
Intracranial Hemorrhage Detection using CNN-LSTM Fusion
Model

by

Kazi sabab Ahmed
18101509

Khandaker Sadab Shariar
18101306

Naimul Hasan Naim
18301192

MD. Nayimur Rahman Hazari
18101667

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University

May 2022

© 2022. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Kazi sabab Ahmed
18101509

Khandaker Sadab Shariar
18101306

Naimul Hasan Naim
18301192

MD. Nayimur Rahman Hazari
18101667

i

Approval

The thesis titled “Intracranial Hemorrhage Detection using CNN-LSTM Fusion
Model” submitted by

1. Kazi sabab Ahmed (18101509)

2. Khandaker Sadab Shariar (18101306)

3. Naimul Hasan Naim (18301192)

4. MD. Nayimur Rahman Hazari (18101667)

Of Spring, 2022 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science on May 29, 2022.

Examining Committee:

Supervisor:
(Member)

Dr. Md. Golam Rabiul Alam
Associate Professor

Department of Computer Science and Engineering
Brac University

Co-Supervisor:
(Member)

Syed Zamil Hasan Shoumo
Lecturer

Department of Computer Science and Engineering
Brac University

Program Coordinator:
(Member)

Dr. Md. Golam Rabiul Alam
Associate Professor

Department of Computer Science and Engineering
Brac University

ii

Head of Department:
(Chair)

Sadia Hamid Kazi
Chairperson

Department of Computer Science and Engineering
Brac University

iii

Ethics Statement

This is hereby declaring that this thesis is based on the results we obtained from our
work. Due acknowledgment has been made in the text to all other material used.
This thesis, neither in whole nor in part, has been previously submitted by anyone
to any other university or institute for the award of any degree.

iv

Abstract

Intracranial Hemorrhage is a term used to describe bleeding between the brain tissue
and the skull or within the brain tissue itself. It is life-threatening and needs imme-
diate medical attention. As the first response, it is indispensable to detect the type
of intracranial hemorrhage as soon as possible. Now, the manual detection methods
require the help of an imaging expert and are certainly very time-consuming. Al-
though there are several techniques for identifying them such as utilizing CT-scan
images, magnetic resonance imaging (MRI), magnetic resonance angiogram (MRA),
and ultrasound-based images, the results are still not adequate and have much room
for improvement. In addition to these methods, researchers have also used imaging
strategies based on Convolutional Neural Network (CNN) or Recurrent Neural Net-
work (RNN) for this purpose. Therefore, this research aims to combine both these
two fields and propose a model based on Deep Learning(DL) to detect intracranial
hemorrhage. The goal of this paper is to automate the detection of intracranial hem-
orrhage and make the process more efficient and accurate. The model is expected
to provide us with satisfactory results and can be used as an effective alternative to
the existing methods.

Keywords: Deep Learning; Magnetic Resonance Imaging (MRI); Magnetic Res-
onance Angiogram (MRA); Intracranial Hemorrhage; Recurrent Neural Network
(RNN); Convolutional Neural Network (CNN);

v

Acknowledgement

First and foremost, we give thanks to Allah for allowing us to finish our thesis
without any serious setbacks. Second, we would like to express our gratitude to our
supervisor, Dr. Md. Golam Rabiul Alam, and our co-supervisor, Syed Zamil Hasan
Shoumo, for their invaluable assistance and guidance. They assisted us anytime we
required assistance. Finally, without our parents’ unwavering support, it may not
be conceivable. We are currently on the verge of graduating thanks to their kind
assistance and prayers.

vi

Table of Contents

Declaration i

Approval ii

Ethics Statement iv

Abstract v

Acknowledgment vi

Table of Contents vii

List of Figures ix

List of Tables x

Nomenclature xi

1 Introduction 1
1.1 Health Consequences and Effective Use of Deep Learning for Brain

Hemorrhage . 2
1.2 Objective . 4

2 Related Work 5
2.1 Deep Learning . 5

2.1.1 DL Architecture . 6
2.2 Existing Works . 6

3 Background Study 10
3.1 Common Activation Functions . 10
3.2 Sigmoid Activation Function . 11
3.3 Tanh Activation Function . 11
3.4 ReLu Activation Function . 12
3.5 Convoluted Neural Networks . 13
3.6 Recurrent Neural Network . 14
3.7 Types of RNN . 16
3.8 Long Short Term Memory . 16
3.9 Gated recurrent units . 17

vii

4 Methodology 19
4.1 Data Collection . 19
4.2 Data Preprocessing . 23

4.2.1 Data Splitting . 24
4.2.2 Generating Images . 24
4.2.3 Image Preprocessing . 25
4.2.4 Padding . 26

4.3 Model Implementation . 26
4.3.1 Input Layer . 29
4.3.2 Conv2D Layer . 29
4.3.3 Max pooling2d Layer . 29
4.3.4 Dropout Layer . 29
4.3.5 Time Distributed Layer . 30
4.3.6 Bidirectional LSTM Layer . 30
4.3.7 Bidirectional GRU Layer . 30
4.3.8 Flatten Layer . 30
4.3.9 Dense Layer . 30
4.3.10 Optimizer . 31
4.3.11 Batch Size . 31

5 Performance Evaluation 32
5.1 Experimental Setup . 32

5.1.1 Language . 32
5.1.2 Platform . 32
5.1.3 Library . 33

5.2 Result And Analysis For The Dataset 33
5.2.1 Confusion Matrix . 38
5.2.2 Performance Measure Functions 38

6 Conclusion 41

Bibliography 42

viii

List of Figures

3.1 The First Neural Network Model . 10
3.2 Sigmoid Activation Function . 11
3.3 Tanh Activation Function . 12
3.4 ReLu Activation Function . 13
3.5 An overview of Convoluted Neural Networks 14
3.6 RNN Basic Model . 15
3.7 RNN Feedforward Architecture . 15
3.8 LSTM Architecture . 17
3.9 GRU Architecture . 18

4.1 Image comparison . 20
4.2 Image comparison . 20
4.3 Normal-type . 21
4.4 Hemorrhage-type . 22
4.5 Image Catagory . 23
4.6 Generated Images for processing . 25
4.7 Model Structure . 27
4.8 A Detailed Architecture of Our Proposed Model 28

5.1 Accuracy vs Validation accuracy plot 34
5.2 Loss vs Validation Loss plot . 35
5.3 Loss vs Accuracy plot . 36
5.4 Validation Loss vs Validation Accuracy plot 37
5.5 Summary plot . 37
5.6 Confusion Matrix . 38
5.7 Image-set after prediction . 40

ix

List of Tables

5.1 Comparison between Train-Test Accuracy 40

x

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

CBAS Confidence-guided Brain Anatomy Segmentation

CNN Convolutional Neural Network

CT Computed tomography

DL Deep learning

DRL Deep reinforcement learning

DRL− LNS deep reinforcement learning-based lymph node segmentation

GAN Generative Adversarial Network

ICH Intracranial Hemorrhage

LSTM Long Short Term Memory Network

ML Machine learning

MRA Magnetic Resonance Angiogram

MRI Magnetic Resonance Imaging

PHH Post Hemorrhagic Hydrocephalus

RECIST Response Evaluation Cri-teria in Solid Tumors

RNN Recurrent Neural Network

xi

Chapter 1

Introduction

Since the brain cannot hold oxygen, it must rely on blood arteries to provide it.
Whenever a hemorrhage occurs in the brain, oxygen starts getting blocked from
reaching the brain tissues. Blood pooling in the brain due to an intracranial hemor-
rhage exerts pressure on the arteries, and brain cells start to die if they are deprived
of oxygen for more than three to four minutes. This damage might result in severe
mental/physical task-based disabilities such as confusion, dizziness, seizures, abnor-
mality, loss of vision, slurred speech, coma, etc. The consequences and severity of
a brain hemorrhage are determined by the origin, location of the bleed, and the
amount of bleeding. Additionally, depending on its criticality it can easily turn into
a life-threatening situation[1].

