
Designing a New Scalable Load Test System for
Distributed Environment

by

Md. Azizul Haque Emu
18101075

Miraj Mahmood
18101090

Mohtasin Mehmod Asif
18101096

Abdur Rob Tanvir
18101211

Raunaq Sayiara Joyeeta
18101118

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
Brac University
January 2022

© 2022. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is our own original work while completing degree at Brac
University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Md. Azizul Haque Emu
18101075

Miraj Mahmood
18101090

Mohtasin Mehmod Asif
18101096

Abdur Rob Tanvir
18101211

Raunaq Sayiara Joyeeta
18101118

i

Approval

The thesis titled “Designing a New Scalable Load Test System for Distributed En-
vironment ” submitted by

1. Md. Azizul Haque Emu (18101075)

2. Miraj Mahmood (18101090)

3. Mohtasin Mehmod Asif (18101096)

4. Abdur Rob Tanvir (18101211)

5. Raunaq Sayiara Joyeeta (18101118)

Of Fall, 2021 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science on January 18, 2022.

Examining Committee:

Supervisor:
(Member)

Jannatun Noor
Lecturer

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

ii

skazi@bracu.ac.bd
Signature

Ethics Statement

Our research is of the highest quality and integrity. The confidentiality and integrity
of our research paper contributors are extremely important to us. We conducted
our study in an unbiased manner in order to produce an analysis that is both
independent and impartial. Perhaps, in the hereafter, this method of analysis will
provide some further benefit to humankind in order for them to progress.

iii

Abstract

Cloud computing is considered as a computer paradigm in order to retrieve data
and store from users. It is also essential for efficient operations in a distributed
system (a system that communicates and coordinates various components of different
machines located in multiple places and appears as a single system to the end-
user). With the rapid increment of users, it became challenging to maintain the
capacity of incoming load and suitable resource allocation. Among existing all other
cloud servers OpenStack Swift is one of the most widely used open-source cloud
computing and storage management solutions. An object storage service provided
by OpenStack Swift that is commonly utilized for cloud-based storage solutions.
We have used OpenStack swift as our cloud server and performed the load test
using Apache JMeter as our load testing tool and compared the average response
time under different test cases such as large file and small file size, having same
or different URL and servers with load and without load. The average response
time gives a brief idea about the load handling ability of the server. An in-depth
comparison between the average response times between the test cases helped us to
figure out the best possible case.

Keywords: Load Testing; JMeter; OpenStack Swift; Cloud Computing; Geograph-
ical Locations; Latency; Average Response Time

iv

Acknowledgement

With the blessings of almighty Allah (swt) we finally finished our thesis on the topic
named Designing a New Scalable Load Test System for Distributed Environment.
It was a beneficial experience for all of us.

We would like to express our gratitude towards our honorable supervisor Ms. Jan-
natun Noor for giving us this opportunity. We have learnt and experienced many
important and interesting things throughout this task which will definitely help us
in near future.

Finally, we would like to thank all the people who have given us their precious time
and helped us by providing all kinds of information that we needed for the report
without any objection.

v

Table of Contents

Declaration i

Approval ii

Ethics Statement iii

Abstract iv

Acknowledgment v

Table of Contents vi

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Motivation . 2
1.2 Aim and Objectives . 2
1.3 History of Cloud Computing and Load Testing 3
1.4 Contribution . 4
1.5 Thesis Orientation . 4

2 Literature Review 5

3 Background Studies 14
3.1 Cloud Computing . 14
3.2 IaaS . 15
3.3 PaaS . 15
3.4 SaaS . 16
3.5 FaaS . 17
3.6 Cloud Storage . 18
3.7 OpenStack Swift . 18

3.7.1 Characteristics . 18
3.7.2 Components . 19
3.7.3 Ring-builder . 19
3.7.4 Object Storage Monitoring . 19

3.8 Command line . 20
3.9 Servers . 20
3.10 Virtual Machine . 20

vi

3.11 Virtualization . 21
3.12 Test Case Metrics . 22
3.13 Test Case . 22
3.14 Load Testing . 23
3.15 Scalability . 24
3.16 Testing Tools . 24
3.17 JMeter . 25
3.18 Latency . 25
3.19 Response Time . 26

4 Proposed Methodology 28
4.1 Work Flow . 28
4.2 Test Case Metrics . 29

4.2.1 Concurrent Request for Load Testing 30
4.2.2 Cloud Server . 30
4.2.3 Client PC . 31

4.3 Test Case Design . 31
4.4 Geographical Location and System Configuration 32
4.5 Testing through JMeter . 32

5 Experimental Evaluation 34
5.1 Experimental Setup . 34

5.1.1 Swift Setup . 34
5.1.2 Testing Tool Setup . 36

5.2 Experimental Result . 37
5.2.1 TCO . 37
5.2.2 TC1 . 38
5.2.3 TC2 . 39
5.2.4 TC3 . 40
5.2.5 TC4 . 41
5.2.6 TC5 . 42
5.2.7 TC6 . 43
5.2.8 TC7 . 44

5.3 Experimental Findings . 45

6 Future Work 47

7 Conclusion 48

Bibliography 51

vii

List of Figures

4.1 System Work Flow . 29
4.2 Proposed Test Case Metrics . 29
4.3 Concurrent Request Architecture . 30

5.1 Ring Builder Creation . 35
5.2 Ring builder configuration for the mounted drives 35
5.3 Swift Starting . 36
5.4 Account Authentication . 36
5.5 Container Creation Confirmation . 36
5.6 Response Time Graph of TC0 . 38
5.7 Response Time Graph of TC1 . 39
5.8 Response Time Graph of TC2 . 40
5.9 Response Time Graph of TC3 . 41
5.10 Response Time Graph of TC4 . 42
5.11 Response Time Graph of TC5 . 43
5.12 Response Time Graph of TC6 . 44
5.13 Response Time Graph of TC7 . 45

viii

List of Tables

4.1 Test Case Scenarios Under Different Parameters 31
4.2 Geographical Location and System Configuration 32

5.1 Result Table of TC0 . 37
5.2 Result Table of TC1 . 38
5.3 Result Table of TC2 . 39
5.4 Result Table of TC3 . 40
5.5 Result Table of TC4 . 41
5.6 Result Table of TC5 . 42
5.7 Result Table of TC6 . 43
5.8 Result Table of TC7 . 44
5.9 Average Response Time for Test Cases 46

ix

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

AWS Amazon Web Services

CL Command Line

CPU Central Processing Unit

FaaS Function as a Service

HPC High Performance Cloud

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

IT Information Technology

OS Operating System

PaaS Platform as a Service

QoS Quality of Service

RTT Round Trip Time

SaaS Software as a Service

TC Test Case

URL Uniform Resource Locator

VM Virtual Machine

x

Chapter 1

Introduction

Cloud computing is one of the most widely used technologies nowadays. It provides
a versatile and effective means to store and retrieve data files, and both indus-
try and academia are enthusiastic about it. In modern network technology, cloud
computing is showing significant growth because of its communication technology
advancement and extensive problem-solving. It distributes data to the users at a
low cost. Users only need to pay as much as they use the resources. There are
a good number of existing issues in cloud computing. Load testing is an essential
aspect of cloud computing. It is crucial to ensure the efficiency of a system. To es-
tablish an application, we need to test the load conditions, how much time it takes
to produce work. These are very important to test before releasing an application.
Load testing provides the maximum outcome from a system by proper utilization
of cost-effective means. It is done by performing workload simulation from a set of
multiple computer servers of the client host in order to test the service responses.
We can determine an application’s maximal operating capacity as well as any obsta-
cles. Load testing processes need to be done in a large population of real workloads
for the targeted application. Multiple autonomous computers communicate through
a computer network and create a distributed environment. The goal of interacting
with computers is the same. Cloud computing is considered the latest application
of the classical distributed environment sometimes. It lowers the cost of computing,
application hosting, content storage, and distribution. Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) are exam-
ples of cloud computing services. Processing, networks, storage, and other primary
computer resources can all be provisioned using IaaS. It enables users to install and
run any type of software, including operating systems and apps. It delegated certain
IT functions to third firms. Secondly, PaaS can deploy applications written using
programming languages and tools offered by the provider onto cloud infrastructure
created by the user or bought applications. Finally, SaaS can operate providers
cloud-based apps. Through a thin client interface, such as a web browser, these
programs can be accessed from various client devices.

Load testing on the cloud is a type of Software as a Service (SaaS). In order to
shift load testing to the cloud, it is necessary to implement some resource allocation
and scheduling approaches. The resource issuance that issues client-side virtual
machines for workload simulation is required to efficiently complete load testing
activities and the operating costs of cloud testing providers. Multi-tenancy is a
major aspect of SaaS, which allows a single application to satisfy users needs from

1

various organizations and corporations at the same time. However, it will not be an
easy task because there will be numerous obstacles, such as isolation, conductibility,
etc. Furthermore, resource management is a critical component of multi-tenant
applications, particularly for resource-intensive applications like cloud-based load
testing. In a multi-tenant setting, efficient resource management is required to
bring out the most significant tenants possible.

1.1 Motivation

The traditional cloud computing server is very costly when we want to expand the
storage. So, we wanted to come with a very cost efficient, easy to use and secure
web server for the consumers. Firstly, Swift offers cloud storage software so that the
user can use this to store and retrieve a huge amount of data with a very simple
API. Also, OpenStack Swift is freely available for anyone to use. All though it has
some technical issues for the users using it for the first time. But with time they
will be familiar with the system by following the guidelines. OpenStack has a good
security system and it can be reinforced by creating a replicator. So, the users
need not to worry about losing any data or security breach. It doesn’t take any
storage access permission like the traditional cloud servers. As a result, the local
stored data is always safe. Swift server can easily be expanded on demand so we
can enlarge the server storage when it is necessary. The costing for the system can
be reduced compared to the existing ones in the world. Keeping all these factors in
consideration we have decided to work on this.

1.2 Aim and Objectives

This research aims to determine the parameters such as throughput and latency
of an application when the number of users using the application concurrently and
different load profiles as well as many other performance metrics. There are some
fundamental matrices such as storage, bandwidth, processing, the number of users
accessing it at a given time range. These parameters are vital for successful cloud
implementation. The objective of this research are:

1. To deeply understand load testing and how load testing works.

2. To deeply understand how the system components perform under various
loads.

3. To calculate the server response time.

4. To get the maximum performance from our cloud server.

5. To compare the results obtained from JMeter.

6. To determine how the performance is under various test cases.

2

1.3 History of Cloud Computing and Load Test-

ing

The fast spreading of the Internet all over the world and current information tech-
nology in all aspects of the world and individual lives has resulted in a significant
enhancement in the number web users over the last decade. People are becoming
more and more attracted towards technology for its high availability, efficiency and
ease of use. The term “cloud” means a set of Internet resources [29]. Cloud com-
puting is one of technology’s trendiest buzzwords. It appears 48 million times on
the internet.

In the early days, computers were big and expensive. So, sharing resources were
time consuming and costly. But nowadays computers are cheaper as media ca-
pacities have increased and, therefore, costing of stored information of 1 MB has
decreased. As a result, the cost of storage media services has dropped significantly
in addition to a huge growth in the amount of data stored. The advancement of
programming methods aided the efficient use of multiprocessor computing resources
and the flexible deployment of cloud computing capacity. A rise in Internet data
throughput resulted in faster data interchange, lower Internet traffic costs, and more
cloud technology availability [8]. All these reasons have contributed in the enhance-
ment of growth in cloud computing in several area of IT. The need for cloud-based
data are continually being uncovered. as technology is evolving every day. We have
witnessed the evolution of floppy discs to zip drives, CDs to USB storage devices,
and many more throughout our lives.

If we want to know the birth of cloud computing we have to venture back to almost
70 years. The idea of cloud computing was first proposed by John McCarthy an
American computer scientist in the 1960s. He explained that forthcoming compu-
tations will be carried out by public utilities. He is known as the inventor of the
cloud computing idea [8]. But the people of that time did not appreciate the idea.
They thought what they had at that time was enough efficient. But as the time fleet
the idea was recognized and Salesforce.com implemented it in 1999. The company
pioneered the delivery of an enterprise application via the internet. Then In 2002,
Amazon started AWS where Amazon will offer online storage and computing over
the internet. In 2006, they launched Elastic Compute Cloud Commercial Service
and this is accessible for everyone. The ideology of cloud computing became pop-
ular in 2007 as a result of quick advancements in communication channels and a
rise in the geometric progression of commercial and private users desires to grow
their information systems [8]. Later in 2009, Google Play began offering a Cloud
Computing Enterprise Application, and as other businesses saw the importance of
cloud computing, they began offering their own cloud services. As a result, Mi-
crosoft launched Microsoft Azure in 2009, and other firms such as Alibaba, IBM,
Oracle, and HP followed suit with their own Cloud Services [18]. Cloud computing
has gained widespread acceptance and popularity in today’s globe.

3

1.4 Contribution

Based on our work, we make the following set of specific contributions in this paper:

1. We propose 8 different test cases based on diversified real scenario covering
HTTP protocol types, file size (large or small) URL types (same or different
URLs) and load types (with or without loads) for performing load test on
cloud systems using several tools JMeter.

