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Thesis Abstract 

 

We will study the pulse propagation in optical fiber. The effect of non-linearity and dispersion of 

the pulse propagation causes temporal spreading of pulse and it can be compensated by non-

linear effect. When the effects are combined they can generate stable, undistorted pulses called 

soliton over long distances. Numerical analysis can be carried out using different types of 

method including Fourier series analysis techique, Split Step Fourier Method. An extensive study 

has been carried out to find the appropriate analysis method. Different types of pulse was used 

including Hyoperbolic secant, Gaussian and Super-Gaussain pulses.  
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CHAPTER 1: 

Introduction 

 

With the advance of the information technology and the explosive growth of the graphics driven 

World Wide Web, the demand for high bit rate communication systems has been raising expo-

nentially. In recent time, the intense desire to exchange the information technology has refueled 

extensive research efforts worldwide to develop and improve all optical fiber based transmission 

systems. For this reason, optical soliton pulse which is the subject of this thesis has involved. 

Optical solitons are pulse of light which are considered the natural mode of an optical fiber. Soli-

tons are able to propagate for long distance in optical fiber, because it can maintain its shapes 

when propagating through fibers. We are just at the beginning of what will likely be known as 

the photonics. One of the keys of success is ensuring photonics revolution and use the optical 

solitons in fiber optic communications system. Solitons are a special type of optical pulses that 

can propagate through an optical fiber undistorted for tens of thousands of km. the key of soli-

tons formation is the careful balance of the opposing forces of dispersion and self-phase modula-

tion. In this paper, we will discuss the origin of optical solitons starting with the basic concepts 

of optical pulse propagation. In this paper, we will discuss about theory of soliton, pulse disper-

sion, self phase modulation and nonlinear Schrödinger equation (NLSE) for pulse propagation 

through optical fiber. The next chapter contains the analyzing method, split step fourier method. 

Accordingly, in next two chapter, we study different pulses and implement them using NLSE. In 

the last part, we will show our research result regarding different pulses to generate soliton. 
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CHAPTER 2:  

Literature Review 

 

In this chapter basic theory of soliton will be discussed.  Generation of soliton takes place due to 

dispersion light when it propagating along optical fiber and self-phase modulation effect. Nonli-

near Schrödinger equation is also explained which defines mathematically the amplitude varia-

tion of ultra-short pulse of light. 

2.1 Soliton 

In mathematics and physics a soliton is a self-reinforcing solitary wave. It is also a wave pack-

et or pulse that maintains its shape while it travels at constant speed. Solitons are caused by a 

cancellation of nonlinear and dispersive effect in the medium. Dispersive effects mean a certain 

systems where the speed of the waves varies according to frequency. Solitons arise as the solu-

tions of a widespread class of weakly nonlinear dispersive partial differential equation describing 

physical systems. Soliton is an isolated particle like wave that is a solution of certain equation for 

propagating, acquiring when two solitary waves do not change their form after collision and sub-

sequently travel for considerable distance. Moreover, soliton is a quantum of energy or quasi par-

ticle that can be propagated as a travelling wave in non-linear system and cannot be followed 

other disturbance. This process does not obey the superposition principal and does not dissipate. 

Soliton wave can travel long distance with little loss of energy or structure. 
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2.2 Pulse Dispersion 

In digital communication systems, information is encoded in the form of pulses and then these 

light pulses are transmitted from the transmitter to the receiver. The larger the number of pulses 

that can be sent per unit time and still be resolvable at the receiver end, the larger is the capacity 

of the system. 

However, when the light pulses travel down the fiber, the pulses spread out, and this phenome-

non is called Pulse Dispersion. Pulse dispersion is shown in the following figure. 

 

Fig 2.1: Pulse dispersion 

Pulse dispersion is one of the two most important factors that limit a fiber‟s capacity (the other is 

fiber‟s losses) [1]. Pulse dispersion happens because of four main reasons: 

i. Intermodal Dispersion 

ii. Material Dispersion 

iii. Waveguide Dispersion 

iv. Polarization Mode Dispersion (PMD) 

An electromagnetic wave, such as the light sent through an optical fiber is actually a combination 

of electric and magnetic fields oscillating perpendicular to each other. When an electromagnetic 

wave propagates through free space, it travels at the constant speed of 3.0 × 10^8 meters. 

http://www.fiberoptics4sale.com/wordpress/wp-content/uploads/2010/09/image34.png
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However, when light propagates through a material rather than through free space, the electric 

and magnetic fields of the light induce a polarization in the electron clouds of the material. This 

polarization makes it more difficult for the light to travel through the material, so the light must 

slow down to a speed less than its original 3.0 × 10^8  meters per second. The degree to which 

the light is slowed down is given by the material‟s refractive index n. The speed of light within 

material is then v = 3.0× 10^8 meters per second/n. 

This equation shows that a high refractive index means a slow light propagation speed. Higher 

refractive indices generally occur in materials with higher densities, since a high density implies 

a high concentration of electron clouds to slow the light. 

Since the interaction of the light with the material depends on the frequency of the propagating 

light, the refractive index is also dependent on the light frequency. This, in turn, dictates that the 

speed of light in the material depends on the light‟s frequency, a phenomenon known as chro-

matic dispersion. 

Optical pulses are often characterized by their shape. We consider a typical pulse shape named 

Gaussian, shown in Figure 2.2. In a Gaussian pulse, the constituent photons are concentrated to-

ward the center of the pulse, making it more intense than the outer tails. 

 

Fig 2.2: A Gaussian pulse 

Optical pulses are generated by a near-monochromatic light source such as a laser or an LED.  If 

the light source were completely monochromatic, then it would generate photons at a single fre-
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quency only, and all of the photons would travel through the fiber at the same speed.  In reality, 

small thermal fluctuations and quantum uncertainties prevent any light source from being truly 

monochromatic.  This means that the photons in an optical pulse actually include a range of dif-

ferent frequencies.  Since the speed of a photon in an optical fiber depends on its frequency, the 

photons within a pulse will travel at slightly different speeds from each other.  The result is that 

the slower photons will lag further and further behind the faster photons, and the pulse will broa-

den. An example of this broadening is given in Figure 2.3. 

