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Our Contributions

Through our research our aim was to establish a system which will convey the purpose

of Visual question answering for Bangla language. As there is no specific or established

dataset for Bangla VQA we formulated our own Bangla VQA datasets. These datasets

were create using existing famous datasets. Our newly created datasets are Bangla

VQA which consists of 5000 questions, answers and images and our second dataset

is Bangla CLEVR dataset which consists of 12000 data points including questions,

answers and images. Our next work was related to creating a perfect model which

was used to train these datasets in approach to that we have successfully created and

implemented a model which was capable to reach accuracy of 75% on Bangla CLEVR

dataset and 63% on Bangla VQA dataset. Now, our established model is able to answer

questions asked particularly in Bengali for an image and generate a correct answer in

Bengali language.
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What Motivated Us

Majority of the people prefers using smart systems in Bangla. But the latest additions

to this field only support English.Not much research has been done in Bangla and

There is a lacking of Bangla datasets for working on this.We wanted to remove the

language barrier from establishing VQA.We wanted to create more scopes of research

in this field.

In a nutshell, we found a lacking of Bangla resource in this particular field which we

wanted to fill and this opportunity of leaving such a mark on this field motivated us.
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Abstract

This paper aims to provide insight into how Visual question answering might work

on Bangla datasets versus English datasets. Several studies have been conducted on

deep learning methods applied to Bangla datasets up to this point. However, a Bangla

dataset with images and questions embedded in each of them has yet to be created.

We attempted to create a Bangla dataset suitable for such implementation through

our re search. The step-by-step procedures in our work demonstrate how various bar-

riers can be overcome while developing datasets. We attempted to use existing visual

question answering datasets because there are no actual Bangla datasets created for

this specific task.In the end we successfully created our own Bangla visual question an-

swering datasets and proposed a model to train and compare among existing datasets.

Following that, the comparison was provided to show how the Bangla dataset differs

from the English datasets in terms of the VQA model. Our work should make more

than enough room for future research and implementation of visual question answering

tasks in Bangla.

Keywords: Natural Language Processing; CLEVR; VQA V1;Visual Question An-

swering;
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Chapter 1

Introduction

Computer vision is a wonder that has allowed us to identify an object almost flawlessly.

But its ultimate goal is to be able to describe its attributes and its interactions with

the environment, according to[7]. Combining natural language processing helps us to

achieve that goal. The combination of computer vision and natural language processing

can accomplish the tasks of visual question answering, visual grounded dialogue, image

captioning etc. Considering the fact that ours is not an English speaking country, it

would not be absurd to assume that a vast majority of people are either unfamiliar or

uncomfortable with interactions in English. In such a case a smart interactable system

should support the Bengali language to facilitate our need. A lot of work has been done

on visual question answering but most of it involves English datasets. There is a lack

of Bangla dataset and research in this field. A few works do however establish image

captioning [33] and text-input based question answering [31] in Bangla, but extracting

information from a visual input and processing the answer to a corresponding question

in Bangla has not yet been done. Being the 7th most spoken language in the world,

Bangla does not yet have a proper dataset that can facilitate our need to establish a

visual question answering system. The closest work done would be Chittron [15] an

automatic image captioning system that is capable of explaining a scene in Bengali.

BanglaLekha-image is the most popular Bengali dataset used for this purpose. This

dataset contains around 16 thousand images with captions embedded to each. Our

study aims to cope with this necessity and reduce the lack of Bangla resources in this

field.

1.1 Objective

The objective of our study are as follows:

• Our objective is to establish a proper bangla dataset that can facilitate the VQA
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based algorithms and provide a satisfactory output.

• A proper comparison is shown in our study to shed some light on how the bangla

implementation works compared to the English datasets.

• We aim to provide rooms for future implementation of our study on establishing

various bangla language based smart systems.

1.2 Thesis Outline

Through our study we tried to establish a bangla language based dataset suitable

enough to work on visual question answering based models. This chapter gives a

thorough idea on what this research is all about. In the second chapter relevant works

have been discussed. The third chapter will shed some light into the tools and properties

we are going to use for our study. Chapter 4 explains our research methodology,

Chapter 5 shows the result accuracy, Chapter 6 shows the future work and limitations.

Chapter 7 marks the end of this paper containing the conclusion.
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Chapter 2

Related Work

Throughout the years many research works have been carried on Visual Question An-

swering as such we have come across numerous papers on structure of Visual Question

Answering and their implementations.

Antol et. al. (2015) in his paper proposed the Vanilla VQA which is the simplest and

easiest visual question answering model, and the performance of this model functions

as a barometer for the VQA work [2]. In this model, VGG [5] which is a convolutional

neural network that is used to recover image extracted features and a Recurrent neural

network namely an LSTM or a GRU is used to recover the linguistic embeddings of

the queries. Both the feature representations are then passed to an MLP.

Design paradigm, question encoding modules, image feature extraction, fusion and

classification are followed for Visual Question Answering (VQA) models[9]. Visual

Genome dataset uses Faster R CNN for object detection purposes. The computation

of the top-down attention is used for the question text of each object in an image.

By using fine tuning features, overall performance will increase. The overall perfor-

mance on test-dev will reach upto 68.49% with 0.1 as the rate of fine-tuning. This

performance improves upto 69.81% when the bottom-up features are combined with

the image features on grid-level[20].

Neural-symbolic approach for visual question answering is used to understand language

from reasoning[11].Object segmentation, object oriented scene representation can be

done using neural networks.To convert questions in natural language and symbolic rep-

resentation the program executor plays a vital role by executing the program according

to natural language instructions using scene representation. Neural-symbolic approach

increases accuracy level and reduces memory cost and computational cost.The NS-VQA

model consists of 3 things: 1) scene parser 2) question parser and 3) program executor.
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The scene parser extracts from the image a structural representation of the scene and

Mask R-CNN is used for extracting images. Mask R-CNN is used for segmentation

of the object and prediction of the categorical leveling of the objects. The question

parser converts input questions into natural language to a latent program. The model

structure is like a flow from one sequence to another with encoder and decoder. LSTM

encoder is used for conversion of the questions. CLEVR, CLEVR-CoGen, CLEVR-

Humans dataset and Minecraft world use a neural symbolic approach for VQA.

Kafle et al. (2017) claims that embedding absurd questions and evaluation metrics

allows the VQA algorithms to gain a deeper understanding[6].They used the TDIUC

dataset consisting of 12 different question types. They also proposed an evaluation

metric to compensate for the biases that exist in the dataset.

Most of the models that have been developed before maintained the one path: The

image features from the scene have been obtained using a CNN and to decode the

associated question words, LSTM is used.But the performance of this approach can

vary from the one that uses attention based approach[3]. According to Agrawal et

al. (2016) the VQA models constructed with attention can reach up to an accuracy

of 57.02% accuracy on the VQA validation dataset[2]. They have compared the two

types of approach, with and without attention and gave a review on the performances.

