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Abstract

Optical Coherence Tomography (OCT) is an effective approach for diagnosing reti-
nal problems that can be used in combination with traditional diagnostic testing
methods. We developed and implemented a deep Convolutional Neural Network
(CNN) model, which has the capability to effectively identify and classify Optical
Coherence Tomography (OCT) images into the following four categories: Normal,
DMD, CNV, and DME. The proposed 21 layered CNN model is built with three
basic layers: a convolutional layer, a pooling layer, and a fully connected layer along
with dropout and dense layers. Our proposed model is able to detect and differenti-
ate between the OCT images with a high amount of accuracy. The 21 layer proposed
CNN model was used for the classification and diagnosis of retinal sickness using
OCT images. To justify the efficiency of our custom CNN model, seven pre-trained
CNN models (VGG16, VGG19, MobNetV2, Resnet50, DenseNet121, InceptionV3,
and InceptionResNetV2) were used and testified with the same amount of dataset.
In terms of the accuracy, precision, recall, and f1 score, which are all tested in this
paper, the suggested CNN model along with seven other pre-trained CNN archi-
tectures perform comparable on the available dataset. The proposed model has an
accuracy rate of 98.37 percent, which is greater than any of the experimental results
of the CNN models utilized in this research due to the fact that the recommended
model was developed. When it comes to the diagnosis of retinal problems, the
CNN model that was suggested performs far better than any other model that was
previously used.

Keywords: Convolutional Neural Network, Optical Coherence Tomography, Deep
Learning, Retinal Disease, VGG16, VGG19 MobNetV2, ResNet50, DenseNet121,
InceptionV3, and InceptionResNetV2.
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Chapter 1

Introduction

1.1 Background Information

Retinal diseases are a primary cause of visual impairment and blindness that is ir-
reversible, particularly in less developed nations. The World Health Organization
(WHO) estimates that there are now 253 million people living with some kind of vi-
sual impairment and that there are 36 million people living with a form of blindness
that is permanent [1]. More than eighty percent of instances of visual impairment
are preventable or curable if adequate retinal screening and treatment planning is
carried out during the early stages of the condition [2]. However, in order to make
an accurate early diagnosis, the retinal images that were produced using Optical
Coherence Tomography (OCT) need to be examined by an experienced ophthalmol-
ogist [3]. Macular degeneration is a painless, progressive eye condition that may
cause vision impairment in the center of one visual cortex. The World Health Orga-
nization (WHO) [4] cites it as the major cause of irreversible eyesight loss in affluent
countries. The condition of macular degeneration does not result in complete blind-
ness; the ability to see is retained. Patients suffering from severe instances of the
illness may become completely blind.
Underneath the retina, the drusen are yellowish masses. The presence of fatty acids
and proteins are the cause of beginning drusen. Though Drusen are not thought to
be a cause of age-related macular degeneration (AMD), it raises a person’s chance of
getting AMD and could be a symptom of the disease. Various sorts of drusen exist.
For a prolonged-term, if at all, little drusen may not cause visual issues. Drusen that
are larger increases the chance of progressive AMD, which can lead to visual loss.
Macular degeneration is characterized by drusen. An ophthalmologist can notice
these tiny yellow or white patches on the retina during a dilated eye exam or using
retinal imaging.
Along with that, Diabetic Retinopathy and Diabetic Macular Edema are caused by
longterm deterioration to the retina’s neurovascular systems. The etiology of reti-
nal injury is unknown however, metabolic and neuroinflammatory disturbances are
suspected. Thorough metabolic management of the clinical syndrome through the
use of optical antiinflammatory medications, such as connective tissue growth factor
inhibitors and corticosteroids, are used to treat these processes. Whereas improved
knowledge of the optical and vascular processes that underpin diabetic retinopathy
will result in better diagnostic and treatment options, as well as enhanced sight
maintenance. Slightly out of focus or irregular images towards or in the core of

1



one’s range of view is the most common sign of macular edema. Colors may also
seem pale or blurred out. Macular edema causes symptoms that vary from slightly
blurred vision to significant vision loss in the majority of persons. DR is a primary
cause of disability and impaired vision and is one of the most serious consequences of
diabetes. Retinopathy is more frequent in those who have type 1 diabetes, although
people who have type 2 diabetes are more likely to develop the disorder.New blood
vessels that originate in the choroid may enter the sub–retinal pigment epithelium
(sub–RPE) or the subretinal gap when the Bruch membrane breaks. This causes
the patient’s vision to become distorted or hazy. The most common cause of vi-
sion impairment is choroidal neovascularization (CNV) [5]. A noninvasive imaging
method that employs light to take pictures, optical coherence tomography (OCT) is
an acronym [42]. When it comes to disease diagnosis, OCT makes use of light waves
to produce cross-section images of the retina. This enables the ophthalmologist to
observe more clearly each of the different layers that make up the retina. With the
assistance of optical coherence tomography, the ophthalmologist will be able to map
the retina and determine its depth. As a consequence, the measurements used to
assist in the diagnostic procedure have grown more straightforward and accurate.
Image recognition and classification are used by CNNs to identify objects, differen-
tiate faces, and more. They are made up of neurons that can be programmed to
take on different weights and biases. CNNs are often used to classify images, group
them based on similarity, and then identify them objects within those images. This
method will help us to detect the disease more accurately and will give the ophthal-
mologist a clear idea of the infected areas. Preventing these difficult and severe eye
disorders requires early detection. Our technique may assist in better understanding
and detecting retinal abnormalities, which can avoid blindness.

