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Abstract

Cancer, a diagnosis so dreaded and scary, that its fear alone can strike even the
strongest of souls. The disease is often thought of as untreatable and unbearably
painful, with usually, no cure available. Among all the cancers, breast cancer is the
second most deadliest , especially among women. What decides the patients’ fate
is the early diagnosis of the cancer, facilitating subsequent clinical management.
Mammography plays a vital role in the screening of breast cancers as it can detect
any breast masses or calcifications early. However, the extremely dense breast tissues
pose difficulty in the detection of cancer mass, thus, encouraging the use of machine
learning (ML) techniques and artificial neural networks (ANN) to assist radiologists
in faster cancer diagnosis. This paper explores the MIAS database, containing 332
digital mammograms from women, which were augmented and preprocessed, and
fed into a custom and different pre-trained convolutional neural network (CNN)
models, with the aim of differentiating healthy tissues from cancerous ones with
high accuracy. Although the pre-trained CNN models produced splendid results,
the custom CNN model came out on top, achieving test accuracy, AUC, precision,
recall and F1 scores of 0.9362, 0.9407, 0.9200, 0.8025 and 0.8572 respectively while
having minimal to no overfitting. The paper, along with proposing a new custom
CNN model for better breast cancer classification using raw mammograms, focuses
on the significance of computer-aided detection (CAD) models overall in the early
diagnosis of breast cancer. While a diagnosis of breast cancer may still leave patients
dreaded, we believe our research can be a symbol of hope for all.

Keywords: breast cancer, malignant, benign, mammogram, CAD model, convo-
lutional neural network, convolution layer, overfitting, MIAS database, accuracy,
precision, recall, F1, ROC curve, AUC
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Chapter 1

Introduction

1.1 What Is Cancer?

Cancer is one of the leading causes of death among the world population keeping
the life expectancy prisoned to its barriers throughout the globe [56]. According to
the research approved by the World Health Organisation (WHO), in 2020 alone, it
claimed an estimated 10 million lives [55], [58].

In human body, cell division is a natural process where normal cells divide to replace
the dead cells or replicates for growth. However, when cancer develops, this orderly
process breaks down, resulting in the cells to become abnormal: old or damaged
cells survive when they should die, and new cells form when they are not needed.
These extra cells can divide without stopping and may form growths called tumours,
which are divided into two types: malignant and benign. Malignant are the ones
that spread and invade the other cells and organs, otherwise known as cancerous,
whereas benign ones grow in its place into a large mass [31].

1.1.1 Breast Cancer and its Severity

Breast cancer is one such type of cancer. It occurs when the cell tissues of the breast
become abnormal and uncontrollably divides. These abnormal cells form large lump
of tissues, consequently becoming a tumour [16], [36]. Figure 1.1 shows a dividing
breast cancer cell [31].

Breast cancer is considered as one of the most frequent non-skin cancers that devel-
ops in women, such that it is estimated that 1 out of every 8 women will develop it
in their lifetime, making it one of the main causes behind women death [12], [36].
According to WHO, in 2020, breast cancer had the highest number of new cases
(2.26 million), making it the most common type of cancer, surpassing lung cancer.
It also reported 685,000 deaths, with ratio of 1 in 3 breast cancer patients who
succumb to death [58]. Figure 1.2 below depicts the region specific incidence and
mortality age-standardised rates for female breast cancer in 2020 [57].
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Figure 1.1: Dividing Breast Cancer Cell [31]

Figure 1.2: Region-Specific Incidence and Mortality Rates for Female Breast Cancer,
2020 [57]

1.1.2 Problems of Diagnosing Breast Cancer

Even though breast cancer is the most frequent malignancy in women worldwide,
it is curable in ∼70–80% of patients with early- stage, non- metastatic disease or
phase, but is difficult to cure if it reaches distant organ metastasis [46]. However, as
we have observed the ratio of deaths to new found cases, it boils down to the fact
on how it was not diagnosed sooner when it was still in its early-stage. This again
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reflects certain social aspects, such as in the developing countries where the educa-
tion regarding this matter is neither that high nor is it encouraged, especially since
it is a sensitive matter and most women are not comfortable to talk or think about it.

However, the biggest problem associated with misidentification of breast cancer is
the inability to detect malignant breast tumours from mammography. The detection
of masses by the mammography and making a classification and proper image out of
it is very challenging particularly because of the varying size and density of female
breasts. Radiologists, almost all the time, have issues with it because only 3% of
the required information to determine the tumour and its type from normal tissue is
being recovered from a mammogram [36]. This is a vital obstacle because, as stated
earlier, breast cancer can be treated if it is detected early.

1.1.3 ML and its Use in Breast Cancer Diagnosis

Because of the difficulty of identifying breast cancer from mammograms by radi-
ologists, it is necessary to develop and employ newer techniques to effectively and
efficiently discover them. One such technique is using ML to make an artificial intel-
ligence (AI) model that can detect such subtle features and apply its vast knowledge
that it accumulated from training through a large data set to find the cancer cells
effectively [36]. These can even detect the differences in various micro-calcification
deposits or clusters of calcium in soft breast tissues- and masses which are very sim-
ilar and are hard to distinguish, which usually form from the early onset of breast
cancer [12].

A particular ML technique, known as CNN, uses a group of multiple neurones in
various layers, taking on image type data, to find necessary patterns in them. It
is designed to automatically and adaptively learn spatial hierarchies of features
through back-propagation by using multiple building blocks, such as convolution
layers, pooling layers, and fully connected layers [44]. These convolutional layers
create feature maps that record a region of image which is ultimately sent out for
nonlinear processing.

Therefore if a CNN model is trained with these raw mammograms, it should be able
to detect the various patterns in the abnormality of a cancerous tissue compared to
that of the normal tissue with higher accuracy in regards to other current techniques.
Hopefully, these will give doctors a better chance to diagnose and treat patients with
breast cancer from earlier onset.

1.2 Problem Statement

In this paper, the research focus is to classify a patient as cancerous (breast cancer)
or healthy, Res(t) which takes on the values 1 (patient has breast cancer) and 0
(the patient is healthy) based on, the probability that a patient has breast cancer,
P(C), given a digital mammogram, M of the patient and threshold, t, where t is
the cutoff value of the probability beyond which the mammogram will be classified
as cancerous. This is more formally defined by:
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Res(t) =

{
1 ; P (C|M ∩ t) ≥ t

0 ; P (C|M ∩ t) < t
; 0.00 ≤ t ≤ 1.00 (1.1)

Cancer is the second major cause of death globally, accounting for about 1 in 6
deaths [57]. Among all the types of cancer, breast cancer is the most prevalent
with about 7.8 million alive women with breast cancer diagnosis at the end of 2020.
Women with breast cancer loses the most disability-adjusted life years than with
any other types [58]. The risk of developing breast cancer by women is so critical,
especially towards the later life, that even if all the potential risk factors, including
avoidance of alcohol and tobacco, avoidance of using hormones, weight control etc, it
would only reduce the risk of the onset of breast cancer by a mere 30% [58]. Hence,
according to medical practitioners around the world, early detection is the most
effective measure of minimising the risks from breast cancer, with mammography
being the best cancer screening test at the moment [45].

However, interpreting mammograms pose great difficulties for the radiologists, as
most breast cancers can go undetected. This is mainly because women have breasts
of varying densities, and the fact that breast tumours are too small to be detected
in the early stages. Typically women with dense breasts are more likely to have
false-negative results, giving them a false sense of security [48]. Thus, there is a
rising need for CAD models to help radiologists have a better diagnosis.

The literature review revealed the mass use of different ML models to differentiate
between cancerous and healthy breasts with good accuracy, by using clinical data
extracted from the mammograms by radiologists. Albeit other papers have utilised
digital mammograms in detecting malignant tumours with the help of CNN, they
used pre-identified regions-of-interest (ROI) [33], including lesions, to only target a
part of the images. However, in order to build a better CAD model to try help the
radiologists identify malignant tumours in breast mammography, it is adamant that
the model makes use of the raw digital images of the the mammogram during the
identification process, instead of specific ROI and being overly-dependent on radi-
ologists. A model with such capabilities would help detect many cancerous tissues,
that could have otherwise gone unnoticed by radiologists.

In this paper, the main focus is to accurately identify breast cancer using CNN
by utilising raw mammograms, without any prior intervention by radiologists or
other medical personnels. Figure 1.3 gives an overview of the solution that is being
proposed in this paper. The aim is to show the capability of AI in breast cancer
detection, after being trained with a large enough dataset, that would have other-
wise gone unnoticed and postulate the significance of better CAD models to help
radiologists with early detection of breast cancer, possibly saving thousands of lives
in the process.
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Figure 1.3: General Overview of the Proposed Solution

1.3 Research Objectives

In order to build a CNN capable of accurately detecting breast cancer among pa-
tients, it is necessary to set a standard procedure for attaining it. This would not
only allow to assess the model based on a particular standard, but would also remove
biases from the evaluation of the performance of the model.

In this research paper, digital mammograms from the MIAS database [4] have been
extracted and augmented, to be fed into different CNN models in order to identify
malignant breast tissues without the use of any pre-identified ROI as inputs. Apart
from using already-existing pre-trained CNN models, another CNN model that was
tailor-made for solving this particular problem would also be used to compare the
results. For the purpose of discrimination, the models would be evaluated based on
their accuracy of predicting healthy and cancerous breast tissues, precision, recall,
F1 score and the area-under-curve (AUC) of their receiver operating characteristic
(ROC) curve plotted using their respective 1-specificity and sensitivity at different
threshold values.