A mixed bottom-up with top-down attention mechanism has been presented by Peter

et al.(2017) allowing attention to be measured just at levels of objects as well as other

prominent visual regions[8]. It is the natural premise for considering attention. The

bottom-up process of their approach suggests picture regions, having feature vectors

for each of them, whereas the top-down process makes use of the feature weights. The

scores for CIDER reached 117.9, SPICE reached 21.5 and BLEU-4 reached 36.9 us-

ing this approach on the MSCOCO test server. They won top position in the 2017

VQA Challenge, demonstrating its method’s wider application by applying the same

methodology to VQA.

Kenneth et al. (2019) provides a benchmark called OK-VQA which addresses the

challenges of knowledge based visual question answering[14]. The main target of this

research is merging visual recognition with data extraction from places other than the

picture. Situations in which the image content is insufficient to respond to questions,

this model is used. That’s why this paper promotes approaches that solely depend on

external knowledge - based resources. More than 14,000 queries in their new dataset re-

quire outside information to answer. Here random images from the COCO dataset have
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been used, making 80K as test data and 40k as validation data. Here splits should be

tested. When these photos were compared in terms of visual complexity, they are use-

ful for categorizing knowledge-based inquiries due to their similarity to other datasets.

They show a dramatic fall in the overall performance within this environment for the

traditional VQA models. Compared to other knowledge-based VQA datasets, their

study suggests that their knowledge-based VQA work is diversified, tough, and huge.

Sanket et al. (2019) states in traditional VQA, questions regarding an image can be

asked that can be answered only depending on its material[17]. A common VQA ques-

tion might, for example, query about the number of individuals in an image having

people in it. More lately, there has been an increasing interest in answering queries

relating to common nouns like cows, horses, buildings etc. that are visible in the im-

age. Despite this development, previous research has not covered the key problem of

answering queries requiring knowledge about the things that have names like the Eiffel

tower, Nelson Mandela etc shown by the image. inside the image. In this study, they

fill that vacuum by introducing KVQA. KVQA has 183K question and answer pairings

with over 18K named entities and 24K photos in total. As far as we have known, this is

the largest dataset for investigating visual question answering over knowledge graphs.

On KVQA, the baseline performances using the cutting edge methodologies have been

provided.

When responding to a question that requires outside knowledge that isn’t available, it’s

one of the most difficult forms of VQA questions[30]. They investigate the situations

that took place when the required information to generate an answer for a question

is not present during the testing or training period. They make use of two differ-

ent kinds of knowledge representations as well as logic. First, with transformer-based

models, implicit information may be learned efficiently from supervised training and

unsupervised language pre training data. Second, knowledge bases store explicit, sym-

bolic data. The method combines the use of transformer models’ strong implicit logic

for response prediction with the integration of expressions from a graph structure, all

while maintaining their explicit semantics. They acquired and mixed information from

many sources to cope up the huge number of information required to answer knowledge-

based inquiries. On OK-VQA, they show that the Knowledge Reasoning with Implicit

and Symbolic representation a.k.a KRISP approach surpasses the state-of-the-art[26].

KRISP combines symbolic knowledge and implicit knowledge successfully.

To handle the query and photo, KRISP employs a multi-modal BERT-pretrained con-

verter that utilizes implicit knowledge. To use symbolized sources of knowledge, BERT
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and a graph network is used[18]. To accommodate the large range of knowledge needed

in OK-VQA, they built their knowledge graph using four distinct knowledge sources:

DBPedia, ConceptNet, VisualGenome, and PartKB. Visual data, encyclopedic data,

data related to daily things, science knowledge including knowledge regarding spe-

cific persons and places and events all are covered[12].Their approach maintains the

symbolic meaning of data which uses a late fusion strategy by making predictions de-

pending on the hidden layer of different nodes.They demonstrate that, besides having

the capabilities of harnessing implicit knowledge logic, their model also contains the

symbolic response, which links the answer language with the graph database. This is

the key to their method’s effectiveness and it generalizes to unusual solutions.

Yu et al. (2018) covers Pythia v0.1, the winning submission in the VQA Challenge

20181 from Facebook AI Research (FAIRA-STAR )’s team[9]. They began by reim-

plementing the bottom-up concept in a modular fashion. This research shows that

the model’s performance can be improved significantly from 65.67% to 70.24% on the

VQA v2 dataset, simply through minor but noticeable changes in its architecture and

having to learn standard cost techniques, good image features and attaching data aug-

mentation. Moreover, it was capable of improving by 1.31% using a heterogeneous

ensemble of training images with different characteristics and on various data. They

score 72.27% on the test-standard split.

To improve training precision and agility, a few tweaks were made to the up-down

model. Without using gated hyperbolic tangent activation, weight leveling followed

by ReLU was used[19]. The main goal of this modification was to reduce computing

time. When calculating top-down attention, researchers also substituted characteristic

concatenation with component multiplying to mix characteristics from text and visual

modalities. 300D GloVe vectors were used to embed the words. This word embed-

ding was then served to the GRU network as input with a query awareness module to

recover attentive textual features to calculate the query representation[23]. They dis-

covered that 5000 was the ideal concealed size for combining image and text data. With

these changes, they were able to enhance the precision by 1.59% on VQA v2.0 test-dev.
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Chapter 3

Background Analysis

Visual questions target specific areas of an image, such as background details and

underlying context. As a result, a system that succeeds at VQA typically necessitates

a more detailed understanding of the image as well as more complex reasoning than a

system that produces generic image captions.

3.1 Recurrent Neural Networks

Widely known as RNNs, the recurrent neural networks work with and specialize in

sequential or temporal inputs of data[13]. Algorithms like these are generally used for

problems that are ordered by time or sequence, such as speech recognition, language to

language translation, processing natural language(NLP), and the captioning of images.

Popular applications like Apple’s Siri, Voice Search applications and Google Translate

use such neural networks.

Training data is used in CNN and RNN to provide functionality. Their ”memory”

distinguishes them since current inputs and outputs are influenced by the previous

ones. While generic deep learning neural networks are based on the assumption that

inputs and outputs do not affect each other. Shared parameters across all layers of the

network is another distinguishing feature of RNNs. In RNN each node has the same

weight as the parameter but in the feedforward neural network we will get a different

weight for each node. These weights are still adjusted using gradient descent and back-

propagation to facilitate reinforcement learning. RNN uses backpropagation through

time (BPTT) to determine gradients. It is different from traditional backpropagation

which is specific to sequence data. BPTT works just like traditional backpropagation.
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Figure 3.1: RNN (to the left) vs Feedforward neural network

Model training is done by calculating the error value which is produced in the output

layer and these calculations is used to adjust the model’s parameters. BPTT is dif-

ferent from the traditional approach in the fact that it sums errors at each time step.

Where in feed forward neural networks it is not required to sum errors because shar-

ing of parameters does not occur across different layers. During this however, RNNs

frequently come across two setbacks: the exploding gradient problem and vanishing

gradient gradient problem. The error curve which is the slope of the loss function,

is created by the issues made by the gradient’s size. When the gradient becomes too

small, it continues to get smaller. It keeps updating the weight parameters until they

become insignificant—that is, 0—and then stops functioning. In such cases, the algo-

rithm stops learning. A gradient will explode if it becomes too large, which will result

in an unstable model. We need to reduce the number of hidden layers to reduce the

complexity of the RNN model otherwise the weights will be large enough to make the

model pretty much unstable.

