
Damaged Road Detection using Image Processing and Deep
Learning

by

Shimran Mahbub Swadesh
21341029

Rifat Ahmed
18101710

MD. Imran Hossain
17201093

MD. Raihan Rahman
18101169

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
January 2022

© 2022. Brac University
All rights reserved.

January 2022

Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Shimran Mahbub Swadesh
21341029

Rifat Ahmed
18101710

MD. Imran Hossain
17201093

MD.Raihan Rahman
18101169

1

Approval

The thesis/project titled “Damaged Road Detection Using Image Processing and
Deep Learning” submitted by

1. Shimran Mahbub Swadesh (21341029)

2. Rifat Ahmed (18101710)

3. Md. Imran Hossain (17201093)

4. MD. Raihan Rahman (18101169)

Of Fall, 2021 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science on January 18, 2022.

Examining Committee:

Supervisor:
(Member)

Ahnaf Rodoshi
Lecturer

Department of Computer Science and Engineering
Brac University

Co-Supervisor:
(Member)

Nafis Mostafa
Contractual Lecturer

Department of Computer Science and Engineering
Brac University

2

Program Coordinator:
(Member)

Md. Golam Rabiul Alam, PhD
Associate Professor

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

3

Abstract

Computer Science has evolved enormously in the last few decades. It has now far
exceeded the Human and Computer interfaces. Its recent sights are scaling, measur-
ing, object detection, etc. Image processing and deep learning have gone through
many groundworks in the last few years. Our research paper, based on YOLO V4,
LeNet-5, Retina Net, and Faster-RCNN algorithms, proves that these algorithms
can detect damaged roads and analyze whether we can enhance any new ways to
improve the damaged road detection in real-time. However, in a real-world scenario,
it is essential to comprehend the various damages in taking the appropriate action.
Thus automotive industries are looking forward to innovations that can increase the
efficiency in damage categorization.
Along with worldwide industrialization, road damage detection systems have be-
come significantly important both in terms of maintenance and establishment. As
the Artificial Intelligence sector is making a lot of progress, faulty road detection
through Image Processing and Machine Learning has proved to be a flourishing
technique. We can detect damaged roads within specific provisional categories with
combinations of such technological stems. In our solution, we propose a futuristic
deep learning method for object recognition with the help of four different algo-
rithms. More specifically, our approach uses a convolutional neural network to train
our model with a large dataset solely made for the project and categorize the results
into a set of damages along with its comparative analysis.

Index Terms—Deep Learning, Road Crack Detection, Categorization,
Object Recognition, Transfer Learning and RELU.

4

Acknowledgement

“It is not possible to prepare a project report without the assistance encouragement
of other people. This one is certainly no exception.”

First and foremost we are grateful to our Almighty and thankful to our family and
friends for their constant source of inspirations and support Moreover we would like
to express our sincere gratitude to our advisor Ahnaf Rodoshi for the continuous sup-
port of our research. Besides our advisor, we would like to thank our co-supervisor
Nafis Mostafa. We are ineffably indebted to Nafis Mostafa for conscientious guid-
ance and encouragement to accomplish this research. Their guidance helped us in
all the time of our research and writing of this thesis. We could not have imagined
having a better advisor and co-advisor for giving us this opportunity to research
this exceptional topic.

All the exertions here are the result of combined work from the group members. We
have tried to cover all the topics provided by our supervisors Ahnaf Rodoshi and
our co-supervisor, Nafis Mostafa.

5

Table of Contents

Declaration 1

Approval 2

Abstract 4

Acknowledgment 5

Table of Contents 6

List of Figures 8

1 Introduction 10
1.1 Research Problem: . 10
1.2 Research Objectives: . 11

2 Background 12
2.1 Convolutional Neural Networks (CNN) 12
2.2 CNN Architecture . 12

3 Literature Review 14

4 Methodology 17
4.1 Algorithms . 17

4.1.1 YOLO . 17
4.1.2 LeNet-5 . 20
4.1.3 Retina Net . 21
4.1.4 Faster RCNN . 22

4.2 Dataset . 24
4.3 Proposed Workflow . 26
4.4 Data Pre-Processing . 27

4.4.1 Hardware Setup: . 27
4.4.2 Library Preparation: . 27

5 Model Implementation 29
5.1 YOLO-v4 . 29

5.1.1 5-fold Cross Validation . 30
5.2 LeNet-5 . 31
5.3 Faster-RCNN . 33
5.4 RetinaNet . 34

6

6 Discussion 36

7 Conclusion 39
7.1 Limitations . 39
7.2 Future Works . 39

Bibliography 41

7

List of Figures

2.1 CNN Architecture . 12
2.2 Max Pooling . 13
2.3 Pooling Layers . 13

4.1 Two-Stage Detector . 17
4.2 YOLO CNN Architecture . 18
4.3 Green Zone of CNN briefly explained. 18
4.4 Bilateral filtering and image segmentation;(a) original picture; (b)

filtered positive; (c) segmented picture. 18
4.5 Edge Preservation . 19
4.6 Normalization of Down Sampling . 19
4.7 Dense Prediction Model . 19
4.8 LeNet-5 Architecture . 20
4.9 Process of Sub Sampling . 20
4.10 RetinaNet Architecture . 21
4.11 Region Proposal Network . 23
4.12 Sliding Window . 23
4.13 Image Distribution . 25
4.14 Different Damage Types . 25
4.15 Proposed Workflow . 26

5.1 Unzipping Dataset . 29
5.2 Training Shell Command . 29
5.3 Trainable and non-trainable parameters 30
5.4 Training Progress . 30
5.5 Single Fold Validation . 30
5.6 Single Fold Accuracy . 31
5.7 Library preparation . 31
5.8 Training Progress . 32
5.9 : Max pool vs max train accuracy . 32
5.10 Avg pool vs Avg train loss . 33
5.11 Max pool vs max train loss . 33
5.12 Avg pool vs Avg train Accuracy . 33
5.13 Damage Classification . 34
5.14 Detection Command . 34
5.15 Loss vs Epoch curve . 35
5.16 Accuracy . 35