The CNN model that has the best above-mentioned metrics, along with lower loss
and minimal overfitting, would be proposed for use in detecting breast cancer. The
intention is to assert the significance of CNN-based CAD model using raw digital
mammograms in the early and better diagnosis of breast cancer.

1.4 Paper Orientation

This chapter mainly introduces the readers to breast cancer, and provides a brief
discussion of the research’s problem statement and objectives. The remainder of the
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paper is organised as follows: Chapter 2 provides an overview into the background
knowledge for this paper, introduces the concept of CNN and justifies the use of CNN
for this research. Chapter 3 contains the literature review of some past published
researches on the use of ML and deep learning in classifying healthy and cancerous
tissues in breast cancer patients. Chapter 4 focuses on the dataset, its analysis
and preprocessing for being able to be used in the research. Chapter 5 introduces
the models that were used in this research, with their results being analysed in
Chapter 6. Chapter 7 provides a brief discussion about the probable factors
that helped the custom CNN achieve supremacy, some limitations of the research
and their proposed improvements. Chapter 8 summarises the whole research and
concludes the paper. Finally, there is a Bibliography at the end that lists out all
the sites and journals that were referred to in this paper.
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Chapter 2

Background

2.1 Convolutional Neural Network

Convolutional Neural Network (CNN) is a neural network model which falls under
deep learning which processes data by using a grid pattern, i.e. images, developed
by analysing the organisation of the visual cortex of animals [1], [2] which helps it
to find differences in low to high level feature patterns.

A CNN has three components: convolution layer, pooling layer and fully connected
layers. The task of the convolution and pooling layer is to extract features and can
be run multiple times to extract additional features. The extracted features are
passed on to the fully connected layers so that it can be mapped on to the output
for functions like classification. The more layers the CNN has the more progressively
complex the outputs become.

The model is trained for optimisation using different optimisation algorithms like
backpropagation, gradient descent etc so that the outputs produced are more con-
sistent with the “ground truth” labels. Figure 2.1 gives an overview of the basic
structure of a CNN [44].

Figure 2.1: Overview of the Basic Structure of a CNN [44]

7



2.2 Building Blocks of CNN Architecture

A typical CNN is made up of several convolutional and pooling layers, connected to
fully connected layers. A typical architecture usually consists of repetitions of several
convolution layers and pooling layers, followed by one or more fully connected layers.
The step where input data are transformed into output is called forward propagation.

2.2.1 Convolution Layer

The convolution layer plays a vital role in extraction of features by using linear and
non-linear mathematical operations such as convolution operation and activation
function.

Convolution is the mathematical combination of two functions to produce a third
function. It merges two sets of information. In CNN, it is used by applying a small
array of numbers known as a kernel or filter on the input data known as tensors.
The elements of the kernel and tensor take part in an element-wise product specific
to the individual location of the tensor and summed which results in the creation of
a feature map which consists of outputs having unique positions in the output ten-
sor. Moreover, multiple different kernels are applied to the input tensor to extract
different features from the datasets.

The convolution operation has two main arguments and they are size and number of
kernels. Most common kernel size is 3×3 while 5×5 and 7×7 are also seen. Conven-
tionally, convolutional operations do not allow the centre of the kernel to overlap the
outermost element of the input tensor meaning the loss of data in the feature map,
which can be countered by employing a technique called zero padding. Figure 2.2
shows a convolution operation with zero padding [44].

Figure 2.2: Convolutional Operation With Zero Padding [44]
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A stride is the distance between two successive kernel positions and is commonly 1.
However, a larger one is sometimes used to downsample the feature maps.

Weight sharing refers to the kernels being shared between image positions is an
important factor of the convolutional operation. This allows for the local features
detected by one kernel to be used as variables by other kernels so no time is wasted
detecting local features again. Spatial hierarchies of feature patterns can be learned
by downsampling and using a pooling operation, which results in a larger feature
map. Moreover, the efficiency of the model can be increased by reducing the number
of parameters that are required.

2.2.2 Non-linear Activation Function

The feature map produced from the convolution layer is later passed on to a non-
linear activation function. The most common activation function is the rectified
linear unit (ReLU). Figure 2.3 below shows some common activation functions used
in the inner layers of a CNN [44].

Figure 2.3: Common Activation Functions Used in CNN [44]

2.2.3 Pooling Layer and Max Pooling

The pooling layer is used for downsampling the feature map’s size in order to intro-
duce a translation invariance which detects small shifts and distortions, and helps
to decrease the number of parameters learned during training.

Max pooling is the favoured pooling operation where the feature map is split into
groups of patches and the highest value is chosen from each patch and the rest get
discarded as shown in Figure 2.4 [44]. The filter size 2×2 with a stride of 2 is the
most popular max pooling. This downsamples the feature map by a factor of 2.
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Figure 2.4: Operation of a Max Pooling Layer [44]

2.2.4 Fully Connected Layers

The outputs of the convolutional and pooling layers are connected to one or more
fully connected layers in which every input is connected to every output by a learn-
able weight. Once the features have been extracted by the convolution layer and
been downsampled by the pooling layer, they are passed on to fully connected layers
which produce the final outputs like probabilities for classification etc. The number
of classes determine the number of output nodes in the final fully connected layer.
Each layer is followed by a nonlinear function, such as ReLU, as described above.

2.2.5 Last Layer Activation Function

The activation function used in the last layer is different to the functions used in
the other layers and the function used is dependent on the task. Table 2.1 below
shows the last layer activation function that are typically used for some particular
tasks [44].

Task Last Layer Activation Function
Binary Classification Sigmoid
Multiclass Single-class Classification Softmax
Multiclass Multi-class Classification Sigmoid
Regression to Continuous Values Identity

Table 2.1: Common Last Layer Activation Functions for Particular Tasks 56

2.3 Training a Network

A network is trained to find a combination of unique kernels in the convolution
layer and weights in the fully connected layers that produce outputs with minimum
difference from the labeled dataset used. Backpropagation is the main algorithm
used for training neural networks with hidden layers which uses the loss function
and gradient descent optimisation algorithm, among others.
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2.3.1 Loss Function

Loss function is a function that calculates the difference between the actual output
and the output from the network by using forward propagation, and this is labeled
as the cost. The most popular loss function for multiclass classification is cross-
entropy and for regression to continuous value, mean squared error is used. The one
used in this paper is the binary cross-entropy.

2.3.2 Gradient Descent

Gradient descent is an optimisation algorithm whose main function is to minimise
the loss by regularly updating the learnable parameters like kernels and weights in
the network. However, the algorithm that will be used in this paper is known as
Adaptive Moment Estimation (Adam), which is more of an improvement upon the
general gradient descent algorithm.

2.3.3 Adam Optimiser

Adam is an adaptive learning rate optimisation algorithm and is often referred to as
a combination of two optimisation algorithms which are Root Mean Square Prop-
agation (RMSprop) and Stochastic Gradient Descent (SGD) with momentum [23].
This is said because, to scale the learning rate, it squares the gradients like RMSprop
and uses the moving average of the gradient instead of the gradient like SGD with
momentum. Being an adaptive learning rate method means different parameters
result in different learning rates. Adam uses adaptive moment estimation, and so to
adapt the learning rates of each weight, it uses the estimates of the first and second
moments of the gradient. Adam also keeps an exponentially decaying average of past
gradients. These are done by using the following formulae [23]:

ˆm(t) =
m(t)

1− β1(t)
(2.1)

ˆv(t) =
v(t)

1− β2(t)
(2.2)

where, m(t) = first moment, v(t) = second moment, β1 and β2 = hyperparameter,
t = batch number.

The typical values for β1 and β2 are 0.9 and 0.999 respectively. In order to update
the weight, Adam uses the following formula:

θt+1 = θt −
η√
ˆv(t) + ε

ˆm(t) (2.3)

where, θ = weight, η = learning rate , ε = zero-avoidance parameter = 10e−8.
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2.4 Data and Ground Truth Labels

In any machine learning methods or deep learning, datasets and ground truth la-
bels are the most important content. In fact the success of any such method and
models are dependent on its dataset and ground truth label. Therefore, it is most
necessary to carefully select the datasets and ground truth labels, but then again,
obtaining such high quality ones is both expensive and time consuming [44]. As for
medical images, there are multiple good quality sources readily available. However,
to be used for a specific topic or specific function, the model needs data sets with
particular ground truth labels and hence, special care needs to be taken.

Usually datasets are of 3 categories: a training, validation and test set. As the
name suggests, the training set is used to train the network, where loss values are
calculated via forward propagation and learnable parameters are updated back into
the network via backpropagation. Validation set is used for fine-tuning the hyperpa-
rameters and performing model selection during the whole training process. At the
very end, the final model or network is run through the test set and its final perfor-
mance after all those tuning using training and evaluation datasets is evaluated (see
Figure 2.5 [44]). It is notable that evaluation and test sets are kept different. This
is particular because the training model’s hyperparameters are fine-tuned according
to the performance it showed while using the evaluation set.

Figure 2.5: Division of Dataset for Training a Model [44]

2.5 Overfitting

Overfitting is the phenomenon when a model learns the statistical regularities spe-
cific to the training set, in other words it learns the unnecessary information or
noise particular to the dataset instead of the signal, hence performing poorly on
the new dataset. Overfitting has always been a challenge and thus, the test set is
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used to evaluate the performance of the model. Regular checkup to recognise the
overfitting to the training data by monitoring the loss and accuracy to the training
and validation sets is usually done [44].

