
ANALYSIS ON THE PERFORMANCE COMPARISON

BETWEEN A RELATIONAL DATABASE AND
A NON-RELATIONAL DATABASE FOR BIG DATA

APPLICATION

by

Md. Ahsanul Hasan
18101018

Fardin Ahmed
18101203

Abul Hossain Chowdhury
18101587

Md. Kamruzzaman Leion
18101417

Md. Rafsan Ferdous Prince
18101299

A thesis submitted to the Department of Computer Science and Engineering in
partial fulfillment of the requirements for the degree of B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
January 2022

© 2022. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is our own original work while completing degree at Brac
University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Md. Ahsanul Hasan

18101018

Fardin Ahmed

18101203

Abul Hossain Chowdhury

18101587

Md. Kamruzzaman Leion

18101417

Md. Rafsan Ferdous Prince

18101299

i

Approval

The thesis titled “Analysis on the performance comparison between a Relational
Database and a Non-Relational Database for Big Data Application” submitted by

1. Md. Ahsanul Hasan (18101018)

2. Fardin Ahmed (18101203)

3. Abul Hossain Chowdhury (18101587)

4. Md. Kamruzzaman Leion (18101417)

5. Md. Rafsan Ferdous Prince (18101299)

of Spring, 2022 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science on January 20, 2022.

Examining Committee:

Supervisor:
(Member)

Hossain Arif

Assistant Professor
Department of Computer Science and Engineering

BRAC University

Program Coordinator:
(Member)

Md. Golam Rabiul Alam, PhD

Associate Professor
Department of Computer Science and Engineering

Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi

Chairperson and Associate Professor
Department of Computer Science and Engineering

Brac University

ii

Ethics Statement

We, hereby declare that this thesis is based on the findings of our research. All other
materials used have been properly noted in the document. This work, neither in
whole nor in part, has never been submitted by anyone to any other university or
institution for any degree.

iii

Abstract

Database plays a vital role in modern life of technology. Large scale applications
such as social media, E-commerce platforms generate a really big amount of data
that needs to be stored and worked with properly. And it is important to get efficient
performance from database management systems that are used for this purpose. So,
in this thesis, we compared the performance between a Relational database manage-
ment system (RDMS) and a Non-relational database management system. We used
PostgreSQL as a relational database and MongoDB as a Non-relational database in
JavaScript server side platform. And we generated a large amount of records with
different numbers using JavaScript functionalities that needs to be processed and
stored for scalable and optimized performance. Then, we performed select, update,
delete, insert operations in different level of complexities in both the databases. Fi-
nally, we analyzed and compared the performance using statistical ANOVA process
of these two databases. From our experiment in big data application, the update,
delete and select operation was faster in PostgreSQL database and insert operation
was faster in MongoDB database

Keywords: Big data; MongoDB; PostgreSQL; RDMS; Technology;

iv

Dedication

We would like to dedicate this research work to our dearest supervisor Hossain Arif
Sir. Beyond his absolute support and motivation, we could not have succeed this
far.

v

Acknowledgement

First of all, all praise to the Great Allah for whom our thesis have been completed
without any interruption. Now we would like to thank our honorable supervisor
Hossain Arif sir for the support and guidance he provided during our research time.
We would also like to thank sir for providing us with necessary resources during our
research phase.

vi

Table of Contents

Declaration i

Approval ii

Ethics Statement iii

Abstract iv

Dedication v

Acknowledgment vi

Table of Contents vii

List of Figures ix

List of Tables 1

1 Introduction 2
1.1 Research Problem . 5
1.2 Research Objectives . 6

2 Literature Review 8

3 Methodology 12
3.1 Experiment Model Design . 12
3.2 Implementation . 14

3.2.1 Data Creation Process . 19
3.2.2 Query Execution Process . 21

4 Analysis 27
4.1 INSERT OPERATION . 27
4.2 SIMPLE SELECT OPERATION . 29
4.3 COMPLEX SELECT JOIN OPERATION 31
4.4 VERY COMPLEX SELECT JOIN OPERATION 33
4.5 UPDATE OPERATION . 34
4.6 DELETE OPERATION . 35

vii

5 Comparison 38
5.1 SIMPLE SELECT OPERATION AND COMPLEX SELECT OP-

ERATION COMPASION . 38
5.2 SIMPLE SELECT OPERATION AND VERY COMPLEX SELECT

OPERATION COMPASION . 39
5.3 RESULT ANALYSIS . 40

6 Conclusion 41

7 Future Works 42

Bibliography 44

viii

List of Figures

3.1 performance evaluation process for SQL and NoSQL 13
3.2 Schema Diagram of E-commerce Application 14
3.3 Table Creation in PostgreSQL . 17
3.4 Table Creation in MongoDB . 18
3.5 Data Creation Process In SQL NoSQL 20
3.6 insert , update, delete, find, operations in MongoDB 22
3.7 Join Collection Using MongoDB . 24
3.8 insert , update, delete, select, operations in PostgreSQL 26

4.1 INSERT Operation Query Execution Graph 28
4.2 SELECT Operation Query Execution Graph 31
4.3 Complex Select operation query execution 32
4.4 VERY COMPLX SELECT operation query execution 34
4.5 UPDATE operation query execution 36
4.6 DELETE operation query execution 37

5.1 Comparison between Simple SELECT and Complex SELECT 38
5.2 Comparison between Simple SELECT and Very Complex SELECT . 39

ix

List of Tables

4.1 Table of Execution Time For MongoDB and PostgreSQL 27
4.2 Insert operation query execution time table 28
4.3 Anova Table for INSERT Operation 29
4.4 Select operation query execution time table 29
4.5 Anova Table for Simple SELECT Operation 30
4.6 Complex Select operation query execution time table 31
4.7 Anova Table for Complex SELECT Operation 32
4.8 VERY Complex Select operation query execution time table 33
4.9 Anova Table for Very Complex SELECT Operation 33
4.10 Update operation query execution time table 34
4.11 Anova Table for UPDATE Operation 35
4.12 DELETE operation query execution time table 35
4.13 Anova Table for DELETE Operation 37

5.1 Select Operation Comparison time table 38
5.2 Select Operation Comparison table 39

1

Chapter 1

Introduction

Relational model is the basis for traditional databases. They are called SQL databases.
But in recent times, NoSQL databases are highly recommended as internet usage has
increased dramatically which creates large amounts of data which are structurally
different . Different applications create such types of data commonly known as big
data [4]. Big data [5]is becoming more and more important to the modern world
day by day. The modern databases are getting larger with every second which is
creating problems.. Such problems are:

1. With this much rapidly growing data, organizations often find it difficult to store
them properly.

2. The next problem is to choose the right tools and techniques to deal with this
huge amount of data.

3. The last but not the least is securing the data with data model [7]. While
everyone gives all their attention to managing and analyzing the data properly,
often times no one remembers that the data also needs to be secured properly. Un-
protected data can create a lot of problems.