6.1 Predicted Class Actual Curve . 36

8

6.2 Precision Equation . 36
6.3 Recall Equation . 36
6.4 F1 Equation . 37
6.5 Confusion Matrix Of all four Algorithms 37
6.6 Accuracy, F-1 and Recall Comparison 38
6.7 Raw and Detected images. 38

9

Chapter 1

Introduction

In this 21st century, infrastructure is crucial for speedier financial development and
alleviating poverty. It should be emphasized that an excellent foundation is signifi-
cant not just for quicker financial development but also to guarantee a comprehen-
sive outcome. According to the World Economic Forum Global Competitiveness
Report, out of 142 countries, Bangladesh stood 134th(2013). This rating is done
based on the quality of the overall infrastructure within the country. According to
the Global Competitiveness Index for 2017-2018, Bangladesh has the second-worst
roads in Asia on a scale of one to seven. Bangladesh received just a 3.1 for road
quality, a subcategory of infrastructure. Whereas Nepal, which has a poor score of
2.8 and is prone to earthquakes, floods, and landslides, is the only country below
Bangladesh. Given the condition of infrastructure management today, more feasible
and efficient road maintenance approaches are necessary. Pavement distress, often
known as damaged roads, is a significant criterion for pavement condition that may
be evaluated manually, moderately automated, as well as completely autonomously.
Manual and moderately automated surveys are the two most common methods for
collecting data on road conditions. However, due to the length of road networks,
extensive human contact is required, which requires time. Moreover, road damage
detection findings vary from person to person because they rely exclusively on the
assessors’ experience. Thus, there is a raising need for autonomous road condition
evaluation methods that can detect as well as locate road damage quickly and pre-
cisely.

Currently, autonomous identification of road damage is mainly accomplished using
three methods: laser, radar, and vision. Deep learning-based technology has been
quickly developing. Deep neural network-based computer vision research and prod-
uct developments are fastest gaining tractions. Academics have conducted a fresh
round of research and practice on a strategy for detecting road damage using image
processing technologies and deep neural networks.

1.1 Research Problem:

For emergent nations, one of the most important criteria is having smooth roads
that maximize sustainability. Road Damage Detection is important to maintain the
infrastructure quality and condition. However, it is challenging for a few experts to
accurately carry out the on-field inspection over a vast chunk of land.

10

In the recent past, many researchers came up with new ideas on Artificial intelli-
gence to detect exceptional road damage but lacked precision and accuracy. The
unavailability of image datasets required for model training is a significant draw-
back. Image quality is another concern, as most algorithms do not function properly
with lower quality images, and thus wrong predictions are made. A few researchers
were able to detect damages but failed to categorize the damaged road and men-
tion how fast the condition needed attention. Many CNN-based algorithms have
been presented as the growth of deep convolutional networks has made significant
advances. The R-CNN technique detects objects in two steps: suggestion of object
regions and classification. Algorithms such as CNN and R-CNN were able to detect
damages. However, they took a considerable amount of time to complete and there-
fore worked for greater optimal approaches introduced Faster RCNN. R-CNN learns
RPN faster by extracting all anchors from a single image in a 256-simple-batch.
Because all samples from one picture may still be connected, it takes a long time
for the network to reach convergence.

1.2 Research Objectives:

This research provides an intelligent solution for detecting cracking roads from im-
ages and videos by using image processing. This paper has the following objectives:

• Constructing a new benchmark over the use of algorithms in image processing
and deep learning can be established from this research. Unfortunately, there
are only a few papers concerning image processing and deep learning, so our
foremost objective is to deliver arithmetical refinements for public usage.

• A brief comparison between our firsthand result and any existing result on the
internet, which will be helpful for other academic purposes in the future.

• The CNN model would be trained with different images around the world, and
thus we would be able to provide a perfect road damage detection system that
would have high accuracy and precision all over the world.

• Perform a comparative analysis between the algorithms used and provide ac-
curate reasoning for which algorithms work best.

• Provide a new dataset of more than 3000 images which can be classified into
several sorts of damages. There are not many datasets available on the in-
ternet; thus, providing a free dataset source for public research is one of our
primary objectives.

• Categorize the risk based on the damage. Risk categorization will make it easy
to identify which roads are highly damaged and provide priority to repair as
this system can be categorized into low, medium, and high risk.

• Evaluate the research outcome based on the diverse datasets available on the
internet and newly formed datasets from any remote area. The datasets we
have found on the internet are not from our region, so our newly formed
dataset and other datasets will be different. Thus we will be able to assess the
difference in roads.

11

Chapter 2

Background

2.1 Convolutional Neural Networks (CNN)

The convolutional neural network, also known as CNN, is a deep learning technique
that dominates the classes of processing such as image base processing technic for
seeking cracks on the road’s surface. CNN can abstract an array of numbers using the
feature extraction process of linear operation, which activate by activation functions.
Inputs are implemented kernel with tensor numbers generated from the array that
has previously been introduced. Based on the cross fold of elements, generated
tensor inputs and the output, we can create a featured map. These kernels have
their own characteristics that can separate different features.

2.2 CNN Architecture

Figure 2.1: CNN Architecture

Traditional CNN is complex functionality of convolutions layers, ReLU(rectified
unit layers), max-pooling, fully connected layers for neurons. There are other layers
named propagation layers which can transform the input data to output data. As
mentioned, there are many components that are the basic element of CNN. Convo-
lution layers are one of the major components that harness features using linear and

12

non-linear functions. Values of linear function then pass through via convolution
layer. The convolution neural network uses the ReLU function; ReLU is far better
in performance. It has only two edges for functional representations; Y=0; Y=X;

Figure 2.2: Max Pooling

It is one of the features that downsamples the operations for decreasing the in-plane
dimensionality as it can manipulate the variances of small vector distorted vectors
and reduce the subsequent learnable parameters. The learnable parameters are likely
to be not present in the first pooling layers. There are some hyperparameters like
stride, filtration, padding etc. they are ones that came along the pooling layers. In
earlier layers, the strides are 2X2 in the filter size. These are strides comes from
extracting feature maps. Also, extraction features are reduced in this phase in 2
folds.

