
DATA PROCESSING THROUGH BIOSENSORS AND DEVELOPMENT

OF SIMULATION SOFTWARE IN WINDOWS & RT-LINUX

Kazi Mohammed Razin; ID: 09221067

Jonayet Hossain; ID: 09221060

Mahmudul Hasan Oyon; ID: 09221214

Department of Electrical & Electronic Engineering

December, 2011

BRAC University, Dhaka, Bangladesh

DECLARATION

We hereby declare that the thesis titled “Data Processing through Biosensors &

Development of Simulation Software in Windows & RT-LINUX” submitted to the

Department of Electrical & Electronic Engineering (EEE) BRAC University, Dhaka,

in partial fulfillment of the Bachelor of Science in Electrical &Electronic

Engineering, is our original work and was not submitted elsewhere for the award

of any other Degree or Diploma.

Dhaka, Date 15th December, 2011

SUPERVISOR

Dr. AKM ABDUL MALEK AZAD
ASSOCIATE PROFESSOR
DEPARTMENT of
ELECTRICAL & ELECTRONIC ENGINEERING,
 BRAC UNIVERSITY

 KAZI MOHAMMED RAZIN

 Student ID: 09221067

JONAYET HOSSAIN

Student ID: 09221060

MAHMUDUL HASAN OYON

Student ID: 09221214

Acknowledgement

We would like to express our sincere and firm gratitude and pay a lot thanks to

our honorable thesis supervisor Dr. AKM Abdul Malek Azad, Associate Professor,

Department of Electrical & Electronics Engineering for his constant supervision to

carry out the thesis. He extended his helping hand by providing us

encouragement, inspiration, facilities and valuable feedback throughout the

course of this thesis. We would also like to thank Marzia Alam, Lecturer, and

Department of Electrical & Electronics Engineering for giving us the direction of

our work.

Abstract

Solving real life problems are often very time demanding due to the high sensitivity of the

system such as biomedical devices which are actually used to get data to represent the critical

state of a human or animal body. There are some important indicators of human health those

include ECG, SPO2, Temperature and Blood pressure. By monitoring those indicators the current

state of any human health is possible to determine and hence necessary steps can be taken.

Therefore the Real Time monitoring of the health indicators signals is very important in

Biomedical Engineering. In our approach we have experimentally proved and did the signal

processing of important biomedical signals using Windows and Linux OS. For Linux we have

used Red hat enterprise Linux 4 and RT Linux which are soft real time and hard real time

operating system respectively. The data acquisition system of the signals has been done

through a data acquisition Card and interfacing of the system to computer has been done both

in Windows and Linux. We did it to make a comparison between the time dependencies of

signals in different operating system under multitasking environment. So our objectives are to

make a Real time signal processing systems and software for biomedical devices as well as to

compare the time delay of the measurement system under 2 operating systems. We

approached it by choosing three health indicators signals which are ECG, SPO2 and

Temperature.

1

 C O N T E N T S

Chapter 1 Introduction

1.1 Project overview……………………………………………………. 4-5

1.2 Background and motivation…………………………………….. 5
1.3 Selection of Biosensors ……………………………………………. 6
1.4 Comparison of different operating system……………………. 6-7
1.5 Objectives of the present work………………………………….. 7
1.6 Outline of the thesis paper……………………………………….. 7

Chapter 2 Data Acquisition System

2.1 Overview of the embedded system………………………..….9

2.2 Role of DAQ card in the system……………………………..…9-10

2.3 USB-4716 Specifications ………………………………………....10-11

 Chapter 3 Hardware software Interface (Windows)

3.1 Role of software in the system …………………………………13

3.2 Interfacing Technique……………………………………………13-14
3.2.1 Device driver……………………………………………..13

3.2.2 Function used …………………………………………...14
3.3 Steps of interfacing DAQ and the software…………………14-15

 3.4 Software Development in windows……………………………15

 3.4.1 .Net framework………………………………………….15

3.4.2 Options of the software……………………………….15

3.4.3 Graphical user interface……………………………...15-16
3.4.4 Graph generating technique……………………….16

 Chapter 4 Hardware software Interface (Linux)

4.1 Why Linux …………………………………………………………18

4.2 Interfacing Techniques for Linux……………………………..18-20

 Chapter 5 Temperature Monitoring System

5.1 Importance of Temperature monitoring ………………………22

5.2 Determining biomedical temperature table…………………22-23
5.2.1 Determining technique…………………………………22-23

5.2.2 Obtained data table ……………………………………23-24
5.3 Data Deployment in developed Software………………….....24-25

2

Chapter 6 Electrocardiogram Signal monitoring system

6.1 Working principle of ECG………………………………………….27
6.2 ECG Measuring Technique………………………………………..28

 Chapter 7 Pulse Oximetry Signal Monitoring system

7.1 Principle of pulse oximetry…………………………………………30
7.2 Pulse oximeter device………………………………………………30

Chapter 8 Experiment Techniques & Result

8.1 Experiment overview ……………………………………………….32

8.2 Time measurement techniques ………………………………….32

8.2.1 Windows technique……………………………………...32-33

8.2.2 Linux technique……………………………………….......33-34

8.3 Test results of comparison …………………………………………34-39

 Chapter 9 Conclusion

9.1 Achievements of present work………………………………….41

9.2 Limitations of present work……………………………………….41

9.3 Decisions obtained from the research…………………………41-42

9.4 Future work………………………………………………………......42

References …………………………………………………………….....43-44

 Appendices ……………………………………………………..45-55

 Appendix A

 A.1 Code for the GUI in windows

 A.2 Code for time measurement in windows console

 A.3 Code for time measurement in Linux Terminal

 A.4 MatLab code for temperature sensor equation

 A.5 MatLab code for windows-Linux comparison

 Appendix B

 B.1 sample data set for windows time measurement

 B.2 sample data set for Linux time measurement

 List of Figures……………………..……………………………..54

 List of Tables …………………………………………………...55

3

Chapter 1

Introduction

4

1.1 Project overview

The goal of the project is to develop a 3 channel data acquisition system which receives the

analog biomedical signals from human body/animal and sends these signals to computer

through a data acquisition system. For data acquisition purpose we have used USB-4716

data acquisition card which is an updated product of Advantech Company where USB Hid

communication has been used. The signal processing circuits filter, amplify, and cancel the

noise of the analog signal (ASP) coming from the transducers of the bio sensors and send it

to data acquisition system (DAQ) for digital signal processing. The signal processing circuit of

each bio sensor is different due to its variety of data. For example ECG needs only to show

the graphics of heart electrical activity where SPO2 or oxygen saturation has a complex

algorithm to determine. DAQ digitizes the signals and converts it into digital numeric value

so that it can be manipulated by the computer. Firstly when the DAQ get analog signals it

makes the signal to digital for computer manipulation and then make it analog again for

software manipulation. The DAQ card we have used is a 16 bit system and 5V or 10V

reference can be set so the resolution of the card is .07mV which is enough accurate for our

development. After the DAQ card processing is done it comes to the computer. To make the

DAQ card works with the computer system firstly we had to interface the DAQ card with the

system. We did interfacing both in windows and Linux. We made comparison between

windows and Linux signal processing. By understanding the sensitivity of the bio medical

data we decided to use RT Linux which coexists with Linux and has a real time kernel that

can give nanosecond precision

 Figure 1: The flow of the project’s I/O system.

The analysis of the system was necessary to gain the prime objective properly. By analyzing
the system we get three major parts. The major parts of the systems and also the
components of the parts have been briefly described below in the diagram.

Biosensor

GUI in

windows and

Linux

Linking RT

Linux + GUI

Data Processing

in windows+

Linux

Analog signal

processing

DSP and Data

Acquisition

5

Figure 2: Analysis of the total system

1.2 Background and Motivation

Medical physics is an area of increasing importance in hospitals and in health-related

occupations. Physics is used in medicine to diagnose illness and disorder and to design

appropriate treatment and solutions. Biomedical engineering is a field of research of high

importance in any sense around the world. Biomedical engineering is also a very sensitive

field of engineering measurement where delay of a second can cause someone life’s to

death. So Real time computing has great importance in the field of biomedical engineering.