2. We send rigorous concurrent request on the server along with various test
cases. We found the response time based on those cases designed.

3. We also find the best result and the worst result based on average response
time.

1.5 Thesis Orientation

The whole part of our thesis is represented into six parts and they are mentioned
below:
Chapter 1 contains the introduction to cloud computing, the history of cloud com-
puting, different types load testing, and OpenStack Swift. Along with that our
objectives and motivation to conduct this thesis is clearly explained in this part.
In Chapter 2, the detailed discussion about the existing work related to our field
exists. Furthermore, the literature review related to cloud based load testing, Open-
Stack swift and how the server can be tested using JMeter under different parameters
are also briefly explained.
In Chapter 3, we have discussed the particular topics that are related to our topic
cloud computing, then open stack swift and testing tools and all the related topics
that are directly connected to our thesis.
In Chapter 4, the detailed discussion about the system of our work flow and pro-
posed methodology is given. In this part, we have explained our work, how the test
cases were implemented, how we have used JMeter in order to perform the testing,
and how different geographical locations were giving various outcomes as well as
the system configurations. In the last part, the distinctiveness of our experiment
compared to others is well explained.
In Chapter 5, we have described the experimental setup. Then we have explained
the outcomes of each test case and made an analysis of our experimental findings.
In Chapter 6, we have figured out our limitations and mentioned the future works.
In Chapter 7, we have made a summary of our work and came up with a conclusion.

4

Chapter 2

Literature Review

Cloud computing utilizes resources on a need basis service. This allows the users
to connect via the internet while giving them a hosted environment with required
services. Along with the emergence of cloud technology, everyone is moving towards
embracing a cloud-based framework due to the enormous benefit that we derive
from cloud computing. Cloud computing has opened new vistas of opportunity for
testing. The Covid-19 epidemic has dramatically increased the number of internet
users, demonstrating the benefits of working from home [31]. Load testing is required
to ensure a positive user experience. Besides, any malfunction in the system will
create great havoc. The system’s downtime will cost a significant amount of money
in lost revenue. In addition, if the system’s reaction time is slow, users would lose
interest. Performance requirements, on the other hand, can pose a risk.

Cloud computing has opened up new possibilities for performance assessment. It is a
recent computing method that includes resource pooling management, multi-tenant
sharing, browser-based access, on-demand payment and other features [26]. The
application testing procedure that has already shifted or planned will be shifted
into the cloud is defined as cloud testing. This cloud testing is done to assure
that the applications’ performance, reliability, and security go with or surpass the
expectations considering the change of delivery methods. Cloud testing can also be
used to perform standard tests for on-premise applications, such as load, security,
performance, compatibility, and stress testing, using cloud computing resources and
cloud-based physical infrastructure [15]. While proceeding into the real running
system, web-based load testing skip the real attributes in the case of web services.
Moreover, the installation and configuration process is much more challenging as it
is not easy to use for the tester, creating difficulty for the testers.

In this day of competitive marketing, the system’s accuracy is critical; otherwise,
they would fall behind in the market. As a result, load testing is required to address
these issues. Load testing lowers the risk of downtime and identifies the system’s
performance bottlenecks. Load testing also improves user happiness and makes
the system more scalable. To meet the demands of a rapidly developing market,
maximize the marketing campaign funds. Load testing lowers the cost of failure as
well. Load testing also aids in the system’s continual improvement by assisting with

5

performance tweaking. Load-based application testing saves money in terms of both
capital and operating costs and provides support for distributed development [17].

People are required to connect while at home or even on the go whilst using the Agile
Method in teams. To see how scalable the application is when multiple users are
connected at the same time when it’s operating in the cloud. Taking the applications
through its trials with just as many worldwide web users. A script file for deploying
a Virtual Office application will be read by the Test Harness. In three types of
scenarios, we have load tested with various numbers of users. For the initial phase
with 10 users, we have a CPU consumption at server is 32 percent. For the middle
phase with 25 users, the consumption of CPU is 67 percent. CPU consumption at
the server is 98 percent for a handful of 45 users. When the consumption reached 80
percent the Billable Quota was triggered on the server. Which will give us a brief
idea about the costing analysis in various situations. Finally, when the consumption
reached a full 100 percent, the instance hours were automatically increased. The
application continued to function with online users working effectively without a
break/failure, irrespective of the number of instances created [9]. When it has
been functionally evaluated and achieves the appropriate level of performance, it is
actually helpful for web-based applications.

This study [18] presents a globally distributed web server design and examines sev-
eral load balancing methods to estimate and assess their performance. A design
is investigated and utilized to evaluate multiple ways for request transferring in a
web cluster that simulates regular scenarios of internet and includes all phases of
the HTTP request service. Moreover, the HTTP client requests are created using
the JMeter testing program. The GDLB web cluster system’s performance that was
proposed was evaluated using variables such as the number of requests serviced,
CPU usage, and average response time are the metrics investigated in the experi-
ment and the findings were compared to those of other techniques and JMeter was
used to evaluate client requests.

The goal of this design is to make it simple to measure a variety of web server clus-
ter performance data, for example, average request time of response, CPU usage,
rate of error, as well as throughput. This design was created with scalability, the
capacity to manage a wide audience and servers, the ability to simulate real-world
internet conditions, and the ability to easily build load balancing solutions in mind.
Furthermore, the design should be generic, allowing for the implementation of vari-
ous load balancing strategies. Lastly, it should be possible for dynamic schemes to
make decisions based on information about the current state of the system.

In this design, all components were implemented on Linux-based PCs. JMeter is in
charge of generating requests and collecting statistics. Based on the client’s global
address, up-gradation of DNS server to return one of the potential addresses of IP.
At last, the dispatcher’s software was used to allocate requests in a transparent and
random manner throughout a cluster. Recent schemes may be applied as modules
and easily incorporated into existing architecture thanks to the design of all of
the components. In the paper, it can be observed through a comparison of DNS,
dispatcher-based web server systems with the help of GDLB web cluster system
that the proposed GDLB solution for dynamic load balancing has a superior time

6

of response, CPU usage, and throughput. This also offers a reliable and effective
method for dynamic load balancing in a web cluster system.

The purpose of the paper [5] is to assess how long it takes a web server to respond to
a client’s request and compare the findings to those of the existing stress tool of the
web, Pylot. To simulate demand on a web application, stress tools for web server
are utilized. Simulating server load, concurrency difficulties, and understanding the
server’s responsiveness and how it acts under stress are all possible. Assessment of
whether or not the site is capable of handling client loads will be provided by it.

From the experiments they understood that, there can be several reasons for getting
different response time from servers. Websites with a larger size take longer to load
than those with a smaller size is one among them. Aside from that, response time
gets significantly influenced by client and server bandwidth availability.

In this research [28] they used JMeter and WAPT to determine the best quality
mobile server web application, in order to make recommendations when a mobile web
site is being utilized as this is yet uncertain which web server of mobile application
offers the finest quality among the many paid or free accessible web server programs.
As smartphones using the Android operating system still hold 94 percent of the
smartphone market in Indonesia, this study focuses on the Android-based web server
of mobile.

The smartphone web server utilized in this study was optimized for Android-based
devices. The BitWeb, the penguin PHP/ MySQL, and the KickWeb, these servers
were utilized as study items. On the other hand, they used the Apache JMeter
application and WAPT to test the three web servers. Choose a mobile web server,
Tools for Testing the Quality of Web Servers, choosing a measurement System of
quality using the JMeter as well as WAPT are three stages of this research.

According to the findings of the tests conducted with JMeter, they concluded that
BitWeb Server had a better quality overall than web servers of other mobile out of
5 sites that was tested with 45 test items. Also, they concluded from the tests run
using the WAPT test tool on the servers such as Web Server Bit, Penguin Php /
MySQL, and KickWeb that the BitWeb Server is better than the other Web Servers,
as proved by more Successful hits of 6652 and a faster Average response time of 5.79
seconds. As per the finding of the testing from this research, Android-based mobile
web server’s quality which was purchased from Google Play Store was superior to
that of other free mobile web servers.

OpenStack Swift is implemented in order to establish cloud storage so that the
whole process can be done in an effective way. An article [14] about implementing
cloud storage based on OpenStack swift, shows how this process is so quick and
efficient. Here, the authors used Swauth in order to authenticate the whole system
and establish such a cloud storage that is compatible with S3. However, they choose
Cyberduck, which is an open source software client. With the vast development
of technology, the tendency of buying new smart devices such as Android phone,
Tablet, IPhone, IPad etc. also increased. These users are increasing the amount
of data, specifically the unstructured data including images, videos, audios, etc. In

7

this way, every day the total amount of data in the storage is getting bigger and
bigger. As the usage of these devices increased rapidly, our traditional storages and
technologies are unable to deal with this. There are some certain reasons for the
traditional system not to cope up with the increasing usage. The traditional servers
are very costly, their operation process is complex, maintenance is very difficult and
the scalability is very limited. Here, the author [15] suggested that cloud storages
can easily meet the requirement of this increasing amount of data and that storages
are very cheap and provide scalability and safety of data. People related to this
field, used the FTP servers in order to manage the files and documents and it
also can provide the security of the files that were unavailable in the traditional
storages. But now, object based storage has created a new era of data storage that
gives data security along with low cost, reliable, bigger capacity and scalability.
However, cloud storages also provide the functionality of accessing their uploaded
files from anywhere in the world. Rackspace and NASA wanted to build a service for
their enterprises and service providers and so they developed a platform known as
OpenStack which is similar to S3 and EC2 of Amazon. But, the major differences
between them is that OpenStack is an open source project and the software is
completely free.

In this paper [15] they have used Ubuntu which is a popular OS of OpenStack and
synchronized it with the OpenStack. After that they developed the swift on a VM
and then ran the Swift service on a central server. After that they have set up
some scripts that help to run their swift daemons. They have stored their container
and account database in some separate folders. The account and the containers
directories were established in different nodes. Here, the object’s metadata was
stored in the object folder. Following that the authentication of the user was required
before the server can grant the permission of giving any access to the resources and
requests to the user. This authentication part is completely an external part of
the swift server and enterprises can establish their own authentication subsystem
with the help of the proxy servers. There are in total three different authentication
methods and the default authentication method for the swift is TempAuth. In this
method the username and password is stored in a plain text format and by default
the system grants the permission of the read the access of credential file location.
As this method is not used for production deployment, they have used the Swauth
method for the authentication as this method is appropriate for the configuration
of security of the password data. However, the Keystone can provide more secured
and better configuration. Here, they have used Cyberduck as an open source storage
browser so that they can connect the swift along with other API.

The first step is adding the user before logging into Swift. This process can be done
easily using a simple cURL, which is a CL tool that supports the common internet
protocols. Three extra functions were added in the register page so that the system
can be fulfilled. This system can be more efficient through the deployment of the
clusters in the real life scenarios.

The swift and its related technologies duplicate every single object over several stor-
age nodes in order to provide greater reliability and ultimate consistency. The object
synchronization method’s efficiency is highly dependent on two critical criteria. The
first one indicates the number of replicas associated with each item, while the second

8

one indicates how many objects are housed by every single storage node. In this
paper [24], they have configured the scenarios where the set the value of r equal
three and value of n is greater than 1000. They discovered that the sync procedure
is greatly delayed and generates a large amount of network overhead, a phenomenon
called the problem of sync bottleneck. The inspecting process of OpenStack Swift
source code defines that their object sync protocol makes use of a rather basic and
network-intensive way to ensure stability across object copies. So, a lightweight sync
process was proposed and the hash values were exchanged in each node. Along with
that they reduce the overhead of the sync and it is very reliable and consistent. This
feature is derived from three innovative building components in LightSync. The au-
thors [24] proposed that their open source path will result in reduction of sync delay
by 879 times and overhead by 47.5 times.