Although there are solutions to avoid these in practice, the best solution to avoid
overfitting of course is to have more training data. However, given such is not always
available, there are other ways such as regularisation with dropout, weight decay,
data augmentation etc [44].

Dropout is a regularisation technique, where randomly selected activations are set
to 0 during the training, so that the model becomes less sensitive to specific weights
in the network [18]. Weight decay or L2 regularisation penalises the model’s weights
so that it takes only small values. Batch normalisation is a type of supplemental
layer, which standardises the input values of the following layer for each mini batch
adaptively, thus, reducing overfitting. It has the effect of stabilising the learning
process and dramatically reducing the number of training epochs required to train a
deep network. Data augmentation, on the other hand, is a process where the train-
ing data is modified through random transformations, such as flipping, translation,
cropping, rotating, random erasing etc, so that the model sees different input while
training [37], [44].

2.6 Transfer Learning

Although large datasets are highly desired in training a model, such datasets are
hard to find. One way to mitigate this problem is to use transfer learning, as it trains
the network model on a large dataset, like ImageNet, then reuses the pre-trained
model for the topic of interest. The assumption that is made is features learned on
a large dataset can be shared among seemingly disparate datasets [44]. This ability
to shift the learned generic features from datasets is what gives deep learning the
advantages to make itself useful in various domain tasks with small datasets. Some
examples of such models are AlexNet, VGG, ResNet etc.

While there are many ways to use the pre-trained network, this paper will focus
on fixed feature extraction. A fixed feature extraction method is a process to re-
move fully connected layers from a network pre-trained on a large database, while
maintaining the remaining network, which consists of a series of convolution and
pooling layers, referred to as the convolutional base, as a fixed feature extractor (see
Figure 2.6 [44]). The fixed feature extractor can further be topped off with fully
connected layers in CNN resulting in training limited to the added classifier on a
given dataset of interest [44].
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Figure 2.6: Fixed Feature Extraction of Transfer Learning [44]

2.7 Why Use CNN for This Research?

Over the years, CNNs have developed much rapidly, thanks to its ability to accu-
rately conduct difficult classification functions in images that would have otherwise
required abstract concepts. What gives CNN an edge compared to its old com-
petitors is its ability to detect important features in a dataset without the need for
any human supervision, making it the go to model for a lot of industrial systems.
As stated before, the core concept of CNN is that it uses different convolutions and
filters to produce invariant features that are passed on to the next layer, where more
new filters and convolutions are applied to extract further features, until it gives a
final output.

However, the key feature of CNN is that it works well on image data, as the several
convolution layers derive benefit from the fact that an interesting pattern can occur
anywhere in an image, in contiguous blocks of pixels, allowing it to learn useful
features from raw data without manual image processing. Since the purpose of this
research is to predict breast cancer from raw image data with complex features,
CNN is more than capable of standing up to the task, producing better predictions
than any other models. Hence, CNN was chosen to be used for this research.
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Chapter 3

Literature Review

As stated earlier, to be able to better facilitate subsequent medical treatments, it
is really necessary to be able to detect malignant breast tissues. Breast cancer is
usually detected after the conductance of a special type of X-ray, called a mammog-
raphy, which is later scrutinised by radiologists for a better diagnosis. However, it
has been revealed that in about 1 in 5 breast cancers get undetected by radiologists
after screening [48]. Hence, it is understood that CAD techniques, especially ML,
could aid radiologists to have a better interpretation of the patients. Thus, a number
of past papers that have tried to incorporate such techniques have been reviewed to
find the scope of further research and have been summarised below.

3.1 Research Using Clinical Data

Most papers have used clinical data gathered from mammograms as a means of de-
tecting breast cancer. One such paper [43] used the commonly used ML techniques,
namely Random Forest (RF), k-Nearest Neighbour (kNN) and Näıve Bayes (NB).
For reference, the author has cited different other papers: Detection using Relevance
Vector Machine [32] yielded results with an accuracy of 97%, using the Wisconsin
Diagnosis Breast Cancer (WDBC) dataset [3]; Mamdani Fuzzy inference model for
training was used in one study in conjunction with Linear Discriminant Analysis for
feature selection and acquired an accuracy of 93% [26]. The paper [43] utilised the
WDBC dataset [3], consisting of 569 instances attributed mainly by diagnosis, mean
radius, mean texture, and mean area of the ROI, split it into 10 different chunks
using the 10-fold cross validation (CV) method, and fed them into said ML models.
The accuracy of the models can be found in Table 3.1 [43]. Although the author
produced great accuracy exceeding 94% in breast cancer identification, the dataset
was too small to be used to train non-parametric models like NB, increasing chance
of overfitting.

Method RF kNN NB
Accuracy (%) 94.74 95.90 94.47

Table 3.1: Accuracy of Different Models used in [43]
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Similar to the one above, another paper [28] has also utilised the WDBC dataset
[3], albeit an updated one with 699 instances. The study proposed the use of a
new NB technique, called a weighted NB, to classify breast tissues as malignant or
benign. The dataset used had 9 different clinical features, namely clump thickness,
uniformity of cell size, uniformity of cell shape, marginal adhesion, single epithelial
cell, bare nuclei, bland chromatin, normal nucleoli and mitosis, for each of the pa-
tients. The author used a similar technique as [43] to validate the model, known
as the 5-fold CV. However, since the author used a weighted NB, using weights to
control the attributes in a posterior probability contribution meant that changes
should be done to the original NB equations to properly represent them, bringing
a big disadvantage of assigning crisp classes to the training data [13]. The author
further used a heuristic search algorithm to calculate the weights to be used. After
training and testing the model, the author achieved an average accuracy of 98.54%.
Table 3.2 depicts a comparison of the author’s model with other papers the author
has cited [28]. Even though the author was able to manipulate the NB classifier to
achieve greater result than others, while doing so, the paper introduced a heuristic
search algorithm that is computationally expensive on which the model is dependent
to obtain the weights, along with a bias that cannot provide generalised result when
used on other datasets.

Study Method Accuracy (%)
Hamilton et al. [5] RIAC 94.99
Ster and Dobnikar [6] LDA 96.80
Bennett and Blue [7] SVM 97.20
Setiono [9] Neuro-rule 98.10
Goodman et al. [10] Big-LVQ 96.80
This study [28] W-NB 98.54

Table 3.2: Accuracy Comparison of Methods from Papers Cited in [28]

It seems like the WDBC dataset [3] is a popular choice among researchers trying
to discriminate breast cancer patients from healthy ones using ML techniques. An-
other recent paper [39] utilised the same dataset for use in NB and kNN classifiers for
breast cancer classification. The authors of this paper split the dataset into training
and testing set in the ratio of 60:40 respectively, before feeding it to a standard kNN
model with k=3. For the NB, the authors calculated the mean and standard devia-
tion of each feature for each category (malignant and benign), which were then used
to calculate the probability for each prediction the model made. However, the model
had a poorer accuracy than kNN as seen in Table 3.3 [39]. This research, apart from
suffering from small dataset, might have also suffered from under-training since only
60% of the dataset has been used solely for training, thus reaching a lower accuracy
than [28] despite resorting to a similar model, albeit a simpler one.
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Method kNN NB
Accuracy (%) 97.51 96.19

Table 3.3: Accuracy of Different Models Used in [39]

The use of clinical features extracted from mammograms has not only been used in
typical ML models, but also in ANNs, in order to achieve even better results. A
paper from the year 2010 [15], was one such paper that made use of a feed-forward
ANN, with 36 discrete input variables, split using the 10-fold CV method, and a
hidden layer with 1000 nodes. The paper not focused on discriminating the benign
cells from the malignant cells, but also on stratifying patients into high and low risk
groups. The paper worked with over 60000 mammography findings matched with
the Wisconsin State Cancer Reporting System, consisting of a 5-level BI-RADS as-
sessment [11]. The ANN, trained with early stopping method to avoid overfitting,
achieved a significantly higher mean AUC (0.965) compared with that of radiologists
(0.939; p¡0.001)) calculated from their respective ROC curves as seen in Figure 3.1
[15]. The authors evaluated the accuracy of their model’s risk prediction by using
the Hosmer-Lemeshow goodness-of-fit test [21], which showed a high calibration.
The results demonstrated that this model may have the potential to help the radiol-
ogists in discriminating between benign and malignant breast tissues. The difference
of the AUC between the ANN and the radiologist may look small (0.026) but this
difference is significant both statistically and clinically as the model identified 44
more cancers and decreased the number of false positive by 3941 when compared
with the radiologists. However, the one flaw in this research was the fact that the
authors depicted a BI-RAD score of 0 as positive, whereas in reality, the score 0
means unsure, hence, causing some inaccuracies in their result.

Figure 3.1: Comparison of AUC Between ANN and Radiologists as Calculated in
[15]
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3.2 Research Using Digital Mammograms

The papers cited in the previous section mainly centred their attempts of building
CAD models to help in the accurate detection of breast cancer among patients us-
ing primarily the clinical data extracted from the mammograms and the patients.
However, another way of detecting breast cancer is by analysing the mammographic
images using a CNN without the need of other clinical inputs. This is more likely
to ensure a better CAD model that do not rely on radiologists’ interpretation, but
rather try to find the specific patterns in the images by itself.