There are always sensitive cases where it needs to follow up the pulse rate, blood pressure

etc for every single moment. If one data is missed or cannot be processed in due time by the

machine (biomedical instrument) it may cause serious impact on the patient’s body. So real

time patient monitoring or medicine testing equipment has great importance in healthcare.

As we know Bangladesh is very good in pharmaceuticals research and development. But due

to lack of medicine testing equipment they cannot prosper as expected. Cost effective

patient monitoring system has also great importance for giving proper treatment to every

This part is consisting of bio

receptor and transducer. Bio

receptor is a bio molecule that

recognizes the target analyte

and Transducer is capable of

converting the bio recognition

event into a measurable signal.

Transducer will send a

measurable signal which is

an Analog signal to signal

processing hardware. After

filter, amplification and

noise cancellation the signal

will be sent to DAQ which

converts the signal to digital

numeric value and sends to

RT Linux.

RT Linux receives the signal

from the DAQ, processes it and

then links to Linux GUI to show

it. Linux GUI will be capable of

collecting, comparing, analyzing

the signal and also process the

signal as necessary to show it in

the graphical Interface

System Analysis

Signal processing Visual

Representation

Biosensor

6

people of the country. A real time patient monitoring and medicine testing equipment will

fulfill all the needs.

1.3 Selection of Biosensors

The biosensors we have selected for our project are mainly 3 sensors those are very

necessary for health indication of any human body. Those are

 Temperature sensor

 Oxygen saturation

 Electrocardiogram

1.4 Comparison of different operating system

The part of the OS which handles all of the details of sharing and device handling is called

the kernel or the core. The kernel is not something that can be used directly but its services

can be accessed by system calls. What is needed is a user interface or command line

interface that can be used by the user to make the use of the kernel. Since this is a layer of

software it is called the shell around the kernel. So the kernel is the most important thing

that actually decides the time sharing or priority sharing of any task that is given to the

processor. If we compare windows with Linux we will get huge differences in this time or

task sharing system. Windows is a single user, single tasking environment where Linux is

multi user, multi tasking environment. There are different versions of windows and Linux

which are definitely not have the same kind of kernel means their time sharing or task

sharing capacity is not the same but generally we can call any version of Linux must have

more multitasking ability than any version of windows. If we go a little detail we can see

Linux has total real time kernel which is RT Linux or Real time Linux which is hard real time.

Other than that any other Linux OS is known as soft real [6] time OS where windows are a

general OS. If we think about the time dependency Linux has nanosecond precision where

windows have millisecond. In our project we have tried to make signal processing both in

windows and Linux to see the time dependence of the each system as well as to collect data

about how important the time dependence when it comes to any sensitive issues like

biomedical signals.

7

Windows Linux

Non real time kernel Soft and hard real time kernel

Single user single tasking environment Multi user multi tasking environment

Priority or time sharing system Round robin or real time system

Millisecond signal processing precision Nanosecond signal processing precision

Not much time sensitive Much more time sensitive

Suitable for general tasking and non

sensitive signal processing

Suitable for multi tasking or real time signal

processing

1.5 Objectives of the Present Work

The objectives of the present work is to Research about the time dependence of different

OS in real life signal processing and its impact on biomedical signal processing which is very

much sensitive in any sense. The objectives also include the development of software in

windows and Linux environment for biomedical signal processing purpose. The objectives

are given below,

 Interfacing the real life biomedical signals with windows and Linux OS and make a

comparison of the signals processed by different OS.

 Development of signal processing software both in windows and Linux so that

comparison can be precise and the software can be used for further signal

processing research and development projects.

 Development of Data acquisition techniques for biomedical sensors.

 Establishing the technique of getting different biomedical signal such as Temparatue,

ECG, and SPO2 by making filtering, data acquisition and data representation.

1.6 Outline of the thesis paper

This paper describes the research technique and current development of the project in

detail as possible. Chapter 2 describes the Data acquisition system. Chapter 3 and 4 describe

the software development phases in windows and Linux. These chapters also describe the

interfacing technique with data acquisition system and the software. Chapter 5, 6,7 describe

three biomedical sensors measuring techniques which are temperature, ECG and Pulse

oximeter. Chapter 8 provides the experiment techniques and result. Chapter 9 provides the

achievements and limitations of the project as well as the future development plans.

8

Chapter 2

Data Acquisition System

9

2.1 Overview of the embedded system

The system is totally embedded. It consists of hardware and software part and both part are

equally important in this project. Hardware part includes the Data Acquisition system and

primary signal processing circuit. Biomedical sensors are also part of the hardware system

[4]. Software system consists of operating system and developed software in windows and

Linux. The contract between the hardware and software system is given below,

 Figure 3: The Contract between hardware and software [17]

2.2 Role of DAQ card in the system

Traditionally, measurements are done on standalone instruments of various types-
oscilloscopes, multi meters, counters etc. However, the need to record the measurements
and process the collected data for visualization has become increasingly important. There
are several ways in which the data can be exchanged between instruments and a computer.
Many instruments have a serial port which can exchange data to and from a computer or
another instrument. Another way to measure signals and transfer the data into a computer
is by using a Data Acquisition board. A typical commercial DAQ card contains ADC and DAC
that allows input and output of analog and digital signals in addition to digital input/output
channels [7].

 Sampling:
The data is acquired by an ADC using a process called sampling. Sampling an analog
signal involves taking a sample of the signal at discrete times. This rate at which the
signal is sampled is known as sampling frequency. The sampling frequency determines
the quality of the analog signal that is converted. Higher sampling frequency achieves
better conversion of the analog signals. The minimum sampling frequency required to
represent the signal should at least be twice the maximum frequency of the analog
signal under test (this is called the Nyquist rate).

Software Hardware Primary signal

processing

Data Acquisition

Secondary signal

processing

Data

Representation

10

 ADC:

Once the signal has been sampled, we need to convert the analog samples into a digital
code. This process is called analog to digital conversion. This is shown in
 Most boards also have a multiplexer that acts a like a switch between different channels
and the ADC. Therefore with 1 ADC, it is possible to have a multichannel input DAQ
board. The DAQ board we are using has 16 channel analog inputs. This makes it possible
to acquire up to 16 analog signals in parallel (however, the sampling frequency will be
divided by the number of parallel channels).

 Resolution:

Precision of the analog input signal converted into digital format is dependent upon the
number of bits the ADC uses. The resolution of the converted signal is a function of the
number of bits the ADC uses to represents the digital data. The higher the resolution,
the higher the number of divisions the voltage range is broken into, and therefore, the
smaller the detectable voltage changes. An 8 bit ADC gives 256 levels (2^8) compared to
a 12 bit ADC that has 4096 levels (2^12). Hence, 12 bit ADC will be able to detect smaller
increments of the input signals then a 8 bit ADC. If the full scale of the input signal is 10V
than the LSB for a 3-bit ADC corresponds to 10/2^3=1.25V. That is not very good!
However, for a 12 bit ADC the least significant bit will be 10/2^12=10/4096=2.44mV. If
we need to detect smaller changes, one has to use a higher resolution ADC. Clearly, the
resolution is an important characteristic of the DAQ board.