There has been a lot of thesis work and research done based on OpenStack swift as
cloud server from time to time. In this research paper [21] authors described that
public cloud market has grown more than 17 percentage by the end of 2016. Market
has increased a total over 208 billion dollars, which was 178 billion dollars in 2015,
as per new Gartner estimates. Authors [21] also claimed that cloud computing moti-
vates consumers to shift their apps to clouds. They also mentioned that OpenStack
is one of the most widely used open-source cloud computing and storage manage-
ment solutions, and it is used to develop and manage cloud computing, storage,
and networking resources. An object storage service provided by OpenStack Swift
that is commonly utilized for cloud-based storage solutions. Swift was mentioned
as one of the primary components of the OpenStack software package, according
to the authors. They also come up with a survey where they found more than 53
percentage of all OpenStack deployments use Swifts. Moreover, they added large
Swift installations are becoming more popular, with 24 percentage having over 100
TB of storage and 32 percentage having over 10,000 items. Backup and storage of
Docker/VM images, application data, and Big Data are some of the key use cases
for swift. The authors found a drawback of Swift. They claimed Swift is uses tra-
ditional TCP/IP sockets-based communication which has some performance issues
like context-switch and buffer copies for each message transfer [13], [20]. In this
paper, authors tried to analyze the performance characteristics of OpenStack Swift
design. After analyzing they found three major bottlenecks in Swift design, namely
communication, I/O and hash-sum computation. They found OpenStack Swift op-
erations mainly rely on proxy servers, limiting overall throughput and scalability.
Based on their observation they suggested Swift-X, a high-performance architecture
and implementation of OpenStack Swift for the purpose of developing efficient HPC
clouds. Authors proposed two new designs for improving the performance and scala-
bility of Swift applications. One of the designs is client-oblivious, without modifying
the client library or requiring RDMA-capable networking devices on the client node
users can use this. Another design is metadata server-based design, which entirely
redesigns Swift’s put and get functions. Rather than employing the proxy server
to route requests, the authors highlighted repurposing it as a metadata server. To
enable the fastest feasible object transfer, they presented high-performance imple-
mentations of network communication and I/O modules based on RDMA for these
both two designs. To further increase the object verification efficiency in Swift, they
also investigated other hashing methods that are being used in the community. The

9

authors wrote in their paper that most people use Swift to upload and download
software, simulation input files, experimental results and large datasets. They also
use it to download VM images, VM images, and configuration files. There are a
number of other Swift requests that go beyond uploading and downloading objects.
Since no objects are being sent, none of these activities require a substantial amount
of network connectivity or I/O. According to their findings, such processes have a
latency of just a few hundredths of a second. Uploading and downloading huge
objects, on the other hand, results in significant network and I/O overhead. Us-
ing TCP sockets-based communication, the Swift code is written in Python, and
network connectivity is implemented using the Swift code. As a result, it is criti-
cal to examine the performance of upload and download operations when using the
default Swift implementation and to come up with ideas for how to improve the
performance of these operations in the future. The authors [20] gave a figure where
they showed the breakdown of get and put operations into distinct components for
a 5 GB object. In this paper, they suggest designs to accelerate the network, I/O,
and object verification (hashsum) components of get and put operations, as well as
the overall performance of the system. The researchers proposed expansions and im-
provements to the Swift command-line client library, object server, and proxy server,
as well as to the Swift object server. They introduce a low-latency communication
module based on RDMA in the client, object server, and proxy server to facilitate
communication between them. They also include an object file-specific I/O module
in both the client and the object server to facilitate object file-related activities.
The authors make no changes to the Swift client API that is already in place. In
this way, existing applications can operate seamlessly over Swift-X without the need
for any code modifications. For designing the Client-Oblivious researchers take the
replication semantics and design from the default implementation and add a level
of fault-tolerance. The working method of this design is the proxy server receives
requests and data from the client over TCP. The client’s default client implemen-
tation sends these requests and data. The proxy server sends requests and data to
object servers at the same time through RDMA communication. It then waits for
the object servers to send back their responses, before giving the client the final
answer. Again, for the metadata server-based design the client will use the RDMA
communication module to send a get or put request to the proxy server. To do this,
the proxy server will look up what the object needs and where it needs to be sent
or gotten from. Once the request and data have been sent to all object servers in
parallel, the client terminates the process. This is accomplished through the use of
RDMDA (Remote Direct Memory Access). The authors ensure that the semantics
of replication are identical to those of the default design and that the fault-tolerance
of the cluster is not affected. For object verification the writers describe that while
uploading and downloading objects Swift computes the md5 hashsum of each object
in the collection. While md5 is a widely used hashing method that produces high-
quality hashes, it has a low performance due to its complexity. To take use of their
proposed designs, they added new operating modes to Swift. They used microbench-
marks, ssbench, and synthetic application benchmarks to evaluate their suggested
design in depth. Our ideas can boost speed by up to 2x for customer designs and
up to 7.3x for metadata server-based solutions, according to their study. They want
to change the S3 and HDFS Swift clients in the future to operate with their ideas.
They also want to conduct more benchmarking and application scenarios as part of

10

the evaluation.

In another paper [19] they experienced performance testing of web applications using
Jmeter where the applications are linked with UAP. They showed the challenges
they faced during testing web application in this system. Before launching any
application it is an important thing to test the performance of that application in
pre stage. To increase the authentication and security web application is linked
with UAP. As they faced problem with other tools when testing the performance
so they used Jmeter among all the testing tools as it is user friendly and fully
open source. Another problem they faced while configuring the master and slave
server. In their setup when a user try to connect with web application a script
recorder utilize that request and load generator continuously sends that request to
web application to test scalability. After a certain time when the site reply to the
request the load generator again sends multiple request. Here each search engine is
called virtual user. For every web application test there have to be virtual user to
request multiple time to the web. Though the virtual user behaves similar to real
user. If the virtual user cannot copy the behavior of real user than the result will not
be accurate. Jmeter thread attributes are used to run Jmeter scripts. The amount
of virtual users to utilize the test may be specified using Jmeter thread settings.
The thread group calls HTTP request samplers in order; the UAP gateway panel
is launched initially, followed by HTTP request sampler. After that, the user is
prompted to choose an authentication method, after which the user is sent to the
Login page. When the user enters login credential, UAP verify him and directs him
to the program launch screen. The driver script will run in a fixed order described in
the Thread group. The Configure parts in the driver script are used to call specified
functions. The contents of intermediary data obtained using the pattern extractor
are checked using the debug sampler. The number of executing threads and the
ramp-up duration are specified using thread groups. Each thread represents a user,
and the load duration determines how long it takes to produce all of the threads.
For example, if there are 5 threads and the ramp-up time is 10 seconds, each thread
will be created in 2 seconds. The loop count determines how long a thread will
run. You may also specify the start and finish times of the run using the scheduler.
HTTP samplers are utilized, which are server queries that may be customized. This
sampler makes a web server an HTTP/HTTPS query. It also determines whether
JMeter debugs HTML files for pictures and other associated assets, whether or not
HTTP queries are sent to get them. To conclude, they discussed the difficulties they
encountered while utilizing JMeter to do performance testing on a web application
that was linked with UAP on SSO. As stated in the Experimental Outcomes, they
were successful in accomplishing for a limited number of users

To provide high level data dependability and longevity, systems like OpenStack
Swift duplicate every single data item over several storage nodes, necessitating the
maintenance of replica consistency. The ultimate consistency paradigm for Open-
Stack Swift-like systems is implemented by utilizing async protocol of an object to
compare distinct replica copies of each item. While Swift-based OpenStack systems
have been extensively adopted, we intend to gain a better understanding of how
effectively they provide consistency in practice. Using OpenStack Swift they began
by creating a lab-scale case study. They designed the quick with r equal to three
and n fewer than one thousand. Here, r indicates the total unit of replicas asso-

11

ciated with every single object, where n indicates the number of items housed by
every single storage node. In this configuration, the synchronization procedure of
the object is severely delayed and generates a large amount of network overhead.
Additionally, the issue is significantly exacerbated for the data updates and node
failures cases. When a node fails, it requires numerous sync rounds to converge and
again enter into a stable state. Additionally, the results demonstrate that paral-
lelism approaches cannot be used to solve this problem fundamentally. As a result,
the sync bottleneck problem might easily have a detrimental impact, as many of
today’s data-centric applications require back-end configurations with r larger than
3 and n more than 1000. In an actual object storage system, the total unit of items
is often far more than 1000; second, and perhaps more critically, systems requiring
quicker access to a large number of little objects frequently use a bigger value of
r. Following that, they dug into OpenStack’s Swift source code to gain a detailed
understanding of why the sync slowdown occurs. To be more precise, partitioning is
a common storage technique that divides the total object storage space into smaller
portions, each of which is referred to as a (data) partition.

In comparison to the strong consistency model, openStack Swift provides eventual
scalability for each data item, a popular consistency approach in the field of dis-
tributed environment. OpenStack Swift ensures the dependability of each object
by duplicating it across several storage nodes. In the case of an OpenStack Swift
cluster, there are two sorts of nodes. While storage nodes are in charge of storing
things, proxy nodes associate links between clients and storage nodes. OpenStack
Swift, on the other hand, creates a logical ring which is a representation of the full
storage area. However, a logical ring has a large number of equivalent subspaces.

LightSync is intended to take the place of the original object sync protocols in the
existing Swift-based OpenStack environment. It obtains the needed qualities by
combining the three new building components described below. To begin, it makes
use of the Hashing of Hashes (HoH) technique to accumulate all of the h hash values
in every single partition into a single yet characteristic hash value using the tree data
structure established by Merkle. The determination of the aggregated hash value
of data partition results in inconsistencies, the decision will be made first by the
local node, the incorrect suffix directory. After that it will figure out the more
current version of the suffix directory. While a circular hash checking is ongoing,
the storage nodes that host the r replicas of a particular partition P form a tiny
logical ring known as the clone ring of P that already exists within the big object
ring.

The authors [24] demonstrate in this study that the sync protocol of objects is
critical to their performance, namely the important parameters r and n. Their
measuring investigation demonstrates an excessively lengthy object sync latency and
an unreasonably large network overhead. Situations like this can be described as the
sync bottleneck, and it is impossible to resolve fundamentally by enlarging the total
number of sync threads. As a result, they develop a revolutionary protocol called
LightSync that effectively solves the sync bottleneck problem. The effectiveness is
confirmed by both conceptual analysis and real-world trials.

Performance testing was carried out on two identical websites: Politekniik Negeri

12

Malang’s admission website and Universitaas Brawijaya’s admission website [22] as
admission websites are visited by a large number of users in order to gather details
of admission. The performance of websites was measured with Apache JMeter by
the authors.

The tests were repeated four times with a total of ten tests to discover the error and
success on the websites. Both websites were subjected to stress testing to guarantee
that the system could handle huge numbers of queries during the peak period.

With the results after testing the researchers concluded that the Selma web perfor-
mance falls as the duration of tests performed with varied lengths of time increases
in four trials undertaken by the researchers. In contrary to the first finding Of Selma
UB, Polinema’s admissions website was initially steady, but with passing time, the
experiment began to deteriorate. This indicates that the website’s performance is
consistent at first, but with time, it begins to become unstable.

13

Chapter 3

Background Studies

Cloud computing utilizes resources on a need basis service. This allows the users
to connect via the internet while giving them a hosted environment with required
services. Along with the emergence of cloud technology, everyone is moving towards
embracing a cloud-based framework due to the enormous benefit that we derive
from cloud computing. Cloud computing has opened new vistas of opportunity for
testing. The Covid-19 pandemic has dramatically increased the number of internet
users, demonstrating the benefits of working from home. Load testing is required
to ensure a positive user experience. Besides, any malfunction in the system will
create great havoc. The system’s downtime will cost a significant amount of money
in lost revenue. In addition, if the system’s reaction time is slow, users would lose
interest. Performance requirements, on the other hand, can pose a risk.

3.1 Cloud Computing

Cloud computing is a web-based framework for storing data on remote computers.
Cloud-based storage enables you to save files in a distant database rather than on a
personal hard drive or local storage device. If the gadget is connected to the internet,
it will have access to data as well as all the software programs required to run it.
Cloud computing is an emerging alternative for people and businesses because it
enables cost savings, increased productivity, effectiveness, and quality, as well as
performance, speed, and security. Cloud computing may be classified as either
public or private [12]. After accepting payment, public cloud service providers make
their services available to users. On the other hand, providers of private cloud limit
the amount of customers who may access their services. In cloud computing, there
are three services. Examples include Software-as-a-Service (SaaS), Infrastructure-
as-a-Service (IaaS), and Platform-as-a-Service (Platform-as-a-Service) (PaaS) [12].
It has two parts: the front-end and the back-end. The front end of a web browser or
a cloud computing app is used by people to get to data that is stored in the cloud.
This is called front end. The back end is the most important part because it stores
information and data in a safe way. They all belong to the same thing: web servers,
computers, and databases. We described the various services of cloud computing

14

services one by one.

3.2 IaaS

Infrastructure as a service (IaaS) is a form of cloud computing [30] that uses virtual
computer capabilities to supply resources over internet. When using the Infrastruc-
ture as a Service (IaaS) model, the cloud provider manages IT infrastructure such
as memory, servers, and web servers, and then delivers them to subscriber firms
through virtual machines that are accessible through the internet. IaaS can give
various benefits to businesses, including the ability to run workloads more quickly,
easily, and cost-effectively, as well as the ability to scale workloads. Under the IaaS
service architecture, a cloud provider maintains the infrastructure resources that are
traditionally housed from an on-data center. This includes both the hardware ele-
ments of workstations, memory, and connectivity, and the simulation or particular
material of the operating system. Users of IaaS access to resources and services using
a wide area network (WAN), including the web, and can take advantage of a clouds
company’s services to finish the software stack installation on their servers. If the
user logs into the IaaS platform, he or she can create virtual machines (VMs), install
OS systems on each VM and install components such as databases; create memory
containers for operations and restorations; and install an enterprise workload onto
the VM. The services provided by the supplier can then be used to analyze expenses,
manage progress, regulate traffic on the network, diagnose application issues, and
manage disaster recovery, among other functions. IT organizations want to employ
infrastructure as a service since it is often very efficient, speedier, and value to run
a workload without the need to own, manage, and maintain the underlying system.
Internet as a service can be come in handy for different types of applications. The
resources it provides via a model can be used for many types of tasks. There are
several critical considerations to make when implementing an IaaS product. Be-
fore considering different technological requirements and providers, it is critical to
describe the IaaS use cases and infrastructure requirements precisely.