 

Fig 2.3: A pulse broadens due to cromatic dispersion 

Chromatic dispersion may be classified into two different regimes: normal and anomalous. With 

normal dispersion, the lower frequency components of an optical pulse travel faster than the 

higher frequency components. The opposite is true with anomalous dispersion. The type of dis-

persion a pulse experiences depends on its wavelength; a typical fiber optic communication sys-

tem uses a pulse wavelength of 1.55 µm, which falls within the anomalous dispersion regime of 

most optical fiber. 

Pulse broadening, and hence chromatic dispersion, can be a major problem in fiber optic com-

munication systems for obvious reasons. A broadened pulse has much lower peak intensity than 

the initial pulse launched into the fiber, making it more difficult to detect. Worse yet, the broa-

dening of two neighboring pulses may cause them to overlap, leading to errors at the receiving 

end of the system. 

However, chromatic dispersion is not always a harmful occurrence. As we shall soon see, when 

combined with self-phase modulation, chromatic dispersion in the anomalous regime may lead to 

the formation of optical solitons [1].  
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2.3 Kerr Effect 

The Kerr effect, also called the quadratic electro-optic effect (QEO effect), is a change in 

the refractive index of a material in response to an applied electric field. The Kerr electro-optic 

effect, or DC Kerr effect, is the special case in which a slowly varying external electric field is 

applied by, for instance, a voltage on electrodes across the sample material. Under this influence, 

the sample becomes birefringent with different indices of refraction for light polarizer parallel to 

or perpendicular to the applied field. The difference in index of refraction, Δn, is given by 

 

Where λ is the wavelength of the light, K is the Kerr constant, and E is the strength of the electric 

field. This difference in index of refraction causes the material to act like a wave plate when light 

is incident on it in a direction perpendicular to the electric field. If the material is placed between 

two" crossed"(perpendicular) linear polarizer, no light will be transmitted when the electric field 

is turned off, while nearly all of the light will be transmitted for some optimum value of the elec-

tric field. Higher values of the Kerr constant allow complete transmission to be achieved with a 

smaller applied electric field. 

Some polar liquids, such as nitro toluene (C7H7NO2) and nitrobenzene (C6H5NO2) exhibit very 

large Kerr constants. A glass cell filled with one of these liquids is called a Kerr cell. These are 

frequently used to modulate light, since the Kerr effect responds very quickly to changes in elec-

tric field. Light can be modulated with these devices at frequencies as high as 10 GHZ Because 

the Kerr effect is relatively weak, a typical Kerr cell may require voltages as high as 31 KV to 

achieve complete transparency. Another disadvantage of Kerr cells is that the best available ma-

terial, nitrobenzene, is poisonous. Some transparent crystals have also been used for Kerr mod-

ulation, although they have smaller Kerr constants [2]. 

The optical Kerr effect or AC Kerr effect is the case in which the electric field is due to the light 

itself. This causes a variation in index of refraction which is proportional to the local irradiance 

of the light. This refractive index variation is responsible for the non linear optical effects this 

effect only become significant with very intense beams such as those from laser. 
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2.4 Self-Phase Modulation 

Self-phase modulation (SPM) is a nonlinear effect of light-matter interaction. With self-phase 

modulation, the optical pulse exhibits a phase shift induced by the intensity-dependent refractive 

index. An ultra short pulse light, when travelling in a medium, will induce a varying refractive 

index in the medium due to the optical Kerr effect. This variation in refractive index will produce 

a phase shift in the pulse, leading to a change of the pulse's frequency spectrum. The refractive 

index is also dependent on the intensity of the light.  This is due to the fact that the induced elec-

tron cloud polarization in a material is not actually a linear function of the light intensity. The 

degree of polarization increases nonlinearly with light intensity, so the material exerts greater 

slowing forces on more intense light.  The result is that the refractive index of a material increas-

es with the increasing light intensity.  

Phenomenological consequences of this intensity dependence of refractive index in fiber optic 

are known as fiber nonlinearities. 

 

Fig 2.4: Self-Phase Modulation 

In this figure, a pulse (top curve) propagating through a nonlinear medium undergoes a self-

frequency shift (bottom curve) due to self-phase modulation. The front of the pulse is shifted to 

lower frequencies, the back to higher frequencies. In the centre of the pulse the frequency shift is 

approximately linear. 

http://en.wikipedia.org/wiki/File:Self-phase-modulation-en.svg
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For an ultra short pulse with a Gaussian shape and constant phase, the intensity at time t is given 

by I(t) [3]: 

        (2.1) 

Where I0 is the peak intensity and τ is half the pulse duration. 

If the pulse is travelling in a medium, the optical Kerr effect produces a refractive index change 

with intensity [3]: 

        (2.2) 

Where n0 is the linear refractive index and n2 is the second-order nonlinear refractive index of the 

medium. 

As the pulse propagates, the intensity at any one point in the medium rises and then falls as the 

pulse goes past. This will produce a time-varying refractive index [3]: 

 

This variation in refractive index produces a shift in the instantaneous phase of the pulse [8] 

 

Where ω0 and λ0 are the carrier frequency and (vacuum) wavelength of the pulse, and L is the 

distance the pulse has propagated. The phase shift results in a frequency shift of the pulse. The 

instantaneous frequency ω (t) is given by [3]: 

 

And from the equation for dn/dt above, this is [8]: 

 

Plotting ω (t) shows the frequency shift of each part of the pulse. The leading edge shifts to low-

er frequencies ("redder" wavelengths), trailing edge to higher frequencies ("bluer") and the very 

http://en.wikipedia.org/wiki/Gaussian
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peak of the pulse is not shifted. For the centre portion of the pulse (between t = ±τ/2), there is an 

approximately linear frequency shift (chirp) given by [3]: 

         (2.3) 

Where α is: 

 

2.5 Nonlinear Schrödinger Equation (NLSE) 

The general nonlinear Schrödinger equation (NLSE) is given below. The generalized NLSE can 

be described as a complete form of nonlinear Schrodinger equation in optical fiber because it 

contains all relevant parameters for solving pulse propagation in nonlinear media. 

