split-5 Split-4 

Split-9 
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5.3.3 Execution: Each system runs the program with its provided input file and submits the 

output to server. 

 

5.3.4 Collection: Server collects all the input files and stores them into its memory. It collects 

data until all output is collected. 

If shared storage is used then nodes submit its output to shared storage any notifies 

server. After getting notifications for all task server downloads the result from shared 

storage to its memory. 

5.3.5 Combine: This is the final step of our design. In this step all results are in root/server’s 

memory. Now server runs the joiner program to combine all results and give final output. 

Joiner program may be any third party program like video joiner. 

 

 

 

Figure 10 

 

Block diagram of our system 
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5.4 Flowchart: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Start 

A program is submitted to 

server with an input file 

Split input file and make zip archive for 

client with each input along with the 

program 

Any free client 

is connected? 
Submit a zip archive to client 

If any output is 

submitted by client? 

Is it the last output? 

Any output that is 

not submitted? 

Add the archive again to submit list 

Combine all input files 

Final output 

End 

Save the output 

Server Flowchart 
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Start 

Is the client free? 

Connect to server for task 

Receive job and disconnects 

Execute the task assigned by 

server 

After completing the execution 

connect with server 

Submit output to server 

Is the client free? 

Wait for a certain time 

Client Flowchart 



60 
 

 

5.5 A practical scenario: 

 

 

Figure 11 

On the above diagram there is a root/server and several nodes/clients. Every node connects with 

server when it is available (i.e. when nodes are idle). Each time every node connects to server 

assigns a task to that node. The job of each node is to execute the assigned job and submit the 

output file to server. When any node submits output then server assigns another task to that node.  
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Now let’s consider the scenario describe above: 

1. A task is submitted to server and server split it into three parts. Now a node connects with 

server. 

2. Server assigns ‘Task1’ to that client. Client got disconnect and start to execute the task. 

3. Another client connects with server. 

4. Server assigns ‘Task2’ to that client. 

5. First client submit ‘Task 1’ 

6. Server assigns ‘Task3’ to that client. 

7. ‘Task3’ is submitted. 

8. Now server find there is no other task but ‘Task2’ is pending, so it assigns ‘Task2’ to that 

client. 

9. ‘Task2’ is submitted, so job is finished. 

 

5.6 Implementation: 

Our designed system is implemented using java. There are two individual programs in this 

system, one is root and another is node. Root is the main server it is always running and node 

program run in each nodes/clients in a grid. 

 

5.6.1 Root:  

 

 

 

 

 

       

 

 

Figure 12: Root 



62 
 

 

5.6.2 Node: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Node 
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CHAPTER 6 

Empirical Study 
 

6.1 Performance Analysis: 

6.1.1 Matrix Multiplication: 

We’ve run matrix multiplication program in single computer and grid computing environment. 

In each case we’ve used square matrix of different sizes with double values. We use general 

matrix multiplication algorithm [i.e. time complexity is ] 

 

6.1.2 Grid System: We run the matrix multiplication in grid environment with various 

numbers of computers and various sizes of matrixes. The result we find is: 

 

 

Processor Clock Speed Memory OS 

Intel Pentium D 2.4 GHz 512 MB Windows 2000/XP 

Table 5: PC Configuration 

 

No. Matrix  Pc 

(Nodes)  

Data Type  No. of split  Time (S)  

1. 10 X 10 27 Double  100 13.031 

2. 50 X 50 34 Double  2500 287.047 

3. 100 x 100  27 Double 10000 1167.281 

4. 100 X 100 36 Double  10000 1112.575 

5. 150 X 150 37 Double  22500 2497.505 

 

Table 6: Timing Calculation 
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Figure 14: Performance Graph 

From the above data table and graph we find a rough measurement of performance of our 

implemented grid system. 

In observation 3&4 we use 100X100 size matrix in a grid containing 27 and 36 nodes. When we 

used 27 PCs it took 1167.281 second and when we used 36 PCs it took 1112.575 second. That is 

increase number of PCs slightly reduces processing time. So, we can say, the grid is working, 

because if we increase the number of nodes then it takes less processing time. 