3.3 PaaS

Developers essentially lease anything they require, construct an application using
the Platform-as-a-Service (PaaS) model [27], relying web technologies, architecture,
and software platforms are all hosted by a cloud service provider. It’s one of the
three models of cloud computing that are currently available. Web application de-
velopment is made substantially easier using PaaS, because all backend management
is handled behind the scenes, rather than in front of the developer’s eyes. While
PaaS and serverless computing have a number of qualities in common, they also have
some important differences. PaaS is available via any internet connection, allowing
for the construction of a complete application in a web browser without the need
for any other software. Due to the absence of a local development environment,
developers can access the application from any location in the world and work on

15

it. This permits collaboration amongst teams that are geographically dispersed.
Additionally, it implies that the development environment is less controlled by the
developers, however at a far lower cost. PaaS is accessible via any internet connec-
tion, which enables the development of a whole program in a web browser. Due to
the absence of a local development environment, developers can work on the project
from any location they prefer. This permits collaboration amongst groups which are
geographically dispersed. Additionally, it implies that they have less control over
this, however at a far lower cost. With the help of this, developers only require to
write code and check it; the vendor takes care of the rest. PaaS enables them to
analyze, troubleshoot, distribute, serve, and upgrade their applications all at the
same time. This helps developers to validate the application will run effectively
as an application hosted prior to releasing it, and thus simplifies the application
development lifecycle.

3.4 SaaS

SaaS is an acronym that stands for Software as a Service [23] is a cloud-based ser-
vice in which, rather than installing on user desktop PC or workplace network to
operate and update it, users access an application using a web browser. Software
applications can be anything from productivity software and collaboration tools to
voice over IP systems and collaboration tools. They can also be any of a number of
other business apps. This has a variety of advantages as well as disadvantages. In
addition to being easy to use and compatible with other systems, SaaS also offers
the advantage of operational control. Additionally, in compare to conventional soft-
ware downloading and installing, SaaS models are less expensive up front, enabling
smaller enterprises to challenge established markets while simultaneously provid-
ing providers with greater flexibility and empowerment. One notable advantage of
any Software as a Service application is it can be accessed via an internet browser,
regardless of the Os that is being used to access it. In this way, the application
remains available irrespective of if the users attempt to use it on a desktop OS
like window, Mac, or Ubuntu (or on a smartphone running Android or iOS). As
a result, SaaS applications are incredibly versatile and can be used in a variety of
ways. Another key advantage of Software as a service is that, because they are
housed in the web, the vendor can update them from a central location without
interfering with the customers’ day-to-day business activities. When compared to
on-premise technology, which usually requires suitability and endpoint protection
testing before even the most basic upgrades and fixes can be applied, this is a sig-
nificant advantage. The cloud-based prototype avoids the pitfalls of test results,
which can slow down the production loop and consumer exposure to technology
features, while also making sure that security fixes are applied quickly, as opposed
to on-premises software, which might also persist open to risks until the IT provider
management staff has finished their checking. Then it brings us to another of SaaS’s
primary selling points: the lack of primary costings needed for using it. On-premise
software requires more than just compatible software and hardware configurations
on business PCs or other computers; extra servers and switches and routers may
be needed as part of a broader investment in IT infrastructure services to ensure

16

that the software is supported throughout a company’s operations. SaaS eliminates
this problem, which means that even a small firm can now use this solution us-
ing SaaS-based cloud apps that were previously exclusively available to companies.
Additionally, it’s scalable in the sense that if the number of clients using your ser-
vice needs to be increased or decreased, you simply adjust the pricing plan - rather
than needing to spend in extra gear or put expensive gadgets on hold when demand
drops. Overall, SaaS offers a wide range of advantages that should be beneficial
to both providers and consumers. However, while some corporations may prefer to
develop their own cloud management services and maintain control of the data via
harmonies among devices and sites, SaaS provides unrivaled opportunities for the
vast majority of small businesses to grow, expand, and provide greater value to both
their employees and customers.

3.5 FaaS

Function as a Service is a sort of virtual reality that enables the user to apply cod-
ing skill in scenarios where the need for the extensive infrastructure is related with
developing and starting small spaced applications. It is common for internet-based
software applications to require provisioning and administration of a cloud or genuine
real server, as well as several operating systems and cloud servers for the essential
tasks. With function as a service, cloud service provider manages the desktops,
on the operating system that are on VMs, and web-based software’s automatically.
This enables the user to concentrate entirely on specific functions within your ap-
plication’s code. Because it offers easy isolation and scaling of transactions, FaaS is
well-suited for a huge amount and ridiculously workloads at a time. Additionally,
this can be also come handy to develop the backend servers and doing the processing
of data, format changing, debugging, and data manipulation. This is also an ex-
cellent medium for developing server-based applications, behind the servers, stream
allowancing, as well as for developing online chatbots and backends for Internet of
things-based devices. Function as a server can help users with managing as well as
utilizing third-party services. If one user is considering developing a mobile applica-
tion, for instance, a function as a server model is very cost efficient. Due to the fact
that users are only charged when the app connects to the server for a conducting
a particular task, such as group processing, prices are usually significantly cheaper
compared with a more known method. Furthermore, it can significantly improve
the performance. For instance, three students recently collaborated with experts to
investigate ways to use Cloud Functions to conduct a proposed simulations (com-
puting methods for estimating the feasible outcomes of particular difficult-to-predict
situations) to calculate stock values. The proposed simulations are a revolutionary
task performance enhancing computing. The combination of proposed simulations
and cloud functions gave opportunity to the team to do computations on a vast
scale while concentrating on business logic.

17

3.6 Cloud Storage

When using cloud storage, data is stored on the Internet by a cloud computing
provider who manages and administers data storage as a service, which is a cloud
computing technique. Cloud storage is a service [25] that stores data, manages and
backups it remotely, and makes it available to customers through the internet (via
internet). Cloud storage is obtained through the purchase of a service from an-
other hosting company that owns and operates data storage capacity and makes it
available via the Internet on a pay-as-you-go basis. These cloud storage companies
handle capacity, security, and durability in order to make data globally available to
your applications. There are numerous cloud storage companies. Most companies
offer free storage space up to a specified number of gigabytes. DropBox, for example,
offers free storage space of up to 2GB, while Google Drive space up to 15GB, Ama-
zon, and Apple Cloud offer free storage space of up to 5GB, and Microsoft SkyDrive
offers free storage space of up to 7GB. If a customer exceeds the allotted free space,
they will be charged the appropriate amount according to the plan. Limitations on
file size, automatic backups (if available), bandwidth, and upgrades for restricted
space vary from provider to provider; for example, DropBox supports files up to
300MB in size, while Google Drive supports files up to 1TB in size. Customers who
use cloud storage services save money since they do not have to purchase storage
devices and do not require technical support for maintenance, backup, and disaster
recovery [25]. There are many types of cloud storage. Among them we have worked
with OpenStack swift.

3.7 OpenStack Swift

The object or blob storage available for distributed and eventually consistent envi-
ronments is known as swift. Many institutions use swift in order to store their huge
data cheaply and safely. Swift is a project that is known to store the OpenStack
object and it is used in order to store and access huge amounts of data using a very
simple API. Swift is a boundless storage that can store the unstructured data.

3.7.1 Characteristics

Any object that is located inside the swift should have a specific URL and its own
metadata. All the fragments for an object are located in a unique position in order to
get a longer durability and availability. The data doesn’t require any type migration
to a new storage system. Besides, the addition, swapping and removal of new nodes
into a cluster can be done without any interruption. Developers can write in any
existing popular programming language or in the swift API.

18

3.7.2 Components

There are some components of swift that ensure the availability and durability and
we will discuss them.

Objects: Objects are the data that are stored in the swift.

Proxy servers: Proxy servers are used in order to handle all the incoming requests
of the API.

Rings: Rings perform the task of mapping the logical data names into the location
of a specific disks.

Accounts and Containers: Both the account and container are separate databases,
where the list of containers are stored in accounts and the list of the object is stored
into the containers.

Zones: Zones are used to separate the data from one another and any error in one
zone doesn’t have any impact on the rest of clusters.

Partitions: A partition is used in order to store the objects, databases of container
and account as well as assist to control the location of data inside the cluster.

3.7.3 Ring-builder

The management and building tasks of the rings are done by swift ring-builder.
Ring-builder stores its own builder file along with the ring information as well as
the data that are required further in order to create a new ring in future. So, keeping
multiple copies of builder files is highly suggested. This backup process can be done
by copying the builder files outside the server and uploading them into the cluster.
failure to do so will result in creating a new ring from starting.

3.7.4 Object Storage Monitoring

As the swift cluster contains a huge amount of daemons collaborating across var-
ious nodes. As the cluster contains so many components, it becomes important
to have a clear knowledge of each task as well keep tracking them. Swift recon,
swift-informant, statsdlog, swift stats-dlogging are used for this monitoring process.
Beside them cluster architecture, replication, large object support, object auditor,
erasure coding, account reaper and troubleshooting object storage are points that
are a major part of OpenStack swift.

19

3.8 Command line

We have used the command line for setting the whole OpenStack swift setup. Com-
mand line is a user interface that can perform all types of tasks that can be done
by GUI (Graphical User Interface). Though the GUI and command line perform
the same task, the command line interface can perform some tasks very quickly.and
can be done remotely. The linux command line can be also known as terminal or
console.

3.9 Servers

Servers are computer programs that provide functionality to other applications or
devices called ”clients”. This design is called the client–server model. This design
is called the client–server model. A server is a collection of web pages that responds
to a user’s request for information about a certain website. Servers are capable
of performing a wide range of tasks that are collectively known as services, such
exchanging data or resources among a few clients or conducting a calculation for the
benefit of a single client. A single server can serve several clients at the same time,
and single client simultaneously can access several servers from the same device at
the same time. It’s possible that a client process is running on the same device as
the server process, or it may connect to a server process running on a different device
through a network. Simply typing the web address into a browser and pressing the
return key constitutes this request. The server watches these requests through the
use of ports, providing a response that is practically instantaneous in order to provide
the web page requested. As soon as the server receives and validates the request
in hand, it begins gathering the pieces that build up a website and communicating
this gathered returns data to the user’s internet browser. Client-server systems are
most commonly used to implement the request–response model, a client requests a
server, which does some action and returns a response back to the client, generally
followed by a conclusion or an acknowledgement of the request and action. The
request-response cycle is the foundation of the work a server performs on a daily
basis.

3.10 Virtual Machine

Virtual machine is an image file that performs like an actual computer. It is a
separate window inside a computer where the user can run another computing en-
vironment and even the operating system can be different. However, though a
VM contains a different environment and OS, it doesn’t have any impact on the
computer interface and primary OS. Beside, inside a single physical hardware the
user can create multiple OS with the help of VM. There are many types of vir-
tual machines where the windows VM is used to run different versions of windows
OS. It creates a partition and runs a separate windows OS with any overlapping

20

issue. Then the Mac virtual machines help to run the MacOS in the mac hardware
builded interface. Android VM is used to run Google’s open source androidOS vir-
tually. Java VM is used to run any environment that is written in java, and it can
be run in any hardware setting using the java platform VM known as JVM. The
python virtual machines are similar to Java, it translates the program into bytecode
and then bytecode converts into machine code and executes it. Lastly, the desktop
and server version of Ubuntu can be run in VM and it offers a lot of benefits for the
user [6]. The VM has some advantages that we are going to discuss here.Installing
a new OS inside the VM is easier than installing it inside the computer. So, VM
gives the user the faster and easier experience of different OS. Besides, the VM of-
fers the testing of new operating and malware investigation. However, A VM also
allows the user to test some older versions of softwares that are not available with
the updated version anymore. Another most important feature of VM is security.
The VM allows the user to visit any sites without the concern of any infection. VM
is also a fundamental part of cloud computing [6]. In this work, we have completed
the work on Virtual Machines of our own system.

3.11 Virtualization

Virtualization is the act of generating a virtual version of something in computing.
This might include virtual computer hardware platforms, virtual storage devices,
and virtual computer network resources, among other things. A means of logically
partitioning the system resources given by mainframe computers across distinct
programs, virtualization was first introduced in the 1960s and has been in use ever
since. As a result, the meaning of the phrase has grown more expansive. Running
multiple operating systems on one computer system at the same time is the most
common application of virtualization. As a result, when applications run on top of a
virtualized machine It seems as if they are running on a distinct dedicated machine;
the operating system, libraries, and other programs are all specific to the guest
virtualized machine and are not connected to the host operating system, which is
running below it on the host computer’s virtualization infrastructure. Virtualization
has become a standard approach in organizational information technology design.
It is also the technology that is responsible for the economics of cloud computing.
When cloud providers use virtualization, they can continue to use their existing
physical computer hardware to serve their customers; when cloud customers use
virtualization, instead, they can acquire only the computing resources they demand
at the moment of need and scale those resources as their workloads expand in a cost-
effective manner [12]. A wide variety of virtualization technologies are available;
desktop virtualization, network virtualization, storage virtualization, application
virtualization, and data virtualization are just a few examples [11].