Figure 2.3: Pooling Layers

The pooling layers have also become inputs for some of the layers, such as Dense
layers that connect the multiple layers into output layers. These layers then assign
some weights and transform the layers into a one-dimensional vector array. The
vector is an integer-valued array. Then it goes through the final output via fully
connected layers. Such the Classified value that we have got from the previous layers
like convolution or downsamples are being sent as the output of the function. The
function has consisted of the same number of classes as the fully connected layers
that have been implemented in the system. Action functions such as ReLU are not
the same fully connected layers we have previously encountered. Rather the system
chose the right activation function. Softmax is one of the functions implemented to
normalise real output values into binary values such as 0 and 1. It can also be called
vectoring the value.

13

Chapter 3

Literature Review

This section aims to critically review previous relevant work in Road Damage Detec-
tion in the context of Deep Learning and Image processing. We analyze the different
techniques used for the main results achieved, and we show how CNN has its specific
challenges due to the lack of Precision and accuracy.

Road accidents are one of the most frequently occurring causes of death; statistics
show that around 3500 people die every day (World Health Organization). Many
of the accidents are also related to damaged road tracks. To reduce such an un-
precedented event, detecting damaged roads and a well-planned recovery system is
one of the keys. The neural network study area is a flourishing subject of modern
technology, specialized in finding solutions in application fields that are challenging
to describe with standard statistical techniques Adeli(2001).

Image Processing and its advancement in road damage detection and differentia-
tion have been investigated thoroughly. In the early days, the researchers utilized
target level implementation to discover shear areas. The mean and standard devia-
tion distinguish blocks with damage from blocks without a crack in CrackIT. Cord
and his team use AdaBoost to describe crack images. The effectiveness of these ap-
proaches depends on the features that are obtained. But unfortunately, it is difficult
to find features that work for all the pavements.

Because neural networks are the result of a training process, their behaviour dif-
fers considerably from that of traditional computer science techniques. In contrast,
traditional techniques predetermine the system’s behaviour. OverFeat in the stud-
ies outperformed a similar methodology by Huval et al., 2015 like an instance of a
deep edge learning method that excelled standard techniques. However, as per our
knowledge, there is no example of a method that uses deep learning to detect road
damage identification properly.

Applying cutting-edge deep learning technology, a group of specialists created photograph-
based algorithms for assessing the street condition. In previous work, Chun et al.
(2015) developed an improved road surface crack identification system that used
image processing techniques as well as a machine-learning approach.
In 2016, Deep neural networks were utilized in the work of Zhang et al. and Maeda
et al. They compared the findings of SSD Inception V2 to the findings of SSD Mo-

14

bileNet. Linear cracks and white-line blur had good Recall and Precision, however
construction joint pothole demonstrated low Recall owing to a lack of training data.
MobileNet beats Inception in six domains where the value of Recall is evaluated,
with the exception of a pothole and cross-walk blur. In general, SSD MobileNet
outperforms HDD MobileNet. Furthermore, they did error analysis to better un-
derstand the detection findings. False positives and false negatives were utilized
to classify the errors. In the year 2017, Zhang et al. made it feasible to assess
road surface deterioration rather precisely. Zhang et al., 2017 developed a crack net
that anticipated output values for all regions. CrackNet is defined in this article
as a low-cost architecture based on Convolutional Neural Networks for automatic
pixel-perfect pavement fracture identification on 3D asphalt surfaces (CNN). As
input data, the CrackNet employs feature maps created by the feature extractor
using suggested line filters in various orientations, widths, and lengths. For each
pixel, CrackNet generates a list of anticipated class grades. Convolutional and fully
linked layers make up CrackNet’s hidden layers. CrackNet was trained on 1,800 3D
pavement images before being demonstrated to be effective at detecting cracks in a
variety of circumstances using a second set of 200 3D pavement images. Using 200
testing 3D pictures, the Precision we got from the CrackNet was able to achieve
high Precision (90.13%), Recall (87.63%), and F-measure (88.86%) all at the same
time. Nevertheless, current faulty road diagnostic systems can only identify the
presence of deterioration. Although there exist some studies that define damage by
kind, Zalama et al. divide it into two sectors: (i) parallelly and (ii) perpendicularly.
Akarsu and their team, on the other hand, classified damage into three categories:
vertical, horizontal, and zigzag.

R. Fan et al. developed an identification procedure based on deep learning and
responsive image classification for detecting road fractures; this neural network is
utilized to determine the cracks. They randomly chose 15000 positive and 15000
negative photos from the dataset to train the neural network. The remaining images
are used to evaluate the suggested technique’s effectiveness. The beginning learning
rate, max number of epochs, and evaluation frequency are equal to zero, sixteen,
and sixty. With a momentum of 0.9, the optimizer is backpropagation descent with
momentum. To examine the accuracy of our proposed image, they calculated Re-
call and Precision, which reflects the number of actual positive, false negative, and
real negative testing photos consecutively. Fan, Z. offers a supervised technique,
which is deep learning-based, to deal with varying pavement conditions. CNN is
especially utilized to grasp the structure of the fractures from raw pictures with no
pre-processing. Small patches from damage pictures are used as sources to build
a large training dataset, a CNN is taught, and cracking detection is treated as a
categorized technique.

Taking this into account, we use edge deep learning-based object recognition al-
gorithms to identify street surface deterioration. Initially, we test each algorithm’s
accuracy results and processing speed. We specifically study if we can recognize
and categorize different types of road damage using cutting-edge object detection
algorithms. Moreover, we would use four different algorithms, such as YOLO, Faster
RCNN, RetinaNet, and LeNet-5, which works instantly and analyze the algorithms
for the best result. We also look forward to finding out which algorithms perform

15

better in different circumstances.

Furthermore, as we can assess the risk from even a single frame, we have the utmost
advantage of using it for any complaint, which will help us minimize the accidents
and a safe route for the people as early as possible. Also, the anchor points can help
us to identify the highly damaged area. Despite the usefulness, there is a possibility
of miscalculation as many systematic problems or bugs may appear on the software.
Malware is one of the reasons why we have to evaluate physically, as it may delude
workflow sometimes. Apart from that, the proposed algorithms have the advantage
in accuracy, rapidity, and other sectors. Though we can undoubtedly assume, the
system has the edge in benefits as faults can be fixed throughout the implementation
process, and updates may resolve the problem of bugs fixing or any other unruly.