6.1.3 Resource utilization in grid system: Here are the data tables of resource utilization of 

grid system. 

 

 

 

 

 

 

 

Data Type 

No. of PCs 

Matrix Size 
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CPU Utilization  Network 

Utilization  

Client/server  

>30% >10% Client 

>50% >40% Server 

 

 

 

Figure 15: CPU 

Utilization 

Figure 16: Network 

Utilization 

Table 7: Resource Utilization 

Datasheet 
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Table 8: 

From the above data table we find that our designed system works and it is light weight on 

network, but it cannot use the full processing power of node computers.  

Since the task we used is small, it needs less data transfer and less processing time to split. For 

larger task server activity and network utilization may increase, but we can reduce it by using 

shared storage. Shared storage will reduce data transfer and communication to node computers of 

server.  

 

 

6.2 Non-Grid System: In this stage we test the same matrix multiplication program to multiply 

different size of matrixes in single computer. 

 

Processor Clock Speed Memory OS 

Intel Pentium D 2.4 GHz 512 MB Windows 2000/XP 

Table 9: PC Configuration 

 

 

 

 

 

Matrix  Data Type  No. of 

split  
Time (S)  

10 X 10 Double  100  0.000406  

50 X 50 Double  2500  0.000656 

100 x 100  Double 10000  0.000843 

150 X 

150 
Double  22500  0.000928 
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From the above data table and graph we find that computer is faster, because it uses its full 

capacity to process data and it doesn’t need communication time.  

 

 

6.3 How to optimize the system: Hence the system we developed is in testing stage and no 

improvement is implemented, our primary result shows single PC is far faster than our 

designed system. However it is possible to improve the system improve the system. These 

are: 

 

6.3.1 Increase CPU thread: The computers we used are all multiprocessor system (N.B Intel 

Pentium D has two CPUs) it actually have multiple slots to execute more than one job at 

Timing Calculation 

 

Figure 17: Performance Graph 
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a time. So we can assign more than one task to node computers and execute them parallel 

in nodes to use the processing power of nodes efficiently. 

 

 

6.3.2 Optimized communication: In our current design we send one input file to node along 

with the program that needs to be executed. This communication is not efficient, because 

we are sending the program each time server assigns job to a node. This is not efficient 

because for each task the executable file should send only once. 

 

6.3.3 Send and Receive multiple I/O files together: In our system nodes connect to server 

receive one input file then disconnects. After processing is done each node connects to 

server, submit the output and receive a new task. It works fine when each part needs long 

processing time. But for smaller task it is overhead, because communication time may 

take more than processing time. On other hand CPU becomes idle during communication, 

because at that time it has no task to process. So, more communication means idler CPU. 

We can optimize the system in such way than server will send multiple input files 

together for smaller task and nodes will submit multiple outputs together.  We can also re 

design the system in such way that during execution a node can receive task and save it 

for later execution. It will reduce execution time. 

 

6.3.4 Using native code: We use Java for implementing our system. Java uses virtual machine 

which is slower than native code written in C or C++. So, rewriting the source code using 

native language will increase its performance. 

 

6.3.5 Use larger task: The programs we tested are not large enough for grid based system. As 

testing needs huge resource, it was not possible for us to run the system for larger tasks 

that takes enough time to compare with non-grid system. So, using larger task will make 

the system better than single computer. 

 

6.3.6 Adding more nodes: In our test we found that, adding more node decrease processing 

time. We can add more computers to system to reduce processing time. 
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6.4 Limitations of our system: 

 

As we tried to improve conventional grid system, our system also has some limitations. It also 

includes the limitations of grid based system. The limitations of our system are as follows: 

 

6.4.1 Compatibility: We are dividing task by splitting the input files to maintain compatibility 

with non-grid system, but all inputs are not possible to split. So, for some jobs that are not 

possible to split, we have to follow traditional method. 