2.3 USB-4716 Specifications

 The data acquisition board we are using for signal generation and communicating with
computer is a DAQ from Advantech Company model no USB-4716. The USB-4716 is a true
Plug & Play data acquisition device. No need to opening up the computer chassis just need
to use the USB port for data acquisition. USB-4716 has 16 single-ended/ 8 differential inputs
with 16-bit resolution, up to 200 kS/s throughput, 16 digital I/O lines and 1 user counter,
add two 16-bit analog outputs [12]. It obtains all required power from the USB port, so no
external power connection is ever required. The features of the USB-4716 are given below,
Main Features:

 Supports USB 2.0
 Portable
 Bus-powered
 16 analog input channels
 16-bit resolution AI
 Sampling rate up to 200 kS/s
 8-ch DI/8-ch DO, 2-ch AO and one 32-bit counter
 Detachable screw terminal on modules
 Suitable for DIN-rail mounting

11

 One lockable USB cable for secure connection included

Analog Input (AI)

 16-channel Single-Ended or 8-channel Differential A/D Input
 16-bit A/D conversion
 Sampling rate form 1 Hz to 200 kHz
 Input Range (V): +/-10, +/-5, +/-2.5, +/-1.25, +/-0.625, 0~10V, 0~5V, 0~2.5V, 0~1.25V
 Automatic Channel/Gain Scanning

Analog Output (AO)

 2-channel D/A Output
 Output Range with internal reference (V): 0~5, 0~10, +/-5, +/-10

Digital Input (DI)

 8-channel Digital Input

Digital Output (DO)

 8-channel Digital Output

Counter (C)

 Channel 0: 32 bits event counter with max to 1k input rate or 0.1HZ~10KHZ
frequency measure.
 Channel 1: 24 bits counter with 24M base clock provides pulse out function.

Figure 4: USB-4716

12

Chapter 3

Hardware Software Interface (Windows)

3.1 Role of Software in the system

13

The system consists of both hardware and software. Software is responsible for

secondary signal processing and representation of the received data in a Graphical User

Interface. Software does the critical part of the system by receiving data through the

operating system and representing the data in a user friendly way. Software is also

needed to compare data in different OS such as windows or Linux.

3.2 Interfacing Technique
3.2.1 Device driver

The interfacing is done between the DAQ system and the computer software. The data

acquisition card USB-4716 provides us a device driver that can give different functionality of

system. The device driver software named ActiveDAQ Pro gives us different function to use

the DAQ system and represent the data. The functions primarily classified as two categories

which are ActiveDAQ Pro device control and ActiveDAQ Pro GUI control. We have used the

device control functions to manipulate the data coming through the DAQ card .We

integrated the device control function to ourGraphical User Interface to control the data

coming from the DAQ card [12]. The device control functions categories are given below

Table 1: USB-4716 .dll functions

These are the .dll functions which are consist of several function that can control the device

for specific purpose for example we need to receive analog signal from the sensors so we

needed to use the ADvAI means analog input control .dll function to be integrated with our

software. This AdvAI.dll consists of number of functions those are giving us the ability of

controlling the analog input coming from the sensors.

3.2.2 Function and properties used

.dll functions Descriptions of the functions

ADvAI Analog Input Control

ADvAO Analog Output Control

ADvDIO Digital Input/output Control

ADvThermo Thermocouple measurement Control

ADvCounter Counter Input Control

ADvPulse Pulse output control

14

As we knew earlier we had to use AdvAI.dll which is actually a bunch of analog

control based functions from which we have used few for our software purpose.

Type Function +Properties Description

Function SelectDevice Selects a device that supports AI (analog
input) functions from the installed

Advantech device list in the system.

Properties DeviceNumber Sets the device number for opening the
specified AI device, or retrieves the

device number of the current opened AI
device.

Properties

DeviceName Retrieves the device name
corresponding to the DeviceName.

Properties DataAnalog Retrieves the sampling data (float) from
the current AI channel ChannelNow on

the DAS card.

Table 2 : Function and properties used for windows interfacing

3.3 Steps of interfacing DAQ and the software

Interfacing between the DAQ card and the software is most important part in the

project. The card takes the data from the sensors and sends the data to the computer.

The computer gets a digital data and software takes the responsibility for further

processing of the data and shows it in specific manner. So at first the communication

between the software and the card is very necessary. The steps of establishment of

communication process are given below:

 Active DAQPro is the device driver software given by the manufacturer company

Advantech. By installing the software we made sure that the windows will

recognize the hardware. It just recognizes the hardware and does not make any

communication with the developed software.

 Then we had to choose the necessary .dll functions needed to process the signal.

We needed the analog signal processing function AdvAI. As we used C# language

for the graphical user interface we added the specified functions in C#

development environment as reference.

 Then we select a device by calling selectdevice function. It makes sure we are

using the correct version of the product which is for us USB-4716.

 After that we selected device name and device number by using devicename

and devicenumber properties

15

 Then Using Dataanalog properties to control analog input data coming from the

sensors.

After getting the analog input data software processes it as needed then shows.

3.4 Software Development (Windows)

3.4.1 .Net framework

The .net framework is a great platform creating by Microsoft for developing applications for
windows environment. An application developed by .net framework can be run in any
version of windows. The advantages of using .net framework are lot. First of all we can
develop the software in any language that supports .net such as visual basic++, c# etc. .Net
contains CLR (common language runtime) that is capable of running any code supports by
.net framework [23]. Another reason of using it is its drag and drop design option that is
definitely an easier choice of any kind of software development. It has a gigantic library of
code that we can use for different development. It also has a huge collection of device
driver function. We have used C# language for our application development because it
supports the object oriented programming module.

3.4.2 Options of the software

Now the software has the minimum options those are strongly required for preview the
specific sensors data. The options are discussed below,
 Device select: this option is for selecting the right device for the software.
 Showing graph: It is necessary to show the graph of the data because graph can

represent any critical state very easily. So we have an option of showing graph of the
data in our software. In our software we have shown data in y axis and voltage is x
axis.

 Respective voltage: Respective voltage is necessary because of the research purpose
use. So in our software we have a option of showing the respective voltage of the
processed data.

 Data: Main information those are shown. In our case it is temperature, ECG, SPO2.
 Control: we have given a control option for controlling the data coming. It controls

the flow of information and can stop or restart it.

3.4.3 Graphical user interface

Graphical user interface (GUI) is very much necessary to show our data in friendly and
specific manners. GUI has been developed in visual studio 2010 by using C# language. The
GUI represents the data those are obtained by the software. GUI has different options
which were discussed earlier section. We can use those options by using the buttons given
in the GUI. The code for the GUI software has been given in a appendix in the report.

16

 Figure 5: The Graphical user interface

3.4.4 Graph generating technique

Graph generation is necessary to show the data in friendly way. For graph generation we
have used picture box class in visual studio 2010 [23]. Graph can be generated by using the
class bmp which is within the picture box. The class named bmp (stand for bit map) works

for setting different pixel level in the GUI. The function is bmp.setpixel(x, y, color). The
parameters are x, y and color. Color is for show the graph in different color. Y is for showing

the data and x is for showing the voltage. It is just similar to a traditional 2-dimensional

system.

 Figure 6: Graph generation of signal

17

Chapter 4

Hardware software Interface (Linux)

4.1 Why Linux

Linux have both soft real time and hard time kernel. General Linux is soft real time but there
is hard real time Linux operating system which is called RT Linux. We used Linux because of
its less time latency or delay than windows. Any Linux operating system is faster than
windows and it has also some time latency where RT Linux time latency is nanosecond level
which is negligible. Our data acquisition card gives us 3 Linux drivers which are

 Red hat enterprise Linux4

18

 Debian4

 Fedora core6
We have used Red Hat Linux4 (RHEL4) which is a soft real time operating system. RHEL is a
commercial version of Linux which packaging format is rpm.

4.2 Interfacing Techniques for Linux

To interface the Linux with the hardware we needed to compile the program or driver
named advdaq-1.09.0001-eI4.i386 In RHEL4 operating system. By compiling the driver file
we actually inserted a module for our OS RHEL4. The module can be inserted in code as
below

 Insmod/usr/src/adddrv_core.ko

 Insmod/usb4716.ko
We have got 2 .ko type file. After this the process becomes a part of the Linux0S. Obtaining
analog data from USB-4716 is consisting of two parts or steps in Linux.
 Step 1 : binding the hardware with the software
 Step 2 : obtaining analog data from hardware
Step 1 makes a hardware-hardware contract between our DAQ system and LinuxOS and
step2 makes the hardware-software contract with the DAQ system with the Linux software.
Both the steps are discussed below.

Step 1: to complete the step 1 successfully we needed to follow some Linux conventional
coding and filing system. As we said earlier the first step is to insert the correct module to
the OS so that there is a process for the hardware attached with the Linux OS [5].