1.2 Problem Statement

Retina is a light-sensitive thin membrane that is located at the bottom of our eyes
and that sends signals to the brain when we are exposed to intense light. These
neuronal cells are located in the center of the retina, providing folks with the clear,
focused sight that they need to browse, drive, and take notice of details. Any portion
of the retina might be damaged by retinal disorders which can have a significant ef-
fect on one’s life. Retinal disorders that go untreated can cause significantly blurred
vision and possibly blindness. Certain retinal disorders are treated with rapid diag-
nosis, although it can be managed or delayed to maintain and perhaps even recover
eyesight. Meanwhile, the challenge here is to detect the loss of eyesight in a stage
from which we can prevent extensive vision loss. Worldwide, retinal disorders are
a leading source of optical damage including vision loss. According to community
research, the frequency of retinal diseases ranges from 5.35% to 21.02% in those aged
40 and more. In contrast, retinal illness is a major of severe sight in affluent coun-
tries. As per the BrightFocus Foundation[13], 11 million Americans have age-related
macular degeneration in a certain way. Only 10% of AMD cases are caused by wet
AMD, whereas 90% of AMD cases that result in substantial vision loss are caused by
wet AMD. Every year, according to the Macular Degeneration Partnership, 200,000
additional patients are diagnosed with AMD. Similarly, Diabetic retinopathy affects
7.7 million Americans, according to the National Eye Institute, with the figure pre-
dicted to rise to 11.3 million by 2030. Diabetic retinopathy affects up to 45 percent
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of all persons who have diabetes. According to the medical journal JAMA Oph-
thalmology, diabetic macular edema (DME) is the most prevalent type of diabetic
retinopathy, affecting approximately 745,000 Americans [7].

Here it seems that the lack of detection has caused many people in different ways.
Ignoring the symptoms or any other reasons have raised the number of blindness
which can be prevented by simply detecting the problems at an early age. Along
with that this will open the door for the ophthalmologists to protect people from
retinal diseases in some cases redeeming the loss of eyesight.

Figure 1.1: Retinal OCT images of a normal, b DMD and c DME conditions

1.3 Research Objective

The main focus of this study is to create a disease detection system for identifying
prenatal retinal illnesses such as CNV, DME and DMD, which is currently under
development. This system will take OCT images as input. We will use Deep learning
to determine whether the images are diseased or not. After necessary pre-processing
the images will go through the proposed CNN model and divide those in three
categories. The objectives of this research are:

