
A Comparative Study of Object Detection Models for
Real Time Application in Surveillance Systems

by

Saimun Alam

17301060

Mahim Uddin Ahmed

17301061

Mehedi Hasan

17301046

Md. Morshedul Islam

17101052

Shahed Mehrab Arnob

17101134

A thesis submitted to the Department of Computer Science and Engineering

in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering

Brac University

January 2022

© 2022. Brac University

All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is our own original work while completing degree at Brac

University.

2. The thesis does not contain material previously published or written by a

third party, except where this is appropriately cited through full and accurate

referencing.

3. The thesis does not contain material which has been accepted, or submitted,

for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Saimun Alam

17301060

Mahim Uddin Ahmed

17301061

Mehedi Hasan

17301046

Md. Morshedul Islam

17101052

Shahed Mehrab Arnob

17101134

i

Approval

The thesis/project titled “A Comparative Study of Object Detection Models for

Real Time Application in Surveillance Systems” submitted by

1. Saimun Alam (17301060)

2. Mahim Uddin Ahmed (17301061)

3. Mehedi Hasan (17301046)

4. Md. Morshedul Islam (17101052)

5. Shahed Mehrab Arnob (17101134)

Of Fall, 2021 has been accepted as satisfactory in partial fulfillment of the require-

ment for the degree of B.Sc. in Computer Science on January 16, 2022.

Examining Committee:

Supervisor:

(Member)

Dr. Muhammad Iqbal Hossain

Assistant Professor

Department of Computer Science and Engineering

Brac University

Co-Supervisor:

(Member)

Mehnaz Seraj

Lecturer

Department of Computer Science and Engineering

Brac University

ii

Program Coordinator:

(Member)

Dr. Md. Golam Rabiul Alam

Assistant Professor

Department of Computer Science and Engineering

Brac University

Head of Department:

(Chair)

Dr. Sadia Hamid Kazi

Associate Professor

Department of Computer Science and Engineering

Brac University

iii

Abstract

In this paper, we attempted to give an overview based on thorough research and test-

ing of the latest object detection methods with an aim to help developers to build

a Real Time Responsive CCTV Camera Model. As we welcome the 5G network

worldwide, the coming future will surely be heavily dependent on smart machines

and internet-based technologies. Therefore, we can assume that our daily life secu-

rity will also be managed by smart devices. In this research work, our aim is to do a

thorough research on the latest models so that one can be chosen to implement and

minimize the existing security system into a one device depended security system.

The device we often use for surveillance and security purpose is CCTV camera.

However, most of the cameras are not connected to the internet also they are not

responsive. Which means, the outputs from the cameras cannot be used for further

analysis by machines and can only be saved for manual check by humans. Our re-

search will help to develop such a system that will make the camera act like more of

a security guard itself rather than a video recording device only. As we need to find

out the best suited detection method we will check the accuracy, implementation

process, power usage, GPU and CPU usage and then choose between previously

invented methods such as HOG (Histogram of Oriented Gradients), Viola Jones De-

tector or the latest inventions such as R-CNN, SSD YOLO. Finally, this research

will help the security device developers to choose the best algorithm and build cost

efficient systems. Also, the future works of the research will help to create alert

for abnormal presence of unknowns under surveillance automatically. Overall, we

can say that our research will help to build more affordable, efficient and digitally

secured home, offices, schools or any other buildings and even roads and highways

in coming days.

Keywords: Surveillance and Security Systems; Object Detection; YOLO; SSD;

Modern Home Security; CCTV Camera; Computer Vision; Image Processing; Fire,

Weapon and Threat Detection.

iv

Dedication

Dedicated to all the scientists and researchers in the world who are working day

and night to develop better systems and make life easier for all. We would also

like to dedicate this work to our two amazing advisors Ms. Mehnaz Seraj and

Dr. Muhammad Iqbal Hossain Sir. Thank you for your enormous support and

motivation.

v

Acknowledgement

First of all, we are thankful to Almighty Allah for His countless blessings for which

we have successfully passed through the obstacles in this pandemic and completed

our thesis. Secondly, we would like to express our gratitude to our teacher and

advisor Dr. Muhammad Iqbal Hossain Sir and co-advisor Mehnaz Seraj Ma’am for

their kind support and advice during this research period. Without their help and

critical analyzing, we could not have come this far. They both always helped us

whenever we needed.

And finally thanks to our parents. With their kind support, unconditional love and

prayers we are now on the verge of our graduation.

vi

Table of Contents

Declaration i

Approval ii

Ethics Statement iv

Abstract iv

Dedication v

Acknowledgment vi

Table of Contents vii

List of Figures ix

List of Tables x

Nomenclature xi

1 Introduction 1

1.1 Motivation . 1

1.2 Aims and Objectives . 2

2 Problem Statement 3

3 Background Study 5

3.1 Latest Models . 6

3.1.1 CNN . 6

3.1.2 R-CNN and Faster R-CNN . 7

3.1.3 YOLO . 7

3.1.4 SSD . 8

3.2 Literature Review . 9

vii

4 Methodology 14

4.1 Data Collection . 14

4.1.1 Dataset . 14

4.2 Data Processing . 16

4.3 Training and Findings . 17

4.3.1 Training and Findings of YOLOv4 17

4.3.2 Training and Findings of YOLOv5 20

4.3.3 Training and Findings of SSD MobileNet V2 21

5 Result and Findings 22

5.1 Evaluation Metrics . 22

5.2 Result and Analysis . 23

5.3 Recommended Model . 26

6 Discussion 27

6.1 Limitations . 27

6.2 Future Work . 28

7 Conclusion 29

Bibliography 33

viii

List of Figures

3.1 YOLO Architecture . 8

3.2 SSD Architecture . 9

3.3 Results of CNN and YOLOv2 . 10

3.4 Results from Raspberry Pi and Rock64 11

3.5 Results of YOLOv3, Faster RCNN, SSD 13

4.1 Data Labeling and Annotation . 15

4.2 Data Labeling and Annotation . 15

4.3 Custom Dataset Sample . 16

4.4 Cropped Images of Detected Objects 16

4.5 Training YOLO . 17

4.6 YOLOv4 MAP . 18

4.7 YOLOv4 Recall . 19

4.8 YOLOv4 Result in Real Time . 19

4.9 YOLOv5 MAP . 20

4.10 SSD Training Results . 21

5.1 Gun Detected . 25

5.2 Knife Detected . 26

5.3 Fire Detected . 26

ix

List of Tables

5.1 Metrics Data . 24

x

Nomenclature

This is the list of symbols & abbreviation used in this paper

API Application Programming Interface

CFG Configuration Files

CNN Convolutional Neural Network

HOG Histogram Oriented Gradients

IOU Intersection Over Union

mAP mean Average Precision

R− CFN Region-based Fully Convolutional Network

R− CNN Region-based Convolutional Neural Network

SSD Single Shot Multi Box Detector

Y OLO You Only Look Once

Y OLOR You Only Learn One Representation

xi

Chapter 1

Introduction

1.1 Motivation

All over the world we will soon be using 5G internet and this will help to connect

greater number of devices at a time with lower latency and will also help to build

more concrete and faster networks. At present, most of the existing methods vastly

depend on various detection devices such as motion detector, metal detector, fire

and smoke detector etc. where in a system, failure of one device may lead the en-

tire system into failure. From this idea, we have decided to research on building a

stronger, faster and more efficient digital security system by using smart security

camera only, which will reduce the dependency on so many different and intercon-

nected sensors and devices.