 Insmod/usr/src/addrv_core.ko

 Insmod/usb4716.ko
After inserting the module we will get a file in the process folder of Linux which is addrv file.

 /proc/device/addrev
Then we found out the major type of the file. The major type is 254 for our specified file.
Using the major type of the file we can make a node with the USB hardware with the OS by
using [13]
Mknod/dev/addrv.c254 . After making the node we bind the node of the OS to the
hardware by using binding command advdevice_bind. After binding the device with the OS
hardware-hardware contact part is done. Then the Linux OS is ready for getting analog data
through the channels of the DAQ card. The binding procedures can be shown in flow chart in
following way,

Inserting

module for

RHEL4

Making a node

in OS for the

device

Insmod/usr/src/addrv_core.ko

Mknod/dev/addrv.c254

19

Figure 7: Procedures of Linux-DAQ communication

Step 2: After making the communication between Linux and DAQ we need to make

communication with the process of Linux to obtain analog data through the hardware

channels. Then actually we need to communicate with the device node that is made within

the Linux OS. For obtaining analog data as input we used several functions those are given

by the DAQ card manufacturer [4].

First we need to open the device to make it ready for starting data obtaining process.

There is a function named DRV_DeviceOpen which actually makes the device ready for

work. This function has two parameters where one is a utility of advdevice_bind and

another is a pointer. Calling up the function makes sure if the device is successfully opened

or not. It opens successfully it will return o otherwise will generate an error. After opening

up the device we need to configure it for obtaining the analog data correctly. For obtaining

the analog data we need to set up a specific channel and a gain code. This function also has

two parameters where both of them are pointers. One is retrieved from DRV_DeviceOpen

another is from PT_AIConfig. Last thing is to read analog data from the sensors via the DAQ.

For this purpose we have used DRV_AIvoltageIn function which has two parameters where

both are pointer. One is retrieved from DRV_DeviceOpen and another is from PT_AIConfig.

List of functions those are used in process are given in the next page,

 DRV_DeviceOpen(filename, &fd)

 DRV_GetErrorMessage(ret, err_msg)

 DRV_DeviceSetProperty(fd, CFG_AiChanConfig, &buffer, sizeof(unsigned int))

 DRV_DeviceClose(&fd)

Binding the

device node

with the device

advdevice_bind

20

 DRV_AIConfig(fd, &AIConfig)

 DRV_AIVoltageIn(fd, &AIVoltageIn)

So the software-Hardware communication is based on 3 procedures those are given below,

Figure 8: Procedures of Software-DAQ Communication

Configuring

for Analog

Input

Opening up

the device

Reading

Analog Input

Data

DRV_AIConfig(fd, &AIConfig)

DRV_DeviceOpen(filename, &fd)

DRV_AIVoltageIn(fd, &AIVoltageIn)

21

Chapter 5

Temperature Monitoring System

 5.1 Importance of Temperature monitoring

 Metabolic activities such as muscle action require energy. The energy expended by the

human body to do work varies according activity. The average human muscle is no more

than 25% efficient. Thus a person who is working at a rate of 1000w must be using

energy at a rate of 4000w. The energy wasted in metabolic activities is converted to

22

thermal energy in the body and this energy must be dissipated as heat to the

surroundings otherwise the body would overheat. the specific heat capacity of a body is

4200 J/kg*K (Same as water) and prove for yourself that the temperature of a 60 Kg

person producing a thermal energy at a rate of 3000w would rise by almost 8 K in 10

minutes [20]. Such a temperature rise would be fatal. In fact the temperature of a

healthy human body remains remarkably constant at between 360centigrade to

370centigrade. Clearly the body must automatically lose heat when undertaking vigorous

activities. Equally heat loss must be prevented when the external temperature is very

low otherwise the body temperature might become dangerously low. The blood vessels

near the surface automatically become wider when the body is too hot, and become

narrower when the body is too cold. In this way the flow of heat to the surface is

adjusted to keep the temperature of the body is constant [21].

So it is clear that any human body always need to maintain a optimum level of

temperature in the body. If the body is overheated or loss heat at a rapid rate it can be

fatal for both a healthy and weak people. So temperature measurement is necessary

when someone is taken under intensive care [19].

5.2 Determining biomedical temperature table

5.2.1 Determining technique

 Temperature measurement can be done in some specific ways. These ways include
the system of clinical thermometer and thermocouple thermometer. Measuring the
temperature noninvasively is easier and better to accommodate with any situation. This is
why we are using a noninvasive temperature sensor which will give some p.d (potential
difference) according to the body temperature. After the digitization of the taken p.d the
temperature of the human body will be shown in a workstation which will be in windows
Linux environment. The measurement of temperature will be accommodated with three
other measuring parameters of human body through the graphical user interface.

We used a biomedical temperature sensor which is used in vital sign monitor for giving
precise temperature of human body. As biomedical temperature sensors are not used
everywhere other than the biomedical sensitive purpose. It is tough to get a datasheet for
the sensor. So before using this sensor in our signal processing system we needed to
determine the data shit of it. As we tested we got it is a negative coefficient temperature
sensor. The steps of using the sensor are given below sequentially:

 Design of the circuit for using the biomedical temperature sensor.
 Obtaining the value of the temperature versus voltage.
 Using the value finding an equation by using MATLAB.
 Using the equation in developed software.
 Making a comparison between the manual and the developed software data.

23

The circuit that was designed is consisting of a 22K resistor, 5V DC power, the temperature
sensor and the data acquisition card.

Figure 9: The circuit of temperature sensor

5.2.2 Obtained data table

The data table is obtained manually by changing the temperature and measuring the
changing voltage with respect to the temperature.

Tempera
ture
(degree)

Respective Voltages

25-46 3.66,3.62,3.58,3.54,3.50,3.45,3.38,3.31,3.29,3.24,3.18,3.14,3.10,3.07,2.98,2.93,
2.87,2.83,2.81,2.78,2.74,2.70

By obtaining the temperature versus voltage table we used the values in the MatLab and
used curve fitting method to obtain an equation for this. We need the equation to use in our
developed software. We got the equation y=0.042x+2.2 where y is voltage and x is
temperature.

24

Figure 10: Curve fitting for temperature equation

We obtain the temperature x= y-2.2/0.042. We used this equation in the software to show
temperature getting from the sensor.

5.3 Data Deployment on developed Software

After getting the equation x= y-2.2/0.042 where x= temperature and y=voltage we used the

equation in our developed software to get voltage and temperature shown in Graphical

user interface. Voltage and temperature is also shown in a graph. The temperature graph

shown in the GUI has been given below

Figure 11: Temperature shown in GUI

By using the equation x= y-2.2/0.042 in our software we get some deviation. The deviation

table is given below,

Temperature from Temperature from

25

Thermometer pc software
23 17.72
24 19.94
25 21.61
26 23.54
27 24.04
28 24.66
29 27.67
30 28.84
31 29.71
32 31.21
33 33

 Table 3: temperature deviation

The deviation is not much and we got the equation which most perfectly suites with the
temperature sensor.

Figure 12: Deviation of manual versus software data

 Temperature (PC)

 Temperature (Thermometer)

26

Chapter 6

Electrocardiogram Signal monitoring

system

6.1 Working principle of ECG

27

The human heart beats at a normal rate of 70 times per minute without stopping from birth

to death. It pumps about 5 liters of blood round the body every minute, using energy at a

rate of just a few watts.Each time the heart beats, its electrical potential changes by more

than 100mV. As the muscles of the heart contract and relax in a sequence that forces blood

from the two atrial chambers of the heart into the corresponding ventricles and out into the

artery. The sequence is due to nerve cells that conduct electrical signals generated at the

sinu-atrial (SA) node in the right atrium. The nerve cells spread from the SA node across the

surface of the heart, making the muscles of the atrial chambers contract and stimulating the

atrio-ventricular (AV) node. This relays the electrical signals to further nerve cells which

make the ventricles contract. Valves ensure the blood passes one way only through the

heart from each atrial chamber [9].