1. Understand image processing and how it works.

2. To understand data pre-processing techniques like Denoising and Reshaping.

3. To build a model to detect retinal disease based on OCT images.

4. To understand the impact of deep learning in our model.

5. To provide guidance and support for ophthalmologists to detect disease faster
and accurately.

3



Chapter 2

Related Work

Drusen are little yellow deposits of lipids, which are fatty proteins. Drusen Macu-
lar Degeneration (DME) is characterized by the accumulation of drusen behind the
retina. Slowly but surely the primary vision begins to fade as little stones of dirt
build over time. Direct vision deformation (DMD) produces distortions of straight
lines, difficulty adapting from bright to low lighting and blurry or fuzzy images in
the center of vision. As intraretinal fluid accumulates in the inner and outer layers
of the retina, it thickens the retina. This condition is known as Diabetic Macular
Edema (DME). The retinal vasculature’s hyperpermeability is assumed to be the
reason. DME can be found in diabetic retinopathy at any stage. Blurred vision,
washed-out colors, more floaters in vision, and double vision are some of the promi-
nent symptoms. One cannot keep drusen from growing. It is regarded as typical
to have some hard drusen. Routine medical exams can allow us to identify drusen
early and determine if one has DMD. Not everyone who has drusen will get DMD
later in life. If anyone has drusen then they do not need treatment unless they also
have DMD. Early therapy for DMD can help to decrease the disease’s development
and reduce macular degeneration, stated in a journal [8]. Similarly, DME is also
known as an incurable disease. Although the therapies for acute and distributed
DME are different, each requires laser operations. The majority of clinicians treat
focal DME with focused laser treatment and diffuse DME with grid laser treatment.
The objective of these types of treatments is to stop macula leaking. A DME treat-
ment usually takes 3-6 months to recuperate. The affected individual may feel light
sensitivity, inflammation in the eye, and black patches in the middle of their vision
while the eye recovers and the swelling in and around the macula decreases. All of
those are common adverse effects that will likely fade away with time. However,
surgical intervention does not often help people with DME see better. Although
there is occasionally hardly anything that an individual can do to preclude diabetic
retinopathy or DME through remaining consistent with their lifestyle, staying phys-
ically fit, ingesting plenty of nutritious food along with visiting the eye specialist
once at a time to get updates regarding their eyes. Eventually, this will increase
the chances of avoiding them. There was also an elderly guy who underwent eye
surgery and panretinal photocoagulation (PRP) at a health center in [9] who had
cataracts and progressive diabetic retinopathy in one eye. During the month of July
2017, the patient was sent to our clinic after having been diagnosed with severe
DME in one of his eyes. He had previously been diagnosed with emmetropia in
one eye and had a history of vision loss in another eye as a youngster, according
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to his doctor. The VA (corrected visual acuity) of the patient’s right and left eyes
was not clearly discernible throughout the examination. One eye was found to be
implanted with an intraocular lens. Aflibercept was injected into the eyes four times
as part of the therapy. An MH was formed in December 2017 when hard exudates
were collected on the macula’s temporal side. On the other hand, a normal fluid
cuff showed a lot of granular shadows in it, while the MH edge toward the vitreous
cavity had grown a convex surface throughout the OCT test. Left eye visual acuity
was 0.46. (logMAR). Patients diagnosed with MH were treated with PPV. After
surgery to remove the vitreous core, an artificial separation between the macular
area and the periphery of the vitreous was formed in the posterior portion of the
eye. An epiretinal macular membrane (EMM) was seen surrounding the MH, al-
though it was not stained with Brilliant Blue G (BBG), suggesting that this could
be an unintended result of the anti-VEGF injections. An intraocular fluid-air ex-
change was performed while the ERM and ILM were separated. Immediately after
surgery, the patient was instructed to remain in an erect position.Following surgery,
the macular hole (MH) was sealed, but the foveal retina lost some of its strength,
and VA remained at 0.46. (logMAR). In the year [10], our clinic was referred to a
patient who was 61 years old and had hazy vision in both eyes. Both of the patient’s
eyes had a best-corrected vision of 1.2. Her medical history and test results were
typical. Funduscopic examination, on the other hand, indicated macular atrophy
in both eyes. RPD spread throughout the retina’s posterior pole and midperiph-
ery, enclosing the macular atrophy.It had been four years after her first visit when
she was sent to our clinic because her visual acuity had deteriorated to the point
where it was 0.1 in the right eye and 0.08 in the left eye. The pressure inside of
the eye was not outside of the normal range at any point. Macular atrophy had
advanced bilaterally, with the increasing visibility of the choroidal blood vessels,
according to funduscopic examination. It was still possible to view the RPD in
the locations that had been depleted. Imaging using fundus autofluorescence and
nearinfrared reflectance indicated hypofluorescence in the posterior pole.Following
the discovery of a transmission defect with granular hyperfluorescence by fluorescein
angiography, an indocyanine green angiography was performed, which demonstrated
hypofluorescence inside the lesion. In both eyes, there was no evidence of choroidal
neovascularization. The Heidelberg Retinal Angiograph 2 was used to capture flu-
orescein angiograms, indocyanine green angiography, and near-infrared reflectance.
It was plainly seen above the retinal pigment epithelium using optical coherence
tomographyUsing optical coherence tomography, it was observable above the retinal
pigment epithelium. Reduction in macular thickness and obscuration of the photore-
ceptor line in both eyes raised the choroidal signal. Multifocal electroretinograms
showed a reduction in amplitude. Low vision therapy is still being provided to the
patient. Here we discovered that DME is a disease that can develop at any phase of
DR and is distinguished by edema and retinal thickening—the latter of which may
also contain hard excess fluid, the most prevalent cause of loss of vision from DR.
The eyes of 413 diabetes patients were analyzed in this research, which was con-
ducted between January 2011 and July 2012. 15.3% of individuals had DME and
the researchers discovered [11]. Approximately 746,000 adults over the age of 40 in
the United States are at risk of developing DME, which has a 3.8 percent weighted
likelihood. DME was more common in those with T1DM than those with T2DM (14
percent in global pooled data) (6 percent in worldwide pooled data). The Wisconsin
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Epidemiologic Study of Diabetic Retinopathy, conducted over a period of 10 years,
revealed that around 20% of patients with T1DM and 14% to 25% of patients with
T2DM had DME. Patients with T1DM who participated in this study had a DME
rate of 29% over the course of 25 years, with a clinically severe DME rate of 17%
[12] Imaging of the fibrovascular complex and fluid accumulation may be used to
assess the presence of CNV using OCT.Choroidal neovascularization, also known as
CNV, refers to the development of new blood vessels that extend from the choroid
into the subretinal or sub-RPE area. CNV causes blindness[5]. Despite this, it is
unable to differentiate between vascular and fibrous tissues. The whereabouts and
activities of CNV remain unclear as a consequence [44].
Age-related macular degeneration, more often referred to as AMD, is the most com-
mon cause of blindness that cannot be reversed. People who are 50 and older make
up the vast majority of those who are diagnosed with AMD. You put yourself at a
higher risk of getting age-related macular degeneration (AMD) as you become older.
More than 14 percent of those aged 80 and older in the United States are affected
by the disorder, making elderly white Americans the group most likely to suffer
from it.Among the many age-related eye disorders that women are more likely to
suffer from, Age-related Macular Degeneration(AMD) is one of the most prevalent.
Women were reported to be 65 percent more likely than men to be diagnosed with
AMD in 2010.. The majority of those diagnosed with AMD in the United States are
white. In the United States in the year 2010, patients diagnosed with AMD were
mostly Caucasian. On the other hand, AMD was found in 4 percent of people of
African-American and Hispanic American descent in the United States [14]. AMD
affects around 11 million individuals in the United States (US), whereas the total
number of persons affected by the condition worldwide is 170 million. As a conse-
quence of this, AMD is the primary reason why vision loss occurs in industrialized
countries, and it is the third most common reason globally. It is anticipated that
the number of people living with AMD in the United States will reach 22 million by
the year 2050, while the number of people affected globally will reach 288 million
by the year 2040 [15]. In addition, Krizhevsky et al. [16] make use of e ImageNet
LSVRC-2010 to categorize around 1.2 million high quality photos. An architecture
of a neural network typically consists of numerous layers. Layers like convolutional,
pooling, and fully connected are used, among others. Pooling layers are used af-
ter the convolutional layer in a convolutional neural network.[17]. Every slice of
the representation is independently treated throughout the pooling procedure.[18].
There is a residual learning strategy described in [43] that uses noisy images to
learn noise and subtracts the residual noise from the noisy image to get a denoised
image instead of using latent clean images to learn noise. To further enhance model
learning, batch normalization and residual learning are used together. They get
improved precision and a better outcome as a consequence of the whole procedure.
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Chapter 3

Work Plan

3.1 Research Methodology

In this section, the technique that has been recommended for this thesis will be
illustrated. In line with the approach that we have proposed, we want to make use
of OCT photos in order to diagnose the sickness.OCT uses interferometry, which
is a non-invasive imaging technique that does not need any contact with the pa-
tient [19]. The findings of the research indicate that OCT pictures may be used to
acquire measurements between the layers of the retina. Because of this, it is possi-
ble that these images can be used to identify a broad variety of eye illnesses. The
key advantages of optical coherence tomography (OCT) over earlier methods are its
non-invasive nature, superior resolution, quick scan speed, and capability to deliver
3D information in a 2D environment. Residual learning, which is described in [20],
uses noisy photographs to learn noise instead of latent clean photos; then, once a
noisy image is denoised, the residual noise is subtracted from it. To enhance model
learning even further, batch normalization and residual learning are often used in
combination. As a result of the whole process, they are able to achieve higher levels
of accuracy and satisfaction with the results.
The workflow consists of a conventional CNN model with a 21-layered architec-
ture and a transfer learning approach that uses seven pre-trained CNN models
(DenseNet121, ResNet50, InceptionResNetV2, InceptionV3, VGG16, VGG19, and
MobileNetV2) to train the data set. The data set is then tested and validated to
determine its level of accuracy. Then, their performance is compared based on the
metrics of accuracy, precision, recall, F1 score in order to determine which model
is the most effective for detecting and binary classifying intracranial bleeding on
brain CT scan images. The stages that make up the process are broken down and
presented below in a logical order.