One such paper [51] that incorporated the idea of CNN for breast cancer classifica-
tion, compared the breast cancer detection performance of the radiologists reading
the mammograms unaided versus supported AI systems. This was an an enriched
retrospective, fully crossed, multi-reader, multi-case, HIPAA-compliant study, which
used digital mammographic examinations from 240 women. The mammograms were
later interpreted by 14 Mammography Quality Standards Act (MQSA) - qualified
radiologists, with and without AI support. The system used deep CNN, features
classifiers and image analysis algorithms to depict calcifications and soft-tissue lesion
in two separate modules, which were then combined to determine suspicious region
findings. These regions were later given values between 1 and 100 which represented
the level of suspicion that breast cancer was present (with 100 indicating the highest
suspicion). Figure 3.2 shows the difference between the AUC of the ROC curves for
the two reading conditions, compared by using mixed-models analysis of variance
and generalised linear models for multiple repeated measurements [51]. The paper
could have been an excellent case for showing the power of AI in the detection
of breast cancer and its superiority over radiologists. Unfortunately, however, the
results were not much promising as the AUC difference between the radiologists’
investigation with and without AI support was a mere 0.02, with p=0.002 (the dif-
ference is not significant). Hence, it calls for better CAD models that can analyse
raw images to classify breast cancer patients.

Figure 3.2: Comparison of AUC for Unaided Vs Aided Mammogram Analysis [51]
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Another paper that has studied the detection of breast cancer from mammograms
by utilising a CNN but with much better results than [51] was the paper from
[35]. However, before diving into building the models arbitrarily, the author has
into previous works in order to grasp the different types of breast cancer and how
they are classified with the use of multiple kinds of ANN that specialise in image
classification. Firstly, the CNN tutorial on TensorFlow was used in order to test
the functionalities of the features it offers [24]. Secondly, for image classification, a
model from [19] which was the ImageNet Classification with deep CNN was looked
at and the preprocessing techniques present were used as references in [35]’s work.
The dataset used in the paper was from the mini-MIAS, containing 322 grayscale
mammograms with labelled data, describing the type of cancer, properties of the
background tissue, class of abnormality and the coordinates of the centre of ab-
normality. The authors further used image transformations techniques in order to
augment the dataset. A random mammogram sample from this dataset has been
shown in Figure 3.3 [35]. Unlike other researches, the authors used three different
versions of CNN to assess their results: one was the CovNet model from Kaggle [34],
second CNN model was developed following the TensorFlow tutorial [24] that takes
the whole image as input with labelled data, and the third used a 48x48 input ma-
trix, convolution layer with kernel size 5x5 filter with ReLU activation, pooling layer
with max pool size 2x2 filter and a stride value of 2, learning rate with 0.003, and
training step with 20,000 samples. Their results have been tabulated in Table 3.4
[35], which shows the third version surpassing the other two with 82.71% accuracy.
Although the model could have been improved by removing the labelled data from
the images, it still shows the capabilities of AI to help the doctors in this field to
correctly identify breast cancer, if present, in the patient faster.

Figure 3.3: Mammogram Sample With Labelled Data From [35]
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Version Version 1 Version 2 Version 3
Sensitivity (%) 35.32 54.32 82.68
Specificity (%) 35.43 54.36 82.73
Accuracy (%) 38.45 54.35 82.71

Table 3.4: Comparison of Results Between the Models Used in [35]

When searching for more studies which used neural networks for classification of
mammograms, two further studies of interest were found that met the search crite-
ria. The first one [20] used an ANN and the second one [22] used a wavelet neural
network to identify breast cancer. However, both of these methods have a lot of
parameters (∼3 million) when compared to a normal CNN (∼600) as they were
made for making general decisions.

Next, there was one paper [42] that was of particular interest because of its use
of an unorthodox methods of detecting breast cancer from images. This study
first explored infrared imaging, that assumes that there is always an increase in
thermal activity in the precancerous tissues and the areas surrounding developing
breast cancer. The study used the Research Data Base (DMR) database containing
frontal thermogram images, including breasts of various shapes, from 67 women.
The thermograms went through image pre-processing to mark the ROIs and remove
the unwanted regions like arms, neck etc. They were then fed into an AI model
built using a deep neural network (DNN) together with a Support Vector Machine
(SVM) model as classifier. The SVM is only consulted with if the DNN is incapable
of classifying the images with great confidence. The model which is presented in
this paper takes advantage of two main factors. First, a DNN (pre-trained Inception
V3 model [30], [40]) which is modified at the last fully connected layer in such a
way as to obtain a powerful binary classification which can tell if a cell is healthy
or cancer infected. Secondly, a well known classifier (SVM) is coupled to that and
is involved only in the case of uncertainty in the output of the DNN. The results of
this study is presented in Figure 3.4 [42] that shows an AUC of 1.00 calculated from
its ROC curve. Even though the study has shown a perfect accuracy of detecting
breast cancer, such models should be dealt with extreme caution as, ironically, such
accurate models could also be a result of overfitting, which could be particularly
true in this case because of the extremely small dataset used in the study.

Figure 3.4: ROC Curve of the Model Used in [42] With AUC
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Finally, the best paper in this category, in terms of the sophistication of the model
used and the accuracy attained, [52] had a goal of detecting breast cancer from
screening mammograms by using a deep learning algorithm, trained by an “end-to-
end” approach, allowing the datasets to be either complete clinical annotations or
only the labeled cancer region in the image. Many studies before it applied deep
learning models, but these models were used to classify annotated lesions because
ROI in a mammogram is too small when compared to a full-field digital mammogra-
phy (FFDM). Some studies were also found that used unannotated FFDM datasets
to train neural networks, but the results were inconclusive [38], [41].

The dataset used in this study [52] were taken from the DDSM database which
included a total of 2478 mammography images taken from 1249 women. The mam-
mograms consisted of standard views such as craniocaudal (CC) and mediolateral
oblique (MLO) and these views were used as separate images. The images con-
sisted of annotations for the ROIs, the type of cancer and whether it was a mass
or calcification. The sampling of image patches from the ROIs and background re-
gions resulted in a lot of images which were later split into two datasets: S1 and
S10. S1 consisted of a mix of image patches which focused on the centre of ROIs
and random background patches from each of the images, while S10 had 10 patches
randomly selected from the regions surrounding the ROI coupled with background
patches to paint a big picture of the ROI. These patches were further classified
as background, malignant mass, benign mass, malignant calcification and benign
calcification. This dataset was used in the pre-training of the classifier. Another
dataset from the INbreast database was also used in this study. This dataset had 410
mammograms with CC and MLO views from 115 patients. The mammograms had
radiologists’ BI-RADS assessment which were: 1-no findings, 2-benign, 3-probably
benign, 4-suspicious, 5-highly suggestive of malignancy and 6-biopsy-proven cancer.
The images with BI-RADS 3 were excluded and BI-RADS 1 and 2 were labeled as
negative and 4, 5 and 6 as positive. This dataset was used to train the whole image
classifier.

This study made the model in such a way that it needed a fully annotated lesion
dataset only during pre-training for the initialisation of the weight parameters of
the model, and then labeled images without ROI annotations could be used for the
rest of the training. This is beneficial as large databases of annotated lesions are
hard to come by. For pre-training usually a two step method is used which is made
up of classification of the annotated ROIs by a classifier which generates a grid of
probabilistic outputs and these outputs are summarised to find out the classification
of the outputs to their respective classes. The author suggested a new method which
combines both of these steps in order to optimise it. This is done by using the input
patches found in the images and putting them directly into a CNN classifier instead
of a conventional classifier. The output from the CNN is a grid of probabilistic
outputs of the classes instead of it being classified into single classes.

Two CNN structures were used in this study: the VGG network [29] and the residual
network (ResNet) [27], specifically a 16-layer VGG network (VGG16) and a 50-layer
ResNet (ResNet50) respectively. The results of using the VGG16 and ResNet50 on
the DDSM dataset are shown as a confusion matrix in Figure 3.5 [52], that tell both
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networks performed well overall but struggled with correctly identifying malignant
classifications followed by correctly identifying malignant mass.

Figure 3.5: Confusion Matrix Analysis for (a) ResNet50 and (b) VGG16 [52]

Lastly, two hybrid networks have been created by first adding the best performing
VGG blocks as top layer (two VGG block of (256)×1 and (128)×1) and the ResNet50
as bottom layers and vice versa (two blocks of (512-512-1024)×2). Moreover, to fur-
ther efficiently train the networks, augmentation prediction was used which meant
that the model trained on each image was flipped vertically and horizontally re-
sulting in four images and the average AUC of the four images was used. After all
this training, four models were identified as top performing and they were (patch
classifier-top layer): ResNet-ResNet, VGG-VGG, ResNet-VGG and VGG-ResNet.
This marked the end of the training of the model using annotated lesions. Next, the
best models were trained on the INbreast dataset. The annotations on this dataset
were ignored as the authors wanted to focus on the performance of the whole image
classifiers on unannotated lesions and the transferability. The ROC graphs of these
networks trained on the DDSM and INbreast datasets can be seen from Figure 3.6
[52]. The INbreast dataset produced a mean AUC of 0.95 (higher than DDSM) from
all the four models. Moreover, using an ensemble of all the models resulted in an
AUC of 0.98 and scored 86.7% and 96.1% in sensitivity and specificity respectively.

Figure 3.6: ROC Curves of the Models Trained on (a) DDSM and (b) INbreast [52]
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However, trying to achieve such high accuracy comes with its prices. To begin with,
it is found that to efficiently train the network during pre-training to provide op-
timum results, the network requires a large number of patches or large patches in
general. Using large patches means that the computational cost also linearly in-
creases. Furthermore, large patches require more GPU memory in order to process
them properly. In addition, the whole image classifier was trained on the INbreast
dataset which was labeled based on the BI-RADS provided by the radiologist, which
has a chance of being wrong. The classifier being trained on it means it will incor-
porate a bias instead of finding new unknown characteristics in the images. Even so,
nonetheless, this study shows the power of using end-to-end training deep learning
models to produce highly accurate results in depicting breast cancer from mammo-
grams, which can then easily be transferred to other datasets with little effort.