16

Chapter 4

Methodology

This section will focus on the description and detailed architecture of the Algorithms
used for our proposed road damage detection. Secondly, we will discuss the dataset
we used and the division of the images into training and test categories. Finally,
we would also enlighten the readers on our proposed workflow and the pre-processing
mechanisms, including their brief explanations.

4.1 Algorithms

4.1.1 YOLO

Recently, an objection detection system has been built with two sections, a backbone
and a head. The Backbone is pre-trained, and the head is required to predict classes
and bounding boxes of an image. YoloV4 is an essential improvement of YoloV3,
and it has a very unique distinctive that its previous predecessors did not have at
the time. It has significantly changed the mAp (mean per average) value along with
its FPS rate. We can easily train datasets with such a neural network.

Figure 4.1: Two-Stage Detector

In the YOLO v3 portion, we will talk about types of object detection models are; one
of them is one stage model that can recognize objects without any pre-processing
phase. But two, stage models have been more popular due to their classification
capability. But when it comes to speed and real-time performance, then one stage
model has the upper hand.

For Crack detection, we have to use a two-stage model. The Two-stage model
consists of image classification and image segmentation. The Two-stage model is in
advance due to its convolution neural network. The output of the image is given

17

Figure 4.2: YOLO CNN Architecture

based on the presence of cracks. First, the system tries to separate the image based
on the cracks as a negative or positive image. Then the deep neural convolution
network extracts the negative image as cracks of the real picture.

Figure 4.3: Green Zone of CNN briefly explained.

Then, the max-pooling calculates the maximum value for patches of the featured
map. But the current patches are too high, so the network downsamples repre-
sentations. Meanwhile, the softmax function translates the vectors into probable
distributions.

[] [] []

Figure 4.4: Bilateral filtering and image segmentation;(a) original picture; (b) fil-
tered positive; (c) segmented picture.

18

After the classification, the system will only take a positive image as the input.
Before starting the next stage, the image has to go through the Bilateral filter
process because it smooths the image and performs the edge preservation.

Figure 4.5: Edge Preservation

To further reduce the image more; we have to downsample the image to reduce the
image size. The pixel of the image after downsampling is normalized.

Figure 4.6: Normalization of Down Sampling

Then we can assume that our image has two portions. One of them is the normal
surface of the road, and another one is the cracked surface. The cracked surface is
assumed to be the darker part. So, using dense prediction, YOLO v4 can detect the
cracks of the image.

Figure 4.7: Dense Prediction Model

19

4.1.2 LeNet-5

LeNet-5 is one of the earliest architectural models suitable for resolving problems
associated with Images. It has all the features of CNN, but the only difference
is its layer distribution. It consists of 7 layers in total; 3 convolutional layers, 2
subsampling layers and 2 fully connected layers.

Figure 4.8: LeNet-5 Architecture

The Subsampling layer distinguishes between CNN and LeNet-5’s performance. Le-
Net5’s subsampling acts as a means of local averaging and sub-sampling the data
size. Due to its precession in average and sub-sampling, it is mostly used in Bank
sectors for recognizing handwriting. It can also be used for object detection such as
cracks, vehicles etc. In Figure-4.9, The convolution is connected to the subsampling
layer because the layers need to convolute the image as it fits, then it averages the
image size along with its filtration. Via this combination of layers, it becomes easy
for the dataset to reform as the requirement is imposed on it. We have two such
layers among them. Also, LeNet-5 uses Tanh as an activation function. It has a
total of 5 learnable parameters in total. The images given are grayscale. It has
thousands of trainable parameters as well.

Figure 4.9: Process of Sub Sampling

After the pre-processing of the dataset, the fully connected layers multiply the given
data by assigning weights to it and adding a bias vector to it. So, ultimately, it fits
the data according to the instructions given to the model.

20

4.1.3 Retina Net

RetinaNet is structured on ResNet architecture with Feature Pyramid Net (FNP)
built on top, which was modelled to increase the accuracy of one-stage detectors.
This Neural Network could bring good outcomes on crack detection in roads as
well as on pavement surfaces. To achieve accuracy, it splits FPN into two sub-
networks executing simultaneously, with similar input layers to reduce execution
time and make it faster. Moreover, incorporating class imbalance during training
helps RetinaNet reshape loss function.

Figure 4.10: RetinaNet Architecture

The FPN architecture assembles a single input image into several scaled images
where the detector separately evaluates each level. Based on the level of FPN, three
types of ratios are used (2:1, 1:1, 1:2) for each multiple scaled prediction where the
anchor area is implemented in different sizes.

The Intersection establishes the weighting over the Union (IoU) ratio between the
projected output and the ground-truth bounding box in the training phase. Above
0.5 matchings are considered positive, indicating that the projected anchor is allo-
cated to a single ground-truth box. Overlapping between multiple predictions and
ground-truth bounding boxes must be ignored.

The scale of the ground-truth boxes is not dependent on the scale of FNP; even the
anchor boxes are also used to rescale the prediction to the original image size so
that it may be compared to the ground-truth bounding boxes.

The classification subnet estimates the likelihood of a fracture in the FPN output
and classifies it properly. Each of the FPN levels is served by the subnet. At each
level, the subnet employs a Fully Convolutional Network (FPN).

The box registration subnet is almost identical to the classification subnet in terms of
design, but it is run four times for each of the anticipated boxes in order to calculate
the offset scale and positioning. These outputs show the difference between the
predicted box and the ground truth, including two for bounding box scaling and
two for bounding box placement. The two sub-networks are then fed into a targeted
loss function that concentrates on outliers and misclassified cases.