The change of electrical potential at the heart is conducted through body fluids and tissue to
the skin causing changes of potential of the order of 1mV which can be detected through

Figure 13: ECG Wave [10]

electrodes connected to an amplifier. An electrocardiogram is designed to measure and
record the potential difference two points on the surface of the body. An ECG trace provides
important information about the condition of the heart [1].
Figure shows how the potential of the heart changes each time the heart beats. The atria,
making the atrial muscles contract then relax. The potential differences between any two
points at the body surface due to conductivity of the body fluids. The electrodes are
normally connected to two limbs with a third limb earthed.
A recording of such a p.d with time is called the electrocardiogram or ECG. The features of
the above curve is given below,

1. The peak p.d is about 1mV, lasing about 0.1s [1].
2. The main features of the trace are labeled as P,Q,R,S and T according to convention

 The wave at P is due to the atria depolarizing and contracting
 QRS is due to the depolarization and contraction of the ventricles
 The wave at T is due to repolarization and relaxation of the ventricles.

6.2 ECG Measuring technique

28

To measure and display and ECG waveform, the p.d between two points on the body
surface must amplified from 1mV to about 1V enables it to be displayed on an oscilloscope.
The steps of measuring an ECG signal from gaining the voltage by electrode to digitally
display in a system are given below.

 Measurement: The electrical signals which command cardiac musculature can be

detected on the surface of the skin. In theory one could grab the two leads of a

standard volt meter, one with each hand, and see the voltage change as their heart

beats, but the fluctuations are rapid and by the time these signals reach the skin they

are extremely weak (a few millionths of a volt) [11] and difficult to detect with

simple devices. Therefore, amplification is needed.

 Amplification: A simple way to amplify the electrical difference between two points

is to use an operational amplifier, otherwise known as an op-amp. The gain

(multiplication factor) of an op-amp is controlled by varying the resistors attached to

it, and an op-amp with a gain of 1000 will take a 1 mV signal and amplify it to 1 V [9].

 Digitization: Unfortunately, the heart is not the only source of voltage on the skin.

Radiation from a variety of things (computers, cell phones, lights, and especially the

wiring in your walls) is absorbed by your skin and is measured with your ECG, in

many cases masking your ECG in a sea of electrical noise. The traditional method of

eliminating this noise is to use complicated analog circuitry, but since this noise has a

characteristic, repeating, high-frequency wave pattern, it can be separated from the

ECG (which is much slower in comparison) using digital signal processing system.

Once amplified, the ECG signal along with a bunch of noise is in analog form. We

now can display the output with an oscilloscope, but we need to load it into the

Linux environment which will be linked with RT Linux for real time signal processing.

The noise cancellation part will be done through the Data acquisition system.

29

Chapter 7

Pulse Oximetry Signal Monitoring system

30

7.1 Principle of Pulse oximetry

Oxygen saturation is defined as the ratio of Oxyhemoglobin to the total concentration of
hemoglobin present in the blood (i.e. Oxyhemoglobin + reduced hemoglobin).

 Hemoglobin is an iron-containing protein bound to red blood cells and makes up nearly all
the oxygen presence (there is a minute amount dissolved in the plasma). Hemoglobin is
responsible for transporting oxygen from lungs to other parts of the body, where the oxygen
can be used by other cells. Oxyhemoglobin (HbO2) is the bright red hemoglobin that is a
combination of hemoglobin and oxygen from the lungs.A hemoglobin molecule can carry a
maximum of four oxygen molecules. 1000 hemoglobin molecules can carry a maximum of
4000 oxygen molecules; if they together were carrying 3600 oxygen molecules, then the
oxygen saturation level would be (3600/4000)*100 or 90% [22].

 When arterial Oxyhemoglobin saturation is measured by an arterial blood gas it is called
SaO2. When arterial Oxyhemoglobin saturation is measured non-invasively by pulse
oximetry, it is called SPO2.

Saturation of peripheral oxygen (SPO2) is an estimation of the oxygen saturation level

usually measured with a pulse oximeter device. It can be calculated with the pulse

oximetry according to the following formula:

7.2 Pulse oximeter device

A pulse oximeter is a device intended for the non-invasive measurement of arterial blood
oxygen saturation and pulse rate. Typically it uses two LEDs (light-emitting diodes)
generating red and infrared lights through a translucent part of the body. Bone, tissue,
pigmentation, and venous vessels normally absorb a constant amount of light over time.
Oxyhemoglobin and its deoxygenated form have significantly different absorption pattern.
The arteriolar bed normally pulsates and absorbs variable amounts of light during systole
and diastole, as blood volume increases and decreases. The ratio of light absorbed at systole
and diastole is translated into an oxygen saturation measurement.

31

Chapter 8

Experiment Techniques & Result

32

8.1 Experiment overview

 In this chapter we will explain the experiments we have done in the project,
techniques used for the experiments and the result or significance of the experiments.
Other than developing the data processing unit for biomedical device we have experiment
some very important aspects of signal processing in different operating system
environment. For our experiments we have used windows XP and Red hat enterprise Linux4
where one in a general operating system and another is soft real time operating system. We
found out the latency of signal processing in both environments. In our signal processing
purpose we have used one channel biomedical data which is biomedical temperature sensor
data.

Latency (OS): Latency can generally be described as time delay experienced in a system.
Every electronic system has a latency or time delay. Latencies may have different meaning
in different system. One kind of latency is OS latency. OS latency differs from OS to OS. One
kind of OS may have small time latency one may have a big time latency. For sensitive signal
processing purpose the measurement of latency is very important because the delay of 1
micro second can bring significant changes in output level. So in research latency is very
important. Biomedical engineering is a very sensitive engineering field because it is directly
connected with life of human and animals. So the signal processing of biomedical device
should have a minimum scale of time latency. The latency can be explained as below
Let T be a task belonging to a time sensitive application that requires execution at time t, let
t’ is the time at which T is actually scheduled. We define the OS latency experienced by T as
L=t’-t.
There are several reasons behind the generation of Latency. The reasons include timer
resolution, scheduling jitter etc.
Timer is generally implemented by using a periodic tick interrupt. A task that sleeps for an
arbitrary amount of time can experience some timer resolution latency if its expected
activation time is not in a tick boundary. Scheduling jitter happens when the task is not
highest in the scheduling queue.
Latency cannot be removed totally due to some constraint on electronic and software part
but it can be reduced. It really needs to be reduced when we go for sensitive biomedical
signal processing. In our experiment we have found out the latency in windows and Linux
for biomedical signal processing. The techniques of experiments and the result will be
discussed in the later section.

8.2 Time measurement techniques

8.2.1 Windows technique
 Measuring time in windows is necessary to find out the time latency of any specified
process. Windows has a performance counter within it which counts the clock frequency of
windows. If we want to find out the latency of any process we need to count the clock
frequency in start time and count the clock frequency in the end time. Subtracting start time
clock frequency from end time clock frequency we will get the number of frequency needed
for the process. After getting the number of frequency we can easily calculate the time
needed for the process by using the formula time =1/frequency. For this purpose we have

33

used the function QueryPerformanceCounter(&Value). Windows latency measurement
tecnique flow chart for temparature signal is given below

Figure 14: Time latency measurement steps in windows

8.2.2 Linux technique

To measure time latency in Linux environment we have used a function given by the
Linux developer. The function is gettimeofday which is used to obtain the time of the
day. The time data can be set to micro processor level. This process is simpler than
windows because we don’t need to calculate time from frequency rather we get
time directly from the function. To use the function gettimeofday we need to include
a header file include <sys/time.h>. The steps are given in the next page

Specific

process

running

Start

performance

counter

Stop

performance

counter

Calculate clock

frequency

QueryPerformanceCounter(&StartValue)

Temperature signal reading process is running

QueryPerformanceCounter(&EndValue)