3.3 Major Findings and Scope of Research

After an exhaustive search through a corpus of past papers that had made use of
ML techniques and deep learning for the classification of breast cancer, there were
three main findings that would set the base for this paper:

1. Most researchers usually opt for clinical data extracted from mammograms as
opposed to using the whole image to train the ML models for breast cancer
identification. These assessments, especially the BI-RADS scores are subject
to human-error, leading to inaccuracies in the results of the models.

2. Although some papers have tried to incorporate the idea of using images, most
had used specific ROI as targets for the models to analyse, instead of trying
to explore the whole mammogram for favourable features. This again causes
the models to be over-reliant on radiologists’ observation and speculation of a
specific region that needs to be targeted.

3. Even if some papers have been able to achieve high accuracy and AUC from
their models for breast cancer detection, most of them had used a relatively
small dataset than that is required to effectively train the models. As a result,
these models might not be proficient enough to generalise over unseen data.

The study in this paper is to be carried away in such a way as to minimise the effects
of the above mentioned observations. The study intends to incorporate unannotated
digital mammograms taken from the MIAS database [4] classified into normal, be-
nign and malignant breast samples, which would be augmented to increase the size
of the dataset for a better CAD model. CNN models are intended to be used to
extract features from the dataset, in order to find patterns to aid in the detection
of breast cancer patients.

Although a paper [35] tried to use raw images without specific ROIs in CNN, it failed
to achieve better accuracy mainly due to the model’s simplicity. The paper, that
utilised the MIAS dataset, would be used as the comparison base for this research,
with the intention to build a CNN model sophisticated enough to be able to handle
the problem at hand, and ultimately help doctors detect breast cancers in patients
early and with better confidence.
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Chapter 4

The Dataset

4.1 Data Collection

All the mammograms from the database of the Mammographic Image Analysis
Society (MIAS) [4], an organisation of UK research groups who are particularly
interested in the understanding of mammograms, have been included in the dataset
used in this paper for a retrospective evaluation. The films, compiled in the year
1994, were taken from the UK National Breast Screening Programme and had been
digitised to 50 micron pixel edge with a Joyce-Loebl microdensitometer. The dataset
was then further reduced to 200 micron pixel edge and had been clipped and/or
padded to make all the images of size 1024x1024 pixels, hence the name, mini-MIAS.
The final dataset is available via the Pilot European Image Processing Archive
(PEIPA) at the University of Essex [4].

4.2 Data Analysis

The mini-MIAS database comprised of 328 digital raw mammograms belonging to
161 patients (image of left and right breasts of each individual). 6 of the mam-
mograms were duplicates and so, have been removed to reduce the dataset to 322
samples. For each of the mammograms, the database contained the reference num-
ber, breast density, the abnormality present, severity of the abnormality, the x and
y coordinates of the centre of abnormality, and the approximate radius of a circle
enclosing the abnormality as can be seen in Table 4.1 [4].

When calcifications were present in the image, the coordinates and the radii apply
to a cluster instead of individual calcification, with the bottom-left corner taken to
be origin. Moreover, in some cases, the calcifications were distributed throughout
the image rather than concentrating in a single site, for which the coordinates and
radii are inaccurate and so, have been omitted.

The mammograms were prospectively analysed and interpreted by experienced ra-
diologists who had between 1-35 years of experience in breast imaging. Their in-
terpretations have been considered as the “ground-truth” values for the purpose of
this research.
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Variables Instances
MIAS Reference Number 6-digit reference number
Breast Density -Fatty (F)

-Fatty-glandular (G)
-Dense-glandular (D)

Abnormality Present -Calcification (CALC)
-Well-defined/circumscribed masses (CIRC)
-Spiculated masses (SPIC)
-Ill-defined masses (MISC)
-Architectural distortion (ARCH)
-Asymmetry (ASYM)
-Normal (NORM)

Severity of Abnormality -Benign (B)
-Malignant (M)

Coordinates of Centre of Abnormality x, y image-coordinates
Radius of Area of Abnormality Radius (in pixels)

Table 4.1: Variables Used and Their Instances From the MIAS Database [4]

In order to properly analyse the dataset, the study population have been distributed
based on certain criteria as can be found in Table 4.2 [4]. As can be seen, almost
two-thirds (64%) of the total study population had normal breast tissues, with only
16% having malignant breast tumours and the rest having benign. Figure 4.1 shows
random sample mammograms of patients with normal, benign and malignant breast
tissues [4].

Study Population Normal (%) Benign (%) Malignant (%) Total (%)
No. of mammograms 207(64) 65(20) 50(16) 322(100)
Breast Density
Fatty 66(20) 22(7) 18(6) 106(33)
Fatty-glandular 65(20) 22(7) 17(5) 104(32)
Dense-glandular 76(24) 21(6) 15(5) 112(35)
Abnormality Present
Calcification - 12(4) 13(4) 25(8)
Well-defined/ - 19(6) 4(1) 23(7)
circumscribed masses
Spiculated masses - 11(3) 8(3) 19(6)
Ill-defined masses - 7(2) 7(2) 14(4)
Architectural distortion - 9(3) 10(3) 9(6)
Asymmetry - 6(2) 9(3) 15(5)

Table 4.2: Distribution of the Study Population in MIAS Dataset [4]

After a careful analysis of the dataset, it can be seen that most of the study pop-
ulation (35%) had dense-glandular breasts. It is worth noting that, people with
this density of breasts were least identified as having malignant breast tissues (5%),
and most identified as having normal breast tissues (74%). Now, this could either
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Figure 4.1: Sample Mammograms from MIAS Dataset [4]

be a normal phenomenon or it could re-iterate the fact that it is difficult to detect
breast cancer in dense breast as stated earlier. Hence, there could be some level of
discrepancies in the radiologists’ assessment, but, since the difference is quite small
compared to other breast densities, this has been neglected.

Moreover, it could also be seen that most breast tumours were in the form of
calcification (8% among total and 22% among patients with tumour) and well-
defined/circumscribed masses (7% among total and 20% among patients with tu-
mour), while the least common form of tumour was ill-defined masses (4% among
total and 12% among patients with tumour). It should also be noted that, among
patients with a malignant tumour, almost 16% had a combination of fatty breast
tissue and calcifications, which is the highest.

However, since the purpose of this research is to be able to predict breast cancer
from raw digital mammograms, without relying on radiologists’ clinical assessments
and ROI, these clinical data have not been used in the models. Rather, only the
raw image files and their interpreted labels have been incorporated in them.

4.3 Data Preprocessing for Use in Models

Before the images can be used in the CNN models, they need to be preprocessed
in order to ensure that there are no bias or discrepancies in the models’ predictions
due to the nature of the data.

4.3.1 Data Segmentation

Since the research being done is to predict if a patient has breast cancer or not, the
multiple segmentation of the dataset, i.e. normal, benign and malignant, are not
needed to train the models. Hence, the dataset has been divided into 2 categories:
“healthy” (patients having normal and benign breast tissue) and “cancer” (patients
having malignant breast tissue). Therefore, the final dataset now had the original
322 images split into a ratio of 272:50 into the 2 categories respectively.
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4.3.2 Data Augmentation

As stated early, one of the key improvements this research would have over others
mentioned in the literature review, is to mitigate the disadvantage of working with a
small dataset. When a neural network model is given a small-sized dataset to train,
that model becomes overfitted, and memorises the data instead of the relationships.
The goal of a model is to generalise patterns from the training data so that it can
predict new data which was not available during training. The fewer the samples for
training, the more models tend to become an overfitting model. Thus, the images
need to be processed and augmented for the total dataset to increase in size. The
preprocessing steps were done using the OpenCV [8] and Albumentations [54] library
and are as follows (see Figure 4.2):

1. Resize to 224x224 pixels: The images were scaled down proportionally
from the original 1024x1024 pixels to 224x224 pixels. This was mainly done to
reduce the complexity of working with a large array of pixels, and also because
the pre-trained models to be used in this research has an input size of 224x224
pixels.

2. Shift from RGB channel to LAB colour space: In order to apply Con-
trast Limited Adaptive Histogram Equalisation (CLAHE), images need to be
turned to grayscale from RGB. However, since the input channel of most popu-
lar pre-trained models is RGB, the images had to be shifted to the LAB colour
space (L, A, B stands for luminescence, red/green coordinates and blue/yellow
coordinates respectively), so that CLAHE could be applied to the luminescence
channel.

3. Equalised using CLAHE and shifted back to RGB channel: Contrast
Limited Adaptive Histogram Equalisation (CLAHE) is a variant of Adaptive
Histogram Equalisation which takes care of over-amplification of the contrast,
and improves its quality [53]. CLAHE was applied on the images using a clip
limit of 5. Later, the images were converted back to the RGB channel to be
fed into the models. The resulting images after applying CLAHE were used
as the base to apply the later augmentations on.

4. Rotation: The images were rotated anticlockwise by 10 and 20 degrees, to
make the changes look subtle.

5. Flip: The images were then flipped both on the vertical and the horizontal
axis.

6. Random Tone Curve: This method randomly changes the relationship be-
tween bright and dark areas of an image by manipulating its tone curve. This
too was applied to ensure colour distortion of images were not an issue when
making predictions.