21

4.1.4 Faster RCNN

A number of boxes are suggested by the RCNN algorithm in order to test if any
of them contain any objects rather than a huge number of regions to work on. To
retrieve these boxes from an image, RCNN uses a specific search. These boxes are
referred to as regions.
Firstly, we scrutinize what it’s called and learn how it distinguishes and pinpoints re-
gions. Fundamentally, an object comprises four parts: variable scales (size), colours,
textures, and boundaries. These patterns in the image are identified using selective
search, which makes suggestions based on those patterns. As an input file, a picture
is used. This is followed by the formation of primary sub-segments so that we can
have many areas from this picture. A bigger area is created by combining related
regions based on colour consistency, texture resemblance, similar size, and shape
suitability. Then the areas are used to determine the final positions of the objects
(Region of Interest).
Unfortunately, because of the several procedures and methods, R-CNN becomes
quite sluggish. Faster R-CNN eliminates the issue of selective search by replacing
R-CNN with Region Proposal Network (RPN). The first thing that we do to get fea-
ture maps is to use ConvNet from the training images and then send them through
an RPN to generate object suggestions. Hence, the bounding boxes of these maps
are projected and categorized.

Faster R-CNN is a truncated variant of Fast R-CNN. The main distinction is that
Fast RCNN generates Regions of Interest by selective search, whereas Faster RCNN
generates Regions of Interest using ”Region Proposal Network,” aka RPN. RPN
takes image representation patterns as input and generates a sequence of image rec-
ommendations, each with a bounding box score.

Faster-RCNN is a fully end-to-end CNN object detection model. After recognizing
items in an image, the following stages are followed by a Faster R-CNN algorithm:

1. Give an input picture to the ConvNet, which provides feature maps for the
picture.
2. (RPN) extracts the feature maps to get the output image.
3. Use the ROI pooling layer to reduce the size of all proposals to the same size.
4. Lastly, the recommendations are then sent to a convolutional layer to identify
and forecast the image’s anchor boxes.

Actual Functions of RPN:
Faster RCNN begins by taking CNN’s feature maps and passing them along to the
Region Proposal Network (RPN). Over these feature maps, RPN creates k Anchor
boxes of varying sizes and shapes by sliding a window over them.

22

Figure 4.11: Region Proposal Network

Figure 4.12: Sliding Window

Anchor boxes are fixed-size boundary boxes that are randomly dispersed across the
picture and come in a variety of shapes and sizes. RPN predicts two outcomes for
each anchor:

• The first factor is the likelihood that an anchor is an item (it does not take
into account the class to which the object belongs.)

• The bounding box regressor is used to modify the anchors to better suit the
object.

23

Boundary boxes of various forms are now transferred to the RoI layer. There will
be proposals with no classes assigned to them following the RPN phase. We may
crop each proposal such that each proposal contains an item. The RoI pooling layer
does this. For each anchor, it generates fixed-size feature maps.

4.2 Dataset

The maintenance of roads is critical to a country’s socio-economic growth. This
involves a frequent examination of the road’s condition, which is often carried out
separately by multiple governmental authorities. Some organizations conduct road
condition readings with pavement survey trucks outfitted with a variety of sensors
to measure the quality and degradation of the pavement. In these vehicles, optical
machine vision-based cameras and 3-D sensors are frequently used to image street
conditions with maximum clarity and sharpness. There are low-cost technologies
that can be used to extensively scanning road surfaces. However, local governments
with limited resources can’t afford to install such technology on dedicated auto-
mobiles. A version of the device that supports assessment for road conditions was
recently created by the University of Tokyo (Maeda et al., 2018). The GRDD chal-
lenge is intended to advance modern technology in identifying street damage. The
challenge consists of two parts: i) an extensive accessible collection of pavement
pictures and annotations. (ii) An online competition and workshop. Road photos
from three different countries around the world were used to create the GRDDC
data. There were three sections of the data: Train, Test1, and Test2. Road images
annotated in XML files in PASCAL VOC format have been used to create the train
set. The remaining two sets were published without annotations to assess the au-
thors’ solutions.

There are different interpretations for the allocation of photographs in three distinct
data sets provided in Figure 16. Labelling for various forms of road damage accom-
panies the training data. And in the next Figure illustrates the quantity of each
damage category in the dataset.

24

Figure 4.13: Image Distribution

Figure 4.14: Different Damage Types

India, and in particular, Japan and the Czech Republic, are areas of the world
that the road damage detection challenge focuses on. There are four distinct types
of damage. These cracks are - longitudinal, transverse and alligator on top that
potholes are also included. The quality of road security depends on where the data
originated from. Furthermore, each form of the fault has its quirks, and there is a
significant difference in the degree and size of the fault.

25

4.3 Proposed Workflow

Figure 4.15: Proposed Workflow

Classic Workflow diagram of any image processing method has two objectives; clas-
sification and object detection. In our research, our primary goal here is to detect
cracks of a damaged road in a real-time process. Though we are working with
multiple algorithms, we will use the same dataset for each algorithm as all of the
algorithms will work parallelly.
Before sending the data to the CNN phase, the dataset has to go through multi-
ple processes. First, the dataset has to go through a data filtration process where
images from the dataset; will be augmented, resized, image de-noised etc. We have
to remember that De-noise is an essential part of image processing as a dataset
consists of many images, so that data De-noising can occur very frequently. There
are two types of de-noising; internal and interference. Internal noise occurs due to
the camera’s internal errors such as electricity, heat, and sensor illumination lev-
els. Interference occurs due to the high magnetic or radio transmission. However,
interference de-noise is a sporadic case. The term resized is used for referring to

26

mandatory requirements for image quality for data processing. Augmentation is
manipulating the existing data to create some more data for the model training
process. Then, in the next phase, the filtrated dataset will enter the pre-processing
data state. After that, the dataset will enter the CNN (convolution neural network)
phase as all the algorithms we are working with; are based on CNN convolution.
CNN is used for object recognition or detection. So, in this phase, the CNN will
detect the state of the cracks as this is the learning phase, so each image will be
assigned weights and biases. After the CNN training phase, each algorithm will ap-
ply its activation functions and methods to detect cracks. Then all of the datasets
will have to go through Fold in Cross-Validation. Cross-Validation in Fold is when
we take a particular dataset and then create multiple datasets randomly. After
that, the ’K’ number of datasets takes a single dataset for each training phase. The
process continues for K times for each anomaly. This is a process that statistically
generalizes the result as an independent dataset. Then it will show us the fastest
output from the algorithm.