We know that, from home to shopping malls, schools, offices even in parks most

commonly used surveillance device is CCTV camera. However, almost all of them

are basically connected to a local storage device and not connected to the inter-

net and not responsive. Our study will focus on finding the best available method

which can help to develop the system in such a way that it will be able to detect

and identify threatening weapons like guns, knives etc. and disastrous situation like

fire hazard. In future works through further modeling and data training a system

can be developed which will be able to identify intruders and criminals, accidents

like vehicle crash, riots and respond according to the situation. Furthermore, in case

the updated version of the system cannot find a match of a newly recorded sample,

it will keep the data temporarily and check for consecutive appearances. This will

alert the system owner to take necessary steps in case of any abnormal behavior.

Our research is going to give an in-depth idea to those who are willing to work with

surveillance systems and build devices. From this work, they will be able to choose

the best suited detection methods according to their processing unit’s capability and

system’s complexity.

1

1.2 Aims and Objectives

Our research will work on providing data and validity to develop a security system

in future. We are aiming to provide the following features:

i) Reviewing the existing models in field of object detection and filtering out the

older ones for real time applications.

ii) Testing the newer models to establish comparative study through training with

custom dataset.

iii) Featuring the best suited object detection method for systems with high to low

specifications.

iv) Help to detect any weapon like guns and sharp objects like knives, scissors etc.

and threats like fire hazards, blasts etc. by using a trained model and custom

dataset.

v) In future, similar method could be used to identify criminals in real time by using

law enforcement agencies’ database and send quick alert to the police or responsible

authority.

vi) Future research results will also be able to detect any accidents vehicle crash,

riot, fighting, kidnapping etc.

2

Chapter 2

Problem Statement

As the development of home/building security devices are becoming more available

people are trying to get rid of human security guards and set up many sensor-based

security systems at their house, office and at other places. Such devices sometimes

work on an individual role and sometimes all together acts as a security system.

Our research finds out that most of these devices are mainly sensor based and they

cover a small amount of area. This raises an important security issue because the

intruders can avoid the detectors range. On the other hand, if a primary security

device fails to act the entire system becomes more vulnerable and weakens the next

level devices’ ability because the secondary devices more often rely on the output

from the primary level. Therefore, we need to find out such a device that covers a

larger area and can hardly be avoided. We can introduce security cameras in this

step. Yet, our system is not totally secured, because most of the security cameras

work simply as a video recording device. Hence, the intruder can steal/or cause

any damage without getting caught on the spot. Furthermore, by using a mask can

intruder can avoid getting caught afterwards as well. Therefore, we need to make

our cameras responsive and act in real time.

Another issue comes up when we have to deal with usual CCTV cameras. The

video the record are of very poor quality that creates confusion in detecting the

actual culprit. On that account, we need high quality videos. This solution again,

leads to another important issue which is analyzing such high definition videos in real

time and responding quickly and accurately. Maintaining high accuracy and high

speed will be a core challenge. While working on our goal we found many problems

and some of them made us interested to work on them. According to [1] after con-

siderable breakthroughs in the CCTV area, processing hardware, and deep learning

models, the problem of real-time object recognition and categorization arose. There

has been very little research in this sector before, and most of what has been done

so far has been focused on hidden weapon detection. Prior to its usage in weapon

3

detection, hidden/concealed weapon detection (CWD) was applied in airports for

luggage control and other security purposes, and was based on imaging processing

techniques such as millimeter-wave and infrared imaging. For the detection and

classification task, deep learning models faced the following challenges: The first

and most serious issue is the data from which CNN learns its features, which will be

used for classification and detection later. However, there was no standard dataset

for firearms. Making a new and custom dataset manually for real-time scenarios

was a lengthy and time-consuming operation. Also, labeling the intended dataset

is a difficult operation because all data must be individually and manually labeled.

Because the detection methods were different, a labeled dataset created for one tech-

nique could not be used for the other. For the same-labeled dataset, each algorithm

requires distinct labeling and pre-processing. In terms of real-time implementation,

detection systems require the precise location of the weapon, hence gun blocking or

obscurity is a common issue, which can be caused by self, inter-object, or background

blocking. Low-level features, discriminative learning, and pictorial structure were

employed in conjunction with SVM in HOG’s key work. For real-time applications

with 14s per image, these methods were too slow to be accepted. Although these

classifiers were good in terms of accuracy, the sliding window method’s latency was

a major drawback, especially for real-time application.

Now, as we have got a clear idea, we can come to a conclusion that, developers

need to implement a good detection method in the system. However, the problem

with existing devices are they are not capable of data processing since they only

offer some basic video recording, rewind and manual review functions. On the other

hand, older the modern image processing and detection methods have two types

of drawbacks in terms of using them in such a system. Firstly, the older methods

like HOG, Viola Jones Detection etc. takes a bit long processing time which is not

suitable for a real time detection system. On the contrary, the modern systems

like R-CNN, SSD and YOLO, they do provide a faster and more accurate detection

result, but need a heavy processing unit to function properly. That is why, we are

aiming to test the methods and find the one with best performance that also uses

less processing power so that it can be implemented in a such system.

4

Chapter 3

Background Study

In this work, first of all we needed to learn about Object Detection. The technique

of integrating recognition and localization in a photo or video is known as object

detection. Object detection has been there for over two decades and plays an im-

portant role in Computer Vision objectives. Object recognition is essential in a

wide range of applications, including autonomous vehicles, smart robots, and video

monitoring.

The Viola-Jones face detection mechanism, released in 2001, set the foundation for

Object Detection. The approach uses a simple method for Object Recognition by

exploring all areas of the image using template matching of a variety of scales. The

next step was to employ a revised Histogram of Oriented Gradients (HOG) as a

feature representation for object detection and recognition. These earlier object de-

tectors were known as Machines and then used customized characteristics. When

the Deformable Part-based Model (DPM) sensor win the VOC-07, VOC-08, and

VOC-09 detection challenges, classical object detectors reached their high point.

Many experts used these tournaments to assess the performance of their sensors at

the time.

With OverFeat in 2014, Object Recognition managed to enter the Deep Learning

domain with a basic convolutional network. To improve identification probability,

the scientists employed a variation in terms of the rolling windows technique and a

greedy algorithm to collect bounding boxes. To forecast bounding box coordinates,

they also had to insert a regression network to the bottom of the system. The Ima-

geNet Large Scale Visual Recognition Challenge 2013 was won as a consequence of

their efforts (ILSVRC2013).

Object detection with CNNs was once a two-stage process. It would create a region

of interest in the early phase. If the reaction is powerful enough, it will categorize

each suggested area in the second stage. Finally, after expanding bounding boxes,

deleting repeat detection systems, and re-scoring boxes depending on some other

items in the picture, there are post-processing procedures. The well-known R-CNN,

5

Fast R- CNN, and Faster R-CNN models, where the R stands for ”Region-Based,”

are using this two-stage technique. Every sensor in Object Detection has such a

structure. Numerous extracting features systems can be used as the basis.