3.1.1 Types of recurrent neural networks

We observe the input and output has a one to one mapping in Feedforward neural

network, and while recurrent neural networks are depicted in the figure 3.1 in this

manner, RNN does not have this constraint. In recurrent neural networks the input

length and the output length are not the same. We can see a wide range of applications

of RNNs, including music generation, sentiment classification, and machine translation.

The following diagrams are commonly used to represent various types of RNNs: One-to-

one, One-to-many, Many-to-one, and Many-to-many are all examples of One-to-many

relationships.
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3.1.2 Common activation functions

An activation function controls whether or not a neuron is activated. A neural net-

work is nothing more than a linear regression model without consideration of an acti-

vation function. The activation function is responsible for the non-linearity required

to extract patterns from complex data. There are two types of activation functions:

non-symmetric activation functions and symmetric activation functions. A symmetric

function is the hyperbolic tanh function, and a non-symmetric activation function is

the ReLu activation function. To convert the output into a value between 0 and 1 or

-1 and 1 we need to use a nonlinear function. Let us discuss some commonly used

activation functions which play a vital role in neural networks.

Sigmoid: This function is commonly used as a nonlinear function which takes a real

value as an input and turns it into a value between 0 and 1. If the input’s value is

large enough it will be converted into a value closer to 1 conversely, if the value is very

small in measure it will be mapped to a value closer to 0[22]. We can observe a lot of

machine learning models utilizing this function lets find out a few advantages of this

activation function:

• It is commonly used when the probability needs to be considered as the output.

The sigmoid function is positively considered due to its range, since the probability

of any event occurring lies between 0 and 1. implementation works compared to the

English datasets.

• Since the function gives a smooth gradient and can be differentiated, the output

value does not jump. The sigmoid activation function has an S-shape to represent this.

The limitations of sigmoid function are discussed below:

• Sigmoid function has the derivative, f’(X) = sigmoid(X) x (1-sigmoid(X)). Which

may result in vanishing gradient problems.

• Close to 0, the logistic funciton’s output is not symmetric.This results in all the

outputs to be of the same sign. This makes neural network training more difficult and

unstable.

It is shown by this formula g(x) = 1/(1 + e−x).

Tanh:Tanh function and sigmoid function have the same S-shape but its output range

is from -1 to 1. Tanh assumes that as the input gets more and more positive, the
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Figure 3.2: Sigmoid Activation Function

output gets closer to 1.0, and the lesser it gets, the closer the output is to -1.0[22].

Advantages of using this activation function are:

• Tanh activation function’s output is 0 centered. Which is why the outputs can

easily mapped to strongly negative, neutral, or strongly positive.

• Since its value ranges within -1 to 1, it helps in centering the data. This helps the

next layer learn more easily.

The disadvantages include, but are not limited to, the fact that it also has the van-

ishing gradient problem. Furthermore, the tanh function has a much steeper gradient.

Despite the fact that both the sigmoid and the tanh suffer from the vanishing gradient

problem, the tanh is zero centered, and the gradients do not only move in a certain

fixed direction.

The non-linearity is established with the formula g(x) = ( e−x - e−x )/(e−x + e−x).

Relu: ReLu is the abbreviation for Rectified Linear Unit. Even though ReLu seems

like a linear function, it contains a derivative function that allows backpropagation

efficiently[27].ReLu cannot activate all the neurons at the same time. If the linear
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Figure 3.3: Tanh Activation Function

transformation output ever becomes less than 0, only then the neurons become deac-

tivated.The advantages of using ReLU as an activation function are as follows:

• ReLU function computationally efficient than both tanh and sigmoid.

• Since ReLu is linear and non-saturating, it tends to push the gradient descent to

converge at the global minimum of loss function.

Limitation:

• Dying ReLu is the major problem of ReLu activation function, however this can

be solved by a few modifications to the activation function.

This is represented with the formula g(x) = max(0 , x)
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Figure 3.4: Relu Activation Function

3.2 Long Short Term Memory

A special type of RNN is Long Short Term Memory which can learn long-term depen-

dent sequence data. Its use was initiated by Hochreiter and Schmidhuber (1997). They

are widely used because they perform admirably in a variety of situations. Long-term

dependency is explicitly avoided by LSTMs. Long-term memory is almost their default

behavior; it is not difficult for them to learn it! All RNNs are composed of network

modules that repeat in a series[24]. This represents a simple structure, one like a single

tanh layer.
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Figure 3.5: Modules in RNN.

These modules do not have a chain-like structure like LSTMs.There are four network

layers, each with its own set of interactions.

Figure 3.6: Modules in LSTM.

An entire vector is transferred from one node to another node through each of the

lines in the above diagram. Pink circles represent vector addition operations, while

yellow boxes represent the neural networks that have already learned. Concatenation

is represented by lines that merge, whereas forking is represented by lines that copy

and send the copies to different locations.

3.3 Natural Language Processing

Natural language processing enables machines to understand texts and speech just like

us humans. It is a subset of artificial intelligence.NLP is a revolutionary invention

which took machine and human communication to the next level[21]. With the help

of this combination, NLP allows computers to process the textual and voice data and
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understand the underlying meaning behind it. Through NLP, the computers can trans-

late languages, respond to commands and also summarize paragraphs in real time[32].

The utilization of NLP can be seen in multiple applications like voice-controlled GPS

systems, digital assistants, chatbots etc. Natural language processing is also seen to be

used in helping streamline business operations and other business processes. Human

language usually has irregularities in it. We often tend to express our thoughts indi-

rectly through sarcasm, idioms etc. which might make sense to another human being

but making a machine decipher is not that simple. These tasks are very much compli-

cated and require a thorough understanding of the approach. The programmers need

to have a clear concept themselves and thus construct the language driven applications

through proper visualization of the entire scenario. NLP is the ultimate solution of

breaking and reconstructing the language to understand it and make some sense of

what is going on.

3.4 Convoluted Neural Networks

For image processing purposes convolutional neural networks perform really well. A

digital image contains pixels whose value indicates what color it should be and what

its brightness should be. Our brain processes a huge amount of data at the time of

seeing an image. To cover the entire visual field each of these neurons is linked with

each other. In the vision system each neuron responds to stimuli occurring in a limited

region called the receptive field; similarly, CNN works in a similar fashion[29]. The

arrangement of layers allows simpler patterns (lines, curves, and so on) to be detected

first, and they precede more complex patterns (faces, objects, etc.). Vision can be pro-

vided to the computers using CNN. A CNN is constructed of 3 layers: 1) convolution

layer 2)max pool layer and finally 3)fully connected layer. The convolution layer is

what typically defines a CNN. Most of the computational load is carried by this layer.