Intracranial hemorrhage (ICH) is mainly of two different types depending on the
bleeding area extra-axial hemorrhage includes Epidural, Subdural, and Subarach-
noid hemorrhage. This brain bleeding occurs within the skull but outside the brain
tissue means it occupies the space between the bony skull and dura mater or arach-
noid space. However, when the bleeding occurs inside the brain tissues like Lobe,
Thalamus, Pons, and Cerebellum are known as Intracerebral, Intraventricular hem-
orrhage, or intra-axial hemorrhage.

In addition, Brain bleeds have a wide range of causes but common symptoms are
hypertension, trauma, atherosclerosis, ruptured cerebral aneurysm, the presence of
amyloid protein in the arterial walls or leakage into arteries, and many more. In
the journal, JAMA one study shows that ICH is the deadliest stroke, which is also
the most common cause of disability. Also, in a survey by Statista [2], worldwide in
2017-2018, the number of people who have died only as a result of an intracerebral
hemorrhage was 2.97millions, among them, 1.62millons are men and 1.62millons are
women. Similarly, in Bangladesh three months survey of a tertiary care hospital
[3], they’ve taken during the research period, 430 individuals with clinical features
of stroke were admitted through emergency and outpatient departments, with 152
(35.34%) of them having a spontaneous intracerebral hemorrhage.

Currently, the mortality of brain stroke in Western industrialized countries is sig-
nificantly greater than in South Asian countries. However, most studies indicate
that the death rate from ICH is greater in those aged 45 and more, but that’s not
always true. In a study [4], 200 patients were chosen (age range between 15 to 40).

1

Tobacco usage (20%), hypocholesterolemia (35%), hypertension (13%), and alcohol
consumption (10%) were the most common risk factors. ICH was found in the lobar
(55%) and basal ganglia/internal capsule (22%) areas, among other places (24%).

In an article by YaleNews [5], a survey was featured that, worldwide individual
patients found that those who have had surgery had a statistically significantly
higher probability of living after three, six, and twelve months than those who have
not. Apart from ICH, an abnormality that can be seen in premature neonates is
called post-hemorrhagic hydrocephalus (PHH). Early detection of severe PHH might
avoid brain damage and improve the neonate’s health significantly.

1.1 Health Consequences and Effective Use of Deep

Learning for Brain Hemorrhage

Intracerebral hemorrhage (ICH), or brain hemorrhage, is a life-threatening disease.
For treatment, we need immediate and accurate detection of the hemorrhage size,
location, and classification. According to [6], The occurrence of the ICH worldwide
is 246 people among one million people every year while four hundred thousand to
sixty-seven thousand cases are reported every year in the USA alone. In low-to-
middle-income nations, however, the number of ICH patients is twice as high as in
high-income ones. ICH usually occurs among people with head injuries, concussions,
alcohol intake, low cholesterol levels, anticoagulation, drug abuse issues, etc. As
unfortunate as it is, the number of people with this kind of issue is beginning to
increase, which dramatically increases the number of people with ICH. Moreover,
the mortality rate within a month ranges from 35% to 52%. Furthermore, only 20
out of every 100 survivors are predicted to make a fully issueless recovery within
six months. To add to our concern, half of this death are predicted to occur within
the first 24 hours, emphasizing the critical need for early and correct discovery for
successful treatment.

The ICH can be detected via computed tomography (CT) scan, magnetic resonance
imaging (MRI), ultrasound pictures, or magnetic resonance angiography (MRA).
The location, extent, and possibly the reason for the bleed are determined by these
imaging studies [6]. The ICH can be detected via computed tomography (CT) scan,
magnetic resonance imaging (MRI), ultrasound pictures, or magnetic resonance an-
giography (MRA). The location, extent, and possibly the reason for the bleed are
determined by these imaging studies [6]. However, CT-scan images are preferred
more for ICH detection due to faster detection and images providing pictures of
tissues, organs, and skeletal structures.

Head CT scan images are utilized to diagnose neurologic deficiencies all around the
world for emergencies[7]. There are two ways for ICH detection. When it comes to
manual detection, the help of a highly trained expert is required to analyze these
scans, and in some cases, a highly trained expert may make errors in identifying
critical components. A unique challenge for head CT is to detect often small sub-
tle abnormalities on a multislice cross-sectional (three-dimensional [3D]) imaging

2

modality that is characterized by poor soft-tissue contrast, low signal-to-noise using
current low radiation-dose protocols, and a high incidence of artifacts with perfect
or near-perfect sensitivity and very high specificity. Moreover, the detection pro-
cess may take a lot of time. This is why an optimal automatic detection method is
required.

Usually, the separation of the skull and facial image from CT-scan pictures through
a variety of image processing techniques is the initial step in bleeding detection[7]
.Thresholding is one of these procedures, which involves identifying the skull and
face bones before performing a sequence of close, open, and fill operations to gather
only the brain’s intracranial structure.

After the collection of data, different machine learning(ML) and artificial intelli-
gence(AI) architectures are used for the detection of hemorrhage [7]. The objective
of using ML and AI is to have a system that can reduce the detection time of hem-
orrhage detection without the help of an expert. This process of training a machine
comes in a form of supervised, unsupervised, and reinforced learning.

Whether we train a machine using supervised, unsupervised, or deep learning we
need to make sure the machine can give us a prediction with considerable accu-
racy. In recent years, many ML algorithms such as Long Short Term Memory
Network(LSTM), Convolutional Neural Network (CNN), Recurrent Neural Net-
work(RNN), Generative Adversarial Network (GAN), etc have been used for the
detection of a brain hemorrhage. However, CNN is considered the most efficient
among them when it comes to the detection of brain hemorrhage according to.[7]
CNN can produce 0.997 accuracies and with the help of high-end devices, the task
of hemorrhage detection can be assured.

After the detection, the data from the image of a hemorrhage-affected brain needs
to be separated for effective segmentation. Previously, semi-automatic segmentation
methods were used for the segmentation process[8]. Although this method greatly
reduced process time compared to the manual segmentation process, it still needed
the help of an expert and still needed time. But at present, there are many fully
automated segmentation methods. These methods include quantitative and quali-
tative comparison using Unet, Unet6GAN, SegNet, semi-d-Unet using probability
maps, graph cuts using CNN, data augmentation along with data balancing us-
ing CNN-LSTM network, and other deep learning and reinforced learning methods
[9]. However, in most cases, the accuracy of the segmentation is at most 0.90-0.94,
and none of the methods includes any significant recurrent neural network (RNN)
methods.

As the cornerstone of artificial intelligence, machine learning is also the fundamental
cause of computer intelligence, and it is frequently used in this field. Deep learn-
ing(DL) has risen to prominence in the field of artificial intelligence as computers’
ability to analyze data is improving. The theory and applied research of DL is
attracting an increasing number of researchers in recent years. Furthermore, pic-
ture identification and categorization are critical applications. The study compares
deep learning to traditional machine learning methods, then goes on to describe the

3

deep learning development process, investigate and analyze deep learning network
structures such as deep belief networks, convolutional neural networks, and recursive
neural networks, discusses the usage of deep learning in image identification, and
recommends deep learning in image separation and classification[10]. The problems
that emerge while using recognition and classification are discussed, as well as the
solutions to these problems. Finally, prospective research prospects and the current
state of in-depth learning research in picture identification and categorization are
explored. This paper’s information is critical to our investigation.

1.2 Objective

The goal of this research is to understand the effectiveness of DL in medical imaging.
Our goal is to propose a method combining CNN and RNN which can give us op-
timal accuracy. The acquired accuracy while compared to other detection methods
will give us a clear idea about its effectiveness in Hemorrhage detection. The core
objectives of our research are:

1. Understand hemorrhagic detection techniques.

2. To design a model for hemorrhage detection based on the combination of CNN-
LSTM methods and apply it.

3. To reduce the time consumption of the hemorrhage detection process.

4. To evaluate the model.

5.Bring improvement in automatic detection of hemorrhage with DL.

6. To propose significant ideas for improving the model.

4

Chapter 2

Related Work

Neurons, which are vital for our nervous system and responsible for transmitting
messages to our functionary organs, are found in large numbers in our brain. As a
result, if these cells begin to die for whatever cause, our neurological system will be
harmed. As a result, many of our functionary organs may stop working properly
and in a worst-case scenario, this may even lead to death.