Single Shot MultiBox Detector (SSD) and You Only Look Once (YOLO) would

be the next only one approach for Objection Detection. These methods combine

object categorization and localization in a single phase, resulting in a single end-to-

end learning model. Because it rephrased the issue as a single equation problem,

heading directly from picture frames to bounding boxes and classifiers, YOLO be-

came essential in the area of Object Detection. While separate designs have been

demonstrated to be quicker at interpretation than their two-stage competitors, they

have proven to be extremely less accurate.

The term ”anchor-free” refers to the most modern form of object detector. They

have fewer options for leveraging massive amounts of data. for example, CornerNet,

CenterNet, Fully Convolutional One-Stage Object Detection, and Bottom-up Ob-

ject Detection are just a few examples of anchor-free detectors. Here, we will give

brief summary of some of the modern models.

3.1 Latest Models

3.1.1 CNN

A convolutional neural network (CNN) is a type of machine learning used in object

recognition. CNN takes an image or video frame as input and applies filters to

conduct convolutional operations. The weights of a CNN are what these filters are

called. Convolutional operations on the image produce feature maps, which are then

transmitted to the network’s future layers.[8] Image Classification, Object Detection,

and Semantic Segmentation are three areas of Machine Learning where CNNs are

applied. Image Classification is the process of providing a label to a photograph to

categorize the contents of the image. A classification model may, for example, be

given a picture of the beach and output the label ”sand.” There’s also a reliability

score, which ranges from 0 to 1, which indicates how sure the model is in providing

that label. While Image Classification helps classify what’s in an image, Object

Detection takes this a step further by using bounding boxes to identify things in the

image. It is possible to identify not just multiple items, but also several different

categories of things. Since unmanned vehicles are becoming a very popular research

and development topic now, Object Detection has also become a highly crucial part

for this. A self-driving automobile must be able to recognize several objects at the

same time and make intelligent decisions on how to drive the vehicle. At last, Se-

mantic Segmentation also called Object Segmentation, extends Image Analysis and

6

Object Detection by creating a pixel-wise mask for every image identified in addition

to bounding boxes, labels, and confidence scores. A pixel-wise mask is just a mask

of an item with pixel-level boundaries. Satellite images, accurate decision-making

in autonomous vehicles, and medical imaging all benefit from this fine-grained lo-

calization. Because of the precision necessary for detecting wildflowers in grasses for

this research, Object Detection rather than Semantic Segmentation was used. This

is because Semantic Segmentation needs more computations for its result, making

it weaker than Object Detection.

3.1.2 R-CNN and Faster R-CNN

The R-CNN model influenced subsequent object detectors by providing as a foun-

dation. R-CNN will use a greedy algorithm to collect ideas, then a feature extrac-

tion backbone to extract additional features, and finally a Support Vector Machine

(SVM) to classify. By merging feature extraction techniques in a single CNN, Fast

R-CNN increased the speed of R-CNN. Faster R-CNN developed a more complex

technique, utilizing a unique Region Proposal Network (RPN) that prevented time-

consuming greedy algorithm, resulting in increased speed. Despite these advance-

ments, it was still hampered by the RPN’s high computational cost. Its two steps

provide high accuracy, but at the cost of detecting speed, as more calculation is

needed. [9]

3.1.3 YOLO

The YOLO neural network is a single neural network that generates bounding boxes

and the model is built in a single assessment. The Deep Learning period, it’s

the first object detection. Batch normalization, adjustable frequency input, anchor

boxes, perfect features, and an improved Dark-net backbone were all implemented

in YOLOv2. On the Common Objects in Context (COCO) dataset, improvements

contributed to the same Mean Average Precision (MAP) scores as Single-Shot De-

tector (SSD), but 3 times faster. YOLOv5 was designed to improve accessibility,

learning speed, inference speed, and deployment ease. This version of YOLO is

written in PyTorch, as compared to the earlier versions, which were developed on

the Darknet framework. [40]

7

Figure 3.1: YOLO Architecture
[26]

3.1.4 SSD

In the Deep Learning era, the Single Shot MultiBox Detector (SSD) was the second

one-stage image detector to arise. Multi-resolution and multi-reference techniques

were developed by SSD, which considerably improved detection capability above

YOLO now at moment. In 2016, SSD debuted with a 74.3 percent MAP on the

VOC2007 dataset and a genuine learning speed of 59 frame rates on an NVIDIA

Titan X.

MobileNetV2, a high dimensionality collector, is the foundation of SSD. Convolution

layers begin to decrease at the top of the SSD detector, allowing for predictions. It

is in contrast to YOLO, which only shows a particular scale feature map. SSD, like

YOLOv3 and Faster R-CNN, predicts bounding box alignments and per-class ratings

utilizing anchor boxes. SSD differs from another two sensors because it utilizes these

basic anchor boxes to a variety of extracted features with various resolutions in order

to make their sensor scale-invariant.

Smaller objects are a sector where SSD’s struggle in terms of capability. Small

objects have no reflection on the smallest fully connected layers at the bottom of the

detector, therefore this is the situation. SSD is still an extremely appealing image

detector despite this shortcoming due to its balance of reliability and quickness.

It will provide state-of-the-art accuracy in real-time prediction, making it an easy

option for testing plant recognition in this research. [38]

8

Figure 3.2: SSD Architecture
[18]

3.2 Literature Review

While searching for the existing works on the topic, we have mainly focused on de-

tection through image processing, real time detection, quick matching and detection

from an angular view. We also have worked on papers that mentioned other smart

security systems using IoT devices. Some of the notable papers published in IEEE

Access and other noteworthy places are briefly mentioned below.

According to[29] an Automated Gun Detection system was used by implementing

the Faster RCNN model. VGG16, ResNet50, InceptionResNetV2 and MobileNetV2

have been used individually as feature extractors in Faster R-CNN. All of the pro-

posed architectures were tested, trained and compared with YOLOv2 using the same

dataset and they got better results using Inception-ResNetV2 of Faster R-CNN. [2]

It’s seen that for mobile applications MobileNetV2 was useful meanwhile Inception-

ResNetV2 gave 82% of mAp among all the models. Their drawback is that each

model was owning at their own field such as VGG16 was much faster among the

extractors but no match for YOLOv2. Getting inspired from this we tried Faster

R-CNN and SSD-MobileNetV2 and many versions of YOLO and gave comparative

analysis on our system. Out of them YOLOv4 gave the best results in all terms and

fields. Next, [4] the paper reviewed here, they proposed the idea of using multiple

cameras for real time tracking in the security system. They divided their approaches

into regional based and boundary based. [24] In the case of a regional based ap-

proach they used a background subtraction method for detecting objects considering

its drawbacks. For solving the issues they created algorithms for generating frames,

object detection and post processing. [36] They have compared unique methods

for object detection and found the highest accuracy rate. They mainly focused on

9

Figure 3.3: Results of CNN and YOLOv2

rigid objects and multi camera systems and have a future plan to improve much

faster in case of detecting objects.We tried to detect objects with multiple cameras

but were not successful with all algorithms. [22] Only YOLOv4 was able to be run

with multiple cameras and we got significant results but there were no algorithms

to compare with so we did not include this in our paper.