The layer functions by calculating the dot product of two matrices, one is preferably

known as the filter and the other is the receptive field. The filter carries more infor-

mation even though it does not take as much space as the image. If the image is of

RGB type, it has 3 types of channels. The filter depth then spans all the 3 channels

but width and the height are small. The filter goes through the image along its height

and width and produces the image representation of that particular receptive field.
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Figure 3.7: An overview on Convoluted Neural Networks

A feature map is a representation of a 2 dimensional representation which contains

specific features of the image data.A stride is an amount by which the filter slides. The

pooling layer is responsible for replacing network output at specific points which are

determined by calculating the summary statistic of nearby outputs. The pooling oper-

ation processes each slice of the representation individually. Pooling functions include

the rectangular neighborhood average, the L2 norm of the rectangular neighborhood,

and a weighted average based on distance from the central pixel. Max pooling is the

most popular process in CNN that takes the maximum of each layer in the feature

map. Pooling provides some translation invariance in all cases, which means that an

object is recognizable regardless of where it appears on the frame. Neurons in the fully

connected layer, like those in regular FCNN, are completely connected to all neurons

in the preceding and following layers. As a result, it can be computed using matrix

multiplication followed by a bias effect as usual. The FC layer assists in mapping input

and output representations.

3.5 MobileNetV2

MobileNet introduced by Google is one kind of convolutional neural network created

for the vision applications for mobile. In the early stage it was created for face attribute

detection.Sandler et al.[10] proposed the inverted residual structure which further ad-

vanced the previous MobileNet as we knew it. They proposed the module: inverted

residual with linear bottleneck which could take in compressed low dimensional inputs

and provide output by initially expanding and afterwards putting through lightweight

convolution. They introduced the MobileNetV2 with the linear bottleneck layers ap-

plied within, which stopped the non-linearity from destroying too much information

within the convolution layers. Unlike other CNN two stage object detection models,
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MobileNetV2 detects objects in a single stage[28]. Meaning, it can predict the object

location and classes directly instead of generating sparse objects in the first stage and

predicting objects in the second stage. It uses predefined anchor boxes and treats

object detection as a regression problem.

3.5.1 Architecture

Initially the MobileNet had a 3x3 depthwise layer and a pointwise 1x1 convolution

layer, both with Relu6 activation function for s number of strides.

Figure 3.8: MobileNet[10]

But in the MobileNetV2, an additional convolution layer of 1x1 dimension has been

provided before the depthwise 3x3 layer for stride = 1 block as explained[10]. On

the second block, the feature map obtained from the convolution 1x1 layer is passed

into the depthwise 3x3 layer with stride set to 2 and it is then passed to another con-

volution layer with dimension 1x1. All the layers contain the Relu6 activation function.

Figure 3.9: MobileNetV2[10]
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Nguyen [25] further explained the architecture of MobileNetv2 presented by Sandler

et al. [10] According to them the key changes the mobileNet architecture brought was

the depthwise convolution layer and the pointwise convolution layer shown in Figure

3.10 as an extended version of Figure 3.8.

Figure 3.10: MobileNet[25]

The depthwise and pointwise convolution layers together offer much faster workflow

than the regular convolution networks. MobileNetV2 is an even more efficient and

powerful alternative to that. An extended version of mobilenetv2 architecture is shown

in Figure 3.11.

Figure 3.11: MobileNetV2 Architecture[25]

The first 1x1 convolution layer expands the number of channels obtained from the input
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feature map before entering the depthwise convolution layer. The middle layer works

in a similar fashion to MobileNetv1. The final bottleneck layer as shown in figure

D and explained by Sandleret al.[10] converts the number of channels in the input

feature map into an even smaller size. The residual connection in the MobileNetv2

helps the flow of gradients through the network. The MobileNetV2 has 17 depthwise

separable convolution blocks that precedes a 1x1 convolution layer. But initially a 3x3

convolution layer has been applied containing 32 channels.

3.5.2 Experiments and Performance

The MoblieNetV2 shows significant results in the ImageNet dataset as well as the

COCO dataset in respect to the accuracy and model complexity[10]. The mobileNetV2

in terms of object detection outperformed the MobileNetV1 in the experiment done

on the COCO dataset. Both versions of MobileNet were used as feature extractors.

As a baseline they took YOLOv2 and the original SSD into consideration. This same

task has also been done using the DeepLabv3 which is a semantic segmentation archi-

tecture. This part has been done on the PASCAL VOC dataset. MobileNetV2 allows

to separate the network expressiveness from its capacity. Saxen et al.[16] also did a

similar experiment on facial attributes extraction. They showed a comparison between

the two architectures, MobileNetV2 and the NasNet as they wanted to con sider two

lightweight CNN architectures. In their paper a new version of MobileNet V2 was

introduced which consists of approximately 3.47 million parameters with 300 million

MACs. The experiment was done on the CelebA dataset. In their conclusion they

stated that the NasNet compared to the MobileNetV2 needed 1.5 million more param-

eters and was about 40% slower while taking MACs(number of multiply accumulates)

into account.

Figure 3.12: MoblileNetV2 vs NasNet[16]

18



Applying the mobileNetV2 built on depthwise separable convolution layers and point

wise separable convolution layers allows fewer multiply-add operations during each

forward propagation. Such is claimed bu Li et al.[28] They intended to design an

object detection model deployable on mobile devices. But the noteworthy aspect here

is how mobileNetV2 eased up their calculation.
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Chapter 4

Research and Methodology

We started off our work by looking for a suitable dataset optimized for visual question

answering. Even though we found quite a few such datasets, none of them supported

Bangla.

The following sub sections describes our research methods in detail.

4.1 Introduction to Existing Dataset

Our primary task was to collect or select a suitable dataset for our research purpose,

so we looked into datasets related to visual question answering, as our thesis topic is

Visual Question Answering in Bangla. We were unable to locate any datasets related

to the Bangla language. Although a lot of work has been done in the field of Visual

Question Answering for the English language, there has been very little work done for

the Bangla language. The majority of the datasets are in English. So, in order to meet

our requirement, we created two datasets in Bangla for visual question answering.

These datasets were created with the assistance of existing datasets related to the

English language. So, first we will look at the existing datasets in English, and then

move on to our newly created Bangla datasets. VQA v1 [4] is a well-known and widely

used dataset for Visual Question Answering. On the 200k images from COCO [1],

this balanced dataset contains approximately 1.1 million (image, question) pairs with

approximately 13 million associated answers.
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Figure 4.1: Boxplot of number of questions per image VQA v1

Figure 4.2: Length of the questions vs Distribution graph for VQA v1 training dataset.

As described in the paper and shown in the figure 4.1,the dataset is balanced with

each image assoiciated with three questions. From the graph above we can see that

the majority of the questions have length of 5 .More than 50k questions have length
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of 5 to 6 words and very few questions have 15. Next we are going to see the images

along with their corresponding questions and answers.