7. Gaussian Noise: Gaussian Noise is a statistical noise having a probabil-
ity density function equal to normal distribution. This noise was added to
introduce some graininess in the images.
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8. Blur: The images were also blurred by using a random-sized kernel, although
the blurriness was kept tenuous to ensure minimal distortion of the original
images.

After the completion of all the augmentation steps, the dataset, which once had
only 322 mammograms, now contained 2898, with a total of 2448 mammograms
belonging to the healthy category and the rest 450 to the cancer category.

Figure 4.2: Sample Mammogram Before and After Augmentation
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Chapter 5

The Models

After performing the preprocessing steps mentioned in Chapter 4, the dataset is
ready to be fed into CNN models to establish a relationship between the features of
the mammograms and the final interpretation. The dataset was further split in 80:20
ratio to be used for training and testing purposes respectively. 10% of the training
data (8% of the total dataset) was used for validation while the rest for training the
models. This was done using SciKit-Learn’s [17] train test split() method using the
parameter “shuffling=True” to ensure a mix of classes in each set of data used. This
segmentation of the dataset would also allow to analyse if there is any overfitting
of the models or not. Figure 5.1 shows the segmentation of the dataset used for
training and testing the models.

Figure 5.1: Dataset Segmentation for Training and Testing Models

5.1 Transfer Learning Models

As stated previously in Section 2.6, transfer learning allows the use of models pre-
trained on a large dataset to be used for other classification problems, that make use
of relatively smaller datasets. The transfer learning models used for this research
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were trained on the ImageNet dataset [14], an image database that has been organ-
ised according to the WordNet hierarchy. Containing more than 14 million images,
the database has been significant in advancing deep learning research. The models
were implemented through the process of fixed feature extraction, by freezing all the
layers to retain their learned weights, while replacing the last fully connected layer
to fine tune them for this problem-specific tasks. Several models were tested upon
using the TensorFlow library [25], and only the best performing ones were further
exploited for better efficiency.

5.1.1 ResNet50

ResNet50 is a type of residual neural network (ResNet) model made up of 50 lay-
ers, out of which 48 layers are convolutional layers, 1 MaxPool and 1 AveragePool
layer. ResNet is popular as it allowed the use of ultra deep neural networks which
contained hundreds or thousands of individual layers with great performance [60].
Simply stacking layers on an existing network produces higher error, which ResNet
overcomes by performing identity mappings using shortcut connections that skip one
or two layers. Hence, one of the biggest advantage of it was that no additional pa-
rameters were added to the model while the computational time remained the same.

The ResNet50 architecture contains the following elements (see Figure 5.2):

1. A convolution with a kernel size of 7x7 and 64 kernels with a stride of 2.

2. A max pooling layer with a stride of 2.

3. Convolution layers with 64 1x1 kernels, 64 3x3 kernels and 256 1x1 kernels.
These layers are then repeated 3 times.

4. Convolution layers with 128 1x1 kernels, 128 3x3 kernels and 512 1x1 kernels.
These are then repeated 4 times.

5. Convolution layers with 256 1x1 kernels, 256 3x3 kernels and 1024 1x1 kernels,
which too are repeated for 6 times.

6. Convolution layers with 512 1x1 kernels, 512 3x3 kernels and 2048 1x1 kernels,
repeated 3 times.

7. An average pooling layer connected to a fully connected layer containing 1000
nodes, ending with a softmax activation function.

For the purpose of this research, the last fully connected layer was replaced by a
fully connected layer (after flattening the previous outputs to a one-dimensional
vector) with 512 hidden nodes, ReLU activation and a dropout of 0.5, before finally
connecting to an output layer with 1 node and sigmoid activation function. Hence,
the model now has more than 51 million trainable and more than 23 million non-
trainable parameters. The model was compiled using Adam optimiser (learning-
rate=0.001), binary-crossentropy as the loss function and accuracy as the metric.
The model was trained and tested using various configurations, but the best average
result was obtained by training the model for 8 epochs with 100 steps per epoch,
repeating it for 5 times.
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Figure 5.2: Architecture of ResNet50

5.1.2 MobileNetV3-Small

MobileNets are a family of CNNs, developed by Google, for the mobile phone and
embedded architectures [49]. They are based on a streamlined architecture which
makes use of depth-wise convolutions to build lightweight deep CNNs. MobileNetV3
has been tuned to the CPUs of mobile phones through a combination of network
architecture search complemented by the NetAdapt algorithm. MobileNetV3-Small
mainly targets low resource usage.

The layers in the MobileNetV3-Small architecture are as follows (see Figure 5.3 [50]):

1. A convolution layer with 16 3x3 kernels with stride of 2.

2. A bottleneck convolution layer with 16 3x3 kernels with stride of 2.

3. A bottleneck convolution layer with 24 3x3 kernels with stride of 2.

4. A bottleneck convolution layer with 24 3x3 kernels.

5. A bottleneck convolution layer with 40 5x5 kernels with stride of 2.

6. A bottleneck convolution layer with 40 5x5 kernels, repeated for 2 times.

7. A bottleneck convolution layer with 48 5x5 kernels, repeated for 2 times.

8. A bottleneck convolution layer with 96 5x5 kernels with stride of 2.

9. A bottleneck convolution layer with 96 5x5 kernels, repeated for 2 times.

10. A convolution layer with 576 1x1 kernels, followed by a pooling layer of 7x7
kernel.

11. A convolution layer with 1024 1x1 kernels, connected to a fully connected
layer.

This time again, the last fully connected layer has been replaced by a fully connected
layer (after flattening the previous outputs to a one-dimensional vector) with 512
hidden nodes, ReLU activation and a dropout of 0.5, before finally connecting to an
output layer with 1 node and sigmoid activation function. The model has a total
of more than 25 million trainable and 1.5 non-trainable parameters. After following
the same technique for compilation as the previous model, the model was trained
and tested using several constraints. The best average result came after training for
8 epochs with the default 66 steps per epoch, repeated for 5 times.
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Figure 5.3: Architecture of MobileNetV3-Small [50]

5.1.3 VGG19

VGG19 is a variant of the Visual Geometry Group (VGG) model family, consisting
of 16 convolution layers, 3 fully connected layers, 5 MaxPool layers and 1 SoftMax
layer [59]. The model carries and uses some of the ideas from its predecessors and
improves them, while also improving the accuracy using deep convolutional neural
layers.

The layers in the VGG19 architecture are as follows (see Figure 5.4 [47]):

1. A convolution layer with 64 3x3 kernels, with a stride of 1, and repeated 2
times.

2. A convolution layer with 128 3x3 kernels, with a stride of 1, and repeated 2
times.

3. A convolution layer with 256 3x3 kernels, with a stride of 1, and repeated 4
times.

4. A convolution layer with 512 3x3 kernels, with a stride of 1, and repeated 4
times.

5. A convolution layer with 512 3x3 kernels, with a stride of 1, and repeated 4
times.

6. A MaxPool layer of 3x3 kernel size and stride of 2 after each group of convo-
lution layers.

7. 2 fully connected layers with 4096 hidden nodes.

8. A fully connected layer with 1000 hidden nodes, followed by a softmax activa-
tion layer.

Similar to the previous model, the last fully connected layer of this model too has
been replaced by a fully connected layer (after flattening the previous outputs to a
one-dimensional vector) with 512 hidden nodes, ReLU activation and 0.5 dropout,
before connecting to the output layer with sigmoid activation function. This allowed
to build a model with almost 13 million trainable parameters and about 20 million
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Figure 5.4: Architecture of VGG19 [47]

non-trainable ones. The compilation of the model used the same technique as all
the models preceding it. After much trial-and-error, similar to MobileNetV3-Small,
this model also yielded the maximum average results after training for 8 epochs with
the default steps per epoch of 66, repeating it for 5 times.

5.2 Custom CNN Model

One of the main objectives of this research was to build a custom CNN, tailor-
made to act as an effective CAD model in helping radiologists classify breast cancer
among patients using raw mammograms without any human intervention or influ-
ences (such as ROI or clinical observations). While doing so, the plan was to aim
for fast and simplistic models, with much less parameters to train but with higher
accuracy than the already available pre-trained models used in this research.

The custom CNN that was built and trained had an architecture as follows (see
Figure 5.5):

1. A convolution layer with 64 4x4 kernels, with a stride of 3, ReLU activation
and an output shape of 74x74x64.

2. An average pooling layer of 3x3 kernel size, with a stride of 1 and an output
shape of 24x24x64.

3. A convolution layer with 64 3x3 kernels, with a stride of 1, ReLU activation
and an output shape of 22x22x64.

4. A max pooling layer of 2x2 kernel size, with a stride of 1 and an output shape
of 11x11x64.

5. A convolution layer with 128 3x3 kernels, with a stride of 1, ReLU activation
and an output shape of 9x9x128.

6. A max pooling layer of 2x2 kernel size, with a stride of 1 and an output shape
of 4x4x64.

7. A fully connected hidden layer, with 256 hidden nodes, ReLU activation, 0.2
dropout and an output shape of 4x4x256.

8. A fully connected hidden layer, with 512 hidden nodes, ReLU activation, 0.2
dropout and an output shape of 4x4x512.
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Figure 5.5: Architecture of Custom CNN Model

9. A final fully connected output layer with 1 node, sigmoid activation, out-
putting only 1 value for class prediction.

The simple architecture of the CNN allowed for a model with as little as 0.3 million
trainable parameters, much lesser than any of the pre-trained models used. This
helped reduce both the structural and computational complexity of the model, al-
lowing for faster results with minimal resource exhaustion. Similar to all previous
models, the custom CNN was compiled using Adam optimiser, binary-crossentropy
as loss function and accuracy as the metric. After much trial-and-error, the best
average results were yielded after training it for 12 epochs with 100 steps per epoch,
repeating for 5 times.