As stated previously, a person’s brain can face injury or be stroked for a series of
unwanted reasons. This can result in intracranial bleeding, which stops the flow of
blood in that area of the brain. As a result, neuron cells start dying. We need urgent
and effective therapy to put a stop to this. But for this, we need to detect the area
of the hemorrhage quickly and accurately. To solve this problem many automatic
systems containing DL and RL have been used. But the use of a method containing
DL to achieve a perfect result has yet to be seen.

2.1 Deep Learning

DL is a sector of ML that uses both CNN and RNN to train a system with un-
structured data. Neural networks have been utilized for many AI breakthroughs
in problems such as computer vision, machine translation, and time series predic-
tion, language processing. DL is a Kind of machine learning that is very specialized
for these fields. A machine learning workflow begins with the manual extraction
of essential characteristics from pictures. The characteristics are then utilized to
build a classification model for the items in the image. Relevant characteristics are
automatically retrieved from photos using a deep learning approach. Furthermore,
deep learning accomplishes ”end-to-end learning,” in which a network is given raw
data and a goal to complete, such as classification, and it automatically learns how
to do so. In recent years, DL has seen various successes in the field of AI and ML.
Most of this success has been seen in robotics. However, its usage in the medical
sector is seen very often.

5

2.1.1 DL Architecture

According to [9], a D-Unet architecture has been proposed. We will follow the
same architecture for the most part. But instead of training the data with D-
Unet, we shall use DL for training the data. In every layer of the image processing
path, two padded convolutional layers both followed by a max-pooling layer and
a rectifier linear unit (ReLu) activation are utilized. To gather additional data
from the images, the feature extraction ratio is doubled for every layer. These
layers include skull stripping, tilt correction, smoothing at different scales, non-
linear mirror, asymmetry map at different scales, and asymmetry map at different
spaces to generate a probability map.

2.2 Existing Works

The aim of this part of our research is to study the previous relevant works which
are related to the field of hemorrhage detection and segmentation including various
automatic and semi-automatic methods. This part contains an analysis of different
methods and techniques proposed in various significant research on hemorrhage
detection and segmentation. Here, techniques and results of different methods have
been studied to understand their challenges and effectiveness in solving the problem.

The authors of the paper[11], have used a unique joint segmentation technique to
separate ischemia and hemorrhagic infarcts concurrently to evaluate post-treatment
CIV more effectively. Deep learning and convex optimization techniques are used
in the proposed methodology. Convolutional neural networks are used to combine
acquired semantic information, local picture context, and a high-level user initial-
ized prior into a multi-region time-implicit contour evolution scheme that may be
improved globally through convex relaxation. The U-Net architecture (D-Unet)
incorporates a well-known handmade feature, bilateral Density Difference between
symmetric brain regions, to handle this difficult segmentation issue while using a
Euclidean distance weighted loss function. To create final segmentation, the CNN
learning information, local picture context, and expert input prior knowledge are
combined in a convex optimization-based multi-region contour evolution. They ob-
tained 0.934 accuracies for the two regions with favorable values after implementing
the suggested Semi-D-Unet approach and comparing them to manually segmented
pictures. Since we want to utilize the processing ability of the CNN in our architec-
ture, we believe the training methods included in this paper can be very useful for
our research.

The purpose of this report[8] is to segment the focal lesions of the brain while in
the chronic stage by using high-resolution T1-weighted magnetic resonance (MR)
images. While manual segmentation is possible with the help of an expert, which
is extremely time reliant and unvarying and barely produces 90% accurate results.
A lesion is segmented by distinguishing it from various surrounding compartments.
With slight adjustments, the region-growing approach using pixel aggregation is used
for segmentation. Inside each brain lesion, the starting point for the segmentation
method was carefully selected. This method helps the segmentation to be faster

6

than traditional methods. However, the current methods provided by this research
are no longer useful compared to the current methods and do not provide us with
a very accurate segmentation. To conclude, the methods used in this paper are
outdated but it helps us understand different criteria for brain lesions segmentation
through MR images.

In the paper[12],the authors proposed a deep learning system relying on U-nets for
detecting and segmenting hemorrhagic strokes in CT-scan images of the brain. The
proposed model incorporates symmetry constraints of the brain images by concate-
nating the flipped image with the original CT slice as the network’s input. They also
showed in their paper that the model is trained and tested on two different datasets,
resulting in a competitive performance with human experts in terms of detecting
location accuracy. The authors have also described in their paper, that U-Net is a
type of CNN architecture, and it’s been used to solve a variety of biological image
segmentation issues with great success. Moreover, in this paperwork, the authors
have described that adversarial training is also used in the proposed UNet model to
improve the accuracy of the segmentation. Based on CT brain scans, comparison
studies revealed that the suggested UNet-based model outperforms human experts
in bleeding lesion diagnosis. Overall, the documentation is very detailed and infor-
mative. So, it can be concluded that the paperwork is instructive and beneficial for
research.

The purpose of this research [13], is to detect and classify intracranial hemorrhage
using a proposed model. The authors proposed Deep CNN and LSTM layers make
up the suggested model. The weighted multi-label logarithmic loss based on their
selected test dataset was 0.07528, which is roughly comparable to a classification
accuracy of 92 to 93 percent based on the suggested model trained on balanced data.
The resultant weighted multi-label logarithmic loss based on the test dataset, on the
other hand, was 0.0813, which is roughly similar to a classification accuracy of 88
to 89 percent with imbalanced data. The researchers have produced a significant
result that utilizes the combination of two different methods. However, this model
was trained on a large number of datasets which can be a technical challenge. This
research can be useful for training datasets.

The authors present a technique for detecting intracranial hemorrhage (ICH) in
three-dimensional (3D) non-contrast computed tomography in their publication [14],
(CT). They also demonstrated how to train a neural network from start to finish
using only one GPU and construct high-resolution 3D NCCTs. For each imaging
modality, the technique uses a 3D CNN and LSTM route, which are then combined
to generate an image-level classification. The network can also predict the binary
output classification of a single 3D picture, according to the authors. Moreover,
they also mentioned in their paperwork that they use CNN, and in their paper, they
show some schematic overview of the network architecture. In their papers, they
attempted to provide a quick and accurate approach for 3D picture classification.
Overall the paperwork is appreciated. But this project work needs more specifica-
tions. Although I believe that the paperwork is informative and useful for our thesis
work.

7

The author, in this paper [15] expressed a process for anatomic segmentation us-
ing ultrasound by utilizing the algorithms of deep learning. Firstly, they showed
how traditional CNN architectures fail due to enough positional information to lo-
calize. They also suggested utilizing a conditional generative adversarial network
7 (cGAN) to handle picture-to-image translation and image synthesis problems, in
which the network is taught to understand the mapping between two domains. The
Confidence-guided Brain Anatomy Segmentation (CBAS) network is a unique ap-
proach for estimating segmentation and related confidence maps of various sizes. In
their research, they took 1629 images for their testing from 20 various subjects and
got an accuracy of 89%.

The author of this paper [16], proposed an automatic method to prevent this severe
brain injury. The main objective of this research is the prediction of the PHH
outcome earlier so that the requirement of surgical intervention is known. The
proposed methods consist of two parts. First of all, the segmenting of ventricles
by cranial ultrasound images with the help of CNN and its grounds like fuzzy c
means and with weight loss function. Method 1 does most of the tasks like cranial
bounding box, detection cranial region initialization, bounding line detection, brain
interhemispheric fissure detection, ventricle extraction, and many more after all of
these the second method focuses on six parameters like birth weight, sex, head
circumference at the time of birth, age in days when IVH was diagnose and IVH
grade. This automatic process takes less than a half-minute time to segment and
has an accuracy of 0.91. Compare to other CNN-based processes like U-net, Seg-
Net, and De-convenient takes 2.5 minutes to process the segment and gives accuracy
between 0.64 to 0.77 shown by thinking of the accuracy and the time this method
should in this paper is highly reliable on the way to detect hydrocephalus syndrome.

The authors, in this paper [17] that Alex Net, a convolutional neural network model
utilized lately in the biomedical area, can classify computed tomography (CT) pic-
tures of brain hemorrhage very accurately. The convolutional neural network model
(CNN), autoencoder structure, and heat map approach were used to increase classi-
fication accuracy. They clarify that the goal of the convolution layer is to circulate
the entire picture with the chosen filter size. They employ a machine learning al-
gorithm called SVM for regression and classification. Heat maps are a helpful tool
that is frequently employed in photographs in the biomedical sector, in the study
of biological systems images, and in the analysis of images of landforms. The accu-
racy they have got in this paper is 98% which is a great achievement however, the
categorization findings were harmed by the poor resolution of images.