Figure 4.3: Sample data from the VQA dataset

The images are from the COCO [1] dataset. Each question is accompanied by an image

id and a response. If we look at the length distribution of the answers in figure 4.4, we

can see that the majority of the answers are only one-word long.
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Figure 4.4: Sample data from the VQA dataset

The second dataset is CLEVR [5]. This dataset is intended for basic visual reason-

ing. The images do not come from the COCO dataset; they only contain objects

and elements. The objects are all 3D shapes. CLEVR includes 100k rendered images

and approximately one million automatically generated questions, 853k of which are

unique. The dataset’s primary goal was to allow detailed analysis of visual reasoning.

From the boxplot shown in figure 4.5 we can see an image might have a maximum of

10 questions and the total question is 600k.

A key note here is that multiple questions are associated with a single image. This

reduces the unavailabiltiy of probable answers to questions raised from different per-

spectives. All of these questions are provided with corresponding answers.
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Figure 4.5: Total Number of questions along with question per image distribution of

CLEVR dataset

Figure 4.6: Length of the questions vs Distribution graph for CLEVR training dataset.

Figure 4.6 shows that the length of the questions vary. More than 60k questions can

have a maximum length of 14. The majority of the questions in this dataset have an
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answer. 57k questions have a length of 15 characters and 50k questions have a length

of 13 characters.

4.2 Our Proposed Dataset

We couldn’t find any dataset related to visual question answering, so we formulated our

own Bangla dataset through the combination of the existing VQA datasets. Essentially,

we translated the existing dataset’s questions and answers and trained them using the

same images. We created an automated pipeline for this translation. This pipeline

consists of several Python scripts that will convert existing questions and answers to

Bangla and create the new dataset. We used Google translator for this purpose.

At first we used VQA v1 to create our Bangla dataset. Which consists of 3903 training

data and 1901 validation data

All of these questions and answers are derived from the VQA v1 dataset via a pipeline,

and we used images from the COCO dataset. Because questions are converted from

English to Bangla, it is not guaranteed that the length of the questions will remain the

same. The actual dataset contains over 1.1 million questions. However, for our thesis,

we converted approximately 5000 questions and answers from this dataset. The image

below shows that the majority of the questions are no more than four words long.

The length of the answers is very similar to the length of the actual dataset. When

we translate a sentence from English to Bangla, we frequently find that the translation

no longer conveys the meaning. In our case, we also had to deal with similar issues.

Also, we discovered that not all of the questions are correctly converted. A number of

converted questions did not bear the same meaning as the English questions. We had

to manually inspect and remove all problematic data from our dataset. We used the

same mechanism to analyze the CLEVR dataset. We used the dataset’s existing 3D

object images and our pipeline to convert the questions and answers to Bangla.
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Figure 4.7: Sample data from our proposed Bangla dataset
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Figure 4.8: Length of the questions vs Distribution dataset of Bangla VQA dataset

Figure 4.9: Length of the answer vs Distribution dataset of Bangla VQA dataset

This dataset contains over 12k questions accompanied by images and objects. Figure

4.11 shows that all of the questions have at least one answer. A single image can only

have a maximum of ten questions. This has only images related to objects, and the
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questions are not your typical ones. So when we changed it to Bangla, we noticed a

significant difference from the original dataset.

Figure 4.10: Sample data from our Bangla clever datase
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Figure 4.11: Never of questions on a image on Bangla CLEVR dataset

Figure 4.12: Length of the questions vs distribution for our Bangla CLEVR dataset

We can get nearly 1600 answers with a length of 10 words here. The length of our

language model’s input shape is extremely important to note. So, in our proposed

model, which we have to use on these datasets, everything is similar except for some
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minor differences, such as input length for our language model because the length of

the questions, words per question, or answers are not the same in all datasets, so we

had to tweak a little bit with the input length of our language model, which we will

see later in section 4.4.

4.3 Data preprocessing

We had to face a few complicatons while preprocessing our data. Apparently after

converting to Bangla, the structure of the datasets change and our model had to cope

up with that. The following subsections explain how we pre processed our data.

4.3.1 Data splitting

Our dataset is made up of two types of data: image data and textual data. First our

dataset was split into train and test datasets. We split our dataset into a ratio of 80:20.

4.3.2 Image preprocessing

Following the loading of an image, we need to decode the image data into pixel data

in order to work with it. Tensorflow was used to decode the image data. The

decoding function is determined by the image format.Generally we can use tensor-

flow.image.decode image for generic decoding, but for JPEG decoding, we used ten-

sorflow.image.decode jpeg.Keyword argument is used to change the pixel format of the

decoded image.Channel argument represents the number of integer value per pixel .

Channels are set to 0 by default, which leads the decoding function to use the inter-

pretation specified in the raw data.If we want grayscale image we can set the value to

1, if we set channel value to 3 it will allow us to use a RGB image. We know that a

pixel value ranges from 0 to 255, but we can’t use the exact pixel value in our dataset

because the model will become biased toward higher pixel values, so we must normalize

the pixel value by decoding. Data normalization is the process of converting real-valued

numeric attributes into a value between 0 and 1. This assists our model in becoming

less biased toward higher numeric values. To normalize our pixel values, we divided

the value by 255. It will scale our data points from 0 to 1. We chose a fixed input size

for the image data in our model, which is 200*200, so we had to resize the shape of

our images to 200*200. To do so, we used the tensorflow.image.resize function.
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4.3.3 Text preprocessing

This step was not as simple as the image data step. Our different datasets have dif-

ferent question lengths, which must be acceptable to the LSTM input layer, so the

size of the input layer is not the same for the Bangla VQA dataset and the Bangla

CLEVR dataset. We had to start by developing an encoding mechanism for our text

data. There are several methods for encoding categorical data. 1. Label Encoding 2.

One-hot Encoding

Ordinal Encoding : In this form of encoding we map a unique label to an unique integer

value .

One-hot Encoding :In this kind of encoding each label is mapped to a binary vector

.For our datasets we have used an Ordinal Encoding mechanism which will assign a

unique integer value to our words. Before using the encoder, we need to tokenize the

full sentence. Tokenizer will split the sentence into small segments and return an array

then our encoder will encode the words and assign a unique integer to each word.

Figure 4.13: Tokenizer split the sentence into small segments

Figure 4.14: Encoder encodes a value and assigns a unique integer.

In most cases we get one single integer value for a word but in some cases, we get an

extra integer value in the array. So, we have to keep in mind that the length of the

sentence and the length of the encoded array might not be the same as always. For

encoding the data, we used the same tensorflow encoder for both Bangla and English
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text but we did not use the same tensorflow tokenizer for both languages. Tensorflow

tokenizer was not splitting our Bangla sentences as expected.

Figure 4.15: Example question from Bangla VQA dataset

For example, if the sentence is like figure 4.15, we expect our tokenizer to split the

sentence into words but the tensorflow tokenizer was tokenizing the sentence like the

figure 4.16.