5.3 Model Evaluation

In order to evaluate the models, the research made use of a lot of metrics. Before
moving on to analysing the results of the models, it is, first, important to know
about these metrics to help understand and interpret the analysis.

5.3.1 Confusion Matrix

Confusion matrix, also known as error matrix, is a table layout that provides a visual
representation or a summary of the performance of a classification or supervised
model. In a binary classification, therefore there are 4 outcomes as below:

1. True Positive (TP): when both the predicted and actual outcomes are pos-
itive.

2. True Negative (TN): when both the predicted and actual outcomes are
negative.

3. False Positive (FP): also called Type 1 error, is when the predicted outcome
is positive but actual outcome is negative.

4. False Negative (FN): also called Type 2 error, is when the predicted out-
come is negative but actual outcome is positive.

Confusion matrix is quite needed for measuring sensitivity, specificity, accuracy and
AUC-ROC curves.
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5.3.2 Accuracy

Accuracy is a method used for measuring the performance of a classification model
and is usually expressed in percentage. It is the proportion of predictions where the
predicted value is equal to the true value. As such the formula used to find this is:

accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

5.3.3 Loss

Loss or cost function is a measurement of how poorly or well behaved a model is after
each iteration of optimisation. In other words, it takes account of the probability or
uncertainty of a prediction based on how much it varied from its true value. Rather
than using percentages, it is the summation of such errors made for each sample in
training and validation sets.

The loss function used for the models is binary-crossentropy which compares each
of the predicted probabilities to actual class output which can be either 0 or 1. It
then calculates the score that penalises the probabilities based on the distance from
the expected value. It is one of the most commonly used loss functions for binary
classification problems.

5.3.4 Training vs Validation Accuracy and Loss

The accuracy and loss metrics are calculated both during training and validating
the models. Training accuracy and validation accuracy are the accuracy values got
after running the model through the training sets and validation sets respectively.
Training accuracy shows how well the model is training whereas validation accu-
racy shows its ability to adapt to new dataset or, in other words, the quality of the
model. When both the accuracy are close to equal, the model shows no overfitting,
but as the training accuracy gets significantly higher than validation accuracy it
shows signs of overfitting to training datasets, which means it is fitting to unneces-
sary noise while training.

Similarly, training and validation losses help in determining the quality and training
of a model - that is, if it is overfit or underfit, or neither. Therefore, when training
loss is similar to validation loss the model is just about right. Otherwise, if the
training loss is quite lesser than validation loss it is overfitting, and vice versa for
underfitting.

5.3.5 Sensitivity and Specificity

Sensitivity is the measure of proportions of actual positive cases that got predicted
as positive, and is calculated using the formula:

sensitivity =
TP

TP + FN
(5.2)
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On the other hand, specificity is the measure of proportions of actual negative cases
that got predicted as negative, and is calculated using the formula:

specificity =
TN

TN + FP
(5.3)

It is a model’s target to achieve both high sensitivity as well as high specificity.

5.3.6 Precision, Recall and F1 Score

Precision is the ratio of actual positive cases to the total predicted positive cases,
and is calculated using the formula:

precision =
TP

TP + FP
(5.4)

Recall, on the other hand, is an alias for sensitivity and means the same thing. F1

score, however, is the harmonic mean between precision and recall, and is particu-
larly important for uneven class distributions. A good F1 score (∼1) indicates low
FP and FN, meaning that both real threats are correctly identified and there are
less false alarms. It is calculated using the formula:

F1 = 2 · precision · recall
precision+ recall

(5.5)

5.3.7 ROC Curve and AUC

ROC curve is a probability curve for evaluating the model’s performance for classi-
fication problems at various classification threshold settings. It is plotted using the
values of sensitivity (or true positive rate (TPR)) and 1-specificity (or false positive
rate (FPR)) on the y-axis and x-axis respectively. A sample ROC curve is shown in
Figure 5.6 below.

Figure 5.6: Sample ROC Curve
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AUC is a degree of measure of the probability or ROC to evaluate the separability of
the classifier between classes, and is the area under the ROC curve. Having an AUC
value close to 1 simply refers to its ability to predict or separate true positives and
true negatives successfully, while having AUC value close to 0 means that the model
is predicting most of the true positives as negative and true negatives as positive,
meaning it is still separating successfully but using inverted labels.

Features that give AUCmerits are scale-invariant and classification-threshold-invariant,
because it measures how well the predictions are ranked, and its quality without con-
cerning the classification threshold that is chosen.
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Chapter 6

Result Analysis

After training and testing all the models, it is now necessary to analyse the re-
sults obtained from them in order to distinguish between good and bad classifiers
of breast cancer from raw mammograms. In order to have a general idea about the
performance of the models, their test accuracy and loss, and average training time
per epoch were evaluated, and can be seen in Table 6.1 below.

Model Test Accuracy Test Loss Avg. Training
Time Per Epoch (s)

ResNet50 0.9293 0.2864 19.0
MobileNet-V3 Small 0.9259 0.2662 3.0
VGG19 0.9293 0.3680 20.0
Custom CNN 0.9362 0.2017 1.0

Table 6.1: Test Accuracy, Loss and Training Times of the Models

Test accuracy depicts the models’ ability to differentiate between healthy cells and
cancer cells from unseen data. If the test accuracy is high, then it means that the
model can distinguish between the cells much accurately. As can be seen from Ta-
ble 6.1, the maximum test accuracy of 0.9362 was achieved by the custom CNN,
while the least test accuracy of 0.9259 was scored by MobileNet-V3 Small, although,
the difference is only around 1%. The accuracies of the other two models were be-
tween these values.

Test loss shows the variance between the actual and predicted results, where a low
loss value indicates a more confident classifier. Here too, the custom CNN outper-
formed the other models with the least loss value of 0.2017. The maximum loss score
of 0.3680 was achieved by VGG19, which is significantly higher than MobileNet-V3
Small and ResNet50 which scored 0.2662 and 0.2864 respectively.

Finally, the training time per epoch of the models were evaluated, which would al-
low to gain an insight into the complexity of the models, and their computational
costs. Training time differs from machine to machine as it depends on the hardware
configuration. The models of this research were trained on Google Colaboratory us-
ing GPU. The maximum time it took to complete an epoch was 20 seconds, which
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was happening while training VGG19 model. Note that this is the average training
time per epoch in seconds. Similarly, the ResNet50 model took 19 seconds. On the
contrary, MobileNet-V3 Small and the custom CNN took much less time to train
with only 3 seconds and 1 second per epoch respectively.

Apart from the aforementioned general evaluation metrics, one of the most widely
used metric for binary classification problems is the AUC of the ROC curves of the
models, which helps in separating the signal from the noise.

An AUC value between 0.5 and 1 is sought after as this means the model is able to
produce a greater number of true positives and true negatives than false positives
and false negatives. So, the higher the AUC value for a classifier, the better its
ability to distinguish between positive and negative classes. Figure 6.1 below shows
all the ROC-AUC of the models used in this research.

Figure 6.1: ROC-AUC of the Models

From Figure 6.1, it can be observed that the custom CNN resulted in the highest
AUC with a value of 0.9407 while the VGG19 model had an AUC of 0.9123 which
was the lowest out of the 4 models. Alternatively, both ResNet50 and MobileNet-V3
Small models produced similar results of 0.9326 and 0.9334 respectively.

For the higher thresholds in the graph, the custom CNN consistently had a higher
true positive rate compared to the other models, meaning the model was able to
correctly distinguish between benign and malignant with better confidence. How-
ever, the custom CNN did produce a lower true positive rate in the lower thresholds
compared to the ResNet50 and MobileNet-V3 Small model while the VGG19 has a
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similar value.

Nonetheless, it can be seen that all of the models have an AUC value higher than
0.90 which means that these models can correctly predict the onset of breast cancer
with a higher probability compared to the predictions made by the current medical
professionals in the field.

As seen till now, the models have produced splendid results in terms of accuracy,
loss and AUC. However, these alone cannot guarantee that the models were good
classifiers, as such results can also raise concerns of overfitting. Overfitting causes
poor results when the same models are applied on unseen data, and hence is unde-
sired. In order to check whether the models have overfitted, their training accuracy
and loss were compared with their validation counterparts, and can be seen from
Figure 6.2 below.

Figure 6.2: Training Vs Validation Metrics of the Models

Overfitting from the accuracy graph is found by checking the difference in training
accuracy and validation accuracy. If the training accuracy is significantly higher
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than validation accuracy then it is a case of overfitting. If the accuracy graphs of
ResNet50 and MobileNet-V3 Small are checked, it can be seen that the validation
and training accuracies are overlapping over each other, showing no hint of overfit-
ting. The same observations can be made for the custom CNN as well, although
there was a slight difference in one of the epochs, which was only present in one
run and so, can be ignored as a case of anomaly. However, the VGG19’s evaluation
shows increasing difference in its training and validation accuracies, suggesting an
overfit model. In order to confirm the observations, the loss graphs need to be eval-
uated as well.