Many sources have unraveled by stating NASA can just produce 1TB of data just
observing the earth on a daily basis [2]. SQL databases are known as traditional
databases which store data based on relational models compared to those of non-
relational databases or NoSQL which has gained popularity [19].

SQL databases manages data in structured tables. Conventional relational database
management system (RDBMS) has strict static schema and because of this, it is not
flexible. SQL queries are declarative and expressive. RDBMS always tries to use
the relational algebra to optimize executions of queries. SQL databases scale ver-
tically. So, in order to increase load in a server system upgrades would be needed
such as, more powerful CPU, more ram, faster and larger storage capacity. SQL
databases follow ACID property. ACID stands for Atomicity, Consistency, Isola-
tion and Durability [12]. Because, conventional relational database management
systems (RDBMS) work using relations among different data tables, they can only
work properly if the database is small, but the problem is nowadays databases are
getting huge in size and volume day by day. Another problem is because of SQL’s

2

strict static schema and structured table based model, SQL cannot always meet the
increasing growth of unstructured datasets. And because of these reasons, working
with big datasets in RDBMS, can be a lot hard, resource heavy and tiring also for
the whole system. SQL databases are known as traditional databases which store
data based on relational models but non-relational databases or NoSQL have gained
popularity [19]. NoSQL existed since late 1960s [4].

NoSQL term was introduced by Carlo Strozzi in 1998 and referred to non-relational
database in 2009 by eric Evans. NoSQL database have been around since 1960s
[4].NoSQL database is not a working tool rather it is a methodology containing sev-
eral competing tools [8]. It offers a different mechanic to store and retrieve data.
It can also handle unstructured data unlike relational database. Non-relational
databases do not use RDBMS and also do not use complex storage of database.
Rather they uses keys to find data based on keys attached to the data. NoSQL
database becomes important to us where SQL counterpart can not do so. A con-
ventional relational database management system (RDBMS) is not flexible because
it has a static schema. NoSQL databases have different usage. For example, Redis
provides useful way for changing data quickly. Cassandra is appropriate for real-
time analysis operation, i.e. Web analytics [13]. A conventional relational database
management system (RDBMS) could work properly if the database was small, but
now the databases are getting robust day by day. So, in order to process huge
data, we need machines that work very fast, database schemas that are flexible and
distributed architectures. Each rule must have a user query. That will result in a se-
rious decrease of the performance process optimization techniques [1]. It is claimed
that NoSQL databases can provide simple access, efficient speed, and development
facilities for big data application purposes. Google uses big table databases which
was worlds first NoSQL database [6].

The big data success came courtesy of NoSQL database. NoSQL is a grouping of
several other technologies that are defined as any database technology that is not
SQL. Such can be named as Key-value store. NoSQL uses key-value always roots for
saving data. Key-value databases are mainly divided into two parts one is column-
oriented databases and the other is document-oriented databases. Besides, there are
a lot of options that are deemed as commercial and also deemed to be open-source
NoSQL databases [5]. Good review articles [3] and [6] gave analysis in such condi-
tions and a lot of resources online have given significance in this matter for higher
performance and good user experience.

MongoDB is a source available-document based platform-based database program,
commonly known as the NoSQL database program. Even though MongoDB is non-
relational, it inherits many relational database system. Namely sorting, secondary
indexing, range queries. NoSQL has high-level scalability alongside scalability and
a better structure for better performance. In 2007 MongoDB was discovered. But a
couple of years later the company shifted to the open-source development model. In
2013 MongoDB name was proposed. The MongoDB database, which was released
in 2009 was written in C++. It helps with a high percentage with replication sets
which refers to two or more copies of data. MongoDB documents can be Pararally

3

worked as JavaScript Object Notation (JSON) objects and stored internally using a
binary encoding of JSON called BSON [19]. As counterpart of relational database,
these objects do not have to have a common structure to store but these can be
nestled. Basically, they represent only a specific key-value in the database. In Mon-
goDB engine, “ACID” properties are being replaced by “BASE” architecture [3].
MongoDB is good at scaling workloads. MongoDB databases is document-oriented
databases program. The data given by the user gets divided into ranges across mul-
tiple shards. MongoDB can also perform aggregation by pipeline, map- reduction
and single-purpose method.

The supporting nestling data removes the need to join the data the same way rela-
tional database does. This feature provides help to large datasets like an e-commerce
company data. Their data can be segmented into several parts and each of the parts
are stored in a different server to equally divide the work load. The default engine
is “WiredTiger”. WiredTiger storing data in BSON(Binary JSON) [18]. MongoDB
can pre define the data files sizes to avoid any system mulfuction. MongoDB is
preferred because it serves better performance despite the fact that it is relatively
new in the modern age technology market of NoSQL databases. Many projects and
products are based on this engine. Such products are namely Disney Media group
which is basically open source code. Each of them justified the use of MongoDB for
specific reasons. For instance The new York Time uses MongoDB simply because
it will be very easy for them to store documents. Most of them prefers MongoDB
because of its scalability and usability in environments like clusters. MongoDB can
easily handle the scalability problem in three dimension like cluster scale, perfor-
mance, data scale

PostgreSQL is an open-source relational database management system (RDBMS).
Previously named POSTGRES. In 1996 PostgreSQL name was proposed as an ex-
perimental mean. But in 2007 PostgreSQL’s name was permanently given. For the
separation of client and server in PostgreSQL, client’s library becomes lighter, and if
any changes are made in the database, that won’t affect the client while the process
runs [12]. PostgreSQL uses built-in replicas based on making the changes which are
called Write-Ahead Logging (WAL). PostgreSQL also has built-in support B-tree
and hash table index. In the schema, it holds objects, except for roles as well as
tablespace. This schema acts like name places by allowing objects who have the
same name to co-exist in the data table. PostgreSQL can handle a wide variety of
data types including Boolean, Character, Binary, Bit String, Text search types are
some of them. PostgreSQL has a special extension called “PostGIS”. PostGIS inte-
grates several geofunctions and supports geographic objects for any object purpose.
PostGIS is based on “light Weight” geometrics and index optimization to reduce
memory and disk storage [19].