 

6.4.2 Cross platform support: As our program is written in Java, it virtually supports all 

platforms, but it has a limitation. This system supports cross platform only when same 

executable file is available for each platform. For example matrix multiplication will 

work on cross platform only when the same executable file is available for both 

platforms.  

 

6.4.3 Security: In our system security is not yet implemented. It does not support any kind of 

encryption for communication. It needs to be modified if we want to add security 

features. 
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CHAPTER 7 

Project Review 
 

7.1 Future Work 

 

Future work for this project can be focused on the different areas as detailed below. 

 

7.1.1 Designed more optimized system: 

Our current system is not optimized. For example it cannot use advantages of multiprocessor 

based system and communication between server and client is not optimized.  In future our 

objective is to optimize these processes. Another optimization can be done by converting the 

program into a native language.  Our current system is developed using Java. It’s run on JVM 

that makes it slower than native program.  

 

7.1.2 Make the program more usable: 

Adding user interface in our current system is one of our future plans.  Current system 

doesn’t have any GUI. So, it is tough for general user to use this system. To make the system 

more usable and more interactive developing GUI is an important part.  

 

7.1.3 Adding more features: 

Presently our program doesn’t have any monitoring tool or controlling tool to monitor and 

control server and its corresponding nodes. Monitoring and controlling tool is necessary for a 

grid system. It brings more usability and flexibility to grid.  

 

7.1.4 More testing: 

Testing a grid computing system is difficult task. It needs huge resource and plenty of time. 

As, it is in academic project and we have limitations of resources, we could not test our 

system properly. Our future plan is to test the system more efficiently and execute much 

more sample tasks. 

 

7.1.5 Make the system more secure:  

Our current system doesn’t have any security features. Communication between server and 

clients needs to me encrypted to avoid man in the middle attack. It also needed to add 

different access level for different types of grid system users. 
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7.2 Conclusion 

 

With the enormous flexibility and reliability afforded by computing grids, it may seem 

surprising that they not more pervasive today. The primary explanation for that fact is that 

grids exist in the context of a large ecosystem. It is not possible to go to a store and purchase 

a grid. Roadblocks to wider adoption are both technical and business-oriented in nature. 

From a technical perspective, it is safe to assume that applications not designed in 

multiprocessor environments are by default uni-processor applications. They can be executed 

on a multiprocessor node, but they will not use more than one processor, even if more are 

available, and hence the total run time won’t be shorter. 

 

From a cost perspective, it might be attractive to share resources across organizations, 

including different companies, even in different countries. Doing so implies additional 

overhead to ensure data integrity, security, and resource billing. The technology to support 

these functions is still evolving. The lack of precedents makes potential users squeamish 

about trusting their code and data to be executed by someone else in a shared resource 

environment represented by a grid. Therefore, few grids today cross company boundaries. 

The largest user communities today for grids belong to government and academic research. 

 

This challenge translates directly into opportunity for solution providers and system 

integrators that can overcome them. As the ecosystem of solutions for grid computing 

continues to evolve, adoption is likely to increase by private companies that seek to harness 

the power and cost advantages of grid computing. The project provides background both for 

those who seek to create those solutions and for those who wish to implement them. 
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Glossary 
Grid Computing - is a form of distributed computing 

 

CPU – Central Processing Unit 

 

Source Code‐ Lines of code that make up a program. 

 

Source Code Analysis‐ Analysis of properties of source code. 