 Clock frequency, F= Startvalue – Endvalue

Calculate

Latency time Latency time, t = 1/ F

34

Figure 15: Time latency measurement procedures in Linux

8.3 Test results of comparison

We obtained time latency data for both in windows and Linux. Now we will compare

between them. We have used biomedical temperature sensor for the signal

processing purpose. We have taken 100 samples for each unit of average data for

both in windows and Linux. We run the process for 5 times that means we take 500

data each in windows and Linux. The average time latency for both the systems are

given in the next page,

Read current time

tS when process

starts

Sleep for a time T

during the process

Read current time

tE when process

ends

Calculate latency

time TL

Temperature signal obtaining

process

gettimeofday(&StartTime, NULL)

gettimeofday(&EndTime, NULL)

TL = tE – (tS + T)

35

Data: No process running condition

Sample

No

Total time taken

for 100 samples

(windows)

 Microsecond

Average

(windows)

Microsecond

Total time

taken for 100

samples

(Linux)

Microsecond

Average

(Linux)

Microsecond

1 39016 390 33274 332

2 38193 381 33077 330

3 36828 368 33172 331

4 37355 373 33271 332

5 38357 383 32921 329

 Average 379 Average 332

Table 4: Windows and Linux time latency comparison (No process running)

 Data: 5 process running background

Sample

No

Total time taken

for 100 samples

(windows)

 Microsecond

Average

(windows)

Microsecond

Total time

taken for 100

samples

(Linux)

Microsecond

Average

(Linux)

Microsecond

1 40861 408 32801 328

2 40346 403 36885 368

3 41286 412 32755 327

4 40719 407 34475 344

5 40257 402 36558 365

 Average 406 Average 346

 Table 5 : Windows and Linux time latency comparison (5 processes running)

36

5 Running processes are given below

No Windows Linux

1 Calculator Calculator

2 Google crome Internet browser

3 Paint KPaint

4 Visual studio Kdeveloper

5 Media player Media Player

 Data: 10 processes running background

Sample

No

Total time taken

for 100 samples

(windows)

 Microsecond

Average

(windows)

Microsecond

Total time

taken for 100

samples

(Linux)

Microsecond

Average

(Linux)

Microsecond

1 44000 440 40464 404

2 43656 436 39061 390

3 42963 429 42851 428

4 43590 435 42061 420

5 43052 430 41076 410

 Average 434 Average 410

Table 6 : Windows and Linux time latency comparison (10 processes running)

37

10 Running processes are given below

Windows Linux

Calculator, google crome, paint, visual

studio, media player, time and date, sound

recorder, foxit reader, task manager,volume

controller

Calculator,Internet browser, KPaint,

Kdeveloper, Media Player,time and date,

sound recorder, KPDF viewer,volume

controller, task manager

 Data: 15 processes running background

Sample

No

Total time taken

for 100 samples

(windows)

 Microsecond

Average

(windows)

Microsecond

Total time

taken for 100

samples

(Linux)

Microsecond

Average

(Linux)

Microsecond

1 50145 501 41446 414

2 54938 549 43608 436

3 48851 488 49070 490

4 56676 566 51667 516

5 53070 530 49191 491

 Average 526 Average 469

Table 7: Windows and Linux time latency comparison (15 processes running)

38

 15 Running processes are given below

Windows Linux

Calculator, google crome, paint, visual

studio, media player, time and date, sound

recorder, foxit reader, task manager,volume

controller, User Account, notepad++, printer,

display properties, character map

Calculator,Internet browser, KPaint,

Kdeveloper, Media Playe,r,time and date,

sound recorder, KPDF viewer, volume

controller, task manager, character map,

desktop properties, printing, emacs text

editor, user manager

From the following data we can easily come to a decision about the time latency in windows

and Linux OS. We see in the table that each unit which is average of 100 data taken in

windows and Linux are in a range. For windows the range is 379-526 microseconds and in

Linux 332-469 microseconds in a certain state of the processor. So the variation of signal

processing time is greater in a window which is definitely a system drawback. Other than

that we observed some time window take too much time which varied from 3 second to 10

second to read a data which is in general at maximum 469 microseconds. That refers to the

uncertainty of windows signal processing purpose. From the following data we can make a

table that will show the variation of data depending on the number of processes running on

the system, table is given below

Running processes Windows

(microsecond)

Linux

(microsecond)

No process running 379 332

5 processed running 406 346

10 processed running 434 410

15 processes running 526 469

Table 8 : Dependency on running processes

39

 Figure 16: Windows and Linux time latency variation depending on running processes

 Figure 17: Linux code for time latency measurement

40

Chapter 9

Conclusion

 9.1 Achievements of present work

Our present work has several achievements which we initially targeted. We could
not achieve the total target due to time constraint. Our achievements in the present
work are given below:

41

 Development of Data processing in Graphical user interface for biomedical
device in windows environment

 Interfacing DAQ system both in windows and Linux
 Development of time measurement system for data reading through the DAQ

card both in windows and Linux
 Hardware and software implementation for biomedical temperature monitoring

system
 Making the time sensitivity comparison on signal processing between windows

and Linux
 Hardware design of ECG and SPO2 signal processing

 9.2 Limitations of present work

The present work has few limitations. Limitations are given below
 We could interface the DAQ system only with one version of Linux which is

RED hat enterprise Linux 4. In other versions time latency can be changed.
 The system is largely dependent on USB-4716. Any other data acquisition

system can reduce or increase the precise level of data and time.

 9.3 Decisions obtained from the research
 This research significant due to some decisions obtained. We did signal

processing both in windows and Linux. We have been come to a decision that the

windows time latency is much higher than the Linux OS. That means windows in not

suitable for sensitive signal processing purpose. But soft real time Linux also has

latency. The difference of latency level is 100micro second which has great

significance in biomedical signal processing. So Linux is definitely better in signal

processing purpose. We got some other observations on this issue also. One of them

is, due to huge number of process running under windows OS windows

unexpectedly takes too much time for processing or reading a single data. That time

ranges from 3000 micro second to 10000 micro second means 3-10 seconds. This is a

major drawback of the windows in signal processing. Another thing we can see from

the statistics is that the variation of signal reading time in windows is much higher

than in Linux. For example in a single tasking environment windows has variation

from 418-440 microsecond which is 323-327 microsecond in Linux Which is another

drawback of windows system. So we can definitely tell Linux is better in signal

processing than windows.

9.4 Future work

42

We will continue our research and development in this area. The future work we
have targeted to do are given below

 Development of signal processing system for biomedical devices in Real

Time Linux.
 Hardware- software interface implementation for ECG and SPO2.
 Making time latency comparison between windows, Linux and Real time

Linux.
 Development of a real time signal processing system for biomedical

sensors which will include a graphical user interface for representation of
real time data.

 Further improvement of out developed software in windows by adding
more options and database in system.

References

[1] E.G. Zailis, M.H. Conover (1972). “Understanding Electrocardio Graphy” The C.V.

Mosby Company, USA.

[2] R.S. Khandpur (2003). “Handbook of Biomedical Instrumentation.” Tata McGraw Hill,

New Delhi.

43

[3] S.P. Mohantay, and E. Kugojianas, “Biosensor a Tutorial Review”

[4] M.R. Neuman, “Biomedical sensor”

[5] http://en.wikipedia.org/wiki/RTLinux

[6] http://en.wikipedia.org/wiki/Real_time_computing

[7] http://en.wikipedia.org/wiki/Data_acquisition

[8] C. Saritha, V. Sukanya. “ECG signal analysis using wavelet transform”

[9] L. Sornmo ,P. Laguna “Electrocardiogram signal processing”

[10] G Kaur (2006) “Design and Development of Dual Channel ECG Simulator and

Peak Detector.” Thapar Institute of Engineering and Technology, Deemed University,

Patalia, June 2006.

[11] D Hussain (2002). “An Elecardiogram Simulator and Amplifier.” HST-6.121

Laboratory Report. November 2002.

[12] Advantech. “Active DAQ pro user guide.”

[13] M. Burgess (2002). A Short Introduction to Operating System.” December 29,

2002.