21

3.12 Test Case Metrics

Metrics can be both beneficial and damaging to the development and testing life
cycle. It depends on how they are interpreted and applied [7]. People generally
talk about metrics and how to do measurements correctly in any type of organi-
zation. Some of them employ potentially dangerous measures to evaluate team
members’ performance, while others use relevant, meaningful, and insightful met-
rics to improve their processes, efficiency, knowledge, productivity, communication,
teamwork, and psychology [2]. A software testing metric is a numerical measure
that aids in estimating progress and quality of a software testing process. A metric
is a measure of how much a system or one of its components has a particular feature.
Metrics for software testing are significant for a variety of reasons. It aids in the
decision-making process for the next phase of activity. It is proof that the claim or
prediction is correct. It assists us in determining the type of change that is required.
It facilitates decision-making and technological progress. Process metrics, product
metrics, and project metrics are different kinds of software testing metrics. In the
software development life cycle, process metrics are used to increase the efficiency
of the process. Product metrics are used to assess the software product’s quality.
Process metrics are used to assess the efficiency of the project team as well as the
testing instruments employed. Determining software test metrics entails a number
of stages. Identify the essential software testing processes that will be measured
first. After that, the tester utilizes the data to create the metrics. Furthermore, the
defined metrics must be calculated, managed, and interpreted correctly. Identify
areas for improvement based on how the defined metrics are interpreted. The test
cases we have designed in this work have been prepared following these metrics.

3.13 Test Case

The documentation in a testing process that contains the set of test data, precon-
ditions for the test and what are the expectations from the test is known as test
case. In order to run a successful test, the test case contains a major part in it.
It offers the testers to check the validity of some specific requirements and param-
eters. The testers set some test cases that will meet those requirements and after
running the test based on those test cases, the validity and success rate for each
task can be identified very easily. Often, a test case is considered as the starting
point of any testing as all the experimental setup and work flow is designed based
on the test cases. Based on the test case the test values are declared and then the
test has been executed.After running the test, the testers receive some outputs and
outcomes. Then based on the post condition the testers try to evaluate the result.

Test cases are considered as a set of steps that defines the structure of executing
a specific task and verifies the functionality of that specific function. As the test
cases play an important role for a project, the specification of the test cases is also
important so that all the functionalities can be checked. In order to do so, the test
cases contain some parameters that are discussed below:

22

1. A test case should contain a test id so that we can easily identify it anytime.

2. A test case should contain the test scenario where the test should be conducted.

3. The test case can also include the description of the test case.

4. The test case should contain the steps to run the test case. When the testers
have a good idea about the steps serially, it will be easy for them to implement
the test and the process will be quicker.

5. The test case might contain the prerequisite of that specific task. It will be
easy to set everything for the test before implementing the test steps.

6. The test case might contain the information about the test data.

7. As every task should have specific outcomes, every test case should contain
the outcome or expectations from the case. Additionally, it will be helpful for
the evaluation in the future

8. Test case can contain some comments too.

The test cases can be divided based on these parameters and the testers can select
the necessary parameters based on their project type. However, when a test case
contains too much information, the tester can divide the test case into smaller parts
[3]. The test cases have some advantages that we are mentioning here.

1. Test cases ensure that the testing process is done efficiently and without any
error.

2. It is beneficial for project quality improvement.

3. It helps a tester to design the plan keeping every aspect and possible angles.

4. It helps the tester to verify that all the requirements are met properly.

5. Test cases can be used in the future and so it can be reusable in further
improvement of the project.

However, along with so many benefits, improper design of test cases may lead to
some disadvantages. The number of the test cases should not be large as this will
create the testing process tough for the tester and will make the process very long.
So, it is very important to design the test cases according to the requirements [16].

3.14 Load Testing

Load testing aims to estimate how well an application performs when it is loaded
with an increased number of users. This load is applied to the program for a certain
period, and the obtained results show if the requirements of a particular application

23

are met with the expectations [4]. Load testing allows to assess site’s QoS based
on real-world customer behavior. Customers’ requests are used by a script recorder
to produce interaction scripts when they visit site. The scripts are then replayed
against the Web site by a load generator, which may be adjusted by test settings.
The load generator behaves in the same way that a browser would. It sends re-
quests to the Web site on a regular basis, waits a certain amount of time until the
site responds, and then sends another request. To test the scalability of a Web site,
the load generator may simulate thousands of simultaneous users. A virtual user
is a critical load-testing term that refers to each emulated browser. A load test is
only valid if the behavior of virtual users is similar to that of real users. System
component performance under various loads, database component performance un-
der various loads, network interruption in between server and client, software design
problems and server configuration errors like web server, application server, database
server, and so on are all identified through load testing. Establishing a dedicated
load testing environment, generating load test scenarios, conducting test scenar-
ios, collecting various metrics, evaluating the findings, providing recommendations,
fine-tuning the system, and re-testing are all steps in the load testing process.

3.15 Scalability

Scalability is the ability of an organization, system, model, or function to cope with
and perform well under an increased or expanding workload. In cloud computing,
scalability refers to the capacity to scale up or down IT resources as needed to meet
fluctuating demands. Scalability is one of the distinguishing characteristics of the
cloud, and it is the fundamental reason for the cloud’s rising appeal among organiza-
tions. Generally, scalability refers to strategies that ensure that some level of service
quality is maintained even when the number of users grows or the complexity of the
world grows. While unique latency requirements justify the selection of a specific
consistency method, the majority of these strategies make the assumption that a
certain amount of bandwidth is readily available. Using the level of interest that
clients have in other entities in the environment is the most essential way in which
scalability is made possible [1]. It is common for stability and competitiveness to be
accompanied by scalability, as it indicates that a given network, system, software,
or organization is capable of dealing with an increase in demand as well as with in-
creased productivity, trends, changing needs, and even the presence or introduction
of new competitors [1].

3.16 Testing Tools

A tool that is used for software testing is a product that facilitates one or more
test operations, such as planning, requirements, building a build, test execution,
defect tracking, and test analysis. Several parameters may be used to categorize
testing tools. Such as, the tool’s objective, the activities that the tool facilitates,
the technology that was utilized, supported types and levels of testing, and the

24

licensing type (open source, freeware, commercial) etc. Testing tools in cloud load
testing plays a significant role in the Software Testing Technology. Few cloud-based
testing tools are Apache JMeter, Blazemeter, Gatling, SOASTA, WebLOAD etc.
These testing tools analyze the problem carefully to identify strengths, weaknesses
and opportunities. They also take into account limits like as budgets, timelines, and
other considerations. Shortlisting the solutions that satisfy the requirements and
evaluating them is also a task of testing tools. In this work we have worked with
Apache JMeter for load testing.

3.17 JMeter

The purpose of load testing is to check if the system under test can handle the
needed number of concurrent user visits on the web server without failing. JMeter
one of the greatest load testing tool available since it can test both static and
dynamic resources. JMeter is a tool for detecting concurrent users on a website
and providing graphical performance information. JMeter is a free, open source
program that anybody may download. Another advantage of JMeter is that it is
simple to use. There are no prerequisites for using this tool, which implies that
anybody may use it regardless of their skill level or domain expertise. If anyone
wants to use JMeter to test he has to know some elements of JMeter which are
Thread Group, samplers, Listeners and Configuration. Thread represents one user
using the application. From the thread group one has to add the action which will
be taken if sampler error occurs. Then he has to set the number of request he wants
to conduct. After setting up the thread group he have to add a sampler in the thread
group to set what kind of request we will send to test. There are multiple option
like http requests, flow control action, ftp requests and many more. If he choose
HTTP request then that HTTP request let him send http requests to the server. In
the HTTP request dialog box he has to give URL or IP of the server as well as port
number and path. Then to see the results of the test one can select any option he
wants to see. There are multiple option to see the output like table, graph and so
on. We have used table and graph to show the result in the later chapter.

3.18 Latency

In the networking field, Latency simply defines the travel time of a packet from
source to destination. To expand it, when a sender wants to know something,
the sender sends a packet to the receiver and after receiving the packet, receiver
sends another packet to the sender that contains the required information of the
sender. So, the time required between a sender sending a packet to receiving the
responding packet is known as RTT(Round Trip Time). Almost half of the RTT
is known as latency. In other words, it can be said that latency is the time delay
occurring between the users requesting for information and the receiver receiving the
request. For instance, let us consider two different connections, the first connection
is from BRAC University Mohakhali campus and the other one is from BRAC

25

University residential campus. Both of the connections have similar configurations
and bandwidth. However, when the users try to access some information from the
network, in both networks, users get the similar output. But, the users from BRAC
University residential campus can see the blank pages for a longer time compared to
the BRAC University Mohakhali campus. This delay happens due to the difference
of latency between the networks. The connection of BRAC University residential
campus is slower than the BRAC University Mohakhali campus as the latency for
BRAC University Mohakhali campus is lower than the BRAC University residential
campus.

Latency differs from one geographical location to another [10]. One of the major
reasons for latency is the distance from the user to server. To illustrate, if we have
a server situated in Dhaka city, then we will get the lowest latency in Dhaka city
when the user is from Dhaka. On the other hand, when a user from Chattogram
will try to access the same information, it will take more time for the users as the
latency is higher there. Even though the data transmission through the internet is
a very quick process, it will take some time to travel from one point to another.
However, even if the data transmission rate is almost close to the speed of light, it
will take longer to travel a longer distance. So, distance is a major issue to make
an impact on latency. Furthermore, the internet traffic is another reason for latency
difference. When the sender requests information to the server, if the traffic is busy
on that path, the data will try to find a new path to transmit the data and it will
result in a difference. When the HTTP response amount is higher, it will create
a delay to pass through and the latency will increase as well. Besides, the routers
need to process the data and divide them into smaller packets if needed that will
add some extra time. So, this is also a reason for an increase in latency. However, in
most of the cases, the sender sends the packet to a server and the establishment of
connection with the server, the size and type of the requested file are other reasons
that cause the difference in latency value. To conclude with, Data latency can be
reduced by public clouds, where the user can easily access a file from their nearby
cloud server, it will reduce their latency and offer them a good internet experience.
Because of latency we get different types response time.

3.19 Response Time

The whole amount of time required to respond to a service request is referred to as
response time. A memory fetch, a disk IO, a complex database query, or the time
required to load an entire web page are all instances of services. For the sake of
argument, consider that response time equals the sum of service time and wait time.
The service time is the time required to do the task you’ve requested. The wait time
indicates how long a request must wait in the queue before being served, and it can
range from 0 (no waiting required) to a large multiple of the service time (many
requests are already within the line and must be treated first). It’s straightforward
to calculate the increase in average wait time as the device supplying the service
goes from zero to one hundred percent occupied using standard queuing theory
calculations. As the device becomes busier, the average wait time increases non-

26

linearly. If we approach 100% capacity, the response time increases dramatically;
this increase is entirely due to increased wait time, which is the result of all requests
waiting in queue to be processed. We have run our test 4 times and taken the
highest response time because it gives us the idea of time taken in the worst case
for every test cases. We have run our test 4 times and taken the highest response
time because it gives us the idea of time taken in the worst case for every test cases.

27

Chapter 4

Proposed Methodology

Throughout this chapter, we will provide a quick and extensive explanation of our
overall system workflow, as well as all of the approaches we followed to perform
our investigation. Because load testing of a distributed server needs to be done in
a certain way, it is very important to have a plan in place. Despite the fact that
there are numerous approaches for detecting cognitive load on an OpenStack swift
server, the necessity to measure it objectively and validly has piqued the interest
of researchers and prompted the development of numerous alternative methods. In
our methodology, we have tried to give an idea of the cloud server which we have
created using OpenStack swift, client PC and test cases.

4.1 Work Flow

For getting the desired output from our experiment we need to set up an environment
where we need to give concurrent requests to the server and evaluate the outcome
of the server. At first, we created the server using OpenStack swift and enabled all
the permissions. After that, we have uploaded a large amount of files to the server.
The files were categorized based on their type and size so that the results can vary
from one another. Furthermore, we have selected some client PCs that will interact
with the main server. Besides, we have installed the testing tool apache JMeter in
each client PC. Unfortunately, due to the pandemic, we have used a VM along with
the primary OS so that we can add some extra devices to run the test. Then, we
started to send the request to the server from the client PCs. At first, we verified
the process by checking one single device. After that we started to give concurrent
requests to the server and checked for the validity of the server. While giving the
concurrent requests, we have used our test cases that we have designed and then we
have stored all of our test cases so that we can analyze them later. However, Apache
JMeter was installed in every single PC so that we can check the performance of
every client too.

28

Figure 4.1: System Work Flow

4.2 Test Case Metrics

While conducting research, the first step is to figure out what our expectations are
and based on them we need to set some test cases. Here, we have designed a total
of 8 test cases that will cover our whole work findings.