NLSE
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Simplified NLSE  

In this equation, we have removed the nonlinear effects like self steepening and Raman scatter-

ing as this study focuses on the interaction between 
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The third order dispersion term is removed because 3 becomes negligible for picoseconds 

pulses. 
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2 2
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n




              (2.7) 

Where, 

   is the nonlinear parameter  

effA Effective core area of the fiber;  

2n = nonlinear index coefficient;  

 = optical wavelength   

Here,  is the normalized time parameter, Z is the normalized length, and U is the normalized 

input power used in the normalized NLSE. 


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           (2.8)
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           (2.9)
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A
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           (2.10)

 

The previous normalization parameters are used in transforming the simplified NLSE to norma-

lized NLSE.  

2.5.1 Group velocity dispersion 

Group velocity dispersion is the fact that the group velocity of light in a transparent medium de-

pends on the optical frequency or wavelength. This term can also be used to define quantity, 

which is the derivation of the inverse group velocity with respect to the angular frequency (or 

sometimes the wavelength): 

 

The group velocity dispersion is the group delay dispersion per unit length. The basic units are 

s
2
/m. For example, the group velocity dispersion of silica is +35 fs

2
/mm at 800 nm and 

−26 fs
2
/mm at 1500 nm [4].  

For optical fiber communications, the group velocity dispersion is usually defined as a derivative 

with respect to wavelength rather than the angular frequency of the signal. This can be calculated 

from the above-mentioned GVD parameter: 
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This quantity is usually specified with units of ps/(nm.km) (picoseconds per nanometer wave-

length change and kilometer propagation distance). For example, 20 ps/(nm.km) at 1550 nm (a 

typical value for telecom fibers) corresponds to −25509 fs2/m [4]. 

In parametric nonlinear interactions, Group velocity dispersion is responsible for dispersive 

broadening of pulses and also for the group velocity variance of different waves. 

2.5.2 Third-order dispersion 

Third-order dispersion has come from the frequency dependence of the group delay dispersion. 

The Taylor expansion of the spectral phase versus angular frequency offset is related to the third-

order term. It can be written as 

 

And the corresponding change in the spectral phase within a propagation length L is 

 

The third-order dispersion of an optical element is usually specified in units of fs
3
, whereas the 

units of k''' are fs
3
/m [5]. 

In mode-locked lasers for pulse durations below 30 fs, it is necessary to provide dispersion com-

pensation for not only the average group delay dispersion which is also the second-order disper-

sion, but also for the third-order dispersion and possibly for even higher orders. Sometimes the 

effect of third-order dispersion requires numerical pulse propagation modeling. 

2.5.3 Attenuation 

Attenuation of light intensity is caused by the absorption, scattering and bending losses in an opt-

ical fiber. It is also a loss of optical power when light travels in a fiber. Signal attenuation is de-

fined as the ratio of optical input power (Pi) to the optical output power (Po). Optical input power 
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is the power injected into the fiber from an optical source. Optical output power is the power re-

ceived at the fiber end or optical detector. The following equation defines signal attenuation as a 

unit of length:  

 

Signal attenuation is a log relationship. Length (L) is expressed in kilometers. Therefore, the unit 

of attenuation is decibels/kilometer (dB/km) [6]. The losses caused by absorption, scattering and 

bending losses are influenced by fiber-material properties and fiber structure. Attenuation occurs 

with any type of signal, whether digital or analog. Attenuation is also a natural consequence of 

signal transmission over long distances. 

Efficiency of the optical fiber increases as the attenuation per unit distance is less. One or more 

repeaters are generally inserted along the length of the cable in order to transmit the signals over 

long distances. The repeaters boost the signal strength to overcome attenuation. This greatly in-

creases the maximum attainable range of communication [7]. 

2.5.4 Nonlinearity 

In an optical fiber when, the data rates, transmission lengths, number of wavelengths, and optical 

power levels increased then nonlinearity effects arise. Those dispersions are easily dealt with us-

ing a variety of dispersion avoidance and cancellation techniques. Fiber nonlinearities have pre-

sented a new area of obstacle. Fiber nonlinearities represent the fundamental limiting mechan-

isms to the amount of data that can be transmitted on a single optic fiber. System designers must 

be aware of these limitations and the steps that can be taken to minimize the detrimental effects 

of fiber nonlinearities [8]. 

There are two basic mechanisms for arising fiber nonlinearities. One of them is the refractive in-

dex of glass which dependents on the optical power going through the material and the other me-

chanisms is the scattering phenomena. The most detrimental mechanism arises from the refrac-

tive index of glass. The general equation for the refractive index of the core in an optical fiber is: 
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Where, n0 = the refractive index of the fiber core at low optical power levels, n2 = the nonlinear 

refractive index coefficient (2.35 x 10
-20

 m
2
/W for silica), P = the optical power in Watts, Aeff = 

the effective area of the fiber core in square meters.  

The equation shows that minimizing the amount of power, P; launched and maximizing the ef-

fective area of the fiber, Aeff; eliminates the nonlinearities produced by refractive index power. 

Minimizing the power goes against the current approach to eliminating the detrimental effects; 

however, maximizing the effective area remains the most common approach in the latest fiber 

designs [8]. 