[14] M. B. Yehuda, (2005). “Instroduction to LINUX Device Drivers.” IBM Haifa

Research Labs and Haifux. January, 2005.

[15] A .Rubini, J .Corbet and G.K. Hartman (2005). “LINUX Device Drivers.” O’Reilly

USA, 2005.

[16] R.J.M. Theunissen, R.R.H.Schiffeders, D.A.V Beek and J.E. Rooda (2008).

“Supervisory Control Snthesis for a patient support system.” Eindhoven University of

Technology. December 2008.

[17] W.M. Wonham. Supervisory control of discrete-event systems. Dept. Elect.

Comput. Eng., University Toronto, Canada 2007.

[18] C. Li, C. Zheng (1993) Proc. Annual Int. Conf. IEEE in Med. & Biol. Soc., San-

Diego, California.

[19] http://www.omega.com/prodinfo/rtd.html

[20] http://www.ladyada.net/learn/sensors.html

[21] http:/www.temperatures.com/csensors.html

[22] H. Deni, D. M. Muratore, and R. A. Malkin, “Development of a Pulse

http://en.wikipedia.org/wiki/Real_time_computing
http://en.wikipedia.org/wiki/Data_acquisition
http://www.omega.com/prodinfo/rtd.html
http://www.ladyada.net/learn/sensors.html

44

Oximeter Analyzer for the Developing World,” Proc. of the 2005.

 [23] http://www.msdn.microsoft.com/en-us/library/system.drawing.bitmap.aspx

Appendices

 Appendix A

A.1 Code for the GUI in windows

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

45

namespace Biomed_Control_Panel_v2

{

 public partial class MainForm : Form

 {

 int x = 0, y = 0;

 Bitmap bmp = new Bitmap(1024, 768);

 public MainForm()

 {

 InitializeComponent();

 }

 private void cmdSelectDevice_Click(object sender, EventArgs e)

 {

 // selecting between the different model of usb daq devic (imp)

 axAdvAI1.SelectDevice();

 txtDeviceName.Text = axAdvAI1.DeviceName;

 }

 private void cmdRead_Click(object sender, EventArgs e)

 {

 txtAIValue.Text = (axAdvAI1.DataAnalog).ToString();

 }

 private void timer1_Tick(object sender, EventArgs e)

 {

 // read analog value

 double Temperature = - Math.Round((axAdvAI1.DataAnalog – 2.2) /

0.042, 2);

 // show graph

 if (x >= pictureBox1.ClientSize.Width) { x = 0; bmp = new

Bitmap(pictureBox1.ClientSize.Width, pictureBox1.ClientSize.Height); }

 bmp.SetPixel(x, pictureBox1.ClientSize.Height -

(int)(Temperature * 6), Color.Blue);

 bmp.SetPixel(x, pictureBox1.ClientSize.Height -

(int)(Temperature * 6 + 1), Color.Blue);

 bmp.SetPixel(x, pictureBox1.ClientSize.Height -

(int)(Temperature * 6 + 2), Color.Blue);

 bmp.SetPixel(x++, pictureBox1.ClientSize.Height -

(int)(Temperature * 6 + 3), Color.Blue);

 pictureBox1.Image = bmp;

 // Show Temperature and Voltage

 txtAIValue.Text = Temperature.ToString() + "° C";

 textBox1.Text = axAdvAI1.DataAnalog.ToString() + " V";

 }

 private void btnStart_Click(object sender, EventArgs e)

 {

 timer1.Enabled = true;

 timer1.Start();

 }

 }

 }

46

A.2 Code for time measurement in windows console

#include <windows.h>

#include <windef.h>

#include <stdio.h>

#include <conio.h>

#include "include\driver.h"

// define total number of sample

const int TOTAL_SAMPLE = 100;

/******************************

 * Local function declaration *

 ******************************/

void ErrorHandler(DWORD dwErrCde);

void ErrorStop(long*, DWORD);

// time stamp

LARGE_INTEGER StartValue;

LARGE_INTEGER EndValue;

LARGE_INTEGER Frequency;

LARGE_INTEGER Interval;

double TempTime;

unsigned long TotalTime;

unsigned long ConsumedTime;

int main(int argc, char *argv[])

{

 DWORD dwErrCde;

 ULONG lDevNum;

 long lDriverHandle;

 USHORT usChan;

 float fVoltage;

 PT_AIVoltageIn ptAIVoltageIn;

 PT_AIConfig ptAIConfig;

 int i;

 float Temperature;

 long TotalTime;

 long AvgTime;

 //Step 1: Show Message

 printf("\n\n\nStart: BioMed Control Panel\n");

 printf("File: /dev/advdaq0\n");

 printf("Channel: 0\n");

 printf("Range: -+10 V\n\n");

 Sleep(1);

 //Step 2: Input parameters

 lDevNum = 0;

 usChan = 0;

 //Step 3: Open device

 dwErrCde = DRV_DeviceOpen(lDevNum, &lDriverHandle);

 if (dwErrCde != SUCCESS){return 0;}

 //Step 4: Config device

47

 ptAIConfig.DasChan = usChan;

 ptAIConfig.DasGain = 4;

 dwErrCde = DRV_AIConfig(lDriverHandle, &ptAIConfig);

 if (dwErrCde != SUCCESS){DRV_DeviceClose(&lDriverHandle); return 0;}

 // reset TotalTime

 TotalTime = 0;

 for(i = 0; i < TOTAL_SAMPLE; i++)

 {

 // start Time

 QueryPerformanceCounter(&StartValue);

 // Step 5: Read one data

 ptAIVoltageIn.chan = usChan; // input channel

 ptAIVoltageIn.gain = ptAIConfig.DasGain; // gain code: refer

to menual for voltage range

 ptAIVoltageIn.TrigMode = 0; // 0: internal

trigger, 1: external trigger

 ptAIVoltageIn.voltage = &fVoltage; // Voltage retrieved

 dwErrCde = DRV_AIVoltageIn(lDriverHandle, &ptAIVoltageIn);

 if (dwErrCde != SUCCESS){DRV_DeviceClose(&lDriverHandle);

return 0;}

 // Calculate Temperature

 // Y = .042 * X + 2.2 ==>> From MATLAB graph

 Temperature = (fVoltage – 2.2) / 0.042;

 // end time

 QueryPerformanceCounter(&EndValue);

 QueryPerformanceFrequency(&Frequency);

 // calculate time consumed

 Interval.QuadPart = EndValue.QuadPart - StartValue.QuadPart;

 TempTime = (double)Interval.QuadPart /

(double)Frequency.QuadPart;

 ConsumedTime = TempTime * 1000000;

 TotalTime += ConsumedTime;

 // show Temperature and Time

 printf("Temperature: %.2f C\n", -Temperature);

 printf("Voltage: %f V\n", fVoltage);

 printf("Consumed Time: %lu micro second\n\n", ConsumedTime);

 Sleep(100);

 }

 // Step 7: Close device

 dwErrCde = DRV_DeviceClose(&lDriverHandle);

 if (dwErrCde != SUCCESS){return 0;}

 // calculate average time

 AvgTime = TotalTime / TOTAL_SAMPLE;

 // show average time

 printf("\n\nNumber of Samples: %i\n", TOTAL_SAMPLE);

 printf("Consumed Time(Average): %lu micro second\n\n", AvgTime);

48

 return 0;

}//main

A.3 Code for time measurement in Linux Terminal

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

#include <sys/ioctl.h>

#include <string.h>

#include <sys/mman.h>

#include <termios.h>

#include <signal.h>

#include <Advantech/advdevice.h>

#include <sys/time.h>

// define total number of sample

int TOTAL_SAMPLE = 100;

// time stamp

struct timeval StartTime;

struct timeval EndTime;

int main(int argc, char *argv[])

{

 PT_AIConfig AIConfig;

 PT_AIBinaryIn AIBinaryIn;

 PT_AIVoltageIn AIVoltageIn;