4

1.1 Research Problem

Big data generating platform or application like ecommerce site has huge volume
of data. Millions of users are generating the amount of data and in this way it is
increasing day by day. Efficient performance is important issue for the customers as
well as the owners of such kind of big data platform in the recent time. A big enter-
prise solution like ecommerce application has millions of users and they use those
application in their day to day life for purchasing, renting, even selling their items.
Social media application has a lot of functionalities and every day the data size is
getting bigger and bigger. For example, Amazon, Facebook, Twitter, Instagram etc.
has billions of users and they constantly use their products and services. Generally,
ecommerce platform have big data with huge amount of records and information.
This information and data must need to store and maintain properly. Besides, there
are different types of data like structured, semi structured, unstructured data is
creating regularly. In order to process big data where millions or even billions of
user, proper database schema is important. It is also important to think about the
features of ecommerce platform data as well as the type, structure of the data that
fits and performs very well in databases. So, the problem occurs which database
is appropriate to solve the issue. The research problem is to find an effective solu-
tion for querying and processing big amount of structured, unstructured and semi
structured data in a shortest amount of time to give a great user experience when
millions of users are using the system.

In this regard, a step by step design and experimentation of database is important
to get the idea of performance between databases. Database plays a key role for
processing large amount of data and application performance issues. Big data pro-
cessing is a complex issues in relational databases. In this case, SQL databases are
vertically scalable but on the other hand, NoSQL databases are horizontally scalable
[15]. Generally, databases perform queries in the big data applications having mil-
lions of data. Most of the common operations that we can see from the application
programming interface (API) is the crud operation which stands for (create, read,
update and delete), When any new user create any account, or add new data like
text and images, that time insert operation are performed in the database through
the application programming interface and successfully, users data are stored in
the database. When user wants to update some of his/her information on the ap-
plication, a database update operation is performed through the API and user’s
information is updated. User wants to access or read some information, find or read
operation is performed and users get the response through API from the database.
And finally, when use wants to delete something from the application, delete oper-
ation is performed in the database and the data will be deleted from the database.
We can see that a lot of insert, update, delete, read operations are performed con-
stantly and it is more frequent in the big enterprise application like ecommerce. So,
designing an experiment to perform insert, update, delete, select queries in various
scales of data and measure the time that the database has taken can give proper
understanding and insights to see which database schema can fit such large appli-
cation and give better performance to millions of users. So, the research about the
query execution time of both SQL and NoSQL databases can give a better view and

5

solution to the problem.

The databases that we will be using in the example is PostgreSQL which is SQL
database and MongoDB which is NoSQL database. SQL is the standard language
to deal with relational model. In a relational model, data records are stored in a
schema and grouped in tables. There are different numbers of rows, columns but
as it is a structured model, each row must have the same number of columns. The
advantage of this model is to avoid data redundancy. PostgreSQL is well known
as object-relational database and stores data as structured objects. Like SQL re-
lational model, PostgreSQL follows same syntax and schema to perform operations
in applications. The schema has different objects like tables, columns, keys, etc.
PostgreSQL has various use cases such as bank systems, multi repository data app,
Business Intelligence , production , as well as different business applications. It is
ideal to select the PostgreSQL for understanding performance in big E-commerce
data.

On the other hand, NoSQL database works well when the dataset has no specific
structure and ability to store huge amounts of data. NoSQL databases use key value
pairs which are divided into two parts. They are column-oriented databases and
document-oriented databases. MongoDB is known as a document oriented database
and can easily store objects in XML, JSON, or BSON (binary coded JSON), graph
oriented formatting. The advantage of BSON format is that it does not require the
same structure and schema to store objects. In this way, MongoDB can solve the
problem of large ecommerce platform data by dividing different numbers of parts
and processing each part in a different server. MongoDB can give better insights of
its performance of query execution time analysis in this research.

1.2 Research Objectives

In this research we will compare the performance between a Relational database
management system (RDMS) and a Non-relational database management system.
We use PostgreSQL as a relational database and MongoDB as a Non-relational
database. In the case of big data analysis, we want to compare which databases
perform better. Sometimes insert, select,update and delete operations take too
much time in one database in a simple case so we want to find those reasons in this
research. The objectives of this research are:

1. To know which feature work better in big data analysis

2. To compare time efficiency between this databases

3. To understand the workloads that specify the type and the number of opera-
tions that are executed on a database

4. To perform various queries of complexity

6

5. To understand in depth analysis of various structure of data in big applica-
tions.

6. To gain better view of designing big applications with proper schema model
using database.

7. To understand which database works long time and avoid server crash.

7

Chapter 2

Literature Review

In recent years, there have been many debates and discussions going on in many
unofficial online forums and groups about whether Relational Database Manage-
ment System (RDBMS) is better than non-Relational Database Management Sys-
tem (Non-RDBMS) or not in business and E-commerce fields. There have been
some official research papers too that offer some knowledge about the comparison
of RDBMS and Non-RDBMS. In this section, we will look at some of those works
that have helped us during our research.

Puntheeranurak in [16] used Redis as NoSQL database and MariaDB as relational
database. They executed the experiment in a windows operating system and used
PHP framework and XAMPP server. They used the predis library for connecting
the PHP framework with Redis database. They compared the efficiency between
these two database management systems by executing four simple yet most impor-
tant operations in a DBMS. They were, INSERT, DELETE, UPDATE and SELECT
operation. Insert was in two methods, firstly single data insert and then multiple in-
serts. The experiment with Delete was also done twice, first with just normal data
deletion and then deletion while considering specific conditions. Select operation
was also done in this manner, first with no conditions but in the second experiment,
they divided the queries into simple and complex queries. Their results show that
Redis outperformed MongoDB in both styles of Insert operation. Similarly, in both
styles of Delete operation, Redis was faster than MariaDB. But, in the first Update
operation (the one without any conditions) MariaDB is faster than Redis. When
using an Update operation with specific conditions for their experiment, Redis was
performed faster than MariaDB. In the Select operation without any conditions,
MongoDB performs better than Redis. The results of the second experiment are
different from other results. Here, Redis performed better when complex queries
were used because MariaDB spent more time to process the queries. Though it was
slightly faster than Redis when simple queries were used.

Aboutorabi et al [9] used MongoDB as the NoSQL database which is similar to us
and as SQL the Microsoft SQL server was used. They used five scales of records
consisting of 100, 1,000, 10,000, 100,000 and 1,000,000 records. With the fifth scale
of 1,000,000 records, this is the work with the most number of records at a time.
They also executed the operation in a windows system but they used JDBC which

8

is Java Database Connectivity, to connect with both the databases and execute the
experiment. Usual SQL queries were used on the Microsoft SQL server and then
the same queries were changed to MongoDB syntax and used in the Java driver for
MongoDB. They used the insert, delete, update and select operations for the eval-
uations of these two databases. But they also added some evaluations for queries
with or without aggregate functions. The insert operation shows that MongoDB
performs at a higher speed than the SQL server and the more number of records,
the more efficient it will be over the SQL server. The delete operation was also a
lot faster with MongoDB. The results of the update operation shows that, at the
highest scale of 1,000,000 records, MongoDB is almost four times faster than the
SQL server. So, basically their evaluations show that with more records, NoSQL
database MongoDB is faster and more efficient than the SQL server. But then they
divided the queries into 2 parts. One without aggregate functions and one with the
aggregate functions. The result of the first part is that MongoDB performs better
than SQL server in queries without aggregate functions. For the second part, the
SQL server outperforms MongoDB. Queries with aggregate functions were the only
part in which the SQL server performed better than MongoDB. MongoDB is better
for very large data and databases with constant change. But MongoDB falls weak
when aggregate functions are executed.