Figure 4.2: Proposed Test Case Metrics

Here, we have divided our test cases based on 4 parameters showed in figure 4.2.
The first parameter is protocol. For our each test case we have used HTTP protocol
which is a very common protocol that people use on a daily basis. It is an encrypted
protocol. The second parameter is file size. We have decided to divide the unstruc-
tured files into two categories. The first category contains the large size file and the
second one contains the smaller size file. The reason for this categorization is that

29

we want to check how our server will react when we try to access a file. The other
two parameters are URL and load. Here we have planned to run our test case in case
the same file contains the same URL with and without load. We will verify that if
we request a small file with and without load, how our server will respond. Besides,
the similar process will be run for the large files. Based on these parameters, TC0,
TC1, TC2, TC3, TC4, TC5, TC6, and TC7 total 8 test cases were designed. We
will use these test cases to verify our requirements and expectations.

4.2.1 Concurrent Request for Load Testing

To get a better understanding about the server response, we have sent a single
request to the server in the initial stage and we verified the connectivity. Along
with that we have collected all the data and stored it so that we can verify the
result. After that we have started to request for different types of file concurrently.
The reason for sending the concurrent requests is checking the load capacitance of
the server and obtain the variety of result so that we can make an analysis on them.

Figure 4.3: Concurrent Request Architecture

4.2.2 Cloud Server

From the experimental setup we got a container where we can upload single and
multiple files according to the test cases we have prepared. With proper use of the
command we can upload various types of files. These files can be later downloaded
on demand too. After the upload process we can check from the stats about the
state of the container. As in we can easily figure out the number of files, total size of
it, and etc. For uploading large files the procedure was the same. We have uploaded
large and small unstructured data. That means the likes of Text, Audio, Video,
Zip etc. This type of data has different access patterns. In our container this data
can easily be stored without any problems. The whole container can be extended
according to demand. So, we don’t have to worry about storage any more. As
discussed before we have used replicator, this will work as a backup of the files on
the container. Even if the container gets corrupted we have the backups of the files.
So, data recovery will be a matter of time. The container has login credentials. So,

30

security will not be an issue. The user can feel secure while using this system. This
container can come in handy for storing large files as well. We have uploaded large
and small files both as we need to check how the server responds to different types
of file. These files were uploaded according to the test cases we have designed.

4.2.3 Client PC

After the completion of making the main server, we need some client PC that will
help us to send the request to the main server. In this process, we have chosen to
set up the PC with different configurations. However, due to the ongoing pandemic
situation we couldn’t manage enough physical PCs and so we have used the VM to
create different configurations. In each setup we have installed Apache JMeter as
we need to collect data from each client PC along with the main server.

4.3 Test Case Design

To verify each and every task, we have designed our test cases based on some pa-
rameters such as the protocol, url, file size, and server load. Here, we are explaining
each of our test cases to run our experiment in table 4.1:

ID Protocol File size URL Load
HTTP Large Small Same Different Without With

TC0 yes yes yes yes
TC1 yes yes yes yes
TC2 yes yes yes yes
TC3 yes yes yes yes
TC4 yes yes yes yes
TC5 yes yes yes yes
TC6 yes yes yes yes
TC7 yes yes yes yes

Table 4.1: Test Case Scenarios Under Different Parameters

TC0: In our first case, we have chosen HTTP as our protocol. Secondly, the file
size should be large and the url will be the same. Furthermore, for the first case,
we will run the test without any load on the server.
TC1: For our second test case, the url will remain the same and our file size will
be large. But this time we will run the test with a load so that we can verify the
connection.
TC2: For our third test case, the url remains the same but the file size will be small.
This time we will again run the server without load.
TC3: For TC3 the file size and url will remain the same. But this time we will test
the run with some load on the server.
TC4: For TC4, the file size will be large and this time we will use a different url.

31

Along with that we will run the test without any load.
TC5: For our sixth test we will change our url and keep the file size large having
some load on the server.
TC6: In TC6, the file size will be small and the url will be different this time.
Moreover, this time we will test the server without any load.
TC7: In our last case, the file size will be small and the url will be different. Also
the server will have load on it while conducting this case.

4.4 Geographical Location and System Configu-

ration

As we want to check the server load capacity, we need to send requests to the server
from different geographical locations. And so we have distributed our client PCs in
different geographical locations so that we can check the variety of results. Table
4.2 shows the geographical locations of the client and server.

Device Location CPU RAM System Type Bandwidth
Cloud Server Banasree 3.4GHz 16GB 64- bit Operating System 12 Mbps
Client1 Rampura 3.0GHz 8GB 64- bit Operating System 16 Mbps
Client2 Rampura 3.0GHz 8GB 64- bit Operating System 16 Mbps
Client3 Mirpur 2.5GHz 4GB 64- bit Operating System 10 Mbps
Client4 Mirpur 2.5GHz 4GB 64- bit Operating System 10 Mbps
Client5 Banasree 3.0GHz 16GB 64- bit Operating System 12 Mbps
Client6 Shymaoli 3.4GHz 8GB 64- bit Operating System 15 Mbps
Client7 Shyamoli 3.4GHz 8GB 64- bit Operating System 15 Mbps
Client8 Gazipur 2.1GHz 8GB 64- bit Operating System 10 Mbps
Client9 Gazipur 2.1GHz 8GB 64- bit Operating System 10 Mbps
Client10 Banasree 2.5GHz 4GB 64- bit Operating System 12 Mbps

Table 4.2: Geographical Location and System Configuration

4.5 Testing through JMeter

At first we completed the container creation and file uploading according to the test
cases, then we tested the load of the server using a JMeter. JMeter is one of the
most reliable parameters for this purpose. But for testing the load we needed to
generate a URL. For that we gave the proper read write permissions and we were
able to generate a URL for the load test we have done in JMeter. At first to test
the server, we had to create a test plan. Test plan worked like a container which
contained all the test plans we performed. From the test plan we created a thread
group which contained threads. We have configured JMeter in our master pc and
all the client pc. We have used a master pc for remotely controlling all the client pc.
As we want to send concurrent requests to the server for every single test case. It

32

is impossible to handle all the 10 clients individually. So, we connect all the client
pc under one master pc to run the concurrent request smoothly. Ubuntu has by
default options for enabling the pc to control remotely. We have configured the
jmeter.properties in master pc. Then the IP addresses of each client pc has been
added in that folder that allows us to send concurrent requests from the client pc
through the master PC’s JMeter.

Next, in the thread group of JMeter we set everything according to our test case
scenario. We set the number of threads, ramp up time 20 seconds and fix the loop
count to only one. After setting up the thread group we have to add a sampler
in the thread group to set what kind of request we will send to test. In our case
we selected HTTP requests. This HTTP request had let us send HTTP requests
to the server. In the HTTP request dialog box we gave the URL of our server as
well as port number and path. After setting up JMeter we move to run our test
cases for having the result. While checking for no load on the server we select any
one IP of the client pc and conducte the remote run. While running the test with
load, we select remote run all. Which let us send requests from all the client pc
at the same time. When we conduct the remote run all JMeter sends requests at
a time to the server’s specific path which we set in JMeter based on our test case
scenario. Moreover, to see the results of our test we have another element which is
the listener. From the listener we closed what kind of output we wanted to see from
there. We have selected the response time graph and table to view our results.

33

Chapter 5

Experimental Evaluation

5.1 Experimental Setup

5.1.1 Swift Setup

Firstly, we have installed Ubuntu 18.04. Then, 3 hard drives of 6 GB each have been
added to the Linux environment. After selecting 3 hard drives of 6 GB, we have
completed the VM setup. For the VM setup, we have started the terminal for writing
the necessary commands for the whole process. Firstly, we have used sudo apt-get
upgrade, this command will get the necessary upgrades done to the operating system.
Depending on Ubuntu 18.04, we have to use commands to install new dependencies.
Following the above command, we have used another command for the same purpose.
For installing the Swift CLI (python-swiftclient) via git repository, we used the
necessary command. After using some commands, we went from origin to a tree
branch to complete the installation process smoothly. Then another command is
used to install the necessary requirements. Then we installed swift from git repo
similarly we have done in the python-swiftclient. A directory for swift needs to be
created first and then the config files need to be stored there.

The externally added drives will get mounted here from this stage. After using the
command, it showed us the drives and its status. Then an important command is
used for showing known devices from the system. Then we used another command
line to mount the mounted disks of the system. After that we have to label the
drives for identification. Then we have to mount the drives in our virtual machine.

After mounting, we checked whether the mounting was done correctly or not. So, we
have used a particular command for that purpose. After giving that command we
get the confirmation that mounting is done successfully. Furthermore, we need to
give read/write permission to the swift user so that they can have access. Without
giving this permission, the swift can be used only for viewing the system. So, giving
the permission is must.

We have used the nano command a lot. It is particularly used for editing the config

34

files which we have executed later. The executable programs are a necessary part of
the whole setup process. So, for editing the config files this part is very essential.

Three ring builders are needed. They are account builder, container builder, object
builder. In order to build that we have used a replication value of 3. The commands
are given down below:

Figure 5.1: Ring Builder Creation

Figure 5.2: Ring builder configuration for the mounted drives

Then we have used the rebalance command for ring build. These commands take
all the partitions and assign them to devices. This also makes sure each drive is
subscribed according to its destined weight. Then for each account, container and
object builder we need to assign specific ports so that the builders file gets the access.
We have used necessary commands and for the bash command line of the script we
set up the port. That means for account builder we have assigned port number
6002. Similarly, the port 6001 and 6000 are assigned for container builder and
object builder. Then we set up the proxy server. Again, using the nano command
and the script is bind port: 8080. To set the permissions, we configured the swift
file.

As we know Swift has suffix and prefix. So, to finish configuration we have used
nano command for the configuration of swift. And in the script, we have input the
values of suffix and prefix. Then we restarted our proxy server with the command
sudo swift-init proxy restart. After that we need to do the authentication and
authorization of the swift account. We have used memcached. The config file of the
proxy-server got updated with the user and its necessary credentials. After doing
all this we boot up the servers.

For Authentication, we have used the command attached. It will give an Auth
storage token. This token will be then used for the verification process. In our case
every time we started the system, we got a unique storage token.

Account verification has been done with the storage-token given from TempAuth. In
our case the code is: curl -v -H ’X-Storage-Token: AUTH tk36b797284aae44cb86cca942ad042a86’.

35

Figure 5.3: Swift Starting

Figure 5.4: Account Authentication

Container creation is the third step in the Swift account activation process. By do-
ing so we can easily see if the built container is there or not. Figure 5.5 is giving
the confirmation of the creation of the container.

Figure 5.5: Container Creation Confirmation

5.1.2 Testing Tool Setup

Load testing is mainly to see whether the system under test is able to handle the
required number of concurrent user accesses on a web server without any failure.
Among all the load testing tools, JMeter is the best solution since it can test both
static and dynamic resources. JMeter aids in the detection of concurrent users on
a website and gives a variety of graphical performance statistics. JMeter is an open
source tool so everyone can download it for free. Another reason to use JMeter is
that it is easy to use. There are no prerequisites to use this tool which means if one

36

person wants to use JMeter he does not need any skill or domain knowledge. The
downloading process is also so simple. JMeter is run on a pc where java is installed.
To check if it is installed we have to open the command prompt and check for the
java version. If we have java installed then all set to download jmeter. To install
JMeter we have to go to the official website which is jmeter.apache.org. From this
website we have to download any one of the binaries. Then from the downloaded
zip file we have to unzip it. Then we can easily access the JMeter without any
installation process like other traditional installation systems. From the bin folder
of the unzipped file we have to find JMeter.bat to start JMeter in GUI mode. After
that when we open that file we can see the GUI of Apache JMeter.

5.2 Experimental Result

We have designed 8 test cases. Each test case is of unique characteristics. According
to the characteristics, they give different types of results in JMeter. The result briefly
depends on the unique scenarios of the test cases. After doing the load tests with
these test cases on JMeter we have got graphs and result tables. We have described
all the test cases and their corresponding graphs and result tables down below:

5.2.1 TCO

For TC0 we have selected a large file and kept the URL the same, we ran the test
without having any load on our server.

Test# Start Time Thread Name Label
Sample
Time

Status Latency

1 00:07:18.198 Load Test 1-1 HTTP Request 19 Ok 14
2 00:07:18.307 Load Test 1-2 HTTP Request 8 Ok 3
3 00:07:18.409 Load Test 1-3 HTTP Request 9 Ok 5
4 00:07:18.515 Load Test 1-4 HTTP Request 4 Ok 2
5 00:07:18.607 Load Test 1-5 HTTP Request 4 Ok 2
6 00:07:18.705 Load Test 1-6 HTTP Request 5 Ok 3
7 00:07:18.806 Load Test 1-7 HTTP Request 6 Ok 4
8 00:07:18.906 Load Test 1-8 HTTP Request 7 Ok 4
9 00:07:19.006 Load Test 1-9 HTTP Request 4 Ok 2
10 00:07:19.105 Load Test 1-10 HTTP Request 4 Ok 2

Table 5.1: Result Table of TC0

From the above table, we can see connectivity status is okay so the connection has
been established properly. The sample time started from 19 milliseconds as we have
tested this time with no load and small numbers. The average we can see from
the table is around 4-6 milliseconds. The latency was 14 at the beginning which
returned to normal by time.