2.5.5 Self-steepening 

Self-steepening means the change in shape of light pulses, which propagate in a medium with an 

intensity-dependent index of refraction. The time required for the pulse to steepen into an optical 

fiber is measured, and the time development of the pulses is calculated for both zero and nonzero 

times of relaxation of the index of refraction [9]. In our calculation, we assume self-steepening is 

zero. 

2.5.6 Raman scattering 

The Raman Effect is the inelastic scattering of photons. When a monochromatic light beam 

propagates in an optical fiber, spontaneous Raman scattering transfers some of the photons to 

new frequencies. The probability of a photon scattering to a particular frequency shift depends 

on that frequency shift, forming a characteristic spectrum. The scattered photons may lose ener-

gy or gain energy. If the light beam is linearly polarized, then the polarization of scattered pho-

tons may be the same (parallel scattering) or orthogonal (perpendicular scattering). If photons are 

already present at other frequencies then the probability of scattering to those frequencies is en-

hanced (stimulated scattering) [10]. In our calculation, we also assume Raman Scattering is zero. 
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CHAPTER 3: 

Analyzing Method 

 

There are many methods to solve NLSE equation. In this paper, we have used split step Fourier 

method to solve nonlinear Schrödinger equation. It is applied because of greater computation 

speed and increased accuracy compared to other numerical techniques.  

3.1 Split Step Fourier Method 

The split step Fourier method is a pseudo-spectral numerical method for solving partial differen-

tial equations such as the nonlinear Schrödinger equation. Dispersion and nonlinear effects act 

simultaneously on propagating pulses during nonlinear pulse propagation in optical fibers. How-

ever, analytic solution cannot be employed to solve the NLSE with both dispersive and nonlinear 

terms present. Hence the numerical split step Fourier method is utilized, which breaks the entire 

length of the fiber into small step sizes of length „h‟ and then solves the nonlinear Schrödinger 

equation by splitting it into two halves , the linear part (dispersive part)  and the nonlinear part 

over z to z + h [7].  

 

Fig 3.1: Split step Fourier method 
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Each part is solved individually and then combined together afterwards to obtain the aggregate 

output of the traversed pulse. It solves the linear dispersive part first, in the Fourier domain using 

the fast Fourier transforms and then inverse Fourier transforms to the time domain where it 

solves the equation for the nonlinear term before combining them. The process is repeated over 

the entire span of the fiber to approximate nonlinear pulse propagation. The equations describing 

them are offered below [11].  

The value of h is chosen for 
,|| 2

max hAp 
 where rad05.0max    and Ap = peak 

power of A (z, t); max = maximum phase shift  

In the following part the solution of the generalized Schrödinger equation is describedus-

ing this method.  
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The linear part (dispersive part) and the nonlinear part are separated. 

Linear part 
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Nonlinear part 
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Linear part solution 

The solution of the linear part )ˆexp( Lh  is done in the Fourier domain by using the identity

i
T





. Since in the Fourier domain   is simply a numerical sequence of digits, the calcula-

tion that would otherwise be complicated in the time domain due to computation of the differen-

tial terms is mitigated in the Fourier domain.  

)ˆexp( Lh  )](ˆexp[ iLh  and A (z, t)  ),( 0 zA  

Linear Solution   =  ),()](ˆexp[ 0

1
 


zAiLhFT       

(3.5)
 

Nonlinear part solution  

 )ˆexp(),( NhThzA Linear Solution       (3.6) 

In our study as will be shown later, we have considered 3 =0, 0   and higher order nonlinear 

effects of self steepening and Raman scattering (reserved for ultra short pulses) to be 0 i.e.  

0)(
1

2

2

0











T

A
TiAA

TA
R




 . We make this assumption because the pulse width chosen is 

of the order of picoseconds. 
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CHAPTER 4: 

Analysis of Different Pulses  

 

Pulse is a rapid change in some characteristic of a signal. The characteristic can be phase or fre-

quency from a baseline value to a higher or lower value, followed by a rapid return to the base-

line value. Here we have analyzed three types of pulses which are Gaussian Pulse, Super-

Gaussian Pulse and Hyperbolic Secant Pulse. 

4.1 Gaussian Pulse 

 

Fig 4.1: Gaussian Pulse  

In theory, Gaussian pulses while propagating maintain their fundamental shape, however their 

amplitude width and phase varies over given distance [12].  
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Many quantitative equations can be followed to study the properties of Gaussian pulses as it 

propagates over a distance of z. 

The incident field for Gaussian pulses can be written as  
















2

0

2

2
exp*),0(

T
AoU




                                (4.1)

 

0T  is the initial pulse width of the pulse.  

Amplitude of a Gaussian pulse varies with the equation 
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2

2
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
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 iTiT
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      (4.2) 

  

Width of a Gaussian pulse varies with this equation   
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
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




DL

z
Tz

         (4.3)

 

Under the effect of dispersion this equation shows how the Gaussian pulse width broa-

dens over z.  

4.2 Super-Gaussian Pulse  

The input field for such pulse is described by  








 


2

2

2

)1(
exp*),0(

To

iC
AoU

m


     (4.4)

 

Here m is the order of the super-Gaussian pulse and determines the sharpness of the edges of the 

input. The higher the value of m steeper is the leading and trailing edges of the pulse.  
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Fig 4.2: Super-Gaussian pulse 

As we continue increasing m, we eventually get a rectangular pulse shape which evidently has 

very sharp edges. In case of m=1 we get the Gaussian chirped pulse. 

The sharpness of the edges plays an important part in the broadening ratio because broadening 

caused by dispersion is sensitive to such a quality [13]. 

4.2.1 Chirp 

Chirp is a signal in which the frequency increases (up-chirp) or decreases (down-chirp) with 

time. It is commonly used in sonar and radar, but has other applications, such as in spread spec-

trum communications. In optics, ultra short laser pulses also exhibit chirp. In optical transmission 

systems chirp interacts with the dispersion properties of the materials, increasing or decreasing 

total pulse dispersion as the signal propagates. 