[20] by Shetty and Akshay is another one of the related works where the performance
of MongoDB was compared with a relational database. Here they used Oracle as
the relational database. They performed the basic four operations of Insert, Delete,
Update and Select and compared both the databases. The results shown in their
hypothesis testing is , the performance of Insert, Delete and Select operations are
better in MongoDB but for Update operation, Oracle is still outperforming Mon-
goDB in the environment and dataset that they were given. In this paper, our focus
is mainly on evaluating the performance of the SQL database PostgreSQL and the
NoSQL database MongoDB for a relatively large database with a real-world repre-
sentation that is common to E-commerce applications. And comparing them both
to determine which is better for this purpose.

[17] by Sharma, Vishal and Bundele is one of the related works where they analyze
the performance of relational database with Non- relational database and graph
database. They used MongoDB for NoSQL, PostgreSQL for relational model and
Neo4J as graph database system. They used all the open source database in their
experiment and they used OpenStreetMap data in “osm” formant¿ The data was
geographical which described as nodes, relation and tags. They created the neces-
sary tables in PostgreSQL and Neo4j and collection in MongoDB. They used java
program to perform queries for finding user tagged pont, nodes etc. The perfor-
mance of MongoDB was best in terms as it takes least time to execute the query,
then PostgreSQL and neo4j has least performance.

[10] Chickerur, Goudar, Kinnerkar also did some works where the performance of
MongoDB with the help of MySQL. They considered a huge database with 105000
records. The purpose was to preserve all the data in a old system using database
migration tools. Implementation had 2 main steps namely, “Extracting the data
from MySQL to csv files” and “Dumping the extracted data in the csv files to Mon-

9

goDB”. For all the implementations, MongoDB took less time from MySQL in their
operations. MongoDB outperformed MySQL in the given environment. This pa-
per mainly focused on performance of MongoDB respect with MySQL. The authors
performed the operations for a larger database record for practical use in real world
(E-commerce) for better purpose.

[12] Jung, Youn, Bae, Choi compared PostgreSQL and MongoDB in big data envi-
ronment. They implemented a program capable of insert, select, update, and delete
operations. They have taken 300000 data records based on card milage informa-
tion. With the help of unstructured data model, authors executed these operations.
The authors thought it would be right not to wait until the data is inserted and
to be available. Speed of performing operations have been measured by time taken
from selection of data all the way to processing of data. The end result stated that
MongoDB was faster then PostgreSQL in general. The authors stated that using
MongoDB with unstructured data model will surely improve the performance for
any real life usage. However withing structured data environment PostgreSQL will
perform better then MongoDB.

In [11] Gyorodi et al did a comparative study between MongoDB and MySQL. The
operating system they used was 64 bit Windows 7 Ultimate. By implementing var-
ious operations on these SQL and NoSQL databases, they justified that MongoDB
is more efficient and advantageous than MySQL. They built a forum application
to evaluate these databases. The forum application they built was developed using
Symfony2. It is an open source PHP framework and allows easy integration of the
MongoDB database. To test the performance of these two databases they performed
various operations of the four basic operations that are, Insert, Select, Update and
Delete. For the insertion operation, they had different tables or documents with
some common data fields and having the same number of fields or columns of data.
Some of the common elements between the two databases were: table/document
User with the columns: id, username, password and email, table/document Fo-
rum with the columns: id, title, author, info (short description) and so on. The
insertion began with inserting 10,000 users in both the databases. The id of the
users were auto generated by the databases and for the username, password and
email other PHP functions were used. For recording the time also they used the
PHP function microtime. This function recorded the time from the beginning of
the script running to the completion of the script. For the inserting of the 10,000
users, MySQL took 440 seconds while MongoDB took 0.29 seconds. After the users,
they inserted 5000 forums, 5000 subforums, 5000 discussions and 5000 comments
respectively. For inserting these data, MySQL took 1010 seconds while MongoDB
took only 3.3331 seconds. Thus, for insertion of large amount of information in
the database, MongoDB is better performing than MySQL. For the select query
operations, they made two select queries, selection of all discussions a user attended
and with a date different than a certain one and selection of all the users from the
database and the number of discussions started by each other. The first select in
MySQL took 0.0018 seconds while MongoDB executed that in 0.0011seconds. The
second select took 0.6478 seconds in MySQL and 0.0052 seconds in MongoDB. So,
for the select queries operation also, MongoDB is better performing than MySQL.
Now, for the update operation also they used two update queries. First one was

10

updating a comment written by a specific user and the second one was updating
the email address of a user. The first update operation took 0.0987 seconds in
MySQL and 0.0021 seconds in MongoDB. The second update took 0.0428 seconds
in MySQL and 0.0013 seconds in MongoDB. These timings concluded MongoDB
being the more performant than MySQL for the update operation. Now, for the
delete operation, here too they used two delete queries for both the databases. The
first query was used for deleting all the comments posted by a user and the second
one deleted all the forums created by a specific user. With the deletion of the forum,
all the sub forums, comments and discussions contained in the forum were also be
deleted. The first delete took 0.3524 seconds in MySQL and 0.0028 seconds in Mon-
goDB and the second delete took 0.8231 seconds in MySQL and 0.0064 seconds in
MongoDB. So, for the delete operation, they found that, MongoDB was better per-
forming than MySQL. So, overall, according to their implementations, they found
that MongoDB had faster execution times in all the operations compared to MySQL.

[14] by Andersson and Beggren is a research work where they performed queries
and measured performance in SQL database MySQL server and NoSQL database
MogoDB. In MongoDB they store documents by creating different number of JSON
objects which is known as JavaScript Object Notation. They used AMD FX 8350
CPU having 8 Gb RAM and 1 TB hardrive. Beides they used MySQL server version
5.718 and MongoDB version 3.4.4. The test were done by executing JavaScript
files having different queries. They performed the insert, update, delete and select
operations in both database. The types of data were mostly string and integer in
table’s attribute. The insert operation was performed having (0, 10000, 100000,
1000000, 10000000) amount of data and other operations were performed without
having records empty in the database. MongoDB takes less time in every query
execution like single-insert, multi-insert, single-update, multi-update, single-select,
multi-select, single-delete, multi-delete operations.