Figure 4.16: Tensorflow tokenizer tokenizing Bangla text

So, our encoder was assigning values to each of these absurd tokens and we could not

obtain our expected result. To avoid this issue, we created our own tokenizer. Basically,

our tokenizer splits the sentence by whitespace and return the value in an array

Figure 4.17: Output from our tokenizer

We used the same encoder to encode these values but we get extra integer values than

the English text. So, we have different size in our Embedding layer for the English text

and for the Bangla text. The output of our tokenizer is shown in figure 4.17.
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4.3.4 Vocabulary set

We created a vocabulary set which contains all the unique words from our dataset.

All the unique words we have in the questions and answers, is placed in this set and

passed as constructor input to our tensorflow tokenizer. Tensorflow tokenizer expects

a set containing all the unique words since it will assign a unique integer value to each

of these unique words. So, when we call the encoder to encode a word the encoder

returns a unique integer number according to the vocabulary set

4.3.5 Padding

We have used padding only for the text data. All the questions do not consist of the

same length. A question might have 3 words another question might have 14 words so

we need to use padding to fill up the gap. Our input text will be an encoded array and

we need to keep a fixed size for the input shape after tweaking some values with respect

to our question length. We have fixed a shape of 50 for the English text for both VQA

v1 and CLEVR dataset and we used padding, accordingly. So now the length of the

padding would be:

padding = [ [ 0 , 50 - shape of the question] ]

All padding values will be set to a fixed value of zero. To add padding to our ques-

tion, we used tf.pad. However, in the case of our Bangla text, we considered the

question shape to be 150 in the Bangla CLEVR dataset and 50 in the Bangla VQA

dataset. While working with the CLEVR dataset, we discovered that some questions

have lengths of 111 or 147 after encoding. So, we chose 150 as a fixed shape otherwise

we would have an error while passing the question in our language model. If the lan-

guage model has a fixed shape less than the Max length of the encoded question, it

will not fit into the model. So, now that we’ve established a fixed question input shape

of 150 for the Bangla CLEVR dataset, our padding will look like this:

padding = [ [ 0 , 150 - shape of the question] ]

4.4 Model Implementation

Till now we have discussed our dataset and how we have prepared our dataset .In this

chapter we will explain about our proposed model and its implementation. Basically

our model is a combination of CNN and LSTM layers. Our input to the model will

be the image along with a question and the output will be an answer . So we concat
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CNN with LSTM . We have trained 4 datasets using this model. We had to make some

slight changes to run our model using these datasets. For example when we used the

Bangla CLEVR dataset we provided 150 as the input shape for the LSTM input layer

but for the Bangla VQA dataset we used 50 as our input shape for the LSTM layers .

The length of the vocabulary set discussed in the previous chapter plays an important

role in our model as this length is considered as the shape of the Embedding layer and

it is also considered as the shape of the final output layer.

Figure 4.18: Model structure

A more detailed architecture of our model would be like the figure 4.19
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Figure 4.19: A detailed architecture of our proposed model

4.4.1 Input layer

For our image dataset we have chosen a fixed shape of (200,200,3) . And for the

question part we have a fixed input shape of 50 for CLEVR English dataset , VQA v1

dataset , and for Bangla VQA dataset . Only for Bangla CLEVR dataset we chose 150

as an input shape as described in chapter 4 . Sometimes we get a length of 111+ from

our encoded questions in Bangla CLEVR dataset. So this is the only change we had

to make in our model architecture to work with all four datasets.

4.4.2 Mobilenetv2 layer

After the input layer we used a pre-trained mobilenetv2 model which has an input

shape of (200,200,3) and an alpha value of 1.0 . This alpha value controls the width

of the network . This is known as the width multiplier in the mobilenet paper[10]. If

alpha =1 default number of filters from the paper are used at each layer. If alpha > 1.0

proportionally increases the number of filters in each layer. If alpha < 1.0 the number

of filters is proportionally decreased
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4.4.3 Embedding layer

We added an embedding layer which has the shape of the vocabulary set which contains

all the unique words from the questions and the answers. This layer helps us to convert

each word into a fixed length vector of defined size.

4.4.4 Bidirectional LSTM layer

We have 3 bidirectional LSTM layers . First two layers return the sequences but the

last layer does not. First two bidirectional layers have the dimensionality of 256 of the

output space . The last bidirectional layer has the output dimensionality of 526.

4.4.5 Dropout layer

This layer is useful for avoiding the overfitting problem. An issue with LSTMs is

that they can easily overfit training data, reducing their predictive skill. Dropout

is a regularization method where input and recurrent connections to LSTM units are

probabilistically excluded from activation and weight updates while training a network.

This has the effect of reducing overfitting and improving model performance. At first

while training our dataset we faced issues related to overfitting then after adding the

Dropout layer after the first two LSTM layers the overfitting problem got resolved. For

dropout we can choose a value which is suitable for us. It is a hyper parameter which

we need to determine. Most popular value for dropout is 0.5 - 0.9 . We chose 0.5 for

our model.

4.4.6 Output layer

After concatenating the CNN model and the LSTM layer we put another layer of

dropout and then we added a softmax activation which takes the length of the vocab-

ulary set as dimensional size.

4.4.7 Loss function

As we have used Integer encoding, it means that we have assigned a unique value to

each word in our vocabulary set as we have described in chapter 4. So we choose

sparse categorical crossentropy . This is a loss function for multi-class classification

models where the output label is assigned an integer value (0, 1, 2, 3. . . ).

4.4.8 Optimizer

We have explored two optimizers SGD (stochastic gradient descent ) and ADAM op-

timizer.
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SGD: A class that implements the stochastic gradient descent optimizer we can pass a

learning rate and and momentum value in the constructor.

Adam: Another stochastic gradient descent based optimizer is ADAM optimizer.

For our model we use Adam optimizer as it was generalizing the data better than SGD.

Here the default learning rate was 0.001 and momentum was 0.9.

4.4.9 Batch size

Bath size plays a vital role in Deep Learning algorithms. Batch size is a term used in

machine learning that refers to the number of training examples used in one iteration.

We can have 3 kinds of batch sizes. If the batch size is 1 then the algorithm will follow

stochastic gradient descent if the batch size is greater than 1 but less than the length

of the training dataset then the algorithm will follow mini batch gradient descent.
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Chapter 5

Experimental Evaluation

In the following subsections we will provide our findings from the experiments, the

accuracy of our datasets, and a comparison between our datasets and the English

CLEVR and VQA v1 datasets.

5.1 Experimental Setup

For our experimental setup, we used tensorflow with CUDA core GPU support. Our

machine has a 4 core i5 CPU and 1050 ti GPU of 4GB memory. In another PC setup

we had 4 core CPU and 1660 GPU which consist of 8GB memory. We used Ubuntu

20.04 as our operating system.The support of CUDA core made our training much

faster.

5.2 Result and analysis for VQA v1 dataset

We ran our model on the English VQA v1 dataset first. Figure 5.1 shows the accuracy

vs epoch graph obtained from VQA v1.

38



Figure 5.1: accuracy vs epoch for VQA v1 dataset

The figure 5.2 provides the loss vs epoch graph. As we ran for 40 epochs, our test and

train loss both decreased gradually and ended up at 0.5% for test loss and we got

below 0.5% of train loss.