According to their paper [16] focused on automatic event detection by maintain-

ing good image quality and field of view. They used reduced- reference features and

analyzed the events whenever image quality drops or any significant changes are

found. An interesting feature known as Kalman filter is used to smooth the images,

thus reducing noise and improving false alarm rates. [21] Though they did not ex-

periment their method in real time, they used recorded videos and proved that their

method outran all existing methods. A linear cumulative strategy of two growth

factors along with online Kalman filtering was derived in their paper. According

to their [39] experimentations, they achieved high precision in detecting objects by

considering the computational complexities found in their proposed algorithms. We

understood that they worked on improving the datas in their system before training

and detection. So we tried a new approach to reduce the hassle for picture cropping

for annotations and introduced YOLOv4 deep sort to count persons while detecting

[5] .

According to [30] in order to achieve the highest accuracy or recognition of an

image, the system requires powerful calculations. For this they proposed a low cost

CNN model which uses Neural Compute Stick or commonly known as NCS as an

alternative for existing GPUs. [3] This is a hardware accelerator backed up with

Rock64 for providing high speed calculation at a low cost. They used the SSD al-

gorithm for their model and found that it is faster than other systems achieving a

time of 0.15 sec for each image. [35] Compared to some powerful models such as

CNN model and other algorithms that use ROI such as faster RCNN, their proposed

method promised to give outstanding results on low end devices. In their paper they

10

compared SSD with other algorithms such as TinyYOLO and other CNNs and found

that SSD gave better results on average in all aspects. [34] To analyze the time com-

plexities NCS is used both in Raspberry pi 3 and Rock64 and found a noticeable

boost in performance in Rock64. They also proved this architecture was suitable

for this kind of low end experiments and is fast enough to detect even in motion.We

came to find that they focused on low end devices, so we also tried to analyze all

the object detection algorithms and found out what suited this kind of device. [28]

Relating to the paper we also tried the SSD algorithm, R-CNN and TinyYolo and

found that SSD was actually faster but R-CNN gave much more significant perfor-

mance compared to their paper, so this also falls under our contribution.

Figure 3.4: Results from Raspberry Pi and Rock64

According to this paper [32] demonstrates video surveillance with enhanced accu-

racy and minimal computational complexity. They have worked on face, recognition,

detection and localization. [20] Their detection is possible from both recorded and

real time videos. Their paper’s [7] result is on the basis of comparison of the data in

their database and the facial data detected in their system. Security alarm, signal

generation and alerting security can be retrieved depending on the matches found

in their system. [13] Compared to most of the systems, they proposed that their

paper gives more accuracy, low cost and has better performance. For classification,

they used a multi-layer neural network and included special facial features. The ex-

tracted functions are decided and provided as a sample vector to the neural network.

The gaining knowledge of a set of rules acknowledges people’s faces via means of

gaining knowledge of the approximation of facial functions, no matter specific facial

movements. [19] The function matrix modifications rely on the face motion. The

use of 4 specific video sequences offers sufficient statistics to educate the classifier to

become aware of someone in a crowd. The proposed version became examined under

extraordinarily numerous conditions, and it achieved efficaciously and accurately. [6]

This study [27] is based on face recognition, detection and object detection and

recognition. Their desired results are found through training neural network other

models with a sufficient amount of data. First, neural networks were introduced into

this study and then trained. [23] The creation of neural networks is realized on both

11

CPU and GPU and uses multiple GPUs with an algorithm called the backpropa-

gation matrix format which is built with the CUDA kernel and cuBLAS library.

Face application Detection was implemented using the pre-trained models Facenet

and Deep Convolutional neural network. Python OpenCV library has been applied

with a deep learning approach to implement face recognition, image registration,

object recognition and YOLO Deep learning is applied in two simple steps. [14]

The first step is to detect the presence of a face using face detection. However, the

image or video stream is unidentified. The extraction process is the next step. 8D

feature vector quantifies each face of an image or video stream. These vectors are

also referred to as embedding. They trained during label encoding after embedding

the face and loading the SVM model for face recognition [15]. Deep learning object

recognition (YOLO) is trained against the loss feature, which is directly related to

cognitive performance, and the entire model is trained simultaneously. To recognize

an object in an image or in real life, current recognition systems obtain a classifier

for that object and evaluate it at various scales and locations in the test image. To

carry out. The YOLO design is end-to-end training, allowing for real-time speed

while maintaining high accuracy rate. [33] Popular neural network models will un-

doubtedly form the foundation for such successful deep learning in the future. Deep

learning techniques are explained by models such as CNN, Deep CNN, and other

well-known training algorithms, as well as various encoders and decoders with noise

or noise reduction, and deep learning produces promising results in many of its ap-

plications. And, while it is not shown, it contains the success and broader aspects

associated with the research discussed, which explains why it is also promising po-

tential.

The goal of this paper [37] is to improve traditional security systems. Security

systems built on the IoT platform can interact with devices in real time. A camera,

voice sensor , microphone, motion activity sensor, and LTE / Wi-Fi module are all

connected to the processor at the system’s heart. This entire economic system makes

use of IoT in real time, allowing mobile devices and computers to remotely track

activity occurring where IoT devices are located and save all activity to their cloud

storage account. [12] This IoT-powered smart locker allows for 24-hour monitoring,

alerts, and emergency notifications from anywhere in the world via mobile apps via

a cloud connection. The main aim of this project is to monitor the locker by sending

out instant video alerts whenever activity is detected by the locker. The owner’s in-

formation can be quickly shared with police officers. Furthermore, user information

such as locker opening and closing times, as well as store closing times, is recorded.

[10] The number of times it has been opened and closed, as well as the name of the

person who has unlocked it. The system is made up of a camera with a microphone,

12

push buttons , an LTE / Wi-Fi module, a sensor, and a processor. Mobile devices

and computers can remotely detect activity taking place where lockers are located

throughout this economic system that uses IoT in real time, and activity data are

stored in their own cloud-storage accounts.[17] It will be preserved. The document’s

challenge is that the data sent and received by existing intelligent systems is vulner-

able to forgery and hacking. We need to expand this block chain-based system to

solve this problem. This is especially true if these systems determine and respond

to specific events in their surroundings based on data sent by sensors.

According to this [11] paper, for object detection they mainly focused on improv-

ing the SSD algorithm and also compared some models and functions such as Faster

R-CNN and Loss function. They used a different method for classification and intro-

duced a multilayer convolutional neural network. [1] Their limitations were visible

as they discussed problems in detection for different factors such as slow processing

speed, inability to detect new object classes and low results for smaller objects. In

our paper we tried to analyze this situation and found that YOLOv4 solves all these

problems and the SSD was also good in our system but overall all versions of YOLO

surpassed with an average score.

Furthermore, [25] Comparison of YOLOv3, Faster R-CNN and SSD was done for

pill identification. They highlighted YOLOv3 as the fastest among their proposed

methods. According to their results we compared the results with our system and

proved that YOLOv4 works much better in every aspects. [31] Comparative analysis

also given for ResNet, SSD-MobileNetV2 and CNN algorithms on a mass and diverse

dataset for face mask detection. Here, SSD-MobileNetV2 was detected much faster

but in our paper we compared with all versions of YOLO and found that YOLOv4

would be much better for us and their case too.

Figure 3.5: Results of YOLOv3, Faster RCNN, SSD

13

Chapter 4

Methodology

After filtering the older models by reviewing some of the most popular methods by

researching related works, papers and initial testing in previous parts of our thesis,

we chose to work with SSD model and YOLO since they offer such features which

are highly relevant to our work. We have done thorough testing of both models.