11

Chapter 3

Methodology

3.1 Experiment Model Design

The main purpose of the experiment is to find the answer of the questions that most
of the users regarding the performance of relational SQL and non-relational NoSQL
databases. But there are some major facts about this two databases. The SQL
database has the structural nature where NoSQL database like MongoDB do not
have the structural nature. MongoDB do not follow the nature of relational model.
Another thing is that MongoDB call easily store every form of data even there is
empty or missing value or any field of the collection in NULL field. For that reason,
if we want to evaluate the performance of the two database, we have to understand
the feature and model of the database. So, we can design the experiment by under-
standing the feature and model of each database.

Besides, another important factor is that we are designing the experiment that can
give us important decision making process for large scale of data or big data appli-
cation. So, we must follow the actual model of large scale business application or
enterprise solution that have millions of users. So, for our experiment, we are fol-
lowing a data model of E-commerce application. Using the data of large enterprise
E-commerce application, we can perform operations such as insert, update, delete
and select queries. Besides, we know the fact the data do not insert all together into
the database tables, so we have to avoid instructions that insert the all data at one
time. In the SQL, each table of data on the database is inserted using rows. On
the other hand, in the NoSQL database, like MongoDB, each document of data is
inserted.

Basic operation that can perform on the database is:
1. Insert
2. Update
3. Select
4. Update

So in our experiment a server that exists and it can handle thousands of users at
a time. Besides, an important factor is that researchers want to find comparisons
between two or more systems in big data applications so it is important for the
experiment to use a common interface between both systems to get appropriate re-

12

sults. So no matter what the interface is and how it works it is important that in the
design system we should use a common interface which can process different queries
with different amounts of data. For our experiment we have used JavaScript runtime
Node JS platform and node package manager such as npm packages in this case and
used JavaScript functions to provide the optimal amount of time of processing the
queries of two databases.

Figure 3.1: performance evaluation process for SQL and NoSQL

In the above, there is a figure which describes the step by step implementation and
analysis process for performing the experiment, getting the results data and analyze
the performance in both database.
The step by step algorithm for the process is

13

Step 1: Start
Step 2: Install MongoDB and PostgreSQL database
Step 3: Choosing Javascript server side language Node Js and node packages
Step 4: Install necessary packages
Step 5: Connect both database to the experiment
Step 6: Create tables
Step 7: Generate various amount of data for operation
Step 8: Execute queries
Step 9: Measure the time for executing queries
Step10: Compare and analyze the results of performance

3.2 Implementation

Figure 3.2: Schema Diagram of E-commerce Application

14

This is the model of the database . We can see the 7 tables that exist in the database.

The tables are :

1. Product table.
2. Cart item table.
3. Shopping session table.
4. Order items table.
5. Order details table.
6. User table.
7. Payment details table.

The schema of tables in SQL is following below:

Product table:

product_id int PRIMARY KEY,

product_name varchar NOT NULL,

product_type varchar NOT NULL,

quantity int NOT NULL,

category_id int NOT NULL,

inventory_id int NOT NULL,

price decimal NOT NULL,

discount_id int NOT NULL,

created_at timestamp NOT NULL,

modified_at timestamp NOT NULL,

deleted_at timestamp NOT NUL

Cart_item table:

cart_id int NOT NULL PRIMARY KEY,

session_id int NOT NULL,

product_id int NOT NULL,

quantity int NOT NULL,

created_at timestamp NOT NULL,

modified_at timestamp NOT NULL,

FOREIGN KEY (product_id)

REFERENCES product (product_id)

Order_item table:

order_id int NOT NULL PRIMARY KEY,

product_id int NOT NULL,

quantity int NOT NULL,

created_at timestamp NOT NULL,

modified_at timestamp NOT NULL,

15

FOREIGN KEY (product_id)

REFERENCES product (product_id)

Order_details table:

id int NOT NULL PRIMARY KEY,

user_id varchar NOT NULL,

total decimal NOT NULL,

payment_id int NOT NULL,

created_at timestamp NOT NULL,

modified_at timestamp NOT NULL,

FOREIGN KEY (id)

REFERENCES order_items (order_id)

FOREIGN KEY (user_id)

REFERENCES user (id)

User table:

user_id int NOT NULL PRIMARY KEY,

username varchar NOT NULL,

password_type text NOT NULL,

firstname varchar NOT NULL,

lastname varchar NOT NULL,

address varchar NOT NULL,

telephone int NOT NULL,

created_at timestamp NOT NULL,

modified_at timestamp NOT NULL

Shopping_session table:

shopping_session_id int NOT NULL PRIMARY KEY,

user_id int NOT NULL,

total int NOT NULL,

created_at timestamp NOT NULL,

modified_at timestamp NOT NULL,

FOREIGN KEY (user_id)

REFERENCES user_table (user_id)

16

Payment_details table:

payment_id int NOT NULL PRIMARY KEY,

order_id int NOT NULL,

amount int NOT NULL,

provider varchar NOT NULL,

status varchar NOT NULL,

created_at timestamp NOT NULL,

modified_at timestamp NOT NULL

Figure 3.3: Table Creation in PostgreSQL

To design schema in MongoDB for every collection is very easy and it can easily
accept data having null or missing value or empty objects. So, we do not have to
design the schema or types of data that accept MongoDB. We can manually create
collection in MongoDB official server and those collection can accept any types of
data.
Product table has one to one relationships with the cart item table and order item
table. Order items have a one to one relationships with order details table. Order
details table has a one to one relationship with the payment details table. One to
one relationship is used when we create a relationship between two tables where a
single row of the first table can only be related to one and only one record of a
second table. In the product table product id is present in the cart item table which
is a foreign key in car iteim table. The user table has a one to one relationship with

17

Figure 3.4: Table Creation in MongoDB

the shopping session table and order details table. In this way the design of the
database is created in a relational model.

{

product_id: 1,

product_name: ’GTX_1’,

product_type: ’Graphics_Card’,

quantity: 207,

category_id: 24,

inventory_id: 466,

price: 192,

discount_id: 489,

created_at: 2013-03-28T10:28:10.034Z,

modified_at: 2012-05-14T05:34:16.208Z,

deleted_at: 2012-04-19T08:33:57.619Z

}

Similar experiments were performed on SQL database. The JavaScript program-
ming language was used to run the desired operations and measure the time of each
operation. In the experiment as we know that there is no join concept in MongoDB.
But MongoDB 3.2 allows us to combine data from multiple collections into one col-
lection through the lookup aggregation function.

So if we use multiple lookup functions we can combine multiple collections in aggre-
gation. This is the way when we join multiple collections just like joining multiple
tables in relational databases using MongoDB.