4.4 Data Pre-Processing

4.4.1 Hardware Setup:

PC: Intel(R) Core(TM) i5-9300H CPU @ 2.40GHz 2.40 GHz RAM: 24 Gb GPU:
NVIDIA GTX GeForce 1650

4.4.2 Library Preparation:

Numpy(array or vector manipulation), Pandas (For data pre-processing), Seaborn
(data visualisation), Matplotlib (data visualisation), OpenCV(object detection),
Tensorflow (for neural networks and hyperparameter tuning).

Coming up next are the pre-processing methods that we would perform for the
preparation of the data:

DATA FILTRATION: The quality of an induced model is also determined by
the training data, which can be assessed by the number of deleterious cases present,
for example. Induced models with poor quality training data have poor quality.
Searching the training set space for an optimal subset that minimizes the empirical
error: argument tP(T) E(g(t,), V), where t is a subset of T and P(T) is the power
set of T The induced model is unaffected by the removed instances.

DATA AUGMENTATION: In data analysis, data augmentation refers to pro-
cedures that add slightly modified versions of current data or freshly produced data
from available data to increase the volume of data accessible. It acts like estab-
lishers and aids in the reduction of overfitting while training a machine learning
model. Here are some examples of image data augmentation techniques: Position
augmentation techniques include rotation and translation. To improve the color of
an image, brightness and hue might also be utilized.

27

RESIZE: In computer vision, resizing images is a crucial step. On tiny photos,
our machine learning models learn faster. Furthermore, many deep learning model
designs demand that our pictures have the same size, although our raw gathered
images may vary in size. Image data is commonly resized in two ways to meet the
network’s input size. The height and width of a picture are multiplied by a scaling
factor when it is rescaled. If the scaling factor is not quite the same both in the two
perpendicular directions, rescaling changes the geometric extents of the pixels as
well as the image resolution. By cropping we can extract a sub-region of an image
while preserving the spatial extent of each pixel.

DENOISE: Image de-noising is a basic task in field of computer vision, with the
initial objective of estimating the actual picture by dampening noise from a noise-
contaminated copy of either the picture. The simplest algorithm for de-noising time-
series data is taking a summary statistic using a rolling window. A rolling window
collects observations into groups of n size. The groups are shifted one observation
at a time, creating a ”window” that passes over the dataset.

28

Chapter 5

Model Implementation

5.1 YOLO-v4

Yolo v4 can be implemented in two ways; pre-trained version or Customized datasets.
The variant in the pre-trained set is very limited than the customized dataset with
pertained limited classes among them. In the pre-trained, there are 4 classes in
total. So, adjusting a large amount of data is pretty tough. Here, the implemen-
tation is based on the customized dataset. So, the first step is to gather sufficient
datasets and label them accordingly to train them efficiently. But we have collected
previously used datasets to compare the result with those previously mentioned in
some papers. Also, as we work with 4 algorithms, we can use the same dataset with
another algorithm for better comparison. The dataset is also annotated. Then we
zipped three files as train and test1, test2. We unzip them in Colab using the shell
command.

Figure 5.1: Unzipping Dataset

After that, we configured the file by converting it into a .cfg file and .txt file of the
test and train dataset. In this phase, we added the batch of 64. Then we used a
pre-trained convolutional dataset that can be downloaded from GitHub. Then we
started training the dataset using the shell command in the Colab.

Figure 5.2: Training Shell Command

We implement the trained model using Darknet into the TensorFlow model. We
also need DeepSort with Yolo-V4 to implement the trained model as well.
After executing the command shell for the training phase, prompt windows will show
us the normalization, IOU, average loss Etc. We can also see the graph after the

29

Figure 5.3: Trainable and non-trainable parameters

Figure 5.4: Training Progress

command gets executed. We can see mAP using another shell command to run our
detector. We used a box for each crack to indicate it after running the command
shell properly.

5.1.1 5-fold Cross Validation

It is pretty tough to validate a very large dataset. So, rather than validate a very
large dataset, we can cross-validate. In Cross validate, we randomly take a large
portion of the dataset as a training model and a fair test dataset. For example, we
have taken 80% train set and 20% test set in our dataset. Then, fork-fold cross-
validation, we have distributed the dataset into 5-folds. Each time we validated,
we took 1-fold for validation and the rest of the folds for training. All through this
sort of low folds is biased, but as our dataset is very large and the capacity of the
GPU is not suitable for this dataset, we have to use 5-fold cross-validation. If we
had set a higher value, we could have achieved the LOOCV approach to achieve
n-fold validation. In our dataset, we have used python code for running the cross-
validation. We can also run cross-validation language such as R. There are some
ways to ensure higher accuracy and efficiency in cross-validation though we have
not shown such a process in our research. Stratified k-fold validation is one of those
processes that rearrange the data. But we have graphically measured some of the
cross-validation results using the matplotlib library.

Figure 5.5: Single Fold Validation

30

Figure 5.6: Single Fold Accuracy

5.2 LeNet-5

leNet-5 is one of the earliest models that can successfully detect road cracks. Before
running properly, this implementation requires certain libraries, such as NumPy, os,
TensorFlow, seaborn, etc. As for another implantation (Keras TensorFlow), we can
import it. As it is an earlier model, it cannot classify the model, so we have accessed

Figure 5.7: Library preparation

a dataset that we connected in the Kaggle and run it, which contained cracked and
uncracked images as a negative and positive folder. After that, we label the dataset
and resize them with 64. We have 40000 images in the datasets, labelled as 0 and
1. We randomly take images to select the image required for training. We run 7
layers of LeNet-5 on the datasets. It flattens, Dense, Dropout, run activation etc.,
to train itself. Then we take 10 epochs for the algorithm. After that, we run the
epochs on the epochs properly. We will see the accuracy, lose, Val loss, Val accuracy.
Result: We used matplotlib to plot a graph of pool train with test pool inaccuracy
and loss. It can also be average or max. So, we have to plot 4 different graphs to
compare them. This plot makes us understand the basic comparison among the
given dataset as it is an earlier model, so it cannot classify the images like another
algorithm. It cannot account for video crack detection like Yolo-V4 or other modern
algorithms.