4.2.1.1 Types of chirp 

Three types of chirps are discussed in this chapter – Group velocity dispersion induced chirp 

(down chirp), self phase modulation induced chirp (up chirp) and pre-induced chirp (initial 

chirp). 
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GVD induced chirp 

GVD induced chirp occurs due to the group velocity dispersion effect while pulse propagates 

through an optical fiber. The chirp is linear and negative over a large central region. It is positive 

near the leading edge and becomes negative near the trailing edge of the pulse. Essentially, it 

causes spreading of pulses [12]. GVD induced chirp is down chirp or negative chirp. Here, high 

frequency components of a pulse travels at greater a velocity than low frequency components. 

This difference results in induced negative chirp which signifies the GVD effect.  

 

Fig 4.3: GVD induced chirp effect 

SPM induced chirp 

SPM induced chirp is up-chirp or positive-chirp that occurs due to the nonlinear self phase mod-

ulation effect inside an optical fiber. The chirp is linear and positive over a large central region of 

the pulse. It is negative near the leading edge and becomes positive near the trailing edge of the 

pulse. SPM induced chirp makes the pulse width narrower from the original pulse width as 

pulses propagate through an optical fiber. Here, low frequency components of the pulse travel at 

larger velocity than the high frequency components. This results in induction of positive chirp 

resulting in narrowing of pulses. 

GVD induced chirp effect 

–Negative chirp 
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 Fig 4.4: SPM induced chirp effect 

 

Fig 4.5: (a) Gaussian pulse phase (b) SPM induced chirp (c) GVD induced chirp 

SPM induced chirp 

effect – Positive chirp 

Input pulse 
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Pre induced chirp 

Pre induce chirp is the chirp added to an input pulse before sending it through an optical fiber. 

Pre induced chirp or initial chirp results from the laser source itself. It can be either positive or 

negative. It is used to balance the GVD induced chirp and SPM induced chirp. Initial chirp can 

be useful in certain cases- 

 Suppression of four wave mixing 

 Lowering pulse width fluctuations  

 Spectral compression  

 And generating transform limited output pulses 

4.3 Hyperbolic Secant Pulse 

Pulse propagation for hyperbolic secant pulse 

 

Fig 4.6: Hyperbolic secant Input pulse  
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4.3.1 Conditions for soliton 

The conditions for soliton are 

1) The dispersion region must be anomalous. That is 𝛽2<0. 

2) The input pulse must be an un-chirped hyperbolic secant pulse. In our simulation we 

used the following pulse-  











To
hU


 sec),0(

         (4.5) 

3) The dispersion length must be approximately the same as the nonlinear length. 

4) The GVD induced chirp should exactly cancel the SPM induced chirp. 

4.3.2 Higher order soliton 

Higher order soliton are soliton with higher energy. More specifically, the energy of a higher or-

der soliton is square of an integer number times higher than a fundamental soliton. 

In our simulation we used – 





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




To
hNU


 sec),0(

                                                (4.6) 

 

Higher order soliton do not have a fixed pulse shape like fundamental soliton. But they gain their 

shape periodically. The order of the soliton is described by the parameter N. 
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CHAPTER 5:  

Implementation and Optimization 

 

In the previous chapter we have discussed about Gaussian Pulse, Super-Gaussian Pulse and 

hyperbolic secant pulse. In this chapter, we have implemented those pulses using NLSE accord-

ing to split step Fourier method (SSFM).  

5.1 Gaussian Pulse Implementation 

Table 5.1: Gaussian input 

Input pulse 

Here, the input pulse is Fourier transformed. Fourier spectrum = 
TF (U (0, ))  

The nonlinear Schrodinger equation is solved in two dispersion steps with a nonlinear step in the 

middle.  

Linear dispersive step (1
st
 half)  

This is the first step of the linear solution. Here, the Fourier domain input pulse is multiplied 

with the first part of the nonlinear Schrodinger equation solution that considers the GVD effect 

GAUSSIAN PULSE INPUT SIMPLIFIED NLSE METHOD 
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only without the nonlinear effect. (The loss term is included and can be used in calculation but 

for this purpose it is considered zero) 

Linear solution (1) = 
TF (U (0, ))  





















222
exp

2

2 hi 
 

Inverse Fourier transform  

The linear solution is transformed in to the time domain by inverse Fourier transform using the 

fast Fourier transform algorithm. 

Linear solution (1) in time domain = 
1

TF [Linear solution (1)] 

Nonlinear step  

The nonlinear step is solved in the time domain. The output from the previous step is subjected 

to the nonlinear solution of the nonlinear Schrodinger equation using the following equations. 

This step considers the nonlinear effects only without any linear effect term. 

The following is the equation for the nonlinear solution. 

Nonlinear solution in time domain= hi
2

domain  in time )solution(1Linear  exp 
 

The nonlinear solution is multiplied with the linear solution from the previous step.
 
 

Nonlinear step output =Linear solution (1) in time domain  Nonlinear solution in time domain 

The resulting output is the combined output for the first linear step and the nonlinear step in time 

domain. 

Fourier transform 

To solve for the second linear step of the split step Fourier method we must transform the output 

of the previous step into time domain. 

Nonlinear step output Fourier domain= 
TF [Nonlinear step output] 
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Linear dispersive step (2
nd

 half) 

The second step of the linear solution is accomplished by multiplying the Fourier domain output 

of the previous step and the linear part of the nonlinear Schrodinger equation solution just like in 

the first linear step. 

Linear solution (2) = Nonlinear step output Fourier domain 



















222
exp

2

2 hi 
 

Inverse Fourier transform 

Inverse Fourier transform is performed on the output of the second linear part. 

Linear solution (2) in time domain= 
1

TF [Linear solution (2)] 

Solution for NLSE Over 1 Step size h = Linear solution (2) in time domain 

This previous output is the final output to the split step Fourier method over one step where each 

step is of size h. 