18

First the SQL language queries were designed to run on PostgreSQL server database
then the same queries were converted to do similar operations in MongoDB syntax
in order to run in JavaScript for MongoDB. In the insert operations we inserted
1000, 10000, 100000 and 500000 records into a collection and each record was read
separately and was inserted into the collection in the form of a document in Mon-
goDB database and in the form of rows in PostgreSQL database. In join operations
where several tables communicate with each other one query must be performed for
each collection in MongoDB and each table for postgres and get the desired result.
Joining the tables can be achieved by common fields that have collections in each
other. So in this way we experiment and perform Complex queries that several table
communicate and participate each other

In this experiment we had to download and install both MongoDB and PostgreSQL
databases in our system. The experiment was designed in Intel core i5 processor
having 4 gigabytes of ram and 64 bit operating system. In this experiment we have
used JavaScript as a backend language. We have used server side javascript runtime
such as node js in the experiment. It is an open–source cross-platform JavaScript
platform that helps building the real-time network application. Some advantages of
Node.js is that it is used writing the server-side applications in the JavaScript. It
can scale systems in both vertical and horizontal manner.
. As we are developing the experiment based on PostgreSQL and MongoDB database,
it is important to have the node packages that execute the SQL and NoSQL databases.
We have installed necessary node package library mongodb, pg, dotenv in our ex-
periment.

Dotenv package is used for hiding the database connection url, port number, pass-
word and important features to ensure safety and security in the experiment.
At first we had to create database and table in SQL database PostgreSQL and
similarly create a database and collection inside the database in MongoDB.
Then we had to connect the javascript runtime with MongoDB and PostgreSQL
databases. The tests were done by executing using JavaScript files that were con-
tained with different queries to the database. To make sure the tests were not
affected by any kinds of ram usage like other background apps, tabs etc. the script
were run in an environment where there were no other apps running in the back-
ground to use ram, in order to maximize the full usage to the script. The envi-
ronment was made as fair as possible for both management system to get the best
outcome. To show the performance between the database was made by executing
and looking into how fast each one of the JavaScript could finish the execution of
different types of queries such as inserting data updating data removing data and
selecting data. These are the basic and main operations used in the experiment.

3.2.1 Data Creation Process

In this experiment we have created an empty array of object and generate data by
executing function. We can create various amount of data by executing a loop of
different amount of data that needed in the experiment. The data will be stored in
different amount of array of object in the temporary array.

19

Figure 3.5: Data Creation Process In SQL NoSQL

20

3.2.2 Query Execution Process

After generating the data, we had pushed the array into the database table in
PostgreSQL and MongoDB database collection. After inserting the different amount
of rows and objects of data in the both database, we have performed the other queries
such as select, update and delete operations.
During the period of executing queries in different amounts of data, we had measured
the time that had taken in the both database. We had used JavaScript function
new Date() which had helped us to measure the execution of queries in milliseconds.
Then we had created a table of execution time of insert, update, delete, select oper-
ations in 1000, 10000, 100000, 500000 data. Based on the results that we had found
we created graph to visualize the performance statistically.

Time Measuring Technique:

As we are using the JavaScript platform in our experiment, so JavaScript has a func-
tion named new Date() which is used to find the current timestamp in milliseconds.
So before, query execution process, we have used first timestamp to get the current
time and after executing queries we have used second timestamp. Then we subtract
the second timestamp to first timestamp. In this way, we get the query execution
time in milliseconds.

List of Queries

1. Insert product details data (1000 products, 10000 products, 100000 products,
500000 products)

2. Update each of product name field in product data

3. Select all products details data

4. Delete all products details data

5. Find product name, product type, order id, payment id joining order item table
and order details table

6. Find product name, product type, order id, payment id, provider where product
name = “GTX 0” joining order item table and order details table and payment
details table

Mongoexperiment is the name of the database where all the MongoDB works were
done and. “npm install mongoDB” is used to perform JavaScript with MongoDB.
Then we had connected the Mongoexperiment database with Node Js using Mon-
goclient.connect function. We had created empty arraya named product, cart item,
shopping session, order item, users, order details, payment details as same as the
collections of MongoDB database and used function to store different amount of data
in the those arrays. Then we have created another variable named before which act
as the initial timestamp for our experiment.

21

MongoDB has the insertMany function which helps to insert many documents at a
time. So, we pushed the array to perform insert operation in the MongoDB database
and created a final timestamp and finally we subtracted the final timestamp from
the initial timestamp to get the time in milliseconds.

After inserting documents in MongoDB, we had performed the update operations
and measure the time. The updateMany function helps to update any number of
records and fields in MongoDB. We updated the field product name field in our
data. After inserting documents, the product name field was “Graphics Card” and
we updated the record as “GraphicsX4 Card”. The updateMany function updated
all the documents in the mongo schema. We measured the time in the same process
of insertion of data.

After updating documents in MongoDB, we had performed the select operations
and measure the time. The find function in MongoDB helps to find any number
of documents or any documents from the schema of the database. By passing the
in find function, we were successfully capable to select all the documents from the
schema of the database. We measured the time in the same process of insertion of
data and updating data.

Figure 3.6: insert , update, delete, find, operations in MongoDB

After selecting documents in MongoDB, we had performed the delete operations and
measure the time. The deleteMany function in MongoDB helps to delete any number
of documents or any documents from the schema. By passing the in deleteMany
function, we were successfully capable to delete all the documents from the schema
of the database. We measured the time in the same process of other operations.
After doing all those operation, we perform joining collections to join multiple col-
lections to find the desired outcome. The lookup property is used in MongoDB for
joining more than one collection. We joined product collection with order items

22

and order details collection to find the product name, product type, order id and
payment id fields.
Then we joined product collection with order items ,order details and payment
details collection to find the product name, product type, order id and payment id,
provider fields where product name = “GTX 0

23

Figure 3.7: Join Collection Using MongoDB

24

For PostgreSQL,“post experiment” is the database where all the PostgreSQL works
were done and product table, cart item table, shoppinh session table, order item
table, users table, order details table, and payment details table. In order to create
those tables we had to define the structure of data and records in the database.
“npm install pg” is used to perform javascript with PostgreSQL . Host id, user id,
port, password and database name was selected and client.connect function helped
to connect JavaScript with PostgreSQL for the experiment.

The data is inserted into the database with ‘Insert Into “Table name” and selected
all of the fields from the table and with the help of

\jsonb to recordset($1::jsonb)" and \JSON.stringify(array)"

function we were able to insert the data into the database. So, we pushed the array
to perform insert operation in the database and similar as MongoDB, we created
a final timestamp and finally we subtracted the final timestamp from the initial
timestamp to get the time in milliseconds.