31

Figure 5.8: Training Progress

Figure 5.9: : Max pool vs max train accuracy

32

Figure 5.10: Avg pool vs Avg train loss

Figure 5.11: Max pool vs max train loss

Figure 5.12: Avg pool vs Avg train Accuracy

5.3 Faster-RCNN

This chapter will explain the implementation process of the proposed system of de-
tecting cracking roads from images. We constructed a more powerful R-CNN neural

33

network. We used google COLAB to train the algorithm as it provides free GPU
resources. We have used an already pre-trained version of the dataset, which was
annotated previously. In google COLAB, we had given k80 GPU processor to run
the algorithm. Before Running the algorithm, we need some libraries to be im-
plemented, for example, pandas, matplotlib, TensorFlow, Keras – 2.0.3, NumPy,
OpenCV-python, sklearn, h5py. We can directly install the libraries using the com-
mand shell. But before that, we need to down the requirement txt file. Then for
the object information, we set the bounding boxes as Ymin, Xmin, Ymax, Xmax,
FileName, ClassName and their labels. Next, we will display the bounding box and
label. We then resized the input image to (H=416, W=416). To convert the input
image to our required output image, the picture will go through the VGG16. We
can see the result using the shell command as follows: Then we will use the CVS file

Figure 5.13: Damage Classification

copied in the repository along with the train and test model to train the dataset.
Then we convert the .csv file to a txt file. We minimize the number of epochs to train
the data faster. For the data we imported, we ran one of the files as ”mfrncc.hdf5”
to assign weight. We trained the model with 100 epochs.

Figure 5.14: Detection Command

5.4 RetinaNet

RetinaNet outperforms previous single-stage detectors, resulting in models suitable
for embedded applications. We followed the procedures outlined below to train the
above-mentioned deep learning models. The filtered dataset was randomly combined
and divided into two disjoint groups, with 70% of the images used for training and
30% for validation. We employed regularization techniques like dropout and sample
augmentation on the larger dataset provided to reduce overfitting in our models.
For model description, training, and validation, Keras and Tensorflow were utilized.
Google’s collaborative platform, powered by a Tesla K80 GPU, was used for all test-
ing and training. The following settings were used to train the tested architectures:
24 batch sizes and 300 steps in each epoch. As indicated in we employed Adam to
optimize the model parameter search by varying the learning rate. Our RetinaNet-
based approach outperformed the dataset in [25], particularly for underrepresented
classes in the dataset, as the results show.

34

As previously indicated, we ran all of our experiments with Google Colab, a tool
that allowed us to train our models with cloud computing resources. Furthermore,
we could host our databases on Google Cloud, reducing computational strain. The
picked models were also remotely evaluated using both training and validation data.
In addition, we used the Cartucho/mAP evaluation tool to evaluate the proposed
technique’s capabilities in various scenarios.

Figure 5.15: Loss vs Epoch curve

Figure 5.16: Accuracy

35

Chapter 6

Discussion

We have worked with four different types of models that have been known through-
out time for their development of objection detection algorithms. We have already
mentioned the implementation in chapter 5. Also, we have discussed further modi-
fication for optimization and hyper tuning etc. Here, we would further discuss the
algorithm’s performance and point out the basic Comparison among them. For,
Comparison we will use confusion matrices to evaluate the basic performance. We
can get the accuracy, precision, recall, and F-1 score from the confusion matrices.
The equation to get the value is given below: There are certain approaches to get

Figure 6.1: Predicted Class Actual Curve

precision and recall value from equations. We used the equation for four models.
The equations are given below: From the equations below, Cc denotes accurately

Figure 6.2: Precision Equation

Figure 6.3: Recall Equation

predicted images of class ”c.” Tc denotes the total or the overall predicted images
of class ”c.” Ac denotes the actual images of class ”c”.

36

Figure 6.4: F1 Equation

We can also find the F-1 score from the equation given below:
We have used two datasets. The RDD-2020 dataset for our YOLO-V4, Faster RCNN
and Retina-Net evaluation. Another new pre-trained dataset that we get from the
Kaggle.We have a total of four types of classification for our research. There is a
certain number of images for each of the classified types. So, with the confusion
matrix, we have to enlighten that among the total number of images, how many
are correctly classified in the category that we have labelled them as. For example,
In Yolo-v4, the first of its confusion matrix row of alligator cracks are correctly
predicted 94.6% of the total 8381 images as alligator cracks which are approximately
7600 images. Alligator labelled cracks are predicted as 2.1% longitudinal, 1.7%
potholes and 1.6% as lateral cracks. Alligator cracks have perfectly correct 94.6%
correctly, so according to the indicator, it is deep blue while others are marginally
low, so those are almost white. In the later rows, the predictions are less blue for
each category of the same cracks, which are lighter than the first row. This is how we
use the confusion metrics for evaluating the performance of a classification model.
The Confusion matrices for all algorithms are provided below:-

Figure 6.5: Confusion Matrix Of all four Algorithms

37

Comparison

Figure 6.6: Accuracy, F-1 and Recall Comparison

Here, we have compared the value that we achieved through our research on the
models. We have compared the Accuracy, Efficiency, Recall and precision to under-
stand the difference in their performance. We have considered four models, and from
the graph, we can clearly say that Yolo-V4 outperforms all other 3 models in terms
of accuracy, precision and F1 Score. It achieved an accuracy of 93.4%, along with
an F1 score of 97%. Closest to it is the Faster-RCNN, which is another widely used
algorithm. Retina-Net and LeNet-5 are the other models, but their performance
is not equivalent. But they are still being used for many purposes. For example,
LeNet-5 is widely known for its use in signature pattern recognition, handwriting
reorganization etc.
The outcomes from our algorithms are as follows:

Figure 6.7: Raw and Detected images.

38

Chapter 7

Conclusion

Our paper has proposed and implemented different latest state-of-the-art convolu-
tional neural network (CNN) architectures to train our dataset. Our training execu-
tion was neat and orderly. Our major goal here is to highlight the finest technique
that can assist us in determining the best algorithm and their methods of detecting
damaged roads in real-time. Different algorithms use various techniques to identify
cracks. Hence we used four algorithms to detect the damaged road, and then the
result would be categorized into three classes as discussed in the paper. However,
some methods are superior to others, and our study may provide us with the chance
to produce a breakthrough in the field of real-time damaged road identification.