In this research [18], the authors have proposed a deep reinforcement learning-based
lymph node segmentation (DRL-LNS) model. Based on Response Evaluation Cri-
teria in Solid Tumors (RECIST) annotations, segmentation of RECIST-slices was
implemented in an unsupervised way to produce pseudo ground truths, which were
then used to train U-Net as a segmentation network. Next, a DRL model was
trained, which helps the segmentation network to interact with the policy network
to optimize the lymph node bounding boxes and segmentation results simultane-
ously. The proposed method was able to outperform U-Net-based models with a
dice similarity coefficient (DSC) of 77.17%. Although this outperforms some well-

8

known models, there is still room for improvement. Overall, this paper gives us a
good idea about DRL architecture. Moreover, this paper deals with various image
separation methods and some good utilization of image processing techniques, which
should come in handy for our research.

In the paper [19], the authors offer a semantic segmentation approach for distinguish-
ing six forms of intracranial hemorrhage and calculating blood loss. They stated in
their article that to overcome this problem, they use a pre-trained U-Net model with
fine-tuning, with the best final test accuracy reaching 94.1 percent of their work.
They also demonstrated that they use a two-step training approach. The backbone
must be frozen first, and the other layer must be trained first. The model is then
unfrozen and retrained with a lower learning rate for additional fine-tuning. When
compared to a model that was built from the ground up, the findings demonstrate
that it is more accurate and takes less time to train. Because of the small dataset,
this is particularly beneficial for medical images. In general, I appreciate the doc-
umentation. However, additional details about this project are necessary. Even
though I feel the paperwork is instructive and helpful to our thesis research.

From the data above we can conclude that the majority of studies processed the data
acquired from CT-scan images and utilized variously supervised and unsupervised
learning techniques for bleeding identification. However, the majority of them are
faced with the difficulty of employing high-end gear to generate the outcome in a
shorter amount of time. Moreover, unsupervised learning provides great results at
the cost of computational complications. In addition, some of the research only fo-
cuses on the detection of hemorrhage where without identification of the hemorrhage
affected area the treatment is not possible. Moreover, none of the above research
has utilized the use of DL to achieve a perfect result in the detection of hemorrhage.
So, detection of intracranial hemorrhage utilizing the maximum ability of DL should
be done.

9

Chapter 3

Background Study

First Neural Networks Architecture was proposed by McCulloch and Pitts in 1943.

Figure 3.1: The First Neural Network Model

Here, x0 to xM, 0 to M, and y denote the input, weights, output, or activation
nodes respectively. For the network shown, in order to activate the function y the
conditions are if yin≥ [threshold]f(yin)=1 ; else f(yin)=0. If the activation node
gives an output value of 1, that means the node is activated and vice versa.

3.1 Common Activation Functions

In neural networks, the activation function is critical since it determines whether
or not a neuron should be stimulated. Activation functions come in two varieties.
They are known as linear and non-linear. The linear activation function f(x)=mx+c
is a straight-line function. With a gradient decent problem, this activation function
operates like linear regression and provides a constant output. Non-linear functions
are common in neural networks because they can quickly adjust to different data
and outputs. There are various activation functions, but the most prominent is
sigmoid, Tanh, and ReLu.

10

3.2 Sigmoid Activation Function

This non-linear function takes a value as an input and normalizes the value between
0 and 1. If the value is large enough, then the process converts it to 1, and if the
value is smaller, the sigmoid function converts it to 0. It can be represented by
f(x)=11+e-x

Figure 3.2: Sigmoid Activation Function

Sigmoid functions are straightforward for training small datasets and are commonly
used when the output is needed to match the probability, which ranges between 0
and 1. Some of the flaws of sigmoid functions are that the problem of vanishing
gradient arises during the backpropagation. Additionally, if the gradient reaches 0,
no learning takes place.

3.3 Tanh Activation Function

Unlike the sigmoid function, the Tanh function’s output is 0 centered. The sigmoid
and Tanh functions share the same diagram, but they range from -1 to +1. Thus
it helps the next layer to learn more about the model easily. Tanh function can be
represented by, f(x) = e−x−e−x

e−x+e−x

11

Figure 3.3: Tanh Activation Function

Tanh function also suffers from a vanishing gradient problem, but it moves in both
directions as zero centered.

3.4 ReLu Activation Function

The Rectified Linear Unit or ReLu function is more efficient than both Tanh and
sigmoid processes because of its derivative process that allows backpropagation in a
well-mannered way. ReLu function can be represented by, f(x)= max(0,x)

12

Figure 3.4: ReLu Activation Function

It omits the gradient decent problem by converging to the global minimum of the
loss function.

3.5 Convoluted Neural Networks

Convolutional neural networks are extremely effective in image processing. A digital
image is made up of pixels, each of which has a value that defines what color and
brightness it should be. When we perceive a picture, our brain analyzes a large
quantity of information. Each of these neurons is coupled to the others in order
to span the full visual field. Each neuron in the visual system responds to stimuli
that occur within a certain receptive field; thus, CNN functions in a similar manner.
Simpler patterns (lines, curves, and so on) are spotted first, ahead of more com-
plicated patterns, thanks to the layering system (faces, objects, etc.). CNN may
be used to offer a vision to computers. A CNN is made up of three layers: 1) the
convolution layer 2) the max pool layer, followed by a completely connected layer.
A CNN is often defined by its convolution layer. This layer carries the majority of
the computational load. The layer works by taking the dot product of two matrices,
one of which is called the filter and the other the receptive field. Even though the
filter does not take up as much area as the image, it contains more information.
There are three sorts of channels in an RGB picture. The filter depth encompasses
all three channels, although the breadth and height are modest. The filter processes
the image, including its height and breadth, to create a visual representation of that

13

specific receptive field.

Figure 3.5: An overview of Convoluted Neural Networks

A feature map is a representation of a two-dimensional representation of picture data
that includes certain features. The amount by which the filter slips is called astride.
The pooling layer is in charge of replacing network output at particular locations
chosen by computing the summary statistic of surrounding outputs. The pooling
approach processes each slice of the representation individually. Pooling functions
include the rectangular neighborhood average, the rectangle neighborhood L2 norm,
and a weighted average based on the distance from the center pixel. Max pooling is
the most prevalent CNN approach, which takes the maximum of each layer in the
feature map. In all circumstances, pooling gives some translation invariance, which
implies that an item may be recognized no matter where it appears on the screen.
Neurons in the fully connected layer, like those in standard FCNN, are completely
interconnected to all neurons in the preceding and subsequent layers. As a result, it
may be calculated using matrix multiplication and a bias effect. The FC layer aids
in the mapping of input and output representations.

3.6 Recurrent Neural Network

A recurrent Neural Network or RNN is a neural network where the output from the
previous step is fed as input of the current stage. This neural network is widely used
in the sequential network, speech recognition, natural language processing, sequence
classification, etc.

14

Figure 3.6: RNN Basic Model

The function RNN is f:h’,y=f(h,x). Here, h’,y,f,h, and x are called a current hy-
pothesis, current output, RNN function, previous hypothesis, and current input
respectively. Also, h’ and h are vectors with the same dimension. Additionally,
RNN reduces complexity as it only needs one function f to perform the feed-forward
nature.

Figure 3.7: RNN Feedforward Architecture

15

3.7 Types of RNN

There are several types of RNN, but deep RNN, bidirectional RNN, pyramid RNN,
and naive RNN are widely used. Deep RNN uses previous function output as a new
input of a newly created RNN. Number theory’s base conversion can be an example
of deep RNN. The function this,

h’,y=f1(h,x);
g’,z=f2(g,y);

i’,m=f3(i,z); ... as follows.
Two opposite directional hidden layers connect bidirectional RNN with the same
output. An example of bidirectional RNN would be data sequence and palindrome
checking. The function this, y,h=f1(x,h); z,g’=f2(g,x); p=f3(y,z) Naive RNN is that
RNN that accepts variable input and variable output in a feedforward manner. The
function this, f:h’,y=f(h,x)

Deep RNN uses previous function output as a new input of a newly created RNN.
Number theory’s base conversion can be an example of deep RNN. The function
this, h’,y=f1(h,x); g’,z=f2(g,y); i’,m=f3(i,z); ... as follows.

wo opposite directional hidden layers connect bidirectional RNN with the same
output. An example of bidirectional RNN would be data sequence and palindrome
checking.