After inserting documents in PostgreSQL, we had performed the update operations
and measure time. We updated the field similar as MongoDB product name field in
our data. After inserting documents, the product name field was “Graphics Card”
and we updated the record as “GraphicsX4 Card”. “Update table name set updated
field” helped us to perform update operation to update all row’s product name field
successfully. We measured the time in the same process of other operations.

After updating documents in PostgreSQL, we had performed the select operations
and measure the time. “Select from table name” helped us to perform select oper-
ation to select all rows successfully. We measured the time in the same process of
other operations.
After selecting documents in PostgreSQL, we had performed the delete operations
and measure the time. “Delete from table name” helped us to perform delete oper-
ation to delete all rows successfully. We measured the time in the same process of
other operations.

25

Figure 3.8: insert , update, delete, select, operations in PostgreSQL

After doing all those operation, we perform joining table to join multiple table to
find the desired outcome. The inner join property is used in SQL for joining more
than one table. We joined product table with order items and order details table to
find the product name, product type, order id and payment id fields.
Sample code for joining three tables:
SELECT product.product name, product.product type, order item.order id,order
details.payment id FROM product INNER JOIN order item ON product.product
id=order item.product id INNER JOIN order details ON order item.order id = or-
der details.order id

Then we joined product table with order items ,order details and payment details
table to find the product name, product type, order id and payment id, provider
fields where product name = “GTX 0”.
Sample code for joining four tables with condition:
SELECT product.product name, product.product type, order item.order id,order
details.payment id, payment details.provider FROM product INNER JOIN order
item ON product.product id=order item.product id INNER JOIN order details ON
order item.order id = order details.order id INNER JOIN payment details ON order
details.payment id = payment details.payment id WHERE product.product name
= ’GTX 0

In this way, we have performed queries both of the databases.

26

Chapter 4

Analysis

No. of Records 1000 10,000 100,000 500,000

Insert 16 131 1323 6671
Update 1 1 1 1
Simple select 1 1 1 1

PostgreSQL Complex select 1 1 1 1
Very complex select 1 1 1 1
Delete 1 1 2 2

Insert 35 125 576 2591
Update 1 1 1 1
Simple select 3 3 3 3

MongoDB Complex select 3 3 3 4
Very complex select 9 9 9 9
Delete 1 1 2 2

Table 4.1: Table of Execution Time For MongoDB and PostgreSQL

In the above, there is a table which is the query execution time table that we
have found based on the implementation. So, the table describes the insert, up-
date, simple select, complex select, very complex select and delete operations on the
1000,10000,100000,500000 amount of data for both in PosgreSQL and MongoDB
database.

4.1 INSERT OPERATION

In Insert operation, PostgreSQL took 16 millisecond for inserting 1000 data and
131 milliseconds for inserting 10000 data. And it took 1323 milliseconds for 100000
data insertions and 6671 milliseconds for inserting 500000 data. MongoDB on the
other hand, took 35 millisecond for inserting 1000 data and 125 milliseconds for
inserting 10000 data. And it took 576 milliseconds for 100000 data insertions and
2591 milliseconds for inserting 500000 data.From the above states tics we can see
that MongoDB took less time then PostgreSQL to perform. We can state that
PostgreSQL is not performing better than MongoDB

27

Insert Operation insert 1000 data insert 10000 data insert 100000 data insert 500000 data

PostgreSQL 16 milliseconds 131 milliseconds 1323 milliseconds 6671 milliseconds

MongoDB 35 millisecond 125 millisecond 576 millisecond 2591 milisecond

Table 4.2: Insert operation query execution time table

Figure 4.1: INSERT Operation Query Execution Graph

Hypothesis Testing For each operation can be performed. Procedure Taken to per-
form the hypothesis testing is ”ANOVA” for all the operations.
Following hypothesis can be stated: H0: Performance of Postgresql for insert is not
better than the performance of MongoDB. H1: Performance of Postgresql for insert
is better than the performance of MongoDB
Calculation:

Grand Total T =
∑

x1 +
∑

x2

= 8041 + 3327

= 11368

(4.1)

Connection Factor = T2/N

= 113682/8

= 16153928

(4.2)

Sum of Square between sample,
SSC = 80412/4 + 33272/4− 16153928

= 2777724.5

Df = c− 1 = 1

(4.3)

28

SST =
∑

x12 +
∑

x22 − T 2/N

= 46253787− 7061907

= 37161766

(4.4)

Sum of square within sample SSE = SST-SSC

= 37161766− 2777724.5

= 34384041

One way Anova table:

Source of variation Sum of square Degree of freedom Mean sum of square

Between sample SSC=2777724.5 c-1=1 MSC=277772.5/1=277772.5

Within sample SSE=34384041.5 n-c=6 MSE=34354041.5/6=5730673.583

SST=37161766 n-1=7

Table 4.3: Anova Table for INSERT Operation

F(1,8) = 277772.5/5730673.583

= 0.05
(4.5)

Hence, the F(calculated) is 0.05. F(tabulated) is 5.99 F(calculated) is less than
F(tabulated). SO, the H0 is completed meaning the performance of PostgreSQL for
insert is not better than the performance of MongoDB.

4.2 SIMPLE SELECT OPERATION

In simple select operation, PostgreSQL took 1 millisecond for slecting 1000, 10000,
100000 and. 500000 data. MongoDB on the other hand, took 3 millisecond for
selecting 1000, 10000, 100000 and. 500000 data.Here we can see that PostgreSQL
took less time then MongoDB for both select and Very complex select operation. So
PostgreSQL is performing better than MongoDB.

Select Operation insert 1000 data insert 10000 data insert 100000 data insert 500000 data

MongoDB 3 milliseconds 3 milliseconds 3 milliseconds 3 milliseconds

PostgreSQL 1 millisecond 1 millisecond 1 millisecond 1 milisecond

Table 4.4: Select operation query execution time table

29

Starting the following hypothesis: H0: Performance of Mongodb for very simple se-
lect is not better than the performance of Postgresql. H1: Performance of Mongodb
for simple select operation is better than Postgresql
Calculation:

Grand Total T =
∑

x1 +
∑

x2

= 4 + 12

= 16

(4.6)

Connection Factor = T2/N

= 162/8

= 32

(4.7)

Sum of Square between sample
ssc = 42/4 + 322/4− 32

= 8

Df = c− 1
= 1

(4.8)

SST =
∑

x12 +
∑

x22 − T 2/N

= 4 + 36− 32

= 8

Df = n− 1 = 8− 1 = 7

Sum of square within sample SSE=SST-SSC =8-8 =0 One way Anova table:

Source of variation Sum of square Degree of freedom Mean sum of square

Between sample SSC=8 c-1=1 MSC=8/1=8

Within sample SSE=0 n-c=6 MSE=0/6=0

SST=8 n-1=7

Table 4.5: Anova Table for Simple SELECT Operation

F(1,6)=8/0 =0
Hence, the F(calculated) is 0. (Ftabulated) is 5.99 F(calculated) is less than F(tabulated).
Therefore the H0 is completed meaning the performance of Mongodb is not better
than PostgreSQL for simple select.