Figure 5.2: loss vs epoch

We took 5000 traindata and ran the model for 40 epochs. Our Train accuracy is 75%

Test accuracy is 71%.

Figure 5.3 shows a sample output from our experiment.
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Figure 5.3: Example of output of from our Model trained on VQA dataset h

5.3 Result and analysis for Bangla VQA dataset

Figure 5.4 shows the model accuracy on Bangla VQA dataset.
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Figure 5.4: Accuracy on Bangla VQA dataset

The fig 5.5 shows the loss function on Bangla VQA dataset which we ran for 60 epochs.

where we can see the test loss suddenly increased after 5 epochs and gradually drops

after 5 epochs. Then the test loss function maintain almost a constant value of 2.6%

and train loss function decreases from 5% to 2.2%.

Figure 5.5: Loss Function on Bangla VQA dataset

For our Bangla VQA dataset we took about 4000 dataset from our Bangla VQA dataset

and we have run for 60 epoch and our train accuracy was 63% And our test accuracy

55%.
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Fig 5.6 is an example output of our Bangla VQA dataset.

Figure 5.6: Example output of our model trained on Bangla VQA dataset

5.4 Result and analysis for CLEVR dataset

Fig 5.7 contains the accuracy graph of our model trained on CLEVR dataset. From

the graph we can see our train accuracy reached upto 77% whereas our test accuracy
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reached upto 66%. We ran our model for 20 epochs.

Figure 5.7: Accuracy of our model trained on CLEVR dataset

As we ran for 20 epochs our test loss decreased to 0.5% and the train loss decreased

to below 0.5%. And both of them decreased gradually. The figure 4.8 shows the loss

function graph of CLEVR English dataset.

Figure 5.8: lost function of our model trained on CLEVR dataset

Figure 5.9 shows an example output from the CLEVR dataset.
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Figure 5.9: Example output of our model trained on CLEVR dataset

5.5 Result and analysis for Bangla CLEVR dataset

Figure 5.10 contains the accuracy vs epoch graph of our model trained on the Bangla

CLEVR dataset.
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Figure 5.10: Accuracy vs epoch graph of our model trained on Bangla CLEVR dataset

For our Bangla CLEVR dataset we ran for 20 epochs and both of the train and test

losses reached 0.5% and we can see a smooth decrease of the loss function. The figure

5.11 shows the loss vs epoch graph for our Bangla CLEVR.

Figure 5.11: loss vs epoch graph of our model trained on Bangla CLEVR dataset

An example output from our Bangla CLEVR dataset is shown in figure 5.12.
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Figure 5.12: Example output of our model trained on Bangla CLEVR dataset

For this dataset we have used 4000 data and run for 20 epochs . Our train accuracy

is 75 % and our test accuracy is 63% .We can improve this result with more training

dataset and if run the training process for more epochs . For now we have chosen 4000

data and run the model for 20 epochs.The dropout layers have helped the model to get

rid of overfitting.
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The table below shows the comparison between our datasets and the English datasets.

Table 5.1: Performace Table
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Chapter 6

Limitations And Future Work

Our model had more or less similar outputs in case of running on both the datasets.

But in a few cases the accuracy was not up to the mark. Even though it was able to

process and analyze the questions with longer length, the outputs could not be made

descriptive. Providing answers with multiple words during training gave us errors. It

could only process and generate answers containing one word. Due to this we were not

able to generate a detailed and more descriptive answer for each question. For example,

in case of a question where it was asked what color dress the person is wearing, it was

only able to answer with the color’s name ex: white. A full sentence is not generated.

One other thing is that, some of the questions got translated but did not convey the

same meaning as the English question. This led to the translated sentence becoming

unclear. We therefore had to exclude those questions from the dataset which led to a

loss of data while preparing the dataset. Our Bangla VQA dataset has less accuracy

than our Bangla CLEVR dataset because it has less training data. If we increase

the amount of training data in Bangla VQA dataset, we can improve the accuracy.

We wish to alleviate all of these complications in the future. For our future we wish

to work on implementing a fully functional visual question answering system that

could communicate in Bangla just as well as English. So, various VQA based smart

systems such as smart glasses for the visually impaired, navigation system in cars, fully

automated virtual assistants etc. could work on our language as per our need.
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Chapter 7

Conclusion

The entirety of our research focuses on enabling Visual Question Answering in Bangla.

We started off our work with finding a proper dataset. But apparently no such dataset

was found that properly facilitated our intentions. So, we improvised. Using the

existing VQA datasets, we tried to formulate our own Bangla version of VQA dataset.

For this purpose, we specifically used the Clevr dataset and the VQA v1 dataset.

Accumulating and preprocessing the newly formulated datasets were a bit complicated

so we had to modify the model to our necessity. Finally, we were able to propose two

such Bengali datasets that could be used for our work. The Bangla clever dataset

contains 12k image data and corresponding questions and answers while the Bangla

VQA dataset contains 5k data. For our Bangla VQA dataset we got 63% train accuracy

and 55% test accuracy and in Bangla CLEVR dataset we got a train accuracy of 77%

and test accuracy of 66%. Through our work we tried to lay a foundation of visual

question answering in Bangla.. Our desire was to work for the people of Bangladesh

and support the 7th most popular language in the world. The reality suggests that

most of the people in this country prefers to communicate in Bangla. Why should

language hold us back from utilizing the best gifts modern technology has to offer?

So, we tried to remove that unnecessary barrier. We pray and hope that our work can

inspire thousands of minds to take it even further and achieve something wonderful for

the greater good of the people of Bangladesh and for the greater good of mankind in

general.

49



Bibliography

[1] T.-Y. Lin, M. Maire, S. Belongie, et al., “Microsoft coco: Common objects in

context,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and

T. Tuytelaars, Eds., Cham: Springer International Publishing, 2014, pp. 740–755,

isbn: 978-3-319-10602-1.

[2] S. Antol, A. Agrawal, J. Lu, et al., “Vqa: Visual question answering,” in 2015

IEEE International Conference on Computer Vision (ICCV), 2015, pp. 2425–

2433. doi: 10.1109/ICCV.2015.279.

[3] A. Agrawal, D. Batra, and D. Parikh, “Analyzing the behavior of visual question

answering models,” in Proceedings of the 2016 Conference on Empirical Methods

in Natural Language Processing, Jun. 2016. doi: 10.18653/v1/D16-1203.

[4] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh, “Making the v

in vqa matter: Elevating the role of image understanding in visual question an-

swering,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2017, pp. 6325–6334. doi: 10.1109/CVPR.2017.670.

[5] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L. Zitnick, and R.

Girshick, “Clevr: A diagnostic dataset for compositional language and elementary

visual reasoning,” in 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017, pp. 1988–1997. doi: 10.1109/CVPR.2017.215.

[6] K. Kafle and C. Kanan, “An analysis of visual question answering algorithms,”

Oct. 2017, pp. 1983–1991. doi: 10.1109/ICCV.2017.217.