Stage 1: Collection of Data

Stage 2: Data Augmentation

Stage 3: Custom CNN model

Stage 4: Existing CNN models

Stage 5: Performance Evaluation
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3.2 Dataset

Here, we will go through the methods we will be using to achieve our aim. In the
beginning, we will utilize the Mendeley OCT dataset [41], which includes tagged
photos. A large number of high-quality images are preferred in deep learning frame-
works for model training and testing. A strong OCT picture site may be built using
data reasoning. Through this, the process of classifying and differentiating between
the images will be more accurate in rate.Using a technique known as ”data augmen-
tation,” practitioners may greatly enhance the variety of data which is available for
training models without having to acquire any additional data . By applying minor
modification to the existing dataset helps to artificially generate images through
controlling orientation, brightness, scale, location and so on. The way is simple to
improve the model’s forecast accuracy without requiring significant adjustments to
the model itself. We are planning to use about 15,400 images in our experiment
which will have different categories such as DMD, DME, CNV and Normal images.

3.3 Data Sample

There are OCT pictures of a damaged retina shown below (Figure 3.1), as well as
an image of a normal retina. OCT images of the retina are shown in the images. If
this is true, it means that retinal images with a wide range of changes in the area
are affected, and the converse is true.

Figure 3.1: Sample Data

Training Set
For a successful input-to-output mapping, the model weights are updated using a
training dataset. Neural networks are trained on real-world examples of data and
solutions that help them generalize data into a consistent input-output relationship.
Algorithms or output labels may be a source of input for a system. This training
phase is handled by an optimization strategy that searches a space of potential
values for the weights of the neural network model for a set of weights that perform
well on the training dataset.
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Figure 3.2: Data training

Testing Set
The algorithm that we deployed will learn from the training set in order to maximize
the potential benefits that may be gained by using real-world data. The positive
results for an unknown test collection will boost the algorithm’s confidence in the
actual world.

Validation Set
On our training dataset, an unbiased assessment of model fit is employed to tweak
the model’s hyperparameters. An unfair measurement occurs when the efficiency of
the validation dataset on the selected model is mentioned in the design model.

3.4 Data Labels

Data labeling is the process of giving raw data like images, videos, text, and audio
tags or labels. These tags show what class of objects the data is about and help
a machine learning model learn to recognize that class of objects when it appears
in data without a tag. We have divided our dataset into two distinct labels. Hu-
man eyes with and without retinal disease are labeled as 0 and 1 . Therefore, a
binary classifier may be used to characterize our dataset. To discriminate between
two identical binary datasets, we use the ”Class” attribute. In Figure 3.3, we can
see an example of label balance. There are two methods to depict data in a bar
chart. In this scenario, 0 takes priority over 1. That is, our collection has more
unaffected photos than affected ones. The class property indicates that the number
of uninfected eyes is 0, whereas the number of diseased eyes is 1.
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Figure 3.3: Bar-chart illustration of label balancing

3.5 Image Resizing

To function effectively, convolutional neural networks need equal picture sizes. All
photos must be scaled to a constant size before to being fed into the CNN, since
neural networks need inputs of the same size. The less the shrinkage needed, the
greater the fixed size. Less shrinkage results in less distortion of the image’s char-
acteristics and patterns. Though CNNs need consistent image sizes, there are a
few very simple solutions for datasets including images of varying sizes [21]. We
may randomly crop and resize the images to the same dimensions. This technique
delivers more robust data enhancement. In order to effectively execute the picture
compression framework and prevent memory overflow, each original OCT image of
the retina with a size of 128 x 128 pixels was scaled down along the top and bottom
bounds during network training [22]. This was achieved by using the TensorFlow
framework.

3.6 Data Augmentation

In order to train neural networks for application in real-world situations, it is nec-
essary to supplement the data available. In order to increase our model’s ability
to generalize and make better, more accurate predictions on data that it has not
been trained on, we may use data augmentation to supplement the data that it
has been trained on. TensorFlow has two techniques for doing data augmentation,
both of them are described here. Choosing the first option is much less complicated
and time-consuming. It is somewhat more difficult to utilize the second method
(often because you must read the TensorFlow documentation in order to discover
the precise functions you want), but it allows you to take more responsibility for the
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data augmentation process. By suddenly shifting the picture orientation, we were
able to utilize data augmentation techniques to increase the output of our network
in our system. Vertical and horizontal flipping and rotation were used in the first
photographs by the augmentation operator at 90, 180, and 270 degrees vertical and
horizontal rotation.

Figure 3.4: Pixel intensity values

3.7 Batch Normalization

Batch normalization is the process of normalizing system data that may be delivered
to the activation functions of a preceding layer or the inputs themselves. Generaliza-
tion error is reduced by accelerating training and giving some generalized linearity.
Batch normalization solves the issue of internal covariate shift. Each layer of the
network may adapt more independently and can be used to equalize the output of
the prior levels using batch normalization.
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Chapter 4

Implementation of CNN models

4.1 CNN

A Convolutional Neural Network, known as CNN, is a specific kind of neural net-
work that is optimized for the processing of input that has an architecture similar to
a grid, such as an image[18]. Neural networks are made up of many different parts,
one of which is the convolutional neural network (CNN). In order to identify objects,
recognize faces, and so on, CNNs employ visual recognition and classification. They
are composed of neurons that may be trained to change their weights and biases.
The most common usage of CNN is to categorize images, group them into clusters
based on similarity, and then identify specific objects. Faces, street signs, animals,
and other recognizable objects may all be recognized by algorithms that use CNN
architecture[6]. The convolutional, pooling, and fully connected layers of a CNN
are the most common.The first layer of a CNN network, the Convolutional Layer,
does the majority of the computing effort. Utilizing filters or kernels to generate
convolutional data or images. By adjusting the slider, we may add filters to the
data. If the RGB value of the image’s depth is 4, a filter with the same depth would
also be applied. For each sliding movement, a particular value is taken from each
filter in the picture and added together. A 2D matrix is the result of applying a
3D color filter on a convolution with a 2D output. Down sampling features are the
third step in the Pooling Layer. Every layer of the 3D volume is coated with it.
Flattening is the last step in the process of creating a fully connected layer. The
neural network is given a single column of the pooled feature map matrix, which is
subsequently processed. We were able to develop a model by connecting all of the
layers together. We can then use an activation function like SoftMax or Sigmoid to
further categorize the data generated by the algorithm. Softplus units increase DNN
performance and reduce convergence time compared to sigmoid and ReLU units.[25]