This process is repeated over the length of the fiber. 

5.2 Super-Gaussian Pulse Implementation 

Table 5.2: Super-Gaussian input 

The Gaussian implementation method can also be applied for super-Gaussian pulse inputs. 

 

SUPER GAUSSIAN PULSE INPUT SIMPLIFIED NLSE  METHOD 
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5.3 Hyperbolic Secant Pulse Implementation 

Table 5.3: Hyperbolic Secant input 

Fourier transform of input pulse 

The input pulse is Fourier transformed. 

Fourier spectrum = 
TF (U (0, ))  

Linear dispersive step (1
st
 half) 

The linear step is solved by multiplying the Fourier domain input hyperbolic secant pulse with 

the normalized Schrodinger equation solution for the first linear part which consists of only dis-

persive terms (loss term considered is zero for this purpose) 

Linear solution (1) = 
TF (U (0, ))  




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
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2 his
 

 Inverse Fourier transform 

Inverse Fourier transform is performed on the previous step output. 

 Linear solution (1) in time domain = 
1

TF [Linear solution (1)] 

The solution term of the linear part of the nonlinear Schrodinger equation is differ 

Nonlinear step  

The nonlinear step is solved in the time domain and the process is shown below.  

HYPERBOLIC SECANT PULSE IN-

PUT 

NORMALIZED NLSE METHOD 
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Nonlinear solution in time domain= hiN
22 domain  in time )solution(1Linear  exp  

Nonlinear step output =Linear solution (1) in time domain  Nonlinear solution in time do-

main 

Fourier transform 

Nonlinear step output is once again Fourier transformed for the second half of the linear step. 

Nonlinear step output Fourier domain= 
TF [Nonlinear step output] 

Linear dispersive step (2
nd

 half) 

The second half of the linear step is solved in the following manner similar to the first half. 

Linear solution (2) = Nonlinear step output Fourier domain 

















222
exp

2 his
 

Inverse Fourier transform 

Inverse Fourier of the previous output results in time domain output of the split step Fourier me-

thod for one step.  

Linear solution (2) in time domain= 
1

TF [Linear solution (2)] 

Solution for NLSE over 1 step size h = Linear solution (2) in time domain 

This process is repeated over the length of the fiber. 



 

Page | 30  

 

 

 

CHAPTER 6:  

Result and Analysis 

 

In this chapter we have used Gaussian pulse, Hyperbolic Secant pulse and Super-Gaussian pulse 

varying chirp, gamma, input power, soliton order in Matlab simulation to analysis pulse broaden-

ing ratio. Pulse broadening ratio should be one throughout all steps of pulse propagation in order 

to generate soliton. In this thesis, analysis is done by using the pulse broadening ratio of the 

evolved pulses. Pulse broadening ratio is calculated by using the Full Width at Half Maximum 

(FWHM).  

Pulse broadening ratio = FWHM of propagating pulse / FWHM of First pulse.  

Pulse broadening ratio signifies the change of the propagating pulse width compared to the pulse 

width at the very beginning of the pulse propagation. At the half or middle of the pulse ampli-

tude, the power of the pulse reaches maximum. The width of the pulse at that point is called full 

width half maximum. 

 

Fig 6.1: Full Widths at Half Maximum 
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6.1 Gaussian Pulse  

In this section of chapter, we will vary different nonlinear and dispersive parameters to find pulse 

broadening ratio through optical fiber. Pulse broadening ratio of Gaussian pulse with chirp,      

C= -1, -0.5, 0, 0.5, 1. 

 

Fig 6.2: Pulse Broadening Ratio of Gaussian Pulse with different chirp 

Here, both GVD and SPM act simultaneously on the Gaussian pulse with initial negative chirp. 

The evolution pattern shows that pulse broadens at first for a small period of length. But gradual-

ly the rate at which it broadens slowly declines and the pulse broadening ratio seems to reach a 

constant value. This means that the pulse moves at a slightly larger but constant width as it prop-

agates along the length of the fiber. Although the width of the pulse seems constant, it does not 

completely resemble a hyperbolic secant pulse evolution. We compare the pulse evolution of the 

Gaussian pulse with no initial chirp and the negative chirped Gaussian pulse evolution to see the 

difference in shape and width of each of these evolutions. As we previously established GVD 

and SPM effects cancel each other out when the GVD induced negative chirp equals the SPM 

induced positive chirp. But in this case the initial chirp affects the way both GVD and SPM be-

have. The chirp parameter of value -1 adds to the negative chirp of the GVD and deducts from 

the positive chirp of SPM causing the net value of chirp to be negative. This means that GVD is 

dominant during the early stages of propagation causing broadening of the pulse. But as the 
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propagation distance increases the effect of the initial chirp decreases while the induced chirp 

effect of both GVD and SPM regains control. The difference between positive and negative in-

duced is lessened and just like in the case of Gaussian pulse propagation without initial chirp the 

GVD and SPM effects eventually cancels out each other to propagate at constant width. 

If both GVD and SPM act simultaneously on the propagating Gaussian pulse with no initial chirp 

then the pulse shrinks initially for a very small period of propagating length. After that the broa-

dening ratio reaches a constant value and a stable pulse is seemed to propagate.  

GVD acting individually results in the pulse to spread gradually before it loses shape. SPM act-

ing individually results in the narrowing of pulses and losing its intended shape. The combined 

effect of GVD and SPM leads to the eventual generation of constant pulse propagation emulating 

a hyperbolic secant pulse.  

Pulse broadening ratio for various nonlinear parameter   is given below: 

 

Fig 6.3: Pulse Broadening Ratio for different values of Nonlinearity 

In Figure, we study the importance of magnitude of nonlinear parameter   on nonlinear optical 

fiber. 