37

Figure 5.6: Response Time Graph of TC0

From the response time graph, we found that the graph remains between 4 mil-
liseconds to 6 milliseconds. As there was no load in action this time. For TC0 the
average response time is 5.2 milliseconds.

5.2.2 TC1

For TC1 we have selected a large file and kept the URL the same, we ran the test
with having any load on our server.

Test# Start Time Thread Name Label
Sample
Time

Status Latency

1 23:44:01.096 Load Test 1-1 HTTP Request 46 Ok 40
2 23:44:01.096 Load Test 1-2 HTTP Request 46 Ok 40
3 23:44:01.169 Load Test 1-3 HTTP Request 6 Ok 3
4 23:44:01.271 Load Test 1-4 HTTP Request 6 Ok 3
5 23:44:01.370 Load Test 1-5 HTTP Request 7 Ok 3
6 23:44:01.473 Load Test 1-6 HTTP Request 6 Ok 3
7 23:44:01.573 Load Test 1-7 HTTP Request 8 Ok 4
8 23:44:01.674 Load Test 1-8 HTTP Request 5 Ok 3
9 23:44:01.770 Load Test 1-9 HTTP Request 5 Ok 3
10 23:44:01.873 Load Test 1-10 HTTP Request 6 Ok 3

Table 5.2: Result Table of TC1

In this table, we can see connectivity status is okay so the connection has been
established properly. The sample time started from 46 milliseconds as we have
tested this time with load and then it was reduced to lower numbers. The average
we can see from the table is around 5-9 milliseconds. The latency was very high
because of the load. Later the latency came to a normal level.

38

Figure 5.7: Response Time Graph of TC1

From the response time graph, we found that the graph remains between 5 millisec-
onds to 7 milliseconds. As there was load on the server initially the response time
was higher. The average response time for TC1 is 6.47 milliseconds.

5.2.3 TC2

For TC2 we have selected a small file and kept the URL the same, we ran the test
without having any load on our server.

Test# Start Time Thread Name Label
Sample
Time

Status Latency

1 23:55:20.121 Load Test 1-1 HTTP Request 17 Ok 10
2 23:55:20.237 Load Test 1-2 HTTP Request 9 Ok 5
3 23:55:20.333 Load Test 1-3 HTTP Request 5 Ok 2
4 23:55:20.432 Load Test 1-4 HTTP Request 6 Ok 3
5 23:55:20.520 Load Test 1-5 HTTP Request 7 Ok 3
6 23:55:20.631 Load Test 1-6 HTTP Request 6 Ok 3
7 23:55:20.731 Load Test 1-7 HTTP Request 5 Ok 2
8 23:55:20.831 Load Test 1-8 HTTP Request 6 Ok 4
9 23:55:20.931 Load Test 1-9 HTTP Request 5 Ok 2
10 23:55:21.031 Load Test 1-10 HTTP Request 4 Ok 2

Table 5.3: Result Table of TC2

In this table, we can see connectivity status is okay so the load for the system is
connected properly. The sample time started from 17 milliseconds and then it was
reduced to 4-5 milliseconds. The latency was on the higher side as well at first and
then it was decreased.

39

Figure 5.8: Response Time Graph of TC2

From the response time graph, we found that the graph remains between 4 millisec-
onds to 6 milliseconds. As there was no load on the server. The average response
time of TC2 is 4.9 milliseconds.

5.2.4 TC3

For TC3 we have selected a small file and kept the URL the same, we ran the test
with load on our server.

Test# Start Time Thread Name Label
Sample
Time

Status Latency

1 00:03:05.751 Load Test 1-1 HTTP Request 37 Ok 32
2 00:03:05.750 Load Test 1-2 HTTP Request 38 Ok 32
3 00:03:05.823 Load Test 1-3 HTTP Request 16 Ok 7
4 00:03:05.923 Load Test 1-4 HTTP Request 17 Ok 7
5 00:03:06.020 Load Test 1-5 HTTP Request 8 Ok 4
6 00:03:06.121 Load Test 1-6 HTTP Request 9 Ok 4
7 00:03:06.223 Load Test 1-7 HTTP Request 5 Ok 2
8 00:03:06.324 Load Test 1-8 HTTP Request 5 Ok 3
9 00:03:06.422 Load Test 1-9 HTTP Request 6 Ok 3
10 00:03:06.522 Load Test 1-10 HTTP Request 9 Ok 4

Table 5.4: Result Table of TC3

The above table shows that connectivity status is okay. This test case was generated
for small files with load so starting response time was 37 milliseconds. The aver-
age we can see from the table is around 5-7 milliseconds. The latency was higher
compared to the previous test cases at first at 32.

40

Figure 5.9: Response Time Graph of TC3

In this response time graph, the graph remains between 4 milliseconds to 7 millisec-
onds. As there was with load in so the response time was very high at first This
affected the average response time as well which is 6.45 milliseconds.

5.2.5 TC4

For TC4 we have selected a large file and chose a different URL, we ran the test
without having any load on our server.

Test# Start Time Thread Name Label
Sample
Time

Status Latency

1 00:30:30.965 Load Test 1-1 HTTP Request 12 Ok 4
2 00:30:31.066 Load Test 1-2 HTTP Request 7 Ok 3
3 00:30:31.165 Load Test 1-3 HTTP Request 4 Ok 2
4 00:30:31.264 Load Test 1-4 HTTP Request 6 Ok 3
5 00:30:31.365 Load Test 1-5 HTTP Request 4 Ok 2
6 00:30:31.466 Load Test 1-6 HTTP Request 5 Ok 2
7 00:30:31.565 Load Test 1-7 HTTP Request 4 Ok 2
8 00:30:31.664 Load Test 1-8 HTTP Request 5 Ok 2
9 00:30:31.766 Load Test 1-9 HTTP Request 4 Ok 2
10 00:30:31.866 Load Test 1-10 HTTP Request 5 Ok 2

Table 5.5: Result Table of TC4

The connectivity status is okay as shown in the above table. This test case was
generated for large files with no load but with a different URL. The starting response
time was 12 milliseconds which was very low compared to the above cases. The
average is around 4-6 milliseconds. The latency was normal all the time during the
load test.

41

Figure 5.10: Response Time Graph of TC4

We can see that the graph remains between 4 milliseconds to 8 milliseconds most of
the time. As there was no load with different URL so on a lower range compared to
the previous cases. at first the average response time is 5.96 milliseconds.

5.2.6 TC5

For TC5 we have selected a large file with a different URL. This time we ran the
test with load on our server

Test# Start Time Thread Name Label
Sample
Time

Status Latency

1 00:26:18.379 Load Test 1-1 HTTP Request 47 Ok 39
2 00:26:18.379 Load Test 1-2 HTTP Request 47 Ok 39
3 00:26:18.437 Load Test 1-3 HTTP Request 7 Ok 3
4 00:26:18.535 Load Test 1-4 HTTP Request 7 Ok 4
5 00:26:18.635 Load Test 1-5 HTTP Request 7 Ok 3
6 00:26:18.734 Load Test 1-6 HTTP Request 8 Ok 3
7 00:26:18.835 Load Test 1-7 HTTP Request 7 Ok 3
8 00:26:18.940 Load Test 1-8 HTTP Request 5 Ok 3
9 00:26:19.039 Load Test 1-9 HTTP Request 4 Ok 3
10 00:26:19.138 Load Test 1-10 HTTP Request 6 Ok 2

Table 5.6: Result Table of TC5

The connectivity status is okay as shown in the table attached above. This test
case was generated for large files with load and with a different URL. The starting
response time was 47 milliseconds this time for that reason. The average is around
6-10 milliseconds. The latency was high at first because of the load and it returned
to normal with time.

42

Figure 5.11: Response Time Graph of TC5

From the response time graph, we found that the graph remains between 5 millisec-
onds to 10 milliseconds. As there was load in action this time. For TC5 the average
response time is 7.5 milliseconds.

5.2.7 TC6

For TC6 we have a small file with a different URL. The test was done without any
load on the server.

Test# Start Time Thread Name Label
Sample
Time

Status Latency

1 00:53:36.051 Load Test 1-1 HTTP Request 8 Ok 4
2 00:53:36.157 Load Test 1-2 HTTP Request 12 Ok 5
3 00:53:36.263 Load Test 1-3 HTTP Request 5 Ok 2
4 00:53:36.357 Load Test 1-4 HTTP Request 7 Ok 3
5 00:53:36.451 Load Test 1-5 HTTP Request 7 Ok 3
6 00:53:36.551 Load Test 1-6 HTTP Request 4 Ok 2
7 00:53:36.651 Load Test 1-7 HTTP Request 4 Ok 2
8 00:53:36.751 Load Test 1-8 HTTP Request 4 Ok 2
9 00:53:36.851 Load Test 1-9 HTTP Request 4 Ok 2
10 00:53:36.950 Load Test 1-10 HTTP Request 5 Ok 2

Table 5.7: Result Table of TC6

In this table, we can see connectivity status is okay so the connection has been
established properly. The sample time started from 8 milliseconds which is the
lowest compared to the prior cases. In this case, we have tested this time with no
load for small files with different URL. The average we can see from the table is
around 4-6 milliseconds.

43

Figure 5.12: Response Time Graph of TC6

In this response time graph, the graph remains between 4 milliseconds to 6 mil-
liseconds. As there was no load, the response time was low at first. The average
response time as well which is 5.24 milliseconds.

5.2.8 TC7

For TC7 we have a small file with a different URL. This time we ran the test with
load on our server.

Test# Start Time Thread Name Label
Sample
Time

Status Latency

1 00:48:25.010 Load Test 1-1 HTTP Request 48 Ok 65
2 00:48:25.010 Load Test 1-2 HTTP Request 42 Ok 65
3 00:48:25.010 Load Test 1-3 HTTP Request 36 Ok 65
4 00:48:25.100 Load Test 1-4 HTTP Request 9 Ok 4
5 00:48:25.206 Load Test 1-5 HTTP Request 7 Ok 3
6 00:48:25.305 Load Test 1-6 HTTP Request 7 Ok 4
7 00:48:25.406 Load Test 1-7 HTTP Request 7 Ok 3
8 00:48:25.503 Load Test 1-8 HTTP Request 10 Ok 6
9 00:48:25.607 Load Test 1-9 HTTP Request 7 Ok 3
10 00:48:25.706 Load Test 1-10 HTTP Request 9 Ok 4

Table 5.8: Result Table of TC7

From the above table, we can see connectivity status is okay so the connection has
been established correctly. The sample time started from 77 milliseconds as we have
tested this time with small files with different URL with load. The average we can
see from the table is around 5-7 milliseconds. The latency was 65 at the beginning
which returned to normal after the first few seconds.

44

Figure 5.13: Response Time Graph of TC7

From the response time graph, we found that the graph remains between 4 millisec-
onds to 7 milliseconds. As there was load on the server initially the response time
was higher. The average response time from TC7 is 6.495 milliseconds.

5.3 Experimental Findings

We have tested the all the test cases 4 times each. After doing so, we have taken the
highest average response time. As the highest average time is considered to be the
worst case. We have followed this procedure for all the 8 cases. The test cases are
influenced by CPU usage and broadband speed. As a result, we can have different
results in different environments for the same cases.

When the results are analyzed, it is evident that the average response time is always
faster when the server is not under load. In our intended scenario TC0, a large file
with the same URL but no load has an average response time of 5.20 milliseconds,
however in TC1, everything remains the same except for the server load. Due to
the increased strain on the system, the response time increased to 6.47 milliseconds.
Again, we intended to conduct the same type of test, but with a smaller file rather
than a large one. Thus, for TC2, we have a small file with the same URL but no
load on the server. This resulted in an average response time of 4.90 milliseconds.
On the other side, TC3, which uses nearly identical criteria and includes server load,
returned an average response time of 6.45 milliseconds. Additionally, we attempted
the same four test instances listed above but with a different URL for the remaining
four cases. In TC4, we used a huge file with a different URL and obtained an
average response time of 5.96 milliseconds without load. Likewise, TC5 operates
under the identical conditions as TC4 except that it has a server load, which results
in an average response time of 7.50 milliseconds. Similarly, we used a short file, a
different URL and no load for TC6, which resulted in an average response time of

45

5.24 milliseconds. For our final test case, TC7, we have everything identical to TC6,
except that the server is loaded. This test yielded an average response time of 6.49
milliseconds.

Test Case ID Average Response Time (milliseconds)
TC0 5.2
TC1 6.47
TC2 4.9
TC3 6.45
TC4 5.96
TC5 7.5
TC6 5.24
TC7 6.495

Table 5.9: Average Response Time for Test Cases

From the above test it is clearly seen that while the server has load it take much
time to response. Moreover, the response time also vary because of the file size. Fur-
thermore, we discovered that when the URL is changed, the response time increases.
The highest average response time was 6.47 milliseconds with the same URL and
a loaded server in TC1. Whereas, when the URL was different and the server was
loaded in TC5, the highest average response time was 7.5 milliseconds. On the
other side, having small file size, same URL and no load in TC2, the highest average
response time was 4.9 milliseconds. Meanwhile, the highest average response time
was 5.24 milliseconds while using a different URL, small file, and no load in test
case TC6. To summarize, based on the findings of the aforementioned test cases,
we determined that the test case TC2 with the shortest average response time of
4.9milliseconds. This test used a small file with the same URL but no load. On the
other hand, the highest average time is for test case TC5, which involved a large
file, a different URL and a load is 7.5 milliseconds.