Optimizer “Adam”
An optimizer is a procedure or algorithm that alters the properties of a CNN archi-
tecture, such as the parameters and the learning rate. Examples of these properties
include: As a result, it contributes to the total reduction of damage and actually
increases efficiency. [23] Adam is an extension of stochastic gradient descent, which
has gained popularity for deep learning in computer vision and NLP. These include
approaches for image processing and voice recognition [24]. Reiterating the opti-
mizer is a deep-learning strategy.
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Equation(4.1) explains the “Adam” optimizer function.

ωt+ 1 = ωt− αmt (4.1)

mt = aggregate of gradients at time t, α = learning rate at time t, ωt = weights at
time t, ωt+1 = weights at time t + 1.

Softmax
A nonlinear softmax output layer is commonly used when neural networks are used
for pattern classification tasks. This, as we all know, is standard procedure. Because
of its non-linearity, the soft-max output layer of a neural network has the ability to
make significant changes to the frequency at which the network generates outputs.

4.2 Proposed CNN Model

21-Layered CNN Model

Information processing that has a grid-like structure, such as an image, is the area of
expertise of a class of neural networks called Convolutional Neural Network, which
is sometimes abbreviated as CNN or ConvNet for short[18]. A binary representation
of visual data is what we refer to as a digital picture. It comprises a sequence of
pixels. In the solution that has been suggested, a multi-layered deep CNN model
has been used in order to differentiate between real and fake images. We have used
21 layers in our model. Convolutional layers, max pooling layers are the foundation
of a CNN model in addition to that, we have used the dropout layer and other fully
connected layer such as dense layer and flatten layer in order to prevent overfitting.
Below, we will go over the specifics of each layer.

Convolutional Layer: An essential component of a CNN is a convolutional layer.
All the settings for these filters (or kernels) must be learned during the training
process. It’s common for filters to be smaller in size than the image they are in-
tended to enhance. This layer uses kernel filters to extract essential information from
the input images that are convolutionally processed. The kernel filters are similar
to the input images, but they have lower constant parameters. Edge detection,
blurring, and sharpening can be accomplished through the convolution of an image
with several filters. In the convolutional layer, we used the Conv2D layer to con-
struct this CNN model. The model was built with a total of ten Conv 2D layers. [45]
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Pooling Layer: Following the convolutional layer in convolutional neural networks
are layers known as pooling layers. In order to improve the efficiency of the compu-
tations being performed, pooling is used to reduce the amount of the features that
are extracted, and therefore, the number of trainable parameters. The pooling filter
defines the amount of the range that is summarized by the pooling procedure. If a
filter’s parameters are 2x2, then the summary section is also 2x2 in size. Here we
can detect four layers in total with other layers [46].

Fully Connected Layer(FC): This layer is comprised entirely of feed forward
neural networks. Fully Connected Layers(FNN) are the layers that come after the
final few in the network’s architecture. After that, the output of the last pooling or
convolutional layer is flattened before it is sent on to the fully connected layer as
the input. This model carries the following layers :

Flatten Layer: Once the fourth MaxPooling layer has been used, a single flatten
layer will be applied. In the end, this is beneficial for the network as a whole in
general.

Dense Layer: In addition to the flattening layer, this model has two dense layers.
The outputs of previous levels are sent to all neurons in this layer.

Dropout Layer: During the training process, this layer will periodically reset all
of the inputs to zero as a means of reducing the possibility of the model being too
accurate.
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Figure 4.1: Proposed Model Architecture
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4.3 Pre-trained CNN Models

4.3.1 VGG16

It is generally agreed upon that VGG16 is among the very finest vision model ar-
chitectures that have ever been developed. Karen Simonyan and Andrew Zisserman
at Oxford introduced this CNN model. The approach was suggested in 2013 but
presented during the 2014 ILSVRC ImageNet Challenge. They named it VGG after
Oxford’s Visual Geometry Group, where they worked. Authors suggested network
designs depending on depth. All ImageNet Challenge settings use a stack of multiple
(3 x 3, stride 1, padding 1) convolution layers followed by a 2 x 2 maxpooling layer.
Multiple stack combinations were cycled to reach different depths. Each configura-
tion’s number indicates the number of weight-parameter layers. Throughout it uses
convolution and max pool layers. Ending with 2 FC and a SoftMax. VGG16 has 16
weighted layers. This network contains 138 million parameters (estimated)[26].