0 5 10 15
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Total number of steps:Each step is 1 SSFM cycle

P
u
ls

e
 b

ro
a
d
e
n
in

g
 r

a
ti
o

 

 
gamma=0.0020

gamma=0.0025

gamma=0.0030

gamma=0.0035

gamma=0.0040



 

Page | 33  

 

By keeping the input power and the GVD parameter constant, we generate curves for various 

values of . The ideal value of the nonlinear parameter is one, where GVD effect cancels out 

SPM effect to obtain constant pulse width. 

Values chosen for this study are  = 0.002, 0.0025, 0.003, 0.0035 and 0.004 /W/m. The purpose 

is to observe the effect of increasing and decreasing nonlinear parameter on pulse broadening 

ratio. For  =0.003, the SPM induced positive chirp and GVD induced negative chirp gradually 

cancels out. This results in the pulse propagating at a constant width throughout a given length of 

fiber. For  =0.0035, the pulse appears initially more narrow than the previous case. This is be-

cause of increasing nonlinearity which results in increased SPM effect. For  =0.004, the pulse 

broadening ratio initially decreases to a minimum value. For  =0.002, it is obvious that the SPM 

effect is not large enough to counter the larger GVD effect. For this reason pulse broadens. 

Figure of pulse broadening ratio for Gaussian pulse with input power =0.00056W, 0.0006W, 

0.00064W, 0.00068W and 0.00072W. 

 

Fig 6.4: Pulse Broadening Ratio for different values of Power 
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In Figure, we study the importance of magnitude of power on nonlinear optical fiber. By keeping 

the nonlinear parameter and the GVD parameter constant, we generate curves for various values 

of input power. It is observed from this plot that, the pulse broadening ratio is more for curves 

with smaller input power than for those with larger input power.  

This property can be explained by the following equation  

o

N
P

L


1
 ; Where, oP  is the input power and NL  is the nonlinear length.  

This equation shows that the nonlinear length is inversely proportional to the input power. As a 

result NL  decreases for higher values of oP . For oP =0.00072W it is observed that the pulse broa-

dening ratio decreases, meaning narrowing of pulses. Here, the nonlinear parameter   is also 

constant so, narrowing of pulses continues to occur. The reason is that the same amount of nonli-

near effect occurs, but it manifests itself over NL . Reducing oP  has the opposite effect. Here,   

stays constant but NL  is larger. So the same SPM effect occurs but over a greater nonlinear 

length. This means that GVD effect occurs at faster rate when dispersion length is comparatively 

smaller than the nonlinear length. As a result, GVD effect become more dominant for lower in-

put powers, it results in spreading of pulses. 
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Fig 6.5: Pulse Broadening Ratio for different parameters 

Previously we plotted the graph by varying one parameter and kept constant other two parame-

ters. Here we varied all three parameters and found the optimum values for pulse broadening ra-

tio close to one  which are  g=0.003, p=0.00064, c= -0.05. 
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Fig 6.6: Gaussian pulse evolution 

  We got this figure by using these parameters g=0.003, p=0.00064, c= -0.05. Here, we can see 

that after 30 steps the amplitude of the output pulse is nearly equal to the amplitude of the input 

pulse which is 0.025. 
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6.2 Hyperbolic Secant Pulse 

 

Fig 6.7: Pulse evolution 

Pulse broadening Ratio for soliton propagation 

 

Fig 6.8: Pulse Broadening Ratio for Soliton Pulse Propagation 
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Hyperbolic secant pulse propagation without initial chirp is simulated by analytically solving the 

normalized Schrodinger equation using the split step Fourier method. From Figure 5.6 we ob-

serve that the pulse propagates at seemingly constant width. From the curve in Figure 5.7 the 

pulse broadening ratio is found to be a steady, horizontal line confirming that the pulse travels at 

a constant width which is equal to the input width of the pulse. This propagation of a constant 

width hyperbolic secant pulse means that we have obtained soliton propagation in nonlinear opt-

ical fiber. Soliton propagation is possible under certain conditions. In general, the dispersion 

length ( DL ) must be approximately equal to the nonlinear length ( NL ). This would mean that 

the group velocity dispersion would take effect over the same length as the nonlinear effects. 

Under such circumstances, the GVD effect matches the SPM effects entirely and cancels each 

other out to obtain steady pulse width throughout the length of the fiber. We assume that no at-

tenuation is present for simplification of solution. The GVD and the SPM manifest themselves 

through their induced chirp effects. For GVD, the high frequency components of the pulse travel 

at higher velocity than the low frequencies which induces negative chirp causing dispersion. 

SPM on the other hand, induces positive chirp during propagation causing the pulse to narrow as 

it evolves.  

The net outcome is that the negative induced chirp of GVD cancels out the positive induced 

chirp of SPM equally producing fundamental soliton (N=1). 
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6.2.1 Higher order soliton propagation 

Pulse Broadening Ratio for Higher Order Soliton Pulse Propagation with N=1, 2 and 3:  

 

Fig 6.9: Pulse Broadening Ratio for Higher Order Soliton with different N 

 

Fig 6.10: Input pulse for different soliton order 
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Effect of increasing soliton order on pulse propagation 

Here, the power of the soliton order N is increased gradually to obtain pulse broadening ratios of 

higher order solitons. These ratios are plotted on the same axis for comparison of pulse propaga-

tion of each of the higher order solitons for a given length of fiber. The values chosen for N are 

2,3,4,5 and 10.   
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The previous equation shows 2N , which is called the nonlinear factor. This factor is used for the 

solution of the normalized nonlinear Schrödinger equation (Refer to Chapter 4). The input pulse 

to the NLSE for higher order soliton is  

U (0, ) =Nsech
0T


 

So increasing the value of N affects the magnitude of the pulse. But the nonlinear factor 2N  is 

also an important part in the solution of the normalized NLSE. These two facts cause the varia-

tion in behavior of the higher order soliton since N is not same in each case.  