 

Cluster - a group of loosely coupled computers that work together  

closely 

 

NPACI - National Partnership for Advanced Computational 

Infrastructure 

 

Flops – Floating point operation per second 

 

Virtualization - In computing, virtualization is a broad term that refers 

to the abstraction of computer resources 

 

Extraterrestrial Intelligence - scientific effort to discover intelligent 

life elsewhere in the universe 

http://www.npaci.edu/
http://www.npaci.edu/
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Appendices 
Root: 

  

Main.java 
/** 

 * @author Md. Mahtab Uddin & Shyen Muhabbat Shikhder 

 * @author 04101002 & 04101008, repectively 

 */ 

 

package grid.thesis.root; 

 

import java.io.*; 

import java.net.*; 

import java.util.*; 

 

public class Main { 

 

    public static final int ROOT_PORT = 10051; 

 

    public static int nodeCount = 0; 

 

    private static Vector<Node> nodes = null; 

 

    synchronized public static Vector<Node> getNodes() { 

 return nodes; 

    } 

     

    private static int jobsDone = 0; 

     

    synchronized public static boolean jobsComplete(boolean nodeThread) { 

 if (nodeThread) { 

     ++jobsDone; 

 } 

 return (jobsDone == inputFiles.length); 

    } 

 

    public static File[] inputFiles; 

 

    public static File[] programFiles; 

 

    public static File fromNodes; 
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    public static void main(String[] args) { 

 nodes = new Vector<Node>(); 

 ServerSocket aServerSocket = null; 

 Thread rootListener = new Thread(new RootListener(aServerSocket, ROOT_PORT)); 

 rootListener.start(); 

 

 splitInput(); 

 sendToNodes(); 

  

 while (!jobsComplete(false)) { 

     try { 

  Thread.sleep(1000); 

     } catch (InterruptedException e) { 

  e.printStackTrace(); 

     } 

 } 

 

 System.out.println("End of ROOT!"); 

  

 try { 

     rootListener.join(); 

 } catch (InterruptedException e) { 

     e.printStackTrace(); 

 } 

 

 try { 

     Runtime.getRuntime().exec("combine.exe"); 

 } catch(IOException e) { 

     System.err.println("Could not combine split files"); 

     System.exit(1); 

 } 

    } 

 

    private static void splitInput() { 

 try { 

     Runtime.getRuntime().exec("split.exe"); 

 } catch (IOException e) { 

     System.err.println("Could not invoke input splitter."); 

     e.printStackTrace(); 

     System.exit(1); 

 } 

  

 try { 

     Thread.sleep(3000); 

 } catch (InterruptedException e) { 

     e.printStackTrace(); 
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 } 

 

 inputFiles = new File(System.getProperty("user.dir")) 

  .listFiles(new NodeFileFilter("out")); 

 programFiles = new File(System.getProperty("user.dir")) 

  .listFiles(new NodeFileFilter("matrix")); 

    } 

 

    private static void sendToNodes() { 

 fromNodes = new File("fromNodes"); 

 if (!fromNodes.exists()) { 

     fromNodes.mkdir(); 

 } 

 PriorityQueue<Integer> jobList = new PriorityQueue<Integer>(); 

 for (int i = 0; i < inputFiles.length; ++i) { 

     jobList.add(i); 

 } 

 while (true) { 

     Integer jobNumber = jobList.poll(); 

     if (null == jobNumber) { 

  //System.out.println("All inputs sent to nodes."); 

  break; 

     } 

     //System.out.println("about to get a node."); 

     Node aNode = getAvailableNode(); 

     aNode.startJob(); 

     new Thread(new NodeThread(jobNumber, aNode)).start(); 

 } 

    } 

 

    private static Node getAvailableNode() { 

 while (true) { 

     //System.out.println("about to make a call to getNodes."); 

     for (Node aNode : getNodes()) { 

  //System.out.println("inside for loop."); 

  if (!aNode.isBusy()) { 

      return aNode; 

  } else { 

      Thread.yield(); 

  } 

     } 

     Thread.yield(); 

 } 

    } 

} 
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Node.java 
/** 

 * @author Md. Mahtab Uddin & Shyen Muhabbat Shikhder 

 * @author 04101002 & 04101008, repectively 

 */ 

package grid.thesis.root; 

 

import java.net.*; 

import java.util.*; 

 

class Node { 

 

    private String id = null; 

    private boolean busy; 

    private Socket aSocket= null; 

     

    public Node(String id, Socket aSocket) { 

 this.id = id; 

 this.aSocket = aSocket; 

 busy = false; 