 PT_AIScale AIScale;

 unsigned short wdata;

 unsigned short channel;

 unsigned short gain;

 unsigned int buffer;

 float voltage = 0;

 char *filename = NULL;

 char err_msg[100];

 int ret;

 int fd;

 int i;

 float Temperature;

 ulong TimePassed;

 ulong TotalTime;

 ulong AvgTime;

 // initial settings

 filename = "/dev/advdaq0";

 channel = 0;

 gain = 4;

 // show message

 printf("\n\n\nStart: BioMed Control Panel\n");

 printf("File: /dev/advdaq0\n");

 printf("Channel: 0\n");

49

 printf("Range: -+10 V\n\n");

 sleep(1);

 /* Step 1: Open Device */

 ret = DRV_DeviceOpen(filename, &fd);

 if (ret) {

 DRV_GetErrorMessage(ret, err_msg);

 printf("err msg: %s\n", err_msg);

 return -1;

 }

 memset(&AIConfig, 0, sizeof(PT_AIConfig));

 memset(&AIBinaryIn, 0, sizeof(PT_AIBinaryIn));

 memset(&AIVoltageIn, 0, sizeof(PT_AIVoltageIn));

 /* Step 3: Set Single-end or Differential */

 buffer = 0x0000; /* 0: single-end */

 ret = DRV_DeviceSetProperty(fd, CFG_AiChanConfig, &buffer,

sizeof(unsigned int));

 if (ret) {

 DRV_GetErrorMessage(ret, err_msg);

 printf("err msg: %s\n", err_msg);

 DRV_DeviceClose(&fd);

 return -1;

 }

 /* Step 2: Config AI Setting */

 AIConfig.DasChan = channel;

 AIConfig.DasGain = gain;

 ret = DRV_AIConfig(fd, &AIConfig);

 if (ret) {

 DRV_GetErrorMessage(ret, err_msg);

 printf("err msg: %s\n", err_msg);

 DRV_DeviceClose(&fd);

 return -1;

 }

 // reset TotalTime

 TotalTime = 0;

 /* Step 3: Start Single-channel AI */

 for(i = 0; i < TOTAL_SAMPLE; i++)

 {

 // massure start Time

 gettimeofday(&StartTime, NULL);

 /* Voltage In*/

 AIVoltageIn.chan = channel;

 AIVoltageIn.gain = gain;

 AIVoltageIn.TrigMode = 0;

 AIVoltageIn.voltage = &voltage;

 ret = DRV_AIVoltageIn(fd, &AIVoltageIn);

50

 if (ret) {

 DRV_GetErrorMessage(ret, err_msg);

 printf("err msg: %s\n", err_msg);

 DRV_DeviceClose(&fd);

 return -1;

 }

 // Calculate Temperature

 // Y = .042 * X + 2.2 ==>> From MATLAB graph

 Temperature = (voltage – 2.2) / 0.042;

 // end time

 gettimeofday(&EndTime, NULL);

 // calculate time consumed

 TimePassed = EndTime.tv_usec - StartTime.tv_usec;

 TotalTime += TimePassed;

 // show Temperature and Time

 printf("Temperature: %.2f C\n", -Temperature);

 printf("Voltage: %f V\n", voltage);

 printf("Consumed Time: %lu micro second\n\n", TimePassed);

 usleep(100000);

 }

 // calculate average time

 AvgTime = TotalTime / TOTAL_SAMPLE;

 // show average time

 printf("\n\nNumber of Samples: %i\n", TOTAL_SAMPLE);

 printf("Consumed Time(Average): %lu micro second\n\n", AvgTime);

 /* Step 4: Close Device */

 DRV_DeviceClose(&fd); return 0;

}

 A.4 MatLab code for temperature sensor equation
clear all;
 t=[25:1:46];
v=[3.66,3.62,3.58,3.54,3.50,3.45,3.38,3.31,3.29,3.24,3.18,3.14,3.10,3.07,2.98,2.93,2.87,2.83
,2.81,2.78,2.74,2.70];
figure(1)
plot(t,v, 'linewidth', 2)
 %stem(t,v, 'linewidth', 3)
title('Voltage Vs Temperature Plot')

 A.5 MatLab code for windows-Linux comparison

s=[1,2,3,4];
L=[379,406,434,526];
figure(1)

51

subplot(2,1,1);
plot(s,L, 'linewidth', 2);
%stem(s,L, 'linewidth', 3)
title('Windows')
S=[1,2,3,4];
L=[332,346,410,469];
figure(1)
subplot(2,1,2);
plot(s,L, 'linewidth', 2)
 %stem(s,L, 'linewidth', 3)
title('Linux')

52

Appendix B

 B.1 sample data set for windows time measurement

Voltage: 1.418762 V
Consumed Time: 432 micro second

Temperature: 21.34 C
Voltage: 1.431885 V
Consumed Time: 428 micro second

Temperature: 21.69 C
Voltage: 1.419067 V
Consumed Time: 432 micro second

Temperature: 21.32 C
Voltage: 1.432495 V
Consumed Time: 433 micro second

Temperature: 21.67 C
Voltage: 1.419983 V
Consumed Time: 418 micro second

Temperature: 21.31 C
Voltage: 1.432800 V
Consumed Time: 437 micro second

Temperature: 21.65 C
Voltage: 1.420593 V
Consumed Time: 424 micro second

Temperature: 21.29 C
Voltage: 1.433411 V
Consumed Time: 437 micro second

Temperature: 21.62 C
Voltage: 1.421814 V
Consumed Time: 431 micro second

Temperature: 21.34 C
Voltage: 1.431885 V
Consumed Time: 440 micro second

Temperature: 21.69 C
Voltage: 1.419067 V
Consumed Time: 437 micro second

53

 B.2 sample data set for Linux time measurement

Start: BioMed Control Panel
File: /dev/advdaq0
Channel: 0
Range: -+10 V

Temperature: 26.39 C
Voltage: 1.249962 V
Consumed Time: 371 micro second

Temperature: 26.39 C
Voltage: 1.249962 V
Consumed Time: 332 micro second

Temperature: 26.39 C
Voltage: 1.249962 V
Consumed Time: 333 micro second

Temperature: 26.39 C
Voltage: 1.249962 V
Consumed Time: 334 micro second

Temperature: 26.39 C
Voltage: 1.249962 V
Consumed Time: 335 micro second

Temperature: 26.39 C
Voltage: 1.249962 V
Consumed Time: 337 micro second

Temperature: 26.39 C
Voltage: 1.249962 V
Consumed Time: 338 micro second

Temperature: 26.39 C
Voltage: 1.249962 V
Consumed Time: 340 micro second

Temperature: 26.39 C
Voltage: 1.249962 V
Consumed Time: 342 micro second

Temperature: 26.39
Voltage: 1.249962 VConsumed Time: 343 micro second

54

List of Figures

[1] Figure 1: The flow of the project’s I/O system.

[2] Figure 2: Analysis of the total system

[3] Figure 3: The Contract between hardware and software

[4] Figure 4: USB-4716

[5] Figure 5: The Graphical user interface

[6] Figure 6: Graph generation of signal

[7]Figure 7: Procedures of Linux-DAQ communication

[8] Figure 8: Procedures of Software-DAQ Communication

[9] Figure 9: The circuit of temperature sensor

[10] Figure 10: Curve fitting for temperature equation

[11] Figure 11: Temperature shown in GUI

[12] Figure 12: Deviation of manual versus software data

[13] Figure 13: ECG Wave

[14] Figure 14: Time latency measurement steps in windows

[15] Figure 15: Time latency measurement procedures in Linux

[16] Figure 16: Windows and Linux time latency variation depending on running processes

 [17] Figure 17: Linux code for time latency measurement

55

List of Tables

[1] Table 1: USB-4716 .dll functions

[2] Table 2: Function and properties used for windows interfacing

[3] Table 3: temperature deviation

[4] Table 4: Windows and Linux time latency comparison (No process running)

[5] Table 5: Windows and Linux time latency comparison (5 processes running)

[6] Table 6: Windows and Linux time latency comparison (10 processes running)

[7] Table 7: Windows and Linux time latency comparison (15 processes running)

[8] Table 8: Dependency on running processes