The function this, y,h=f1(x,h); z,g’=f2(g,x); p=f3

Naive RNN is that RNN that accepts variable input and variable output in a feed-
forward manner. The function this, f:h’,y=f(h,x)

3.8 Long Short Term Memory

LSTM is the advanced version of RNN which was proposed in the sense of cover-
ing the lakes of RNN.Following, like RNN it does not have any vanishing gradient
problem, can hold a longer memory and has a cell state. Three sigmoid functions
forget gate, output gate, and input gate are in LSTM.

16

Figure 3.8: LSTM Architecture

Forget gate is the first sigmoid function in the architecture. The information of the
current input and previous out put is passed through it. When any value is closer
to zero it’s forgotten and closer to one means kept. The function is, ft=(Wf*[ht-
1,xt]+bf).

Input gate decides what information should be added in the current step. The
function is, it=(Wi*[ht-1,xt]+bi).

Update gate determines how much the past knowledge needs to be passed into the
current node. Updating the cell state function is, Ct= ft* Ct-1+ it * C’t.

Lastly, the function of output gate is, ot=(Wo*[ht-1,xt]+bo) ; ht=ot*tanh(Ct).

3.9 Gated recurrent units

Gated Recurring Units (GRU) were first proposed by Kyunghyun Cho in 2014. With
fewer parameters than LSTM, additionally GRU has a reset gate. The following
figure 8 represents the design proposed by Cho along with the functions.

17

Figure 3.9: GRU Architecture

From Figure 8 we can see GRU latkes Xt as the only input. Unlike LSTM, GRU
has two gates. Reset gate and Update gate. Moreover, unlike LSTM, GRU doesn’t
rely on the previous cell state. GRU is considered more effective than RNN as they
explicitly attempt to address the vanishing and exploding gradient problem, which
arises during RNN.

18

Chapter 4

Methodology

We started off our work by looking for a suitable dataset optimized for the detec-
tion of brain Hemorrhage. Even though we found quite a few datasets for brain
Hemorrhage detection not all of them were suitable for our purpose.

The following subsections serve the purpose of describing our research methods in
detail.

4.1 Data Collection

Our first aim was to obtain a dataset of high-resolution CT scan pictures of brains
that we could use in our design specification. The image set also needed to be
categorized as Hemmorrhaige-type or Normal-type for our research purpose. We
did come across quite a few datasets consisting of CT scan images categorized as
Hemmorrhaige or non-Hemmorige. However, not all of them had a sufficient amount
of data and, not all of them had high-resolution images. After, searching quite a
few datasets we finally came across CT - 500. It had both high-resolution CT scan
images alongside being categorized as Hemmorrhaige or non-Hemmorige.

CQ500 [19] is a database given by the Center for Advanced Research in Imaging,
Neurosciences, and Genomics (CARING) in New Delhi, India. This database is
made up of head CT scans obtained by many radiologists in New Delhi’s central
district. To obtain the pictures, radiology facilities employ tomographs that have
anywhere from 16 to 128 incisions. The data was extracted from local PACS servers
and anonymized following HIPAA internal rules. The information was gathered in
two sections (B1 and B2). Block B1 was constructed by choosing all CT scans
performed at the radiological center for 30 days starting November 20, 2017, and
Block B2 was compiled from the remaining scans.

The following exclusion criteria were used for each of the studies that were chosen:

• There should be no postoperative problems such as burr holes, shunts, or clips in
the patients.

• They should have at least one CT study without axial cut contrast and a soft

19

kernel reconstruction that contemplates the entire brain.

• Patients should not be less than 7 years old. If age information is not available, it
will be estimated through bone degradation and cranial sutures.

The dataset[20] is an updated version of the previous dataset and contains 6794 files
which include both hemorrhagic and normal brain ct scan images. The following
images (figure: 4.1), (figure: 4.2), and (figure: 4.3) show the amount of hemorrhagic
and normal brain CT images available.

Figure 4.1: Image comparison

Figure 4.2: Image comparison

20

The number of Normal-type images is 4105 while the number of Hemorrhage-type
is 2690. In other words, a considerable amount of CT scan images of Hemorrhage
type are available in the dataset for us to study and research. The following images
(figure: 4.4), and (figure: 4.5) show the two types of images in the dataset.

Figure 4.3: Normal-type

21

Figure 4.4: Hemorrhage-type

The images of the dataset are categorized as normal type and Hemorrhage type.
The following image(figure: 4.5) shows how the dataset is categorized.

22

Figure 4.5: Image Catagory

4.2 Data Preprocessing

We have decided to use the panda library to convert the dataset into a table format
which will be containing 2 columns and 2 categories (Hemorrhagic and Normal).
We have categorized the Hemprrage Type images as 0, and Normal as 1.

We decided to remove the background image of all slices as it will not be of any
use for classification and will only increase computational complexity. Moreover,
we have converted all the images to JPG format as it is easier for PCs to read

23

images in this format, and this type of image holds less space. This will reduce
space complexity and, reduce the load on our device while processing the images.

First, we have fixed the file path for the dataset. Then we are assigning all images
in the file path to a list of the dataset using the list method of python.

4.2.1 Data Splitting

Our dataset is made up of only one type of image data which is CT Scan images
of the brain while categorized as Normal-type images and Hemorrhage-type images.
First, our dataset was split into train and test datasets. We split our dataset into a
ratio of 9:1, where 6115 images were selected for training the data and, 680 images
were selected for testing the data. Moreover, we Have decided to shuffle the dataset
by setting the shuffle parameter to True for training quality. We have also decided
to use the same data as random states.

4.2.2 Generating Images

We wanted to avoid the situation where our model faced the overfitting orienta-
tion problem. We have used diversification so that our model does not shift to an
overfitting orientation.

We rescaled our image as 1./255, used a 20% zoom range, 20% shear range, 40 as
rotation range, and, horizontally flipped the image to generate the images that we
want to process. We used diversification for the train data only. We did not use the
diversification for train data as we can use it as it is and, it will give us a better idea
about how much it can be used in real-life data. The following image (figure: 4.7)
shows what the generated images look like:

24

Figure 4.6: Generated Images for processing

4.2.3 Image Preprocessing

After loading our images, we needed to convert the images to pixelated format.
Python and Tensorflow functions can not process raw images for computational
purposes. We have used TensorFlow functions to decode the image data. In most
cases, tensorflow.image.decode image can be used for generic decoding. However, for
JPEG decoding, we used tensorflow.image.decode jpeg.Keyword argument is used
to change the pixel format of the decoded image. The number of integer values per
pixel is represented by the channel parameter. By default, channels are set to 0,
causing the decoding function to utilize the raw data interpretation. In our case, we
are using the default value. If we set the channel value to 1, we can use a grayscale
image; if we set it to 3, we can use an RGB image. We are going to use grayscale
value in our case as our images don’t need RGB detection. Because we can utilize
the precise pixel value in our dataset because the model would get biased toward

25

higher pixel values, we don’t normalize the pixel value by decoding. We are using
class mode as ”categorical”: ”categorical”. This class mode is a 2D NumPy array
of one-hot encoded labels. Supports multi-label output. This class mode is more
suitable for our Data Frame. The resulting input dataset would be made of one
attribute compromising two Categories; Hemorrhagic and Normal and comprising
6794 images with the size of 256*256 pixels.

4.2.4 Padding

When an image is processed by the CNN kernel in convolutional neural networks, the
padding determines how many pixels are added to it. Padding works by increasing
the processing area of a CNN model. A neural network filter called the kernel
examines each pixel in a picture and turns the data into a smaller or bigger format.
Padding is provided to the picture frame to aid the kernel in processing the image
by providing an extra area for the kernel to cover. Padding a picture that has been
CNN-processed enables for more exact image interpretation. In the Cov2D layer, if
padding is defined as ‘valid’, it means no padding. On the other hand, if padding
is defined as ‘Same’ it means padding with zeros evenly on the up/down/left/right
of the given input data. In our case, we want to take advantage of the Padding
function so we defined padding as ‘same’.