[7] R. K. andYuke Zhu, O. Groth, J. Johnson, et al., “Visual genome: Connecting

language and vision using crowdsourced dense image annotations,” International

Journal of Computer Vision, vol. 123, pp. 32–73, 2017. doi: 10.1007/s11263-016-

0981-7.

[8] P. Anderson, X. He, C. Buehler, et al., “Bottom-up and top-down attention for

image captioning and visual question answering,” in 2018 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), Jun. 2018, pp. 6077–6086.

doi: 10.1109/CVPR.2018.00636.

[9] Y. Jiang, V. Natarajan, X. Chen, M. Rohrbach, D. Batra, and D. Parikh, Pythia

v0.1: The winning entry to the vqa challenge 2018, 2018. arXiv: 1807 . 09956

[cs.CV].

50

https://doi.org/10.1109/ICCV.2015.279
https://doi.org/10.18653/v1/D16-1203
https://doi.org/10.1109/CVPR.2017.670
https://doi.org/10.1109/CVPR.2017.215
https://doi.org/10.1109/ICCV.2017.217
https://doi.org/10.1007/s11263-016-0981-7
https://doi.org/10.1007/s11263-016-0981-7
https://doi.org/10.1109/CVPR.2018.00636
https://arxiv.org/abs/1807.09956
https://arxiv.org/abs/1807.09956


[10] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:

Inverted residuals and linear bottlenecks,” Jun. 2018, pp. 4510–4520. doi: 10.

1109/CVPR.2018.00474.

[11] K. Yi, J. Wu, C. Gan, A. Torralba, P. Kohli, and J. B. Tenenbaum, “Neural-

symbolic vqa: Disentangling reasoning from vision and language understanding,”

Oct. 2018. [Online]. Available: http://nsvqa.csail.mit.edu.

[12] R. Cadene, C. Dancette, H. Ben younes, M. Cord, and D. Parikh, “Rubi: Re-

ducing unimodal biases for visual question answering,” in Advances in Neural

Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F.
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memory (lstm) neural networks in time series analysis,” in 2020 55th Interna-

tional Scientific Conference on Information, Communication and Energy Sys-

tems and Technologies (ICEST), 2020, pp. 11–14. doi: 10.1109/ICEST49890.

2020.9232710.

[25] H. Nguyen, “Fast object detection framework based on mobilenetv2 architecture

and enhanced feature pyramid,” Theoretical and Applied Information Technology,

vol. 98, no. 05, 2020, issn: : 1992-8645.

[26] Z. Huang, H. Zhu, Y. Sun, D. Choi, C. Tan, and J.-H. Lim, “A diagnostic study of

visual question answering with analogical reasoning,” in 2021 IEEE International

Conference on Image Processing (ICIP), 2021, pp. 2463–2467. doi: 10 . 1109/

ICIP42928.2021.9506539.

[27] R. Jie, J. Gao, A. Vasnev, and M.-n. Tran, “Regularized flexible activation func-

tion combination for deep neural networks,” in 2020 25th International Con-

ference on Pattern Recognition (ICPR), 2021, pp. 2001–2008. doi: 10 . 1109 /

ICPR48806.2021.9412370.

[28] W. Li and K. Liu, “Confidence-aware object detection based on mobilenetv2

for autonomous driving,” Sensors, vol. 21, no. 7, 2021, issn: 1424-8220. doi:

10.3390/s21072380.

[29] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional neural

networks: Analysis, applications, and prospects,” IEEE Transactions on Neural

Networks and Learning Systems, pp. 1–21, 2021. doi: 10.1109/TNNLS.2021.

3084827.

52

https://doi.org/10.1109/CVPR42600.2020.01028
https://doi.org/10.1109/IICSPI51290.2020.9332458
https://doi.org/10.1109/IICSPI51290.2020.9332458
https://doi.org/https://doi.org/10.1016/j.jksuci.2020.04.015
https://doi.org/https://doi.org/10.1016/j.jksuci.2020.04.015
https://doi.org/10.1109/IJCNN48605.2020.9206679
https://doi.org/10.1109/IJCNN48605.2020.9206679
https://doi.org/10.1109/ICEST49890.2020.9232710
https://doi.org/10.1109/ICEST49890.2020.9232710
https://doi.org/10.1109/ICIP42928.2021.9506539
https://doi.org/10.1109/ICIP42928.2021.9506539
https://doi.org/10.1109/ICPR48806.2021.9412370
https://doi.org/10.1109/ICPR48806.2021.9412370
https://doi.org/10.3390/s21072380
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1109/TNNLS.2021.3084827


[30] K. Marino, X. Chen, D. Parikh, A. Gupta, and M. Rohrbach, “Krisp: Integrating

implicit and symbolic knowledge for open-domain knowledge-based vqa,” in 2021

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

2021, pp. 14 106–14 116. doi: 10.1109/CVPR46437.2021.01389.

[31] T. T. Mayeesha, A. M. Sarwar, and R. M. Rahman, “Deep learning based ques-

tion answering system in bengali,” Journal of Information and Telecommunica-

tion, vol. 5, no. 2, pp. 145–178, 2021. doi: 10.1080/24751839.2020.1833136.

[32] T. P. Nagarhalli, V. Vaze, and N. K. Rana, “Impact of machine learning in nat-

ural language processing: A review,” in 2021 Third International Conference on

Intelligent Communication Technologies and Virtual Mobile Networks (ICICV),

2021, pp. 1529–1534. doi: 10.1109/ICICV50876.2021.9388380.

[33] M. A. H. Palash, M. D. A. A. Nasim, S. Saha, F. Afrin, R. Mallik, and S. Samiap-

pan, “Bangla image caption generation through cnn-transformer based encoder-

decoder network,” CoRR, vol. abs/2110.12442, 2021.

53

https://doi.org/10.1109/CVPR46437.2021.01389
https://doi.org/10.1080/24751839.2020.1833136
https://doi.org/10.1109/ICICV50876.2021.9388380

	Declaration
	Approval
	Ethics Statement
	Contributions
	What Motivated Us
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Objective 
	Thesis Outline 

	Related Work
	Background Analysis
	Recurrent Neural Networks
	Types of recurrent neural networks
	Common activation functions

	Long Short Term Memory
	Natural Language Processing
	Convoluted Neural Networks
	MobileNetV2
	Architecture
	Experiments and Performance


	Research and Methodology
	Introduction to Existing Dataset
	Our Proposed Dataset 
	Data preprocessing
	Data splitting
	Image preprocessing
	Text preprocessing
	Vocabulary set
	Padding

	Model Implementation
	Input layer
	Mobilenetv2 layer
	Embedding layer
	Bidirectional LSTM layer
	Dropout layer
	Output layer
	Loss function
	Optimizer
	Batch size


	Experimental Evaluation
	Experimental Setup
	Result and analysis for VQA v1 dataset
	Result and analysis for Bangla VQA dataset
	Result and analysis for CLEVR dataset
	 Result and analysis for Bangla CLEVR dataset 

	Limitations And Future Work 
	Conclusion
	Bibliography