Figure 4.2: VGG16 Architecture

4.3.2 VGG19

This convolutional neural network was trained using ImageNet photos. VGG19 has
pre-trained layers and a thorough grasp of form, color, and structure. To train
VGG19, we used millions of images with tough categorization tasks. A keyboard,
mouse, pencil, and a variety of animals [27] are among the more than 1000 items that
may be classified by the network’s 19 layers. Thus, the network has been able to learn
a wide range of features for a wide range of images. 224x224 pixels is the VGG19’s
image input size. The convolutional layers of VGG make advantage of the smallest
possible receptive field to capture up/down and left/right motion. Following this is
a ReLU activation technique. The ReLU activation function is considered to be a
piecewise linear activation function since it outputs the input when it is negative and
returns zero when it is positive. The stride value for maintaining spatial resolution
after convolution is 1 pixel[28].
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Figure 4.3: VGG19 Architecture

4.3.3 DenseNet121

In a typical intake Convolutional Neural Network (CNN), each convolutional layer
obtains overall information from the previous convolutional layer and produces the
desired extracted features which is then passed on to the next convolutional layer,
with the exception of the first (which takes in the input). ’L’ layers have several
direct ’L’ connections between layers. The ’dwindling gradient’ issue arises as CNN
network depth grows. When the knowledge channel from source to destination layers
lengthens, some data may ’disappear’ or be lost, lowering the network’s training
capability[29]. DenseNets simplifies layer connections and changes CNN architecture
to resolve this situation. Each layer in a DenseNet design is directly linked to every
other layer, thus the name. L-levels have L(L+1)/2 direct connections[30]. Contrary
to common assumption, DenseNets have fewer variables than conventional CNNs
since they do not have to learn duplicate feature maps. Additionally, several ResNet
implementations have shown that many layers contribute relatively little and may be
eliminated. ResNets contain several parameters since each layer must learn its own
weights. DenseNets layers, on the other hand, are very limited and add a negligible
number of new feature-maps[30]. Due to the previously outlined information flow
and gradients, training certain very convolutional models proved to be challenging.
Because each layer has direct connections to the gradient descent slopes and the
input data images, DenseNet addresses this issue.
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Figure 4.4: Densnet121 Architecture

4.3.4 MobNetV2

In order to reduce the size of the model and the complexity of the network, Mobile
Nets are a depth-wise separable convolution design that reduces the number of
connections. Embedded and mobile applications benefit from the technology. The
author has included two global hyperparameters into this sort of network, which are
as follows: A good balance between model latency and accuracy is achieved with
this technique. In addition, the hyperparameters give the capability of selecting a
suitably scaled model in accordance with the problem restrictions, if necessary.

Figure 4.5: MobileNetV2 Architecture
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4.3.5 ResNet50

As a Convolutional Neural Network (CNN) architecture known as ResNet, it is
a strong backbone model for many computer vision applications. It’s a 50-layer
convolutional neural network. Skip connections are used by ResNet to transfer
data from one layer to another. Because of this, convolutional networks with up to
thousands of layers may be built, which outperform shallower networks. As a result,
the issue of a vanishing gradient was lessened. 224 × 224 pixels is the constant
size of the input pictures in this model. Several variations of ResNet are available,
each with a different number of layers. It is possible to train networks with a high
number of layers (up to tens of thousands) without increasing the proportion of
training errors. The vanishing gradient issue may be addressed via ResNets and
identity mapping. Using the ImageNet database, we can import a network that has
already been trained on over a million photos. In addition to keyboards, pencils
and mice the pretrained network can identify more than a thousand other things.
Deep neural networks with more neural layers are more efficient and have a lower
proportion of mistakes when using this approach. As a result, it is now feasible to
train far deeper networks than was previously allowed, thanks to the use of skip
connections.

Figure 4.6: Resnet50 Architecture
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4.3.6 InceptionV3

The Revised Inception for Computer Vision was published in 2015 and included
Fig.1 as part of the proposal for a new version of Inception. Including both terms
of total quantity of parameters produced by the system and in light of the financial
cost incurred, Inception Networks (GoogLeNet/InceptionV1) outperform VGGNets
(memory and other resources) [31]. Using this software, photos may be sorted into
over a thousand different object groups. For transfer learning, the InceptionV3
model is amongst the most preferred options. With this, we can go back and retrain
the final layers of current products, which saves a lot of time. InceptionV3 was
trained on over a million pictures from the ImageNet database, demonstrating that
the model may be utilized on a smaller dataset with high accuracy classifications
without retraining. The Inception layers are a set of layers (11 convolutional layers,
33 convolutional layers, 55 convolutional layers) that combine the result filters into
a single output vector, which produces the parameters for the next stage. Changes
to an Inception Network must be handled with care to avoid losing any operational
advantages. Since the new network’s performance is so uncertain, modifying an In-
ception network for various use cases becomes a challenge. Inception v3 has already
provided a number of ways to improve the network in order to free up the restric-
tions for quicker model adoption. Batch normalizing, down sampling and parallel
computation are only few of the techniques utilized in parametric convolution. Two
sets of parameters: 5 million (V1) and 23 million (V2) (V3) [32].

Figure 4.7: InceptionV3 Architecture.
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4.3.7 InceptionResNetV2

As an extension of the Inception family of architectures, InceptionResNetV2 con-
tains residual connections. Images from the ImageNet database are used to train it.
One thousand item categories may be categorized by the network, which has 164
layers and is capable of classifying photos into 1000 different types of objects. Con-
sequently, the network has learnt a broad variety of visual feature representations.
Class probabilities are calculated using a collection of picture input dimensions of
299 x 299. It is based on the framework of Inception and the Residual link. Mul-
tiple convolutional layers and residual connections are used in the Inception-Resnet
block. In addition to reducing training time, using residual connections prevents the
degradation issue produced by deep structures.

Figure 4.8: InceptionResnetV2 Architecture

21



Chapter 5

Performance Analysis

The objective of doing a performance analysis is to validate the innovative appli-
cations of technology that have been employed to increase performance. This gives
us an overview of the entire work and highlights the achievements and flaws of a
specific work which help improve existing approaches and learn new ones. It can also
be used to evaluate strengths and flaws of others. Tactical and technical appraisal,
movement analysis, and statistics compilation are the most important aspects of
performance analysis.[34]

5.1 Performance Parameter

The accuracy, precision, recall and f1 score have been computed for each of these
models in order to evaluate and provide a comparative analysis of the findings.
This was done in order to assess, analyze, and highlight a comparative analysis of
the outcomes based on the performance of both conventional and pre-trained CNN
models. This part will begin with a discussion of the equations for the performance
measures employed throughout the analysis.