The second order soliton (N=2, green line) produces a periodic outcome. It is observed that after 

a certain period of traversed length the initial pulse shape is re-acquired. This pattern continues 

to occur at regular intervals. The length of propagating distance after which the initial pulse 

shape is re-obtained is called the soliton period and is given by the following equation: 
















2

2

0
0

22 

 T
Lz D

 

The third order soliton (N=3, Blue line) also produces a periodic pattern in the pulse broadening 

ratio curve.  At regular intervals, the width of the pulse oscillates; however it does not seem to 

re-acquire the original pulse shape but slowly heads towards acquiring a different pulse width.  

The fourth (red line) and fifth order (black line) oscillates for shorter and shorter period of 

length. At the end of the chosen propagating distance, the pulse broadening ratio seems to appear 
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less oscillatory and heading towards achieving constancy at a much lower value. However, this 

event is characterized by splitting of pulses along the length of propagation.  

The reason for the behavior of higher order soliton is that the pulse splits into several small 

pulses. The net effect is the eventual destruction of the intended information due to fragmenta-

tion of the pulses.  

6.3 Super-Gaussian Pulse 

 

Fig 6.11: Pulse Broadening Ratio for different values of chirp 

In this case, chirp =0, 1, 2, 3, -1, -2 are studied.  The pulse broadening ratio curves reveal that as 

the magnitude of pulse broadening ratio is close to 1 where chirp is from 0 to 1, the effect of dis-

persion seems to increase. But as chirp is increased from 1 to 2 and then 2 to 3, dispersion effects 

increases largely.   

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

Total number of steps:Each step is 1 SSFM cycle

P
u
ls

e
 b

ro
a
d
e
n
in

g
 r

a
ti
o

 

 

chirp=-2

chirp=-1

chirp=0

chirp=2

chirp=3

chirp=1



 

Page | 42  

 

  

Fig 6.12: Pulse Broadening Ratio for different values of gamma 

In this case, gamma =0.001, 0.002, 0.003, 0.004, 0.005 are studied.  The pulse broadening ratio 

curves reveal that as the magnitude of pulse broadening ratio is close to 1 where gamma is from 

0.002 to 0.003, the effect of dispersion seems to increase.  

 

Fig 6.13: Pulse Broadening Ratio for different values of m 
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Super-Gaussian pulse broadening ratios for various powers of Super-Gaussian pulses are studied. 

From here we obtain pulse broadening ratio curves for m = 1, 2, 3, 4 and 5. The behavior of the 

pulses is easily viewed. As we continue increasing the power m of the Super-Gaussian, the 

slopes of the straight lines of each of the curves increase elsewhere. 

 

Fig 6.14: Pulse Broadening Ratio for different values of power 

Super-Gaussian pulse broadening ratios for various input powers of Super-Gaussian pulses are 

studied. From here we obtain pulse broadening ratio curves for Po = 0.00060, 0.00062, 0.00064, 

0.00066 and 0.00068. The behavior of the pulses is easily viewed. As we continue increasing the 

power Po of the Super-Gaussian, it goes far away from the value pulse broadening ratio 1. 
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Fig 6.15: Pulse Broadening Ratio for different parameters  

Previously we plotted the graph by varying one parameter and kept constant other two parame-

ters. Here we varied all three parameters and found the optimum values for pulse broadening ra-

tio close to one  which are  g=0.0025, p=0.00058, c=0, m=1.  
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Fig 6.16: Super-Gaussian pulse evolution 

We got this figure by using these parameters g=0.0025, p=0.00058, c=0, m=1. Here, we can see 

that after 15 steps the amplitude of the output pulse is nearly equal to the amplitude of the input 

pulse which is 0.025. 

 

 

 

 

 

 



 

Page | 46  

 

 

CHAPTER 7:  

Conclusion 

 

In this dissertation we explored the combined effects of various types of pulses including hyper-

bolic secant pulses, Gaussian pulses and Super-Gaussian pulses. At first, a Gaussian pulse is 

launched into the optical fiber and we observed the results for variable nonlinearity, variable 

group velocity dispersion and variable input power in three separate studies. We find that for low 

nonlinear parameter values the pulse regains initial shape for a given input power. 

Hyperbolic pulses are propagated as a constant width pulse called soliton. The perfect disharmo-

nious interaction of the GVD and SPM induced chirps result in diminishing of both dispersive 

and nonlinear narrowing effects and hence soliton is obtained. Gaussian pulses are also propa-

gated with or without pre-induced (initial) chirp to study the pattern of propagation. It is found 

that in the case of chirp 0 and chirp -1, the Gaussian pulse acquires a hyperbolic secant pulse 

shape and travels as a pseudo-soliton. However, higher values of initial chirp leads to indefinite 

dispersion and pulse shape is not retained; a fact that can be attributed to the  critical chirp, a 

chirp value beyond which no constant width pulse propagation is possible. For the Super-

Gaussian pulse propagation we first considered an un-chirped input with zero nonlinearity para-

meter to understand the effects of the power of the Super-Gaussian pulse m on the pulse width 

and found that pulse broadening ratio curve becomes steeper for higher powered Super-

Gaussians. We then applied initial chirp on the Super-Gaussian pulses and found that for values 

of chirp 2 and -2 or higher, the high power Super-Gaussian pulse broadening steadies signifying 

a decrease in dispersive effects. We also generated pulse broadening ratio curves and evolution 

patterns for higher order solitons. Here, we demonstrated that as we increase the soliton order, 

for N=2 the pulse width periodically varies and regains the original pulse after soliton period oz . 

However, increasing the soliton order further results in initial periodic behavior of pulse width 

before settling at a much lower value indicating that pulse splitting has occurred. 
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      Fig: Gaussian pulse flowchart 
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      Fig: Hyperbolic secant pulse flowchart 
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Fig: Super-Gaussian pulse flowchart 
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