Moreover, we started working with YOLOv4 previously, however, its latest version

YOLOv5 offers some more sub-versions and we worked with most of them, such as,

YOLOv5m, YOLOv5n, YOLOv5L, YOLOv5s etc.

4.1 Data Collection

In this phase of research, we have worked on detecting objects that are threatening to

humans such as guns, knives, scissors, fire etc. We collected pictures from internet

sources and later labeled and annotated them. Also, we used real life images of

available tools and videos by using our webcams. The weight file is a trained dataset

that is specifically developed for YOLO.

4.1.1 Dataset

We have created our own dataset to train and test our object detection models.

Here we collected data from various sources for our dataset. Our dataset consists of

four objects. knife, gun, fire, and person. We first took photos of ourselves holding

a knife and a gun. Then for fire, we took photos of it from different angles and

positions in indoor situations. After that, we collected photos from Google and

different open-source image collection websites like OpenImage dataset.

For the dataset, we have collected 2000 images, 500 for each object. We made sure

that we collected the pictures from all possible angles and that all the images were

of the same dimensions.

14

Figure 4.1: Data Labeling and Annotation

Figure 4.2: Data Labeling and Annotation

After labelling the data we converted the data to desired formats. For example for

tensorflow object detection api we converted the data to TFRecord format. We tried

to create a dataset to automatically detect threats in an indoor environment, like

someone entering the area with a knife or a gun and if there is a fire in the house.

We are going to detect these threats by object detection. Here are some samples of

our custom dataset.

15

Figure 4.3: Custom Dataset Sample

4.2 Data Processing

To ensure better accuracy and ignore unnecessary objects we have created a feature

that can detect objects and save them as cropped images from input video or image.

Later these cropped images can be used for future reference and analyzing. Every

image is analyzed by using some annotation values. And similar objects usually

carry similar values as they are structurally same mostly. For exact same objects,

these values mostly match fully unless lighting conditions are not disturbed badly.

Similar objects with slight differences in shape can also be detected but accuracy

may fall. For this reason, a pre-processed large dataset can be used for faster and

more accurate result.

Figure 4.4: Cropped Images of Detected Objects

16

4.3 Training and Findings

For training the object detection models we have used varieties of software frame-

works. We have used Darknet, PyTorch and tensorflow object detection API. After

annotating the images of the dataset we started the training process. We prepared

the data for Object Detection API. Then we converted the data to desired format

as mentioned in the previous section. After that we configured our object detection

model for training . We also used the pre-trained model to train our custom object

detection.

Figure 4.5: Training YOLO

4.3.1 Training and Findings of YOLOv4

Darknet is YOLO’s standard training platform, and it was created with the intention

of training YOLO object detectors. On the same MS COCO dataset, YOLOv4 was

chosen over YOLOv3 because it provides many new features that enhance accuracy

and speed. Mosaic was one of the features that were used.

Yolov4 is so far the finest object detector right now. It has an accuracy of close to

100%. Our prime object is to detect knives, guns, and fire and so far, it provides

the best output right now. To train our datasets first we have collected our images

17

from google open images v6. For each object, we have collected around 500 images.

First After labeling and annotating, For Yolo, we have made a cfg file to train our

datasets. In our cfg file, it contains the information of how many batches we are

going to use, the number of channels, max batches, and steps. For Each object,

we are going to use 2500 max batches, in our case total object is 4 so we are using

around 10000 batches. And for each batch, there will be 80% to 90% steps. So,

for 10000, our steps are 8000 9000. Our total iteration will be 10000 and avg loss

should be less than 2. And here our loss is 0.25 which is very low.

We have trained our datasets with an iteration of 10000 as we have a total of 4

objects. So each object contains 2500 iterations. When we first started our training

the avg loss was higher. So we need to perform multiple iterations to get minimum

loss. Minimum loss provides best results. Here after 10000 iterations our loss is now

0.25 which is very minimum.

Figure 4.6: YOLOv4 MAP

We set the epoch 1 to 49 to get the best mAP score. And our mAP score is around

0.98 which is the best. THe maximum mAP score is 1 and our is close to 1 which

is 0.98. As a result our detections perform really well.

We have tested our datasets in real-time as well as in the videos too. And on

18

Figure 4.7: YOLOv4 Recall

an average gun detections results are around 99% which is maximum. Another

important fact is In real time it just took 53ms to detect the objects. Which is a

very big advantage. It works really very well in every aspect. And we got average

fps 20-25 in our gtx 1050ti gpu. We tested in google colab too and it gives us a fps

of 8-13. And in only cpu it is a bit laggy as it needs cuda core to perform well. So

here we got around 2-6 fps.

Figure 4.8: YOLOv4 Result in Real Time

So if we have a better gpu with cuda core it will perform its best. Most of the time

we will get maximum fps as well as almost 99% of accuracy. The more we iterate

19

our training the more we get the best results on it. We have found a few drawbacks

of this method, it needs higher gpu to get maximum fps and accuracy and also It

takes a lot of time to train as each iteration takes almost 2 hours depending on

CUDA core and CPU cores.

4.3.2 Training and Findings of YOLOv5

In the same way we have also training our next yolo methods which is yolov5s.

Which is another latest version of yolo. And it also performs really well. In the

same way, first we have collected our data from Open Image Datasets v6. Then we

label and annotate it. After that we perform iterations over it. We have used the

same yolov4 images to our yolov5s model. So that we can compare both and get an

idea of which one is actually best and which one works much faster. The mAP score

of YOLOv5s is not as much as YOLOv4. Also it is not consistent as YOLOv4. So

after 49 epochs we get the mAp score of YOLOv5s is 72.

Figure 4.9: YOLOv5 MAP

20

4.3.3 Training and Findings of SSD MobileNet V2

Here for training our SSD model we choose MobileNet as the backbone. We choose

to train SSD MobileNet v2 among all the SSD variations as from the related work

we have got to know that this version can provide us with the best accuracy and

inference speed of all the models using the SSD algorithm.[14]. Tensorflow object

detection API, SSD mobilenetv2 feature extractor,TensorFlow directory were used

for the experimental setup.Anaconda virtual environment was also used to set up

our environment and Tensorflow-Gpu was enabled to make our training process

faster. Tensorflow with Keras backend was used for training. Each epoch was saved

a weight file during the entire training process so that after training we can choose

the best weight which gave us the best performance metrics. Here we trained the

model in 50 epochs.

Figure 4.10: SSD Training Results

21

Chapter 5

Result and Findings

5.1 Evaluation Metrics

For the evaluation of object detection models, we choose mAP as evaluation Matic.

Popular object detection algorithms like YOLO, MobilenNet SSD, FRCNN evaluate

their model using mAP for publishing their work. Object detection is a complicated

task. Therefore we had to use precision, recall along with IOU. Precision measures

the accuracy of a model’s predictions and then calculates how many of the predic-

tions of the models are actually correct. For this research, Precision is the measure

of successful threat detection like fire, knife, or gun out of all detection the models

make. Here TP means that the object detector made a prediction of a threat and

it is correct. And FP means that the object detector model made detection and it

is incorrect.