4.3 Model Implementation

We’ve spoken about our dataset and how we prepared it up to this point. We will
discuss our suggested model and its implementation in this section. In short, our
suggested model is a combined model made of CNN and LSTM layers. We are using
the previously mentioned CQ-500 model for training our model. We have made the
necessary adjustments to run our model in this dataset. The size of the images
mentioned in the dataset plays an important role in our model since it determines
the form of the Embedding layer and the final output layer.

The following Figure 4.7 shows the summary model.

26

Figure 4.7: Model Structure

The following figure 4.8 shows a more detailed architecture of our model.

27

Figure 4.8: A Detailed Architecture of Our Proposed Model

28

4.3.1 Input Layer

For our image dataset, we have shaped our image dataset and fixed the input dataset
as (256, 256, 1). We did not need to make any other changes in our model in order
to work with this shape. In our model, each layer is stacked in a plain format
and, each layer will take exactly one input tensor and one tensor output. In such a
situation, the sequential model is more fitted. So, we have transformed our model
into a sequential model by using the keras.Sequential() from the TensorFlow library.

4.3.2 Conv2D Layer

We are using four convolutional layers. We explicitly specified our input shape in the
first Conv2D layer so that the CNN architecture may start from there. In our model,
Layers closer to the original input data learn fewer convolutional filters, whereas
layers closer to the output predictions learn more filters. We raised the number of
filters we learned as our output spatial volume dropped. This is a frequent design
technique for CNN architectures. When it came to determining the right number
of filters, we went with powers of two in all the Conv2D layers. Depending on the
complexity of our dataset and the depth of our neural network, we had to fine-tune
the precise value. The width and height of the 2D convolution window are specified
by a 2-tuple called kernel size. We have specified kernel size as (3*3) for all the
available Conv2D layers as they are most commonly used. Moreover, we have used
the ReLU activation function for all the layers as ReLU helps to keep the computing
required to run the neural network from becoming exponentially. On the other hand,
we have tried using Softmax too. But Relu gave us better results overall.

4.3.3 Max pooling2d Layer

Max pooling takes the highest component from the region of the feature map covered
by that of the filter. As a result, the max-pooling layer’s outcome is a feature map
with the most important characteristics of the previous feature map. We have used
the Max pooling layer after all the Conv2D layers. Max pooling is used in our model
to reduce the spatial dimensions of the output volume. We have kept both the pool
size as 2 and stride as 2 in our model. The usage of Max pooling after the usage of
the Conv2D layer is always apparent.

4.3.4 Dropout Layer

The Dropout layer’s goal is to ensure that our network generalizes our model and
avoids overfitting. This layer’s goal is to eliminate the possibility of current-layer
neurons arbitrarily disconnecting from neurons in the next layer, requiring the net-
work to rely on existing connections. One disadvantage of LSTMs and Conv2d is
that they can easily overfit training data, reducing their ability to forecast. Input
and recurrent connections to LSTM and Conv2d units are probabilistically excluded
from activation and weight updates when using the Dropout technique to train a
network. Overfitting is decreased as a consequence, and model performance is en-
hanced. During the training of our dataset, we first encountered problems with

29

overfitting. The overfitting problem was handled by adding the Dropout layer after
the last two Conv2D layers and after the LSTM layer. We can select a dropout
value that is appropriate for us. It’s a hyperparameter we need to figure out. The
most common dropout value is 0.5-0.9. For our model, we used 0.5.

4.3.5 Time Distributed Layer

LSTMs are strong, yet they are difficult to use and set up. Before implementing the
LSTM layer, we apply the time dispersed layer to reduce the complexity. We have
used the Time Distributed flatten layer to create a model for our many-to-many ar-
chitecture. Because each of the ”many” outputs must have the identical output func-
tion applied to each timestep, this is the case. We have used the Time Distributed
Flatten layer to apply the Flatten function to each output across time.

4.3.6 Bidirectional LSTM Layer

We used the Bidirectional LSTM layer after flattening the data in the TimeDis-
tributed layer. We have used only one LSTM layer for our model. The input and
out dimension of this layer is the same as any other layer which is 256 input space
and 256 output space. We have set the return to True, dropout value to 0.5, and
recurrent dropout to 0.5.

4.3.7 Bidirectional GRU Layer

We used the Bidirectional GRU layer after flattening the data in the Bidirectional
LSTM layer. We have used only one GRU layer for our model. The input and
out dimension of this layer is the same as any other layer which is 256 input space
and 256 output space. We have set the return to True, dropout value to 0.5, and
recurrent dropout to 0.5.

4.3.8 Flatten Layer

When dealing with multi-dimensional inputs such as picture datasets, the Keras
flatten class is crucial. The Keras.layers.flatten function converts multi-dimensional
input tensors to a single dimension, allowing us to model our input layer, create our
neural network model, and then effectively transmit those inputs to each and every
neuron in the model.

4.3.9 Dense Layer

We have used the Dense layer twice in our model to finalize our model. The dense
layers were utilized to change the dimensionality of the output from the previous
layer, allowing the model to clearly establish the connection between the values of

30

the data it is working with. We have used the activation function ‘Relu’ for the first
layer and ‘Softmax’ for the second layer.

4.3.10 Optimizer

We have explored two optimizers SGD (stochastic gradient descent) and RMSprop
optimizer. SGD: A class that implements the stochastic gradient descent optimizer
we can pass a learning rate and momentum value in the constructor.

RMSprop: A gradient-based optimization approach for neural network training.
Gradients have a tendency to vanish when input passes through extremely sophis-
ticated algorithms like neural networks also known as the vanishing gradients prob-
lem. RMSprop solves the problem by using a moving average of squared gradients
to normalize the gradient.

For our model, we use RMSpropoptimizer as it was generalizing the data better
than SGD.

4.3.11 Batch Size

In Deep Learning algorithms, the size of the batch is critical. The amount of training
samples utilized in one iteration is referred to as batch size in machine learning.
There are three different batch sizes available. The procedure will use stochastic
gradient descent if the batch size is one. The algorithm will use mini-batch gradient
descent if the batch size is more than 1 but less than the length of the training
dataset. We have defined batch size as 1.

31

Chapter 5

Performance Evaluation

The next parts will exhibit the relevant functional plottings, such as accuracy, vali-
dation accuracy, loss, validation loss, and so on, to explain our conclusions from the
experiment.

5.1 Experimental Setup

Our experiment used specialization networks processing grid topology, subdivided
into three stages of CNN layers with RELU activation, several max-pooling layers,
and a flatten layer to classify the feature maps. On the other hand, we also used high-
resolution CT scan image data as inputs that require high computational processing.
So our main machine has a TensorFlow CUDA core GPU specification: GeForce
RTX3060 with a memory space of six gigabytes and Ryzen 5 5600H processing unit.
In another device setup, we have a graphics processing four gigabytes of GTX 1050
ti with core i5 as processing. We have used Windows 11 for both of our operating
systems.

5.1.1 Language

Implementing any kind of neural network, artificial intelligence, or machine learning
project we need that kind of language that is both reliable and adaptable and has
some of the best computational tools. Python itself provides all of these which
facilitate any programmer. For this project, we are using python version 3.8.

5.1.2 Platform

The platform we have used for our experiment is The Jupyter notebook, an open-
source web application. A user can create an online repository, including links to
research materials, datasets, code, and methodologies. While working on this exper-
iment, our first change was how we should implement our code parts in a sequential
and shareable manner with the help of its JSON format. With the jupyter note-
book platform, we can quickly make our experiment sharable and well documented.
Furthermore, the pandas’ library helps by writing fewer codes and excellent data
representation, and it has an extensive set of features. We have used the latest
version for our experiment purposes, which is v3.2.1.