7.1 Limitations

While working on this project, we encountered a number of issues and drawbacks.
First and foremost, our initial idea was to make a local dataset in Bangladesh
by performing fieldwork to include local images and road access conditions in the
country. However, due to the global epidemic and health risks, we were unable
to collect the necessary data. Next, while the accuracy percentages obtained from
our training models are significant, there is still room for improvement because our
another goal was to achieve values greater than 90%. Finally, the margin of loss is
another area where the values were less than satisfactory, and we can reduce the loss
here by analyzing some of the insights from the models and attempting to change
it further for better accuracy with available regularization techniques. Because the
approach we are focusing on is mainly focusing on our country’s infrastructure, the
increased accuracy and lower data loss are crucial to have a better understanding of
damages in roads of our country.

7.2 Future Works

In terms of our research, the models we trained and described, successfully attained
a high level of accuracy. As a result, our recent research can serve as a foundation
for future research and development on road damage detection in Bangladesh. Our
prime objective is to first perfect and enhance the models in order to ensure higher
accuracy and reliability. Another aspect that needs to be improved is the percentage
of loss of data we experienced all through data processing, which we will work to

39

reduce and thus make it more effective. We also intend to work with regional
data to understand and predict statistical data in our country, which we have been
unable to do due to the current pandemic. Furthermore, we intend to apply Damage
Detection to other research areas being conducted in the object detection fields to
make information more accessible and open for people.

40

Bibliography

[1] Araya, L., Espada, N., Tosini, M., Leiva, L. (2018). Simple detection and
classification of road lanes based on image processing. Int. J. Inf. Technol.
Comput. Sci.(IJITCS), 10(8), 38–45.

[2] Chun, P.j., HASHIMOTO, K., KATAOKA, N., KURAMOTO, N., OHGA,
M. (2015). Asphalt pavement crack detection using image processing and naive
bayes based machine learning approach. Journal of Japan Society of Civil En-
gineers, Ser. E1 (Pavement Engineering), 70(3).

[3] Maeda, H., Sekimoto, Y., Seto, T. (2016). Lightweight road manager:
smartphone-based automatic determination of road damage status by deep
neural network. In Proceedings of the 5th ACM SIGSPATIAL International
Workshop on Mobile Geographic Information Systems (pp. 37–45).

[4] Zhang, A., Wang, K. C., Li, B., Yang, E., Dai, X., Peng, Y., Fei, Y., Liu, Y., Li,
J. Q., and Chen, C. (2017). Automated pixel-level pavement crack detection on
3d asphalt surfaces using a deep-learning network. Computer-Aided Civil and
Infrastructure Engineering, 32(10):805–819.

[5] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun,
Y. (2013). Over feat: Integrated recognition, localization and detection using
convolutional networks. arXiv preprint arXiv:1312.6229.

[6] Huval, B., Wang, T., Tandon, S., Kiske, J., Song,W., Pazhayampallil, J.,
Andriluka, M., Rajpurkar, P.,Migimatsu, T., Cheng-Yue, R., et al. (2015).
An empirical evaluation of deep learning on highway driving. arXiv preprint
arXiv:1504.01716.

[7] Maeda, H; Sekimoto, Y; Seto, T; Kashiyama, T. et al. (2018) Road Dam-
age Detection Using Deep Neural Networks with Images Captured Through a
Smartphone, Hiroshi Omata University of Tokyo, 4-6-1 Komaba, Tokyo, Japan.

[8] R. Fan et al., ”Road Crack Detection Using Deep Convolutional Neural Network
and Adaptive Thresholding,” 2019 IEEE Intelligent Vehicles Symposium (IV),
2019, pp. 474-479, doi: 10.1109/IVS.2019.8814000.

[9] S. Mathavan, K. Kamal, and M. Rahman, “A review of threedimensional
imaging technologies for pavement distress detection and measurements,”
IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 5, pp.
2353–2362, 2015.

41

[10] Tzogka, C., Refanidis, I. (2021). Addressing Computer Vision Challenges Using
an Active Learning Framework. In International Conference on Engineering
Applications of Neural Networks (pp. 259–270).

[11] Mauri, A., Khemmar, R., Decoux, B., Haddad, M., Boutteau, R. (2021). Real-
Time 3D Multi-Object Detection and Localization Based on Deep Learning for
Road and Railway Smart Mobility. Journal of Imaging, 7(8).

[12] Hossain, S., Lee, D.j. (2019). Deep learning-based real-time multiple-object
detection and tracking from aerial imagery via a flying robot with GPU-based
embedded devices. Sensors, 19(15), 3371.

[13] Bochkovskiy, A., Wang, C.Y., Liao, H.Y. (2020). Yolov4: Optimal speed and
accuracy of object detection. arXiv preprint arXiv:2004.10934.

[14] He, K., Zhang, X., Ren, S., Sun, J. (2015). Spatial pyramid pooling in deep
convolutional networks for visual recognition. IEEE transactions on pattern
analysis and machine intelligence, 37(9), 1904–1916.

[15] Liu, S., Qi, L., Qin, H., Shi, J., Jia, J. (2018). Path aggregation network
for instance segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 8759–8768).

[16] Chen, K., Chen, Y., Zhou, H., Mao, X., Li, Y., He, Y., Xue, H., Zhang, W.,
Yu, N. (2020). Self-supervised adversarial training. In ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(pp. 2218–2222).

42

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	Introduction
	Research Problem:
	Research Objectives:

	Background
	Convolutional Neural Networks (CNN)
	CNN Architecture

	Literature Review
	Methodology
	Algorithms
	YOLO
	LeNet-5
	Retina Net
	Faster RCNN

	Dataset
	Proposed Workflow
	Data Pre-Processing
	Hardware Setup:
	Library Preparation:

	Model Implementation
	YOLO-v4
	5-fold Cross Validation

	LeNet-5
	Faster-RCNN
	RetinaNet

	Discussion
	Conclusion
	Limitations
	Future Works

	Bibliography