    } 

     

    public boolean isBusy() { 

 return busy; 

    } 

     

    public void jobDone() { 

 busy = false; 

    } 

     

    public void startJob() { 

 busy = true; 

    } 

     

    public String getId() { 

 return id; 

    } 

     

    public Socket getSocket() { 

 return aSocket; 

    } 

} 
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NodeFileFilter.java 
/** 

 * @author Md. Mahtab Uddin & Shyen Muhabbat Shikhder 

 * @author 04101002 & 04101008, repectively 

 */ 

package grid.thesis.root; 

 

import java.io.File; 

import java.io.FilenameFilter; 

 

class NodeFileFilter implements FilenameFilter { 

 

    public NodeFileFilter(String name) { 

 this.name = name; 

    } 

 

    private String name; 

 

    public boolean accept(File aFile, String name) { 

 return name.startsWith(this.name); 

    } 

} 

NodeThread.java 
/** 

 * @author Md. Mahtab Uddin & Shyen Muhabbat Shikhder 

 * @author 04101002 & 04101008, repectively 

 */ 

package grid.thesis.root; 

 

import java.util.Observable; 

import java.io.*; 

import java.util.zip.*; 

 

public class NodeThread implements Runnable { 

 

    private int jobNumber; 

 

    private Node aNode; 

 

    public NodeThread(int jobNumber, Node aNode) { 

 this.jobNumber = jobNumber; 

 this.aNode = aNode; 

    } 

 

    public void run() { 

 File input = Main.inputFiles[0]; 

 File program = Main.programFiles[0]; 
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 File output = new File("in" + jobNumber + ".txt"); 

  

 File zippedFile = zipFilesForSending(input, program); 

 BufferedInputStream outfile = null; 

 try { 

     outfile = new BufferedInputStream(new FileInputStream(zippedFile)); 

 } catch (FileNotFoundException e) { 

     e.printStackTrace(); 

 } 

 

 BufferedOutputStream toNode = null; 

 try { 

     byte [] tempBuffer = new byte[4*1024]; 

     int length = 0; 

     toNode = new BufferedOutputStream(aNode.getSocket().getOutputStream()); 

     while ((length = outfile.read(tempBuffer)) > 0) { 

  toNode.write(tempBuffer, 0, length); 

     } 

     outfile.close(); 

     toNode.close(); 

 } catch (IOException e) { 

     e.printStackTrace(); 

 } 

  

 try { 

     Thread.sleep(2000); 

 } catch (InterruptedException e) { 

     e.printStackTrace(); 

 } 

  

 BufferedInputStream fromNode = null; 

 try { 

     fromNode = new BufferedInputStream(aNode.getSocket().getInputStream()); 

 } catch (IOException e) { 

     e.printStackTrace(); 

 } 

 

 BufferedOutputStream infile = null; 

 try { 

     byte [] tempBuffer = new byte[4*1024]; 

     int length = 0; 

     infile = new BufferedOutputStream(new FileOutputStream(output)); 

     while ((length = fromNode.read(tempBuffer)) > 0) { 

  infile.write(tempBuffer, 0, length); 

     } 

     fromNode.close(); 

     infile.close(); 

 } catch (IOException e) { 

     e.printStackTrace(); 
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 } 

  

 aNode.jobDone(); 

 Main.jobsComplete(true); 

  

// FileChannel inChannel = infile.getChannel(); 

// ByteBuffer aBuffer = ByteBuffer.allocate((int) zippedFile.length()); 

// try { 

//     inChannel.read(aBuffer); 

// } catch (IOException e) { 

//     e.printStackTrace(); 

// } 

  

// FileOutputStream outfile = null; 

// try { 

//     outfile = new FileOutputStream("test.zip"); 

// } catch (FileNotFoundException e) { 

//     e.printStackTrace(); 

// } 

// FileChannel outChannel = outfile.getChannel(); 

// aBuffer.flip(); 

// try { 

//     outChannel.write(aBuffer); 