Precision =
TP

TP + FP

TP = True Positives (Predicted as positive as was correct)

FP = False Positives (Predicted as positive but was incorrect)

Recall measures the accurate detections taking into account of threats that couldn’t

be detected. A high recall means a higher rate of success of detecting objects with

low failure to detect target objects.

Recall =
TP

TP + FN

IoU determines the accuracy of object detection. Here for our research, we have used

IoU threshold 0.5, which means anything below it is an FN and above it counts as

a TP. Its calculation is basically an overlap ratio between the predicted bounding

box and the ground truth table.

22

IoU =
BBoverlap

BBunion

In this research, we are using mean average precision. As we are using mAP at 0.5,

that means we are using Average precision at a 0.5 threshold for all the classes. For

our evaluation mAP is the most important metric. Because it is better to detect a

fire which not there to miss an existing fire. After evaluating our models with all

these scores we can come to a conclusion that which model performs better.

5.2 Result and Analysis

We have covered Dataset preparing, processing, training process of major models

and evaluation process in the previous sections. Now we are going to present our

results from training and inference evaluation. Here we have evaluated the model on

basis of accuracy and speed. After training the custom models on our dataset, the

evaluation metrics were measured. mAP was recorded form checkpoint which had

highest values. Then we ran the models in our local devices to see object detection

performances and which model gives us the better accuracy and FPS.

We have trained a total of 13 models to detect objects. After that we evaluated

those models and then we have tested them on our webcam for getting real-time

performance. The highest mAP scores were recorded for each model and in our

workstation, we have calculated the FPS. The information about our findings given

in the table. The name of the model with their resolution that we selected for our

training, training platform, model size mAP at 0.5 IOU and recall score, and FPS

are given in the Metrics Data table below.

23

Model Res Platform Size(MB) mAP Recall FPS
YOLOv4 416 Darknet 255 0.97 0.91 31

YOLOv4-Custom 416 Darknet 121 0.95 0.82 24
YOLOv4-deepsort 416 Darknet 178 0.96 0.82 14
YOLOv4-tflite 320 Darknet 25.3 0.84 N/A 34
YOLOv4-tiny 320 Darknet 17.6 0.82 0.84 40
YOLOv4-tiny 416 Darknet 24.5 0.86 0.79 39
YOLOV5s 320 pytorch 9 0.88 0.915 42
YOLOV5s 416 pytorch 15 0.91 0.915 40
YOLOV5m 416 pytorch 150 0.88 0.86 15
YOLOV5l 640 pytorch 315 0.91 0.78 6

SSD-MobileNetV2 320 TLT3 20 0.78 0.73 29
SSD-MobileNetV2 640 TLT3 36 0.91 0.78 27

FRCNN 640 TLT3 36 0.82 N/A 3

Table 5.1: Metrics Data

In our Training, we have used a total of 3 resolutions of models. These resolutions

were picked based on the prevalence of similar resolutions to detecting objects. Each

of the resolutions works differently and provides different fps and mAP scores. First

we have trained YOLOv4 in the resolutions of 414x416 and the platform is Darknet.

The mAP score for YOLOv4 was 0.97 which is close to 1. Also response time is

55ms which is very fast. And the Recall rate is 0.91 which is also close to 1. It

provides the finest accuracy to detect objects. We get 97-99% accuracy of detecting

guns and knives. Also we get a maximum fps of 37 with 1050ti GPU. As it needs

high computational power. So if we use a more powerful GPU with a high cuda core

it will give us more fps with greater response time.

We have also trained some of the other versions of YOLOv4 such as YOLOv4-

Custom, YOLOv4-deepsort,YOLOv4-tflite, YOLOv4-tiny. Those versions also per-

form really well. YOLOv4 custom we have trained in the resolutions of 416x416 and

we get a mAP score of 0.95. Response time of YOLOv4 Custom is 63 which is higher

than the YOLOv4 and accuracy also less than YOLOv4. We get roughly accuracy

of 62-75%. Then we have trained the next model which is YOLOv4-deepsort. Deep-

sort also has some unique features. YOLOv4-deepsort exactly works like YOLOv4

and also it will count how many times the object detected. So if we set our CCTV

camera in front of our house and applied the YOLOv4-deepsort method. We can see

the total number of times the people have come to my house. After the YOLOv4

deepsort we have trained another model which is YOLOv4-tflite, this is one of the

best models with very low size. It has an accuracy of around 88-93%. And we got

a mAP score of 0.84. Though it is not as accurate as YOLOv4, it still works very

24

fine. It has response time avg 0.76 and recall rate is 0.83.

In YOLOv4-tinny we have trained it in the resolutions of 320x320 and get the mAP

scores of 0.82. It is very small in size, only 17.6 mb. With this size it still works very

fine. No need for extra computational power like YOLOv4. It doesn’t require much

Cudacuda core like YOLOv4. Tiny response time is 68 which is also very good in

general. And we get average accuracy around 85%-89%. Another tiny model with

the resolutions of 416 has the similar features of tiny 320. But it has a better mAP

score of 0.86. And accuracy of 87-93% on average.

All the YOLOv5 models were trained on the PyTorch platform. The mAP score of

“YOLOV5s” with 320 resolution gives us an mAP score of 0.915 and recall is 0.88

and after interfacing, it gives us 45 fps in real-time. The mAP score of “YOLOV5s”

with 423 resolution gives us an mAP score of 0.915 and recall is 0.88 and after in-

terfacing, it gives us 45 fps in real-time. Then the mAP score of “YOLOV5m” with

416 resolution gives us an mAP score of 0.915 and recall is 0.88 and after interfacing,

it gives us 15 fps in real-time. The mAP score of “YOLOV5s” with 320 resolution

gives us an mAP score of 0.88 and recall is 0.86 and after interfacing, it gives us

15 fps in real-time. Then the YOLOv5l 640 resolution gave us a high-accuracy 92%

but it had low 9 fps, which is not feasible for real-time detection. Then we used an-

other single shot detector, SSD MobileNetV2. we have trained this on 2 resolutions

320*320 and 640*640. In the 320 version we got a mAP score of 0.78 and a recall

value of 0.73 And In 320 version we got mAP score of 0.91 and a recall value of

0.78. In running the detection we saw that SSD MobileNetv2 resolution 320 is very

faster in detecting objects and gives us a good fps. Then lastly we have also tested

the Faster RCNN model on our dataset here we got 0.82 mAP and 0.61 recall but

it gave us a very low FPS in real-time detection.

Figure 5.1: Gun Detected

25

Figure 5.2: Knife Detected

Figure 5.3: Fire Detected

5.3 Recommended Model

Of all our trained models YOLOv4, YOLOV5s, and SSD MobileNet performed the

best in terms of performance and accuracy. YOLOV4 is the best model from our

research with a high mAP score and good fps speed of 25-35 FPS, but this version has

a larger weight file size and requires good computational power to run the interface.

On the other hand, YOLOv5s is very small in size and yet it is not as accurate in

tracking data as YOLOv4 and SSD is also very fast in detecting objects. In the

end, YOLOv4 is the one we would recommend in terms of threat detection in Real

Time.

26

Chapter 6

Discussion

We started this research during the peak time of COVID pandemic back in Fall

2020, sitting at our homes in different cities, with no access to proper lab facilities,

computers with good processing units and powerful GPUs. Moreover, we had to do

almost 100% of our work without being able to meet our group mates or advisors

directly which created communication gaps as well. However, we have finally com-

pleted our work using our simple personal computers with so much dedication and

efforts and guidance of our teachers. At the end, we found out the following factors

about our research.