Contrary to accuracy graph, in the loss graph, if training loss is significantly lower
than validation loss then the model could be a case of overfitting. The loss graphs
of ResNet50 and MobileNet-V3 Small show slight differences in their training and
validation data-points, although they are quite negligible. On the other hand, the
difference between training loss and validation loss for VGG19 is quite visible and
significant. Hence, it confirms the initial analysis of being an overfit model, and
cannot be considered a good CAD model for this research even after having ad-
mirable accuracy, loss and AUC. Finally, as for the custom CNN, the loss graph
have overlapped well except at one epoch where the difference is quite high, but
after that the graph again went back to being almost overlapping with only slight
negligible differences. However, the accuracy graph too showed a disturbance at this
exact epoch for one run, and hence, ensures the case of anomaly at that epoch for
both accuracy and loss graphs.

From the observations, it can be deduced that except for VGG19, all the other
models were able to classify breast cancer patients effectively, even when tested on
unseen data.

As stated previously, accuracy and AUC are good measures of a model’s performance
when there is an even class distribution in the dataset, as well as when false negative
and false positive predictions have the same cost. However, the MIAS dataset used
in this research has an uneven class distribution, with more than 5 times as many
non-cancerous tissues as cancerous ones. Moreover, false negative predictions have
more cost as a genuine breast cancer threat might get neglected, compared to false
positives where the alarmed patients can get a second test done to confirm their
diagnosis. Hence, the models need to be evaluated based on advanced metrics.

The further metrics used for this research are average precision, recall and F1 scores,
and these scores for the models have been provided below in Table 6.2, calculated
after 5 consecutive runs.

As can be seen from Table 6.2, all the models have much higher precision than they
have recall, with the most disparity seen in MobileNet-V3 model. A higher precision
indicates that there will be less false alarms among the healthy patients, whereas a
poor recall score implies that most patients with breast cancer would be mislabelled
as healthy which is even more menacing as the wrong diagnosis could prove to be
fatal.
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Model Avg. Precision Avg. Recall Avg. F1 Score
ResNet50 0.8983 0.7998 0.8462
MobileNet-V3 Small 0.9308 0.6544 0.7685
VGG19 0.8560 0.6586 0.7444
Custom CNN 0.9200 0.8025 0.8572

Table 6.2: Average Precision, Recall and F1 Scores of the Models

MobileNet-V3 has the highest average precision of 0.9308, however, it also has the
lowest recall of 0.6544 among all the models. Having said that, VGG19 has the
poorest overall performance relative to others, with both low precision and recall.
Among the pre-trained models, ResNet50 had the best overall performance, having
high precision and recall scores. However, this time too, the custom CNN came out
on top in terms of overall performance with an average precision score of 0.9200
and recall of 0.8025. This means that 92% of the patients predicted to have breast
cancer by the model actually had the illness, while 80% of the patients who had
breast cancer were correctly identified by the model.

Howbeit, there is a certain tradeoff between precision and recall, because of which
the F1 score is taken into account which is the harmonic mean of the aforementioned
metrics. Hence, a high F1 score would evince a better classifier. As predicted, the
custom CNN had the best average F1 score of 0.8572 due to its high precision and
recall, with ResNet50, MobileNet-V3 Small and VGG19 coming at second, third
and fourth positions having F1 scores of 0.8462, 0.7685 and 0.7444 respectively.

To sum up the results evaluation, it can be safely said that the custom CNN proved
to be the best CAD model for predicting breast cancer among patients using raw
mammograms, having excelled at all the evaluation metrics, and that too after
having the least number of trainable parameters among all the models used. It is
simple, fast and a very accurate classifier to be used to aid radiologists in identifying
breast cancer. Nonetheless, all the models mentioned in this paper have surpassed
the metrics of [35], the paper that was used as the comparison base for this research.
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Chapter 7

Discussion

After building and training several CNN models, the custom CNN model came out
to be superior, excelling in all the metrics that it was analysed upon while trying
to predict breast cancer from raw mammograms of patients. Not only did it have
high accuracy and low loss, it also scored high in precision, recall and F1, all while
ensuring that it does not overfit on the training data. However, it does raise a
few questions as to how the model achieved this feat, reigning over the already es-
tablished, industry-level pre-trained models. Although it cannot be said for certain
what those reasons are without thorough inspection and scrutinising over the model,
there are two in particular which can be inferred from how the research underwent.

The first probable reason could be related to the number of parameters of the models
used. The pre-trained models were built for the ImageNet dataset, a database con-
taining more than 14 million images organised into almost 22000 categories, which
are mostly real-world objects such as animals, plants, home appliances etc. Hence,
in order to segregate and classify test samples from such a large pool of different
categorical images, the models used millions of trainable parameters, which looked
for unique patterns that set each sample apart from the rest. However, the research
at hand is only interested in the proper classification of breast cancer from raw
mammograms. For such a naive task, the use of such advanced models proved to
be overwhelming, performing poorly than anticipated. On the other hand, the cus-
tom CNN, which was built for this particular task, achieved better result with only
about 300,000 parameters, eliminating the risks of overfitting on the training data.
It is also to be noted that the model was developed through trial-and-error to find
the suitable hyperparameters that produced the best results, with little regard to
standard architectural design patterns followed by the developers of the pre-trained
models.

Another probable reason could be associated with the type of layers used in the
custom CNN model. Most pre-trained models, built specifically for the ImageNet
dataset, utilises the Max Pooling layer, after the convolution layers, to choose the
highest pixel value from each each patch of each feature map, giving more impor-
tance to brighter and sharper pixels and edges when downsampling the images. It
assumes some particular small features decide the class in which an image belong
to, instead of analysing the whole image. However, in the case of mammograms, the
final prediction cannot be reached by solely depending on some discrete features in
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the image. Rather, patches of features distributed throughout the image decide its
category, which are majorly greyish instead of being too dark or too bright. Because
of this unique feature of mammograms, the Average Pooling layer was used as the
first pooling layer in the custom CNN. This unconventional choice of the pooling
layer could have positively influenced its results, making it a better classifier than
the other pre-trained models.

Anyhow, the credit for the nobility of this research goes to the commendable ap-
proaches taken. First, the research dealt with the small dataset of MIAS. Since small
datasets are more prone to bad classifiers and overfitting, the images extracted from
MIAS were augmented, and the dataset size was increased by 9 times. Such a large
dataset allowed the models to train better and effectively.

Second, the research incorporated the analysis of the whole raw mammograms in-
stead of specific ROIs detected by radiologists beforehand. It allowed the models
to mimic the actions of the radiologists in trying to detect breast cancer from the
mammograms without relying on annotations which could have been erroneous.

Lastly, the research not only showed the efficiency of the existing pre-trained models
in detecting breast cancer, but also had the objective of building a custom CNN for
this task in particular. The custom model did not disappoint as it went ahead of all
the pre-trained models in terms of the metrics they were evaluated upon.

Although it might seem that the research and its results were just perfect, it too had
its fair share of limitations. The first problem with this research is the size of the
original dataset. The dataset being small meant that data augmentation had to be
applied in order to increase the size of the dataset. However, some of the augmented
images had gone through too many changes to a point where they faintly resemble
the original images. This also means that the data bias in the augmented images can
be quite different from the original one resulting in suboptimal performance results
from the model.

The other limitation is that the CNN model was trained and tested using only one
dataset due to the unavailability of open-source datasets. As such, it it quite unsure
if the model will work accurately on other datasets or if the model is only tailored
to the specific dataset used, and as a result, the probability of the model providing
accurate predictions for other datasets is unknown.

This research is just a stepping stone in the field of breast cancer prediction models,
and opens up doors for further improvements going forward. Firstly, the CNN
model developed in this research needs to be more generalised, by incorporating
more datasets. Hence, more and more organisations in that regard should make
their datasets public so that they can be used in research. Next, Deep Convolutional
Generative Adversarial Network (DCGAN), a special type of ANN that can produce
fake samples resembling the original dataset, could be used to generate more real-like
samples instead of hard-augmentation manually that seems to distort the images.
This would help in increasing the dataset size without compromising on quality.
Lastly, in the future, better machine learning models could be developed that can
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analyse and provide better imaging techniques from combining the various available
now which can produce more sophisticated images, increasing the models’ prediction
capabilities.
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Chapter 8

Conclusion

Breast cancer, a disease so deadly, that it still is one of the major causes of deaths
among women worldwide. Howbeit, its diagnosis during the early stages can sig-
nificantly reduce the mortality that it causes. In recent times, the development of
automated medical applications and computer-aided diagnostic models has spurred
the remarkable success of machine learning, especially deep learning and image pro-
cessing. There is no one unique abnormality that act as the deciding factor in
detecting breast cancer, but can be anything from masses and lumps to carcinomas,
calcification or even asymmetry. Due to such varied possibilities of indicators of
the disease, together with the dense breast tissues in some patients, humans alone
cannot be expected to accurately identify the malignant tissues from raw mammo-
grams. Hence, this paper focused on the use of deep convolutional neural networks
to help the radiologist in reading a breast image.

First, the mammograms from mini-MIAS database were extracted and passed through
several pre-processing and augmentation steps to enhance clarity of the images and
increase the size of the dataset. Although the research shed light on the efficiency
of the existing pre-trained CNN models in classifying breast cancer, the main ob-
jective was to build and test a CNN model that has been custom-made for this task
only. The enhanced CNN that was formulated obtained high test accuracy, AUC,
precision, recall and F1 scores while having minimal to no overfitting when applied
to the dataset.

Even then, CAD models need to undergo further improvements before they can be
used as standalone detectors of breast cancer. Nonetheless, at its current stage, such
models have the potential to aid the radiologists make more informed predictions
about the patients from raw mammograms. It is only a matter of time before ML
can be used to detect the abnormality in the breast early, thus, determining the
most appropriate subsequent treatment to be administered to the patient to help
bring down the number of deaths caused by breast cancer.
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