46

Chapter 6

Future Work

In our research we have tried to set up an OpenStack Swift server with the limited
resources for a distributed system. But there is plenty of room for future work.
Firstly, we can create a backend server to save all the caches. A cache server helps
us to work really fast. As it remembers the most frequent website or servers we
use and later use that knowledge for fast connectivity. Backend server will come in
handy for storing all the required cache. For hosting, backend servers plays a vital
role. The most important thing is security when it is used as a storage. For instance,
if a piece of information is shared over the internet, it can use the help of having
a backend server in between that will keep the data secure for the user from each
other. And, sometimes passwords can be breached by using various technologies.
So, the security system has to be hack proof. Backend server can ensure security.
When there is no risk factor in a system it’s easy to win the trust of the consumers.
If we get enough financial backup for this we will make this available for https as
well. This will make the system more secure and reliable. Also, it serves to help
prevent attacks and prohibit data espionage. HTTPS sites give reasonable assurance
that the site is not fraudulent and that content and data are transmitted securely.
We know traditional cloud storage systems are very costly. We tried to make this as
much cost efficient as possible than usual. With more efficient planning we can try
to cut the cost to a more affordable range to attract more and more consumers.

47

Chapter 7

Conclusion

This paper presents a great addition to a shared-mode resource allocation for cloud-
based load testing, which assures the cost-friendly aspect to use virtual machine
resources in the cloud. Initially, OpenStack Swift setup was done as our cloud
server. Furthermore, we have designed some test cases in order to run the testing
process. The test cases are arranged based on metrics such as load, protocol, file
size and URL. Then we used Apache JMeter as our load testing tool in order to run
the testing for our test cases. The best average response time was 4.9ms for TC2.
It was received when the load test was done on a scenario of a small file, same URL
and no load. The highest average response time was 7.5ms. This was for TC5 which
consisted of a large file, different URL and load. Here we have enlarged our user
number to find out the sealing capacity of load capacitance for the servers. The
main purpose of our research is to observe how the system will act under different
parameters using the testing tool and compare the outcome obtained from there.

48

Bibliography

[1] E. Luke, “Defining and measuring scalability,” in Proceedings of Scalable Paral-
lel Libraries Conference, 1993, pp. 183–186. doi: 10.1109/SPLC.1993.365568.

[2] T. Shih, C.-M. Chung, Y.-H. Wang, Y.-F. Kuo, and W.-C. Lin, “Software
testing and metrics for concurrent computation,” in Proceedings 1996 Asia-
Pacific Software Engineering Conference, 1996, pp. 336–344. doi: 10.1109/
APSEC.1996.566768.

[3] T. Yamaura, “How to design practical test cases,” IEEE Software, vol. 15,
no. 6, pp. 30–36, 1998. doi: 10.1109/52.730835.

[4] D. Menasce, “Load testing of web sites,” IEEE Internet Computing, vol. 6,
no. 4, pp. 70–74, 2002. doi: 10.1109/MIC.2002.1020328.

[5] H. Sofian, R. M. Saidi, R. Yunos, and S. A. Ahmad, “Analyzing server response
time using testing power web stress tool,” in 2010 International Conference
on Science and Social Research (CSSR 2010), 2010, pp. 1120–1125. doi: 10.
1109/CSSR.2010.5773700.

[6] I. Ali and N. Meghanathan, “Virtual machines and networks - installation, per-
formance, study, advantages and virtualization options,” CoRR, vol. abs/1105.0061,
Jan. 2011. doi: 10.5121/ijnsa.2011.3101.

[7] P. Nirpal and K. Kale, “A brief overview of software testing metrics,” Inter-
national Journal on Computer Science and Engineering, vol. 3, Jan. 2011.

[8] V. Arutyunov, “Cloud computing: Its history of development, modern state,
and future considerations,” Scientific and Technical Information Processing,
vol. 39, Jul. 2012. doi: 10.3103/S0147688212030082.

[9] M. Kamra and R. Manna, “Performance of cloud-based scalability and load
with an automation testing tool in virtual world,” in 2012 IEEE Eighth World
Congress on Services, 2012, pp. 57–64. doi: 10.1109/SERVICES.2012.54.

[10] M. S. Bali and S. Khurana, “Effect of latency on network and end user domains
in cloud computing,” in 2013 International Conference on Green Computing,
Communication and Conservation of Energy (ICGCE), 2013, pp. 777–782.
doi: 10.1109/ICGCE.2013.6823539.

[11] F. Douglis and O. Krieger, “Virtualization,” IEEE Internet Computing, vol. 17,
no. 2, pp. 6–9, 2013. doi: 10.1109/MIC.2013.42.

[12] A. Ezugwu, S. Buhari, and S. Junaidu, “Virtual machine allocation in cloud
computing environment,” International Journal of Cloud Applications and
Computing (IJCAC), vol. 3, pp. 47–60, Apr. 2013. doi: 10.4018/ijcac.2013040105.

49

https://doi.org/10.1109/SPLC.1993.365568
https://doi.org/10.1109/APSEC.1996.566768
https://doi.org/10.1109/APSEC.1996.566768
https://doi.org/10.1109/52.730835
https://doi.org/10.1109/MIC.2002.1020328
https://doi.org/10.1109/CSSR.2010.5773700
https://doi.org/10.1109/CSSR.2010.5773700
https://doi.org/10.5121/ijnsa.2011.3101
https://doi.org/10.3103/S0147688212030082
https://doi.org/10.1109/SERVICES.2012.54
https://doi.org/10.1109/ICGCE.2013.6823539
https://doi.org/10.1109/MIC.2013.42
https://doi.org/10.4018/ijcac.2013040105

[13] X. Lu, N. S. Islam, M. Wasi-Ur-Rahman, et al., “High-performance design of
hadoop rpc with rdma over infiniband,” in 2013 42nd International Conference
on Parallel Processing, 2013, pp. 641–650. doi: 10.1109/ICPP.2013.78.

[14] Z. Duan and C. Yizhen, “The implementation of cloud storage system based
on openstack swift,” vol. 644-650, Sep. 2014. doi: 10.4028/www.scientific.net/
AMM.644-650.2981.

[15] N. M. Ms and V. Suma, “A study on cloud computing testing tools,” Feb.
2014.

[16] E. N. Narciso, M. E. Delamaro, and F. D. L. D. S. Nunes, “Test case selec-
tion: A systematic literature review,” in International Journal of Software
Engineering and Knowledge Engineering, vol. 24, 2014, pp. 653–676. doi:
10.1142/S0218194014500259.

[17] M. Arslan, U. Qamar, S. Hassan, and S. Ayub, “Automatic performance anal-
ysis of cloud based load testing of web-application amp; its comparison with
traditional load testing,” in 2015 6th IEEE International Conference on Soft-
ware Engineering and Service Science (ICSESS), 2015, pp. 140–144. doi: 10.
1109/ICSESS.2015.7339023.

[18] S. Bairagi and A. Bang, “Cloud computing: History, architecture, security
issues,” Mar. 2015.

[19] S. Kiran, A. Mohapatra, and R. Swamy, “Experiences in performance testing
of web applications with unified authentication platform using jmeter,” in 2015
International Symposium on Technology Management and Emerging Technolo-
gies (ISTMET), 2015, pp. 74–78. doi: 10.1109/ISTMET.2015.7359004.

[20] X. Lu, D. Shankar, S. Gugnani, H. Subramoni, and D. K. Panda, “Impact
of hpc cloud networking technologies on accelerating hadoop rpc and hbase,”
in 2016 IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), 2016, pp. 310–317. doi: 10.1109/CloudCom.2016.0057.

[21] S. Gugnani, X. Lu, and D. K. Panda, “Swift-x: Accelerating openstack swift
with rdma for building an efficient hpc cloud,” in 2017 17th IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Grid Computing (CCGRID),
2017, pp. 238–247. doi: 10.1109/CCGRID.2017.103.

[22] M. A. Putri, H. N. Hadi, and F. Ramdani, “Performance testing analysis on
web application: Study case student admission web system,” in 2017 Inter-
national Conference on Sustainable Information Engineering and Technology
(SIET), 2017, pp. 1–5. doi: 10.1109/SIET.2017.8304099.

[23] A. S. Rumale and D. N. Chaudhari, “Cloud computing: Software as a service,”
in 2017 Second International Conference on Electrical, Computer and Com-
munication Technologies (ICECCT), 2017, pp. 1–6. doi: 10.1109/ICECCT.
2017.8117817.

[24] M. Ruan, T. C. Thierry, E. Zhai, et al., “On the synchronization bottleneck
of openstack swift-like cloud storage systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. PP, pp. 1–1, Feb. 2018. doi: 10.1109/TPDS.
2018.2810179.

[25] T. Kamalakannan, K. Senthil, C. Shanthi, and D. Radhakrishnan, “Study on
cloud storage and its issues in cloud computing,” Jun. 2019.

50

https://doi.org/10.1109/ICPP.2013.78
https://doi.org/10.4028/www.scientific.net/AMM.644-650.2981
https://doi.org/10.4028/www.scientific.net/AMM.644-650.2981
https://doi.org/10.1142/S0218194014500259
https://doi.org/10.1109/ICSESS.2015.7339023
https://doi.org/10.1109/ICSESS.2015.7339023
https://doi.org/10.1109/ISTMET.2015.7359004
https://doi.org/10.1109/CloudCom.2016.0057
https://doi.org/10.1109/CCGRID.2017.103
https://doi.org/10.1109/SIET.2017.8304099
https://doi.org/10.1109/ICECCT.2017.8117817
https://doi.org/10.1109/ICECCT.2017.8117817
https://doi.org/10.1109/TPDS.2018.2810179
https://doi.org/10.1109/TPDS.2018.2810179

[26] H. Li, X. Li, H. Wang, J. Zhang, and Z. Jiang, “Research on cloud perfor-
mance testing model,” in 2019 IEEE 19th International Symposium on High
Assurance Systems Engineering (HASE), 2019, pp. 179–183. doi: 10.1109/
HASE.2019.00035.

[27] A. Rashid and A. Chaturvedi, “Virtualization and its role in cloud computing
environment,” INTERNATIONAL JOURNAL OF COMPUTER SCIENCES
AND ENGINEERING, vol. Vol.-7, pp. 1131–1136, Apr. 2019. doi: 10.26438/
ijcse/v7i4.11311136.

[28] E. Setiawan, A. Setiyadi, and R. Wahdiniwaty, “Quality analysis of mobile web
server,” IOP Conference Series: Materials Science and Engineering, vol. 662,
p. 022 043, Nov. 2019. doi: 10.1088/1757-899X/662/2/022043.

[29] M. Gull, S. Bai, and T. Bak, “A review on design of upper limb exoskeletons,”
Robotics, vol. 9, p. 16, Mar. 2020. doi: 10.3390/robotics9010016.

[30] R. Kaur and S. Chopra, “Virtualization in cloud computing : A review,” Inter-
national Journal of Scientific Research in Computer Science, Engineering and
Information Technology, pp. 01–05, Jul. 2020. doi: 10.32628/CSEIT20641.

[31] A. Feldmann, O. Gasser, F. Lichtblau, et al., “Implications of the covid-19
pandemic on the internet traffic,” in Broadband Coverage in Germany; 15th
ITG-Symposium, 2021, pp. 1–5.

51

https://doi.org/10.1109/HASE.2019.00035
https://doi.org/10.1109/HASE.2019.00035
https://doi.org/10.26438/ijcse/v7i4.11311136
https://doi.org/10.26438/ijcse/v7i4.11311136
https://doi.org/10.1088/1757-899X/662/2/022043
https://doi.org/10.3390/robotics9010016
https://doi.org/10.32628/CSEIT20641

	Declaration
	Approval
	Ethics Statement
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Aim and Objectives
	History of Cloud Computing and Load Testing
	Contribution
	Thesis Orientation

	Literature Review
	Background Studies
	Cloud Computing
	IaaS
	PaaS
	SaaS
	FaaS
	Cloud Storage
	OpenStack Swift
	Characteristics
	Components
	Ring-builder
	Object Storage Monitoring

	Command line
	Servers
	Virtual Machine
	Virtualization
	Test Case Metrics
	Test Case
	Load Testing
	Scalability
	Testing Tools
	JMeter
	Latency
	Response Time

	Proposed Methodology
	Work Flow
	Test Case Metrics
	Concurrent Request for Load Testing
	Cloud Server
	Client PC

	Test Case Design
	Geographical Location and System Configuration
	Testing through JMeter

	Experimental Evaluation
	Experimental Setup
	Swift Setup
	Testing Tool Setup

	Experimental Result
	TCO
	TC1
	TC2
	TC3
	TC4
	TC5
	TC6
	TC7

	Experimental Findings

	Future Work
	Conclusion
	Bibliography