32

5.1.3 Library

Seaborn is a visualization library built upon a matplot library. It performs the
required semantic mapping and statistical accumulation for producing an infor-
mative plot. Additionally, it uses the matplot library to draw the plots, and for
the measurement of statistical values, it uses bootstrapping to compute intervals.
For statistical analyses, it includes inclusive computational approaches like kernel
density estimation as seaborn integrates with the matplot library, so it automati-
cally adds informative axis labels and supports different exploratory analyses with
real-time interaction in GUI applications. In our implementation, we used seaborn
plating for the different categories like counting the normal brain ct scan images
with hemorrhage brain ct images and sns.

To complete the image’s loading and processing, we imported the Pillow module
and called it PIL(python imaging library). It provides an efficient internal repre-
sentation with powerful image processing capabilities. A couple of substitutes for
the PIL library are Numpy and Scipy, which deals only with images directly by
manipulating pixels. Pillow library is highly recommended for image processing as
this doesn’t require advanced image processing expertise. There are other advances,
faster, and more powerful libraries than pillow modules like Mahotas, scikit-image,
and OpenCV. Still, the pillow’s main advantage is that it is widely used among the
community, and as it is an open-source library, it can be used for exploratory work
while dealing with images.

Keras is a free and open-source high-level API that supports multiple backend neu-
ral network computation libraries. Keras is only an extension for making it easier to
read and write machine learning programs. Unfortunately, Keras can’t deal with the
low-level computation. We need some low-level APIs like theano, CNTK, or Ten-
sorFlow. In our experiment, we used TensorFlow combined with Keras, where the
TensorFlow framework supports both high-level and low-level APIs. We used Ten-
sorFlow and Keras framework multiple times to import many different libraries such
as ImageDataGenerator, Sequential, RMSprop, Adam, Optimizer, etc. While the
training process ImageDataGenerator class helps us augment our image in real-time
with a particular aspect by flipping, shifting, rotating, etc. It has some subdivided
types: Random Rotations, Shifts, Flips, Brightness, and Zoom. After that, sequen-
tial API allows us to design layer-by-layer models, which helped generate Keras
layers in a sequential ConvNet architecture. Then for training the neural network
model, we use RMSprop, which is gradient optimization. As we know, most neural
networks deal with vanishing gradients and exploding problems. To normalize the
gradient, RMSprop uses an average of the square gradient. Similarly, we imported
Adam to minimize the stochastic gradient descent for training the model.

5.2 Result And Analysis For The Dataset

To avoid overfitting in our training model, we implemented a cross-checking vali-
dation technique that can make predictions about whether our training model can
perform well for our future new datasets. That is why we implemented the validation

33

accuracy and loss function along with the loss accuracy function.

For our experiment, we ran our model into our proposed dataset and, after training
our model for nearly 7 hours and 41 epochs, found out that our training accuracy is
around 0.9594 and validation accuracy is about 0.9456 (Figure 5.1). In other words,
Our model can perform 94.56% accurately in other datasets whether it performs
94.56% on our chosen dataset. We can see that until almost 20 epochs the accuracy
increases gradually is a rapid pace. After 30 epoch training, the model reaches
a point where the model can no longer learn to improve the training at a very
significant amount. Moreover, after 36 epochs, the model reaches a point where
it can hardly improve anymore. In our experiment, there is a point where mode
validation accuracy reached up to 94.47 %. This result is considered satisfactory
and shows significant improvement while training

Figure 5.1: Accuracy vs Validation accuracy plot

From Figure 5.2, we can see that the loss function and validation loss function
decrease. The loss function refers to the minimization of the error by continuously
updating the weights. By calculating the error of each input by looking at what
output it predicts for the information and taking the difference of the output value.

We start our loss and validation function with 0.7054 and 0.6961 respectively. After
36 epochs, our loss is around 0.1329, and validation loss is around 0.1572, which is
suitable for any training or new dataset. As our validation loss lesser than training
loss that means we don’t have any overfitting.

34

Figure 5.2: Loss vs Validation Loss plot

In figure 5.3, we can see the actual loss vs accuracy function graph. To determine
a good model, we can see how lower the loss function is. The loss function mainly
calculates training and validation datasets by how well it interprets the model.
Forming the summation of the errors, our training set loss curve is in a decreasing
slope, which means our model minimizes the error in every training step.

On the other hand, accuracy determines how the model parameters’ learnings and
fixings occur. In our experiment, after 36 epochs, accuracy is around 95.94%, which
means for our 679 test samples, 652 were classified correctly, and in the graph, the
accuracy function is constantly increasing.

35

Figure 5.3: Loss vs Accuracy plot

Similar to figure 5.3 in the figure 5.4 graph, we observe how our model will perform
for new future datasets. From the start of our chart, the validation loss decreases,
whereas the validation accuracy increases behavior. Validation loss and accuracy are
a future determination of the model; val loss of 0.1572 and val accuracy of 0.9594
are effective for any new dataset.

Validation loss is usually used for training sets by finding the best parameters that
will fit the model in future actions. Validation accuracy evaluates how the accuracy
will change in future new datasets. Val accurasy is slightly higher than our train-
ing accuracy in our model, which is quite acceptable as it makes the model lesser
overfitted.

36

Figure 5.4: Validation Loss vs Validation Accuracy plot

Figure 5.5 shows a summary of the previous graphs with the labels. As we can see,
the validation accuracy, training accuracy, and validation loss maintained quite a
similar outline in our model, which is a good sign for new datasets.

Figure 5.5: Summary plot

37

5.2.1 Confusion Matrix

Confusion Matrix consists of four parameters. These are True positive, False posi-
tive, False-negative, and True negative. True positive (TP) refers to when a model
takes a correct sample and classifies it as correct, which means the system is right.
False-positive (FP) occurs when the model takes a wrong sample and classifies it
as a correct sample, which means the system is wrong. False-negative (FN) occurs
when the model takes a correct sample and classifies it as a wrong sample, which
means the system is incorrect again. True negative (TN) arises when the model
takes a false sample and classifies it as a wrong sample, which means the system is
correct in this case.

In our model, we have used the test data to create the following confusion matrix
in figure 5.6.

Figure 5.6: Confusion Matrix

The confusion matrix gave us a result of TP = 230, FP = 71, FN = 48, TN = 331.
It whos that our model is performing significantly well.

5.2.2 Performance Measure Functions

In any kind of neural network to evaluate how the model teaches itself, we use some
performance measure functions. Some popular performance measure functions are
precision, recall or sensitivity, F1 score, specificity, MCC, etc. Precision is several
samples classified as correct or false positive with how many of them are correct or a
number of a true positive. On the other hand, Recall or sensitivity is what the model

38

remembers from reality. Similar to precision, it deals with some samples classified
as correct or true positive, but in addition to the number of samples classified as
correct when they are incorrect or true negative. Specificity is the combination of
samples classified as correct or false positive and samples are classified as correct
when they are incorrect or true negative.

In our experiment, we rallied up a result consisting precision of 0.8233, sensitivity of
0.7641, and specificity of 0.8733. Figure 5.7 shows the formula for Precision, Sensi-
tivity, and Specificity for calculation. Figure 5.7: Formula for Precision, Sensitivity,
and Specificity is bellow:

Precision =
TP

TP + FP
; (5.1)

Recall or Sensitivity =
TN

TN + TP
; (5.2)

Specificity =
TN

TN + FP
(5.3)

The F1 score is a special type of harmonic mean of precision and recall. For our
experiment, we have found an F1 score of 0.8476. Figure 5.8 shows the formula used
for obtaining the F1 score for calculation.Figure 5.8: Formula for F1 score is bellow:

F1 Score = 2× Precision×Recall

Precision+Recall
(5.4)

In some situations, the F1 score becomes not valid. When we have highly imbalanced
datasets, the classes are (positive and negative) inverted or switched, and the F1
score cares less about true negative values. Matthew’s correlation coefficient or
MCC comes in handy, which is symmetric and cares about true negative and other
three values. While experimenting we got the value of 0.6440 for our MCC. Figure
5.9 shows the formula used for obtaining the MCC.Figure 5.9: Formula for MCC is
bellow:

MCC =
TP × TN − FP × FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(5.5)

To summarize the achieved validation accuracy and loss can be considered valid test
results. Table:1 shows the comparison between our train and test result.

The following Table:1 shows the generated result obtained by our dataset.