Accuracy = TP +

(
TN

CP

)
+ CP + CN (5.1)

Precision = TP ∗
(
TPR

TP

)
+ FP (5.2)

Recall = TP ∗
(
TPR

TP

)
+ FN (5.3)

f1 score =
TP

TP + 1
2

∗ (FP + FN)
(5.4)

Here, TP=True Positive, TN= True Negative, CP= Condition Positive, CN= Condi-
tion Negative, TPR= True Positive Rate, FP= False Positive, FN= False Negative.
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The training dataset for this model is evaluated against the proposed network based
on a number of parameters. These parameters include batch size, epoch, learning
rate, optimizer, and callbacks. Following the completion of the pre-processing of
the dataset, training can then begin. The Transfer Learning methodology allows
for the modification of its properties prior to the start of training.Before beginning
the machine learning process, the user chooses between custom CNN models and
pre-trained models. Following this step, the directory containing both sets of newly
formed categories is imported depending on the size of the first layer of input. There
are two portions to the data: 80 percent is used for training, and 20 percent is used
for testing. An optimizer named Adam [35] that has been employed, and it is a
gradient-based method that focuses on novel forecasts of instances which are of
relatively low. Randomized goal functions may be improved using this technique.
The Adam optimizer is utilized because it is easy to design, efficient, takes minimal
memory, and is resistant to gradient diagonal resizing. This is because the method is
suitable for scenarios with enormous quantities of data and/or parameter values [36].
We have made use of 32 batches and 30 epochs altogether (each epoch, there are
450 iterations). We have utilized ”Categorical CrossEntropy” in the part pertaining
to the loss. Because ”RGB” was chosen as the color mode in the section devoted to
color modes, it was determined that the images would be split up into three distinct
channels as a result. The execution environment has an effect on training completion
times in addition to the various training options. In each and every experiment, the
running environment consists of a graphics processing unit (GPU).Google Colab Pro
has been used in order to training, testing and gathering information with a GPU
of Nvidia V100 or P100 [37]. On the command line of Google Colab, to investigate
the GPU’s settings, type ”!nvidia-smi”.

Table 5.1: Parameter Comparison

Parameter 21-layer proposed model Pre-trained model
Training Data 80% 80%
Testing Data 20% 20%
Batch Size 32 32
Target Size (128,128) (224,224)

Epoch 30 30
Max queue size 100 100

Step 426 426
Execution Environment GPU GPU

Verbose 1 1
Optimizer Adam Adam

Loss Function Categorical Categorical
Initial Learning Rate 0.001 0.001

Color Mode RGB RGB
Class Mode Binary Binary
Matrics Accuracy,Loss,Recall,Precision Accuracy,Loss,Recall,Precision
Callback ReduceLROnPlateau ReduceLROnPlateau
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5.2 Performance of proposed model

We decided to evaluate a total of 15,400 OCT scans, which were divided among
four categories: CNV images, DMD images, DME images, and Normal images. In
conclusion, it was determined that the model that we had proposed was accurate
98.37 percent of the time. The table below presents the findings of accuracy and
loss after training and testing.

Table 5.2: Accuracy and Loss of the Proposed CNN Model in Training and Testing

Testing Accuracy Testing Loss Training Accuracy Training Loss
98.37% 10.94% 96.83% 14.18%

The table shows the testing and training accuracy of the proposed 21 layers model
which is 98.37% and 95.83% respectively. The model has a loss of 10.94% in testing
data and 14.18% while training data.

Figure 5.1: Training and validation graph of Proposed Model

From the above graphs we can estimate the accuracy and loss of the finding in
terms of training and validation dataset. The accuracy graph shows the acceleration
margin and scattered arbitrary lines on the training dataset. On the other hand the
loss graph shows the same study in a decline manner.
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5.3 Performance of pre-trained models

VGG16: Using the VGG16 model, we were able to obtain a testing accuracy
of 94.21 percent. The accuracy and loss graphs for VGG16 are shown in Figure
5.2. We observed, in both the training and the validation loss graphs, that the loss
lowers to a sufficient degree with time, which leads us to believe that regression is
not occurring. Since we discovered that the training curves and the validation curves
are similarly convergent, we are able to exclude the possibility that VGG16 overfit
the data. Because of the quantity of data provided, there are occasional variations
in the validation curve. Figure 5.2 shows Training and validation accuracy, loss of
VGG16 model.

Figure 5.2: Training and validation graph of VGG16

VGG19: Using the VGG19 model, we were able to obtain a testing accuracy of
91.43 percent. The accuracy and loss graphs for VGG19 are shown in Figure 5.3. We
observed that the loss lowers with time in the training and validation loss graphs,
with a tiny peak point in the end. Therefore we estimate the acceleration and
declination of VGG19 since the training and testing curves are both convergent.
Because of the quantity of data provided, there are occasional variations in the
validation curve.
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Figure 5.3: Training and validation graph of VGG19

MobNetV2: Here MobNetV2 model that we used was able to obtain a testing
accuracy of 90.81 percent. The accuracy and loss graphs for MobNetV2 are shown
in Figure 5.4. In the testing and training cost graphs, we can see that the damage
decreases with time. Because we discovered that the training curve and the valida-
tion curve are similarly convergent, we are able to conclude that MobNetV2 did not
exhibit overfitting. Because of the quantity of data provided, there are occasional
variations in the validation curve.

Figure 5.4: Training and validation graph of MobNetV2

ResNet50: Testing accuracy was 92.83 percent in the ResNet50 model. The accu-
racy and loss graphs for ResNet50 are shown in Figure 5.5. The loss value is heading
towards zero. The curves also converge that shows training and validation accuracy,
loss of the Resnet50 model.
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Figure 5.5: Training and validation graph of ResNet50

DenseNet121: A trial efficiency score of 90.29 percent was obtained using the
DenseNet121 model. The testing and training efficiency and loss of the DenseNet121
model are shown in Figure 5.6. We saw that there is indeed a significant reduction
in loss, so the curve is converging in the training and validation loss graphs.

Figure 5.6: Training and validation graph of DenseNet121
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InceptionV3: The testing accuracy was determined to be 89.36 percent using the
InceptionV3 model. The accuracy and loss graphs for InceptionV3 are shown in
Figure 5.7. Despite slight variations, the calibration and testing curves converge on
each other. For the InceptionV3 model, the training and validation loss values both
decrease in proportion. The curves also shows, resulting in a reduction in Inception
V3 model training and validation accuracy.