//     outfile.close(); 

// } catch (IOException e) { 

//     e.printStackTrace(); 

// } 

    } 

 

    public File zipFilesForSending(File input, File program) { 

 FileInputStream infile = null; 

 FileInputStream progfile = null; 

 try { 

     infile = new FileInputStream(input); 

     progfile = new FileInputStream(program); 

 } catch (FileNotFoundException e) { 

     e.printStackTrace(); 

 } 

 File zippedFile = new File("out" + jobNumber + ".zip"); 

 ZipOutputStream out = null; 

 try { 

     out = new ZipOutputStream(new FileOutputStream(zippedFile)); 

 } catch (FileNotFoundException e) { 

     e.printStackTrace(); 

 } 

 try { 

     byte[] buffer = new byte[1024]; 

     int length; 

      



81 
 

     out.putNextEntry(new ZipEntry(input.getName())); 

     while ((length = infile.read(buffer)) > 0) { 

  out.write(buffer, 0, length); 

     } 

     out.closeEntry(); 

     infile.close(); 

     out.putNextEntry(new ZipEntry(program.getName())); 

     while ((length = progfile.read(buffer)) > 0) { 

  out.write(buffer, 0, length); 

     } 

     out.closeEntry(); 

     progfile.close(); 

      

     out.close(); 

 } catch (IOException e) { 

     e.printStackTrace(); 

 } 

 

 return zippedFile; 

    } 

 

} 

RootListener.java 
/** 

 * @author Md. Mahtab Uddin & Shyen Muhabbat Shikhder 

 * @author 04101002 & 04101008, repectively 

 */ 

package grid.thesis.root; 

 

import java.io.IOException; 

import java.net.*; 

 

class RootListener implements Runnable { 

 

    private ServerSocket aServerSocket= null; 

    private int rootPort = 0; 

     

    public RootListener(ServerSocket aServerSocket, int rootPort) { 

 this.aServerSocket = aServerSocket; 

 this.rootPort = rootPort; 

    } 

     

    public void run() { 

 try { 

     aServerSocket = new ServerSocket(rootPort); 

 } catch (IOException e) { 

     System.err.println("Could not listen on port: " + rootPort); 

     e.printStackTrace(); 
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     System.exit(1); 

 } 

  

 while (true) { 

     try { 

  Socket aSocket = aServerSocket.accept(); 

  Main.getNodes().add(new Node("Node" + ++Main.nodeCount, aSocket)); 

     } catch (IOException e) { 

  System.err.println("Could not connect to Node."); 

  e.printStackTrace(); 

  System.exit(1); 

     } 

      

 } 

    } 

 

} 

 

 

 

Node: 

 

Main.java 
/** 

 * @author Md. Mahtab Uddin & Shyen Muhabbat Shikhder 

 * @author 04101002 & 04101008, repectively 

 */ 

 

package grid.thesis.node; 

 

import javax.swing.*; 

import java.net.*; 

import java.util.zip.*; 

import java.io.*; 

 

public class Main { 

 

    public static final String ROOT_ADDRESS = "192.168.0.182"; 

 

    public static final int ROOT_PORT = 10051; 

 

    static JFrame nodeWindow = new NodeFrame("Node running"); 

     

    private static Socket aSocket = null; 

 

    public static void main(String[] args) { 

 nodeWindow.setVisible(true); 
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 try { 

     aSocket = new Socket(ROOT_ADDRESS, ROOT_PORT); 

 } catch (UnknownHostException e) { 

     System.err.println("Could not find root server."); 

     e.printStackTrace(); 

     System.exit(1); 

 } catch (IOException e) { 

     e.printStackTrace(); 

 } catch (Exception e) { 

     e.printStackTrace(); 

     System.exit(1); 

 } 

  

  

  

 while (true) { 

     mainLoop(); 

 } 

    } 

 

    public static void mainLoop() { 

 try { 

     BufferedOutputStream infile = new BufferedOutputStream(new FileOutputStream("out.zip")); 