39

Function Train Test

Accuracy (%) 95.94 94.56

Table 5.1: Comparison between Train-Test Accuracy

Figure 5.7: Image-set after prediction

Figure 5.7 shows the predictions generated by our model. Here, 0 indicates if a brain
is affected by hemorrhage, while 1 indicates that the brain is normal.

40

Chapter 6

Conclusion

To summarize, because of the high morbidity and death rate, detecting a brain hem-
orrhage is one of the most important responsibilities. Due to its weak and uneven
borders, hemorrhage segmentation from brain CT images is a difficult task. The
volume of a hemorrhage can be measured using brain CT scans for prognosis and
therapy trials. In our thesis, we attempted to offer an accurate technique for identi-
fying intracranial hemorrhages using CT scan images. Furthermore, our suggested
approach has the potential to be utilized for further future works in other image
classification fields. The approach provided in our research can also be used for
diverse anatomy and disease detection. We have obtained substantial results using
our suggested CNN-LSTM Fusion model. However, as we discussed a few DRL
methods, instead of using LSTM we should be able to use DRL for the classification
after analyzing the images with CNN. Additionally, we can also increase the batch
for further improvements. With this, it can be concluded that convolutional neural
networks are an effective tool for detecting cerebral hemorrhages in computed to-
mography images and can assist in the diagnosis of these illnesses. Furthermore, it
was discovered that the strategy for selecting the train and test sets has an impact
on the performance of deep learning algorithms. As a result, more research into
the data independence in the usage of computed tomography images is needed for
classification using convolutional neural networks.

41

Bibliography

[1] “Brain bleed/hemorrhage (intracranial hemorrhage): Causes, symp-
toms, treatment.” https://my.clevelandclinic.org/health/diseases/
14480-brain-bleed-hemorrhage-intracranial-hemorrhage. Accessed: 2022-
5-23.

[2] M. Hussain, Q. Mohammad, M. Habib, M. Hoque, M. Badrul, and D. M. A.
Yusuf, “Aetiology of spontaneous intracerebral haemorrhage in young adults
admitted at a tertiary care hospital in dhaka,” American Journal of Neuro-
science, vol. 6, pp. 20–25, 10 2010.

[3] J. L. Rúız-Sandoval, C. Cantú, and F. Barinagarrementeria, “Intracerebral
hemorrhage in young people: analysis of risk factors, location, causes, and
prognosis,” Stroke, vol. 30, pp. 537–541, Mar. 1999.

[4] B. Hathaway, “Brain hemorrhage surgery boosts survival, but disability risk
still high,” Oct 2019.

[5] J. A. Caceres and J. N. Goldstein, “Intracranial hemorrhage,” Emergency
Medicine Clinics of North America, vol. 30, no. 3, p. 771–794, 2012.

[6] W. Kuo, C. Hne, P. Mukherjee, J. Malik, and E. L. Yuh, “Expert-level detection
of acute intracranial hemorrhage on head computed tomography using deep
learning,” Proceedings of the National Academy of Sciences, vol. 116, no. 45,
p. 22737–22745, 2019.

[7] S. Hojjatoleslami and F. Kruggel, “Segmentation of large brain lesions,” IEEE
Transactions on Medical Imaging, vol. 20, no. 7, p. 666–669, 2001.

[8] M. Sun, R. Hu, H. Yu, B. Zhao, and H. Ren, “Intracranial hemorrhage detection
by 3d voxel segmentation on brain ct images,” 2015 International Conference
on Wireless Communications amp; Signal Processing (WCSP), 2015.

[9] C. Nin, “A beginner’s guide to deep reinforcement learning,” 2020.

[10] Y.-n. Dong and G.-s. Liang, “Research and discussion on image recognition and
classification algorithm based on deep learning,” 2019 International Conference
on Machine Learning, Big Data and Business Intelligence (MLBDBI), 2019.

[11] L. Li, M. Wei, B. Liu, K. Atchaneeyasakul, F. Zhou, Z. Pan, S. A. Kumar,
J. Y. Zhang, Y. Pu, D. S. Liebeskind, and et al., “Deep learning for hemor-
rhagic lesion detection and segmentation on brain ct images,” IEEE Journal of
Biomedical and Health Informatics, vol. 25, no. 5, p. 1646–1659, 2021.

42

https://my.clevelandclinic.org/health/diseases/14480-brain-bleed-hemorrhage-intracranial-hemorrhage
https://my.clevelandclinic.org/health/diseases/14480-brain-bleed-hemorrhage-intracranial-hemorrhage

[12] H. Ko, H. Chung, H. Lee, and J. Lee, “Feasible study on intracranial hemor-
rhage detection and classification using a cnn-lstm network,” 2020 42nd Annual
International Conference of the IEEE Engineering in Medicine amp; Biology
Society (EMBC), 2020.

[13] A. Patel, S. C. van de Leemput, M. Prokop, B. Van Ginneken, and R. Man-
niesing, “Image level training and prediction: Intracranial hemorrhage identifi-
cation in 3d non-contrast ct,” IEEE Access, vol. 7, p. 92355–92364, 2019.

[14] J. M. Jose Valanarasu, R. Yasarla, P. Wang, I. Hacihaliloglu, and V. M. Patel,
“Learning to segment brain anatomy from 2d ultrasound with less data,” IEEE
Journal of Selected Topics in Signal Processing, vol. 14, no. 6, p. 1221–1234,
2020.

[15] P. R. Tabrizi, A. Mansoor, R. Obeid, J. J. Cerrolaza, D. A. Perez, J. Zem-
ber, A. Penn, and M. G. Linguraru, “Ultrasound-based phenotyping of lateral
ventricles to predict hydrocephalus outcome in premature neonates,” IEEE
Transactions on Biomedical Engineering, vol. 67, no. 11, p. 3026–3034, 2020.

[16] M. Togacar, Z. Comert, B. Ergen, and U. Budak, “Brain hemorrhage detection
based on heat maps, autoencoder and cnn architecture,” 2019 1st International
Informatics and Software Engineering Conference (UBMYK), 2019.

[17] Z. Li and Y. Xia, “Deep reinforcement learning for weakly-supervised lymph
node segmentation in ct images,” IEEE Journal of Biomedical and Health In-
formatics, vol. 25, no. 3, p. 774–783, 2021.

[18] H. Ko, H. Chung, H. Lee, and J. Lee, “Feasible study on intracranial hemor-
rhage detection and classification using a cnn-lstm network,” 2020 42nd Annual
International Conference of the IEEE Engineering in Medicine amp; Biology
Society (EMBC), 2020.

[19] A. Helwan, G. El-Fakhri, H. Sasani, and D. Uzun Ozsahin, “Deep networks in
identifying ct brain hemorrhage,” Journal of Intelligent amp; Fuzzy Systems,
vol. 35, no. 2, p. 2215–2228, 2018.

[20] S. Chilamkurthy, R. Ghosh, S. Tanamala, M. Biviji, N. G. Campeau, V. K.
Venugopal, V. Mahajan, P. Rao, and P. Warier, “Development and validation
of deep learning algorithms for detection of critical findings in head ct scans,”
ArXiv, vol. abs/1803.05854, 2018.

43

	Declaration
	Approval
	Ethics Statement
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Health Consequences and Effective Use of Deep Learning for Brain Hemorrhage
	Objective

	Related Work
	Deep Learning
	DL Architecture

	Existing Works

	Background Study
	Common Activation Functions
	Sigmoid Activation Function
	Tanh Activation Function
	ReLu Activation Function
	Convoluted Neural Networks
	Recurrent Neural Network
	Types of RNN
	Long Short Term Memory
	Gated recurrent units

	Methodology
	Data Collection
	Data Preprocessing
	Data Splitting
	Generating Images
	Image Preprocessing
	Padding

	Model Implementation
	 Input Layer
	Conv2D Layer
	Max_pooling2d Layer
	Dropout Layer
	 Time_Distributed Layer
	Bidirectional LSTM Layer
	Bidirectional GRU Layer
	Flatten Layer
	Dense Layer
	Optimizer
	Batch Size

	Performance Evaluation
	Experimental Setup
	Language
	Platform
	Library

	Result And Analysis For The Dataset
	Confusion Matrix
	Performance Measure Functions

	Conclusion
	Bibliography