Figure 5.7: Training and validation graph of InceptionV3

InceptionResNetV2: The InceptionResNetV2 model has an accuracy of 84.46
percent in testing. Figure 5.8 depicts the accuracy and loss graphs for Inception-
ResNetV2. Small variations are seen in this graph, indicating variances between the
loss value training and validation curves. The curves also show the InceptionRes-
NetV2 model’s training and validation accuracy as well as loss.

Figure 5.8: Training and validation graph of InceptionResNetV2
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5.4 Compare and Analysis

There are seven pre-trained models included in this study: VGG16, VGG19, Mob-
NetV2, ResNet50, DenseNet121, InceptionV3, and InceptionResNetV2. A perfor-
mance comparison is also given between the proposed 21-layer CNN model and
seven pre-trained models. The statistics in the tables show that the suggested mod-
els perform significantly better than the existing models. The custom model and
pre-trained models have already been trained and a bar graph indicating the accu-
racy of the these CNN models in Figure 5.9. The most accurate result possible was
achieved by the proposed model in term of accuracy, precision, recall and f1 score.
Here our proposed model 98.37 percent accuracy, 97.26 percent precision, 98.98 per-
cent recall and 98.57 percent f1 score. It is clear that the efficiency of detection the
disease varies from model to model.
The below graph shows the difference between seven pretrained models along with
the proposed CNN model.

Table 5.3: Comparison between CNN architectures

Architecture Precision Recall F1 score Accuracy
VGG16 93.38% 96.24% 98.12% 94.21%
VGG19 89.87% 92.68% 91.54% 91.43%

MobNetV2 90.80% 90.70% 90.80% 90.81%
ResNet50 93.98% 95.98% 93.92% 94.83%

DenseNet121 89.32% 92.77% 90.25% 90.29%
InceptionV3 88.12% 90.90% 89.41% 89.36%

InceptionResNetV2 82.72% 85.32% 84.43% 84.46%
Proposed Model 97.26% 98.98% 98.57% 98.37%

We may conclude that the customized CNN models outperform other pre-trained
CNN models based on the experimental findings shown in the bar chart. The ac-
curacy of CNN models are shown by a bar graph such in Figure 5.9 where the val-
ues are respectively VGG16 98.37 percent, VGG19 91.43 percent, MobNetV2 90.81
percent, ResNet50 94.83 percent, DenseNet121 90.29 percent, InceptionV3 89.36
percent, and InceptionResNetV2 84.46 percent are the accuracy levels achieved by
these pre-trained CNN models. Therefore, the use of transfer learning models on
the same dataset demonstrates how effective the proposed model can be because
of the multiple layers in the architecture.InceptionV3 and InceptionResNetV2 CNN
models have the lowest accuracy in the performance bar chart.
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Figure 5.9: Accuracy Comparison

5.5 Accuracy Comparison on Related Work

A comparison is made in this part between the accuracy achieved by this thesis
article and the accuracy of similar recent papers on datasets of OCT images. OCT-
NET was used by Perdomo et al.[39] in the study to diagnose retinal illness, and
they had achieved an accuracy of 93.75 percent of the time. Both Lee et al.[38] and
Rajagopalan et al.[40] showed CNN implementation for identifying retinal illness
in their own study, where they reached an accuracy of 93.45 and 95.70 percent
respectively. Awais et al.[33] on the other hand, made use of a feedforward neural
network, which allowed them to achieve an accuracy of 87.50 percent. An overview
of the accuracy review that was accomplished by this study and other research
efforts that were recently completed on the specific dataset that is being used in
this paper can be found in the table that follows. When compared to the other
approaches, it was discovered that the CNN model utilized in this study achieved
the maximum level of accuracy possible, which was 98.37 percent. This accuracy
review is represented by a bar graph which can be found in Figure 5.10.

Table 5.4: Accuracy Comparison

Approaches Methods Accuracy
This Paper CNN 98.37%

Perdomo et al.[39] OCT-NET 93.75%
Lee et al.[38] CNN 93.45%

Awais et al.[33] ConvNet 87.50%
Rajagopalan et al.[40] CNN 95.70%
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Figure 5.10: Accuracy Comparison on related works
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Chapter 6

Conclusion

This study outlines a procedure that, when it comes to the treatment and prevention
of eye diseases, can be of great use to ophthalmologists. According to the findings
of the research article, this system has a detection rate of 98.37% and may detect
these diseases in their earliest stages, hence assisting individuals in avoiding the
potential consequences. We use our recommended CNN model to analyze the data,
which consists of 15,400 OCT images that have been divided into three portions
and pre-processed. This allows the model to distinguish between images that are
clean and those that include faults. In conclusion, we are able to establish that the
21-layered CNN model that was suggested is an improved method for diagnosing
eye disorders based on OCT data. The accuracy of the model that was proposed
is noticeably greater than that of the other methodologies that were considered. It
is possible that ophthalmologists who use this technology will be able to carry out
effective retinal image analysis. This will allow them to provide improved treatment
at an earlier stage in the progression of the disease, thereby preventing blindness.
Because of this, we intend to increase the effectiveness of our model in the coming
years.

6.1 Future Work

When it comes to diagnosing and treating retinal problems, OCT is becoming more
and more popular. Future advances in technology and software will make it easier to
use. To increase axial resolution, commercial scanners may use ultra-broad spectral
bandwidth light sources as they become more affordable. OCT clinical use is still
unclear. More research is required to establish the spectrum of macular illnesses for
which OCT is effective and to compare its usefulness to other imaging modalities.
Clinical practice needs more experience and research. However, further information
is required to decide whether OCT testing alone will be enough. Moreover, the
suggested approach might be applied to datasets from other domains. The suggested
model may be extended to bigger datasets in the future to further improve its
performance. In a few years, we will have answers to these remaining questions and
other issues.
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