6.1 Limitations

First of all, during data collection and pre-processing, we used Google Colab for

training the chosen model. However, due to some limitations and restrictions of

GPU usage in Google Colab, we could not complete our training properly. Later,

we switched to our personal devices and mostly used a laptop containing Intel Core

i5 processor and NVIDIA GeForce 1050ti Graphics Processing Unit. This created

a huge challenge for us to train the models with large number of Epoch which had

some impact on results. Besides, at the last stage of testing, we omitted using GPU

and ran the tests of all models by using CPU only to check the CPU usage of each

model and their compatibility in systems with low configurations. Due to our CPU’s

limitations, we think some results may differ with other tests done in high configu-

ration machines. We believe computers with higher and better configurations could

produce even more accurate results.

Secondly, we have tested our models by using image inputs, video of many dif-

ferent qualities to check the model’s accuracy and fastness. Next, to detect objects

in real time from live video footage as inputs, we have used laptop webcams. In real

life surveillance systems, we use CCTV camera which we could not manage during

27

testing our models due to pandemic situation, hence we could not arrange a real life

scenario. We believe the results may differ very slightly if we implement the models

by using inputs collected from CCTV camera footage in a real life environment setup.

And lastly, due to the vastness of our research and complexity of the models, we

depended heavily on our research before jumping into testing phase. We covered a

large part of existing older models and decided to test the latest models. As the

technology of computer vision and object detection models are evolving at a great

pace, the results may not stand as constants.

6.2 Future Work

From our findings from the research, the experiences from testing and by evaluating

the limitations of our work, we hope to develop a surveillance system on our own by

using one of the models or a combination of the best suited models that will feature

the followings.

i) A software/app that will be able to notify the responsible owner or authorities

about intruders by analyzing database.

ii) Activate necessary and available alarm systems at the house or building by itself

without manual help.

iii) Lock digital doors/gates (if available) according to the scan results after follow-

ing action (ii).

iv) Detect any accidents like bomb blast, vehicle crash etc. and notify the ad-

min/owner/law enforcement agencies instantly.

v) Notifying securities in case of any human made trouble detection such as fighting,

kidnapping, riot etc.

vi) Detecting suspicious human activities by sensing long term data analyzing, so

that threats like bank robbery, terrorist attacks etc. can be sensed by the machine

without much involvement of direct human security personnel.

28

Chapter 7

Conclusion

As the world is moving towards a machine dependent life, there will be very few

chances of human errors. Today, so many accidents, life threatening situations occur

due to human made errors, negligence, incompatibility and limitations. Also, the

existing security systems are mostly dependent on layers of different sensors where

there lays a huge risk of system failure due to damage in one single layer. Our work

heavily focused on bringing the current surveillance and security systems under one

roof by utilizing the potential of CCTV cameras. Besides, we worked on finding the

best models, where YOLOv4, YOLOv5s and SSD came out as the best, which can

be implemented by the CCTV device manufacturers in their preferred systems from

high-spec to a minimum spec device accordingly. Above all, we wanted to make

a small contribution in building cost efficient systems and bring security systems

within mass people’s affordability so that not only military bases or high valued

places, but also normal people can have a better security system at their own houses

and live life with a little more safety.

29

Bibliography

[1] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, Object

detection with discriminatively trained part based models. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 32(9):1627–1645, 2010.

[2] R. Kachhava, V. Shrivasta, R. Jain, and E. Chaturvedi, “Security system and

surveillance using real time object tracking and multiple cameras,” Advanced

Materials Research, vol. 403-408, pp. 4968–4973, Nov. 2011. doi: 10.4028/

www.scientific.net/AMR.403-408.4968.

[3] ——, “Security system and surveillance using real time object tracking and

multiple cameras,” Advanced Materials Research, vol. 403-408, pp. 4968–4973,

Nov. 2011. doi: 10.4028/www.scientific.net/AMR.403-408.4968.

[4] Y.-K. Wang, C.-T. Fan, C. Yu Ke, and P. Deng, “Real-time camera anomaly

detection for real-world video surveillance,” vol. 4, Aug. 2011, pp. 1520–1525.

doi: 10.1109/ICMLC.2011.6017032.

[5] ——, “Real-time camera anomaly detection for real-world video surveillance,”

vol. 4, Aug. 2011, pp. 1520–1525. doi: 10.1109/ICMLC.2011.6017032.

[6] K. A., S. I., and H. G. E., “ImageNet classification with deep convolutional

neural networks” Proceedings of the 25th International Conference on Neural

Information Processing Systems (NIPS ’12) ; Lake Tahoe, NV. USA, Dec.

2012, pp. 1097–1105.

[7] H. Lahamy and D. D. Lichti, ““towards real-time and rotation invariant Ameri-

can sign language alphabet recognition using a range camera, ” Sensors (Switzer-

land),” vol. 12, no. 11, p. 14, 2012.

[8] T. Dean, M. Ruzon, M. Segal, J. Shlens, S. Vijayanarasimhan, J. Yagnik, et

al., “Fast,” accurate detection of 100, vol. 000, pp. 1814–1821, 2013.

[9] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun,

Overfeat: Integrated recognition, localization and detection using convolutional

networks. CoRR, abs/1312.6229, 2013.

30

https://doi.org/10.4028/www.scientific.net/AMR.403-408.4968
https://doi.org/10.4028/www.scientific.net/AMR.403-408.4968
https://doi.org/10.4028/www.scientific.net/AMR.403-408.4968
https://doi.org/10.1109/ICMLC.2011.6017032
https://doi.org/10.1109/ICMLC.2011.6017032

[10] D. Erhan, C. Szegedy, and A. Toshev, “Scalable Object Detection using Deep

Neural Networks”. The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2014, pp. 2147–2154.

[11] C. Szegedy, W. Liu, Y. Jia, et al., Going deeper with convolutions. CoRR,

abs/1409.4842, 2014.

[12] J. Redmon, S. Divvala, R. Girshick, and R.-T. O. D. “You Only Look Once:

Unified, The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 2016, pp. 779–788.

[13] J. Redmon, S. Divvala, R. Girshick, and A. F. “ O. L. O. Unified, “Real-Time

Object Detection” Proceedings of the IEEE conference on computer vision

and pattern recognition,” Las Vegas, NV, USA, vol. 10. 2016.

[14] J. Wu, L. Sun, and R. Jafari, ““a wearable system for recognizing American

sign language in real-time using IMU and surface EMG sensors,” ” IEEE

journal of biomedical and health informatics, vol. 20, no. 5, 2016.

[15] V. Bheda and D. Radpour, ““using deep convolutional networks for ges-

ture recog- nition in American sign language,” ” arXiv preprint arXiv:1710,

p. 06 836, 2017.

[16] K. Gauen, R. Dailey, J. Laiman, et al., “Comparison of visual datasets for

machine learning,” in IEEE International Conference on Information Reuse

and Integration, Aug. 2017, pp. 346–355.

[17] J. Redmon and A. Farhadi, “YOLO9000: Better. Faster, Stronger”, The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 7263–

7271.