     BufferedInputStream fromRoot = new BufferedInputStream(aSocket.getInputStream()); 

 

     byte[] tempBuffer = new byte[4*1024]; 

     int length = 0; 

 

     while ((length = fromRoot.read(tempBuffer)) > 0) { 

  infile.write(tempBuffer, 0, length); 

     } 

     fromRoot.close(); 

     infile.close(); 

 } catch (IOException e) { 

     e.printStackTrace(); 

 } catch (Exception e) { 

     System.exit(1); 

 } 

 

 unzipFilesForReading(new File("out.zip")); 

 runProgram(); 

 

 try { 

 

     BufferedOutputStream toRoot = new BufferedOutputStream(aSocket.getOutputStream()); 

     BufferedInputStream outfile = new BufferedInputStream(new FileInputStream("output.txt")); 

 

     byte[] tempBuffer = new byte[4*1024]; 
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     int length = 0; 

 

     while ((length = outfile.read(tempBuffer)) > 0) { 

  toRoot.write(tempBuffer, 0, length); 

     } 

     outfile.close(); 

     toRoot.close(); 

 

 

 } catch (IOException e) { 

     e.printStackTrace(); 

 } catch (Exception e) { 

     System.exit(1); 

 } 

 

    } 

 

    public static void runProgram() { 

 try { 

     Thread.sleep(3000); 

      

     System.out.println(System.getProperty("user.dir")); 

      

     Runtime.getRuntime().exec("matrixmulfinal.exe"); 

 } catch (IOException e) { 

     e.printStackTrace(); 

 } catch (InterruptedException e) { 

     e.printStackTrace(); 

 } 

    } 

 

    public static void unzipFilesForReading(File zippedFile) { 

 String inputFilename = "input.txt"; 

 String progFilename = "matrixmulfinal.exe"; 

 

 FileOutputStream outfile = null; 

 FileOutputStream progfile = null; 

 try { 

     outfile = new FileOutputStream(inputFilename); 

     progfile = new FileOutputStream(progFilename); 

 } catch (FileNotFoundException e) { 

     e.printStackTrace(); 

 } 

 ZipInputStream in = null; 

 try { 

     in = new ZipInputStream(new FileInputStream(zippedFile)); 

 } catch (FileNotFoundException e) { 

     e.printStackTrace(); 

 } 
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 try { 

     byte[] buffer = new byte[1024]; 

 

     int length = 0; 

     in.getNextEntry(); 

     while ((length = in.read(buffer, 0, buffer.length)) > 0) { 

  outfile.write(buffer, 0, length); 

     } 

     outfile.close(); 

     in.closeEntry(); 

 

     length = 0; 

     in.getNextEntry(); 

     while ((length = in.read(buffer, 0, buffer.length)) > 0) { 

  progfile.write(buffer, 0, length); 

     } 

     progfile.close(); 

     in.closeEntry(); 

 

     in.close(); 

 } catch (IOException e) { 

     e.printStackTrace(); 

 } 

    } 

 

 

    static void cleanup() { 

 System.out.println("Cleanup running ..."); 

 try { 

     aSocket.close(); 

 } catch (IOException e) { 

     e.printStackTrace(); 

 } 

    } 

 

} 

 

NodeFrame.java 
/** 

 * @author Md. Mahtab Uddin & Shyen Muhabbat Shikhder 

 * @author 04101002 & 04101008, repectively 

 */ 

 

 

package grid.thesis.node; 

 

import javax.swing.JFrame; 

import java.awt.event.*; 
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public class NodeFrame extends JFrame { 

 

    public NodeFrame(final String title) { 

 setTitle(title); 

 enableEvents(WindowEvent.WINDOW_EVENT_MASK); 

    } 

     

    protected void processWindowEvent(final WindowEvent e) { 

 if (e.getID() == WindowEvent.WINDOW_CLOSING) { 

     Main.cleanup(); 

     dispose(); 

     System.exit(0); 

 } 

 super.processWindowEvent(e); 

    } 

} 