[18] Y. Wang, C. Wang, H. Zhang, C. Zhang, and Q. Fu, “Combing single shot

multibox detector with transfer learning for ship detection using chinese gaofen-

3 images,” Nov. 2017, pp. 712–716. doi: 10.1109/PIERS-FALL.2017.8293227.

[19] R. J. and F. A., YOLOv3: An Incremental Improvement. 02767, 2018.

[20] M. A. Jalal, R. Chen, R. K. Moore, and L. Mihaylova, ““american sign lan-

guage posture understanding with deep neural networks,” ” in 2018 21st In-

ternational Conference on Information Fusion (FUSION), 573–579, IEEE,

vol. 10. 2018.

[21] J. Redmon, “Yolo: Real-time object detection,” [Online] https: //pjreddie.com/darknet/yolo.

Accessed May, vol. 7, 2018.

[22] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv,

2018.

31

https://doi.org/10.1109/PIERS-FALL.2017.8293227

[23] W. Tao, M. C. Leu, and Z. Yin, ““american Sign Language alphabet recogni-

tion using Convolutional Neural Networks with multiview augmentation and

infer- ence fusion,” ” Engineering Applications of Artificial Intelligence, vol. 76,

2018.

[24] L. Wei Yang and C. Yen Su, “Low-cost cnn design for intelligent surveillance

system,” in 2018 International Conference on System Science and Engineering

(ICSSE), 2018, pp. 1–4. doi: 10.1109/ICSSE.2018.8520133.

[25] ——, “Low-cost cnn design for intelligent surveillance system,” in 2018 In-

ternational Conference on System Science and Engineering (ICSSE), 2018,

pp. 1–4. doi: 10.1109/ICSSE.2018.8520133.

[26] J. Wu, “Complexity and accuracy analysis of common artificial neural net-

works on pedestrian detection,”MATECWeb of Conferences, vol. 232, p. 01 003,

Jan. 2018. doi: 10.1051/matecconf/201823201003.

[27] L. Y. Bin, G. Y. Huann, and L. K. Yun, “Study of Convolutional Neural Net-

work in Recognizing Static American Sign Language. ” in 2019 IEEE Inter-

national Conference on Signal and Image Processing Applications (ICSIPA),

41–45, IEEE, 2019.

[28] V. Etten and A., January). Satellite imagery multiscale rapid detection with

windowed networks, 2019, pp. 735–743.

[29] R. M. Alaqil, J. A. Alsuhaibani, B. A. Alhumaidi, R. A. Alnasser, R. D.

Alotaibi, and H. Benhidour, “Automatic gun detection from images using

faster r-cnn,” in 2020 First International Conference of Smart Systems and

Emerging Technologies (SMARTTECH), 2020, pp. 149–154. doi: 10 .1109/

SMART-TECH49988.2020.00045.

[30] ——, “Automatic gun detection from images using faster r-cnn,” in 2020

First International Conference of Smart Systems and Emerging Technologies

(SMARTTECH), 2020, pp. 149–154. doi: 10.1109/SMART-TECH49988.2020.

00045.

[31] ——, “Automatic gun detection from images using faster r-cnn,” in 2020

First International Conference of Smart Systems and Emerging Technologies

(SMARTTECH), 2020, pp. 149–154. doi: 10.1109/SMART-TECH49988.2020.

00045.

[32] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed

and Accuracy of Object Detection” arXiv:1506. 02640, 2020.

32

https://doi.org/10.1109/ICSSE.2018.8520133
https://doi.org/10.1109/ICSSE.2018.8520133
https://doi.org/10.1051/matecconf/201823201003
https://doi.org/10.1109/SMART-TECH49988.2020.00045
https://doi.org/10.1109/SMART-TECH49988.2020.00045
https://doi.org/10.1109/SMART-TECH49988.2020.00045
https://doi.org/10.1109/SMART-TECH49988.2020.00045
https://doi.org/10.1109/SMART-TECH49988.2020.00045
https://doi.org/10.1109/SMART-TECH49988.2020.00045

[33] A. John and D. D. Meva, “A comparative study of various object detection

algorithms and performance analysis,” INTERNATIONAL JOURNAL OF

COMPUTER SCIENCES AND ENGINEERING, vol. 8, pp. 158–163, Oct.

2020. doi: 10.26438/ijcse/v8i10.158163.

[34] A. Kumar, Z. J. Zhang, and H. Lyu, “Object detection in real time based on

improved single shot multi-box detector algorithm,” J Wireless Com Network

2020, vol. 204, 2020.

[35] V. Singh, S. Singh, and P. Gupta, “Real-time anomaly recognition through

cctv using neural networks,” Procedia Computer Science, vol. 173, pp. 254–263,

2020, International Conference on Smart Sustainable Intelligent Computing

and Applications under ICITETM2020, issn: 1877-0509. doi: https://doi.org/

10.1016/j.procs.2020.06.030. [Online]. Available: https://www.sciencedirect.

com/science/article/pii/S1877050920315349.

[36] M. Bhatti, M. Khan, M. Aslam, and M. Fiaz, “Weapon detection in real-time

cctv videos using deep learning,” IEEE Access, vol. PP, pp. 1–1, Feb. 2021.

doi: 10.1109/ACCESS.2021.3059170.

[37] U. Handalage and L. Kuganandamurthy, “Real-time object detection using

yolo: A review,” May 2021. doi: 10.13140/RG.2.2.24367.66723.

[38] R. Kanotra, N. W. Akash, and N. Jeyanth, International Journal of Engineer-

ing and Advanced Technology (IJEAT) ISSN: 2249-8958 (Online). Volume-10

Issue-4, Apr. 2021.

[39] P. Kumar, N. Swamy s, P. Kumar, G. Purohit, and S. R. Kota, “Real-time,

yolo-based intelligent surveillance and monitoring system using jetson tx2,”

Jan. 2021, pp. 461–471, isbn: 978-981-15-8334-6. doi: 10.1007/978-981-15-

8335-3 35.

[40] L. Tan, T. Huangfu, L. Wu, et al., “Comparison of YOLO v3, Faster R-CNN,

and SSD for Real-Time Pill Identification,” 30, Jul. 2021.

33

https://doi.org/10.26438/ijcse/v8i10.158163
https://doi.org/https://doi.org/10.1016/j.procs.2020.06.030
https://doi.org/https://doi.org/10.1016/j.procs.2020.06.030
https://www.sciencedirect.com/science/article/pii/S1877050920315349
https://www.sciencedirect.com/science/article/pii/S1877050920315349
https://doi.org/10.1109/ACCESS.2021.3059170
https://doi.org/10.13140/RG.2.2.24367.66723
https://doi.org/10.1007/978-981-15-8335-3_35
https://doi.org/10.1007/978-981-15-8335-3_35

	Declaration
	Approval
	Ethics Statement
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivation
	Aims and Objectives

	Problem Statement
	Background Study
	Latest Models
	CNN
	R-CNN and Faster R-CNN
	YOLO
	SSD

	Literature Review

	Methodology
	Data Collection
	Dataset

	Data Processing
	Training and Findings
	Training and Findings of YOLOv4
	Training and Findings of YOLOv5
	Training and Findings of SSD MobileNet V2

	Result and Findings
	Evaluation Metrics
	Result and Analysis
	Recommended Model

	Discussion
	Limitations
	Future Work

	Conclusion
	Bibliography