30

Figure 4.2: SELECT Operation Query Execution Graph

4.3 COMPLEX SELECT JOIN OPERATION

In complex select operation, PostgreSQL took 1 millisecond for slecting 1000, 10000,
100000 and. 500000 data. MongoDB on the other hand, took 3 millisecond for
selecting 1000, 10000, 100000 and 4 milliseconds for selecting 500000 data. From
the above states tics we can see that PostgreSQL took less time then MongoDB to
perform. We can state that mongoDB is not performing better than PostgreSQL

Select Operation insert 1000 data insert 10000 data insert 100000 data insert 500000 data

MongoDB 3 milliseconds 3 milliseconds 3 milliseconds 4 milliseconds

PostgreSQL 1 millisecond 1 millisecond 1 millisecond 1 milisecond

Table 4.6: Complex Select operation query execution time table

Starting the next hypothesis: H0: Performance of MongoDB for complex is better
than the performance of PostgreSQL. H1: Performance of MongoDB for complex
select is not better than the performance of PostgreSQL
Calculation:

Grand Total T =
∑

x1 +
∑

x2

= 4 + 13

= 17

(4.9)

Connection Factor = T2/N

= 172/8

= 36.128

(4.10)

Sum of Square between sample ssc = 42/4 + 132/4− 36.128

= 10.125
Df = c− 1 = 1

31

SST =
∑

x12 +
∑

x22 − T 2/N

= 4 + 43− 36.128

= 10.875

Df = n− 1 = 8− 1 = 7

(4.11)

Sum of square within sample SSE = SST-SSC

= 10.875− 10.125

= 0.75

(4.12)

One way Anova table:

Source of variation Sum of square Degree of freedom Mean sum of square

Between sample SSC=10.125 c-1=1 10.125/1=10.125

Within sample SSE=0.75 n-c=6 MSE=0.75/6=0.125

SST=10.875 n-1=7

Table 4.7: Anova Table for Complex SELECT Operation

F(1,6)=10.125/0.125 =81
Hence, the F(calculated) is 81. F(tabulated) is 5.99 F(calculated) is greater than
F(tabulated). Therefore the H1 is completed which means the performance of Mon-
goDB is not better than PostgreSQL for complex select.

Figure 4.3: Complex Select operation query execution

32

4.4 VERY COMPLEX SELECT JOIN OPERA-

TION

In very complex select operation, PostgreSQL took 1 millisecond for slecting 1000,
10000, 100000 and. 500000 data. MongoDB on the other hand, took 4 millisecond
for selecting 1000, 10000, 100000, 500000 data. Here we can see that PostgreSQL
took less time then MongoDB for both select and Very complex select operation. So
PostgreSQL is performing better than MongoDB.

Select Operation insert 1000 data insert 10000 data insert 100000 data insert 500000 data

MongoDB 4 milliseconds 4 milliseconds 4 milliseconds 4 milliseconds

PostgreSQL 1 millisecond 1 millisecond 1 millisecond 1 milisecond

Table 4.8: VERY Complex Select operation query execution time table

Following hypothesis can be stated: H0: Performance of PostgreSQL for very com-
plex select is better than MongoDB. H1: Performance of PostgreSQL for very com-
plex select is not better than MongoDB
Calculation:

Grand Total T =
∑

x1 +
∑

x2

= 4 + 16

= 20

(4.13)

Connection Factor = T2/N

= 202/8

= 50

(4.14)

Sum of Square between sample
ssc = 42/4 + 162/4− 50

= 18

Df = c− 1

= 1

(4.15)

SST =
∑

x12 +
∑

x22 − T 2/N

= 4 + 46− 50

= 18

Df = n− 1 = 8− 1 = 7

Sum of square within sample SSE=SST-SSC =18-18 =0

Source of variation Sum of square Degree of freedom Mean sum of square

Between sample SSC=18 c-1=1 MSC=18/1=18

Within sample SSE=0 n-c=6 MSE=0/6=0

SST=18 n-1=7

Table 4.9: Anova Table for Very Complex SELECT Operation

F(1,6)=18/0 =0

33

So, the F(calculated) is 0. F(tabulated) is 5.99 F(calculated) is less than F(tabulated).
Therefore the H0 is performed meaning the performance of PostgreSQL is better
than MongoDB for very complex select operation.

Figure 4.4: VERY COMPLX SELECT operation query execution

4.5 UPDATE OPERATION

In update operation, PostgreSQL took 1 millisecond for updating 1000, 10000,
100000 and. 500000 data. MongoDB on the other hand, took 9 millisecond for
inserting 1000, 10000, 100000 and. 500000 data. From the above states tics we can
see that PostgreSQL took less time then MongoDB to perform. We can state that
mongoDB is not performing better than PostgreSQL

Select Operation insert 1000 data insert 10000 data insert 100000 data insert 500000 data

MongoDB 9 milliseconds 9 milliseconds 9 milliseconds 9 milliseconds

PostgreSQL 1 millisecond 1 millisecond 1 millisecond 1 milisecond

Table 4.10: Update operation query execution time table

Starting the following hypothesis: H0: Performance of PostgreSQL for very Update
is better than MongoDB. H1: Performance of PostgreSQL for update select is not
better than MongoDB
Calculation:

Grand Total T =
∑

×1 +
∑

×2

= 4 + 36

= 40

(4.16)

34

Connection Factor = T2/N = 402/8 = 200 (4.17)

Sum of Square between sample,
ssc = 42/4 + 362/4− 200

= 128

Df = c− 1 = 1

(4.18)

SST =
∑

x12 +
∑

x22 − T 2/N

= 4 + 328− 200

= 128

Df = n− 1 = 8− 1 = 7

Sum of square within sample SSE=SST-SSC = 128− 128 = 0
One way Anova table:

Source of variation Sum of square Degree of freedom Mean sum of square

Between sample SSC=128 c-1=1 MSC=128/1=128

Within sample SSE=0 n-c=6 MSE=0/6=0

SST=128 n-1=7

Table 4.11: Anova Table for UPDATE Operation

F(1,6)=128/0 =0
Hence, the F(calculated) is 0. F(tabulated) is 5.99 F(calculated) is less than F(tabulated).
Therefore the H0 is completed meaning the performance of PostgreSQL is better
than MongoDB for Update.

4.6 DELETE OPERATION

In delete operation, PostgreSQL took 1 millisecond for updating 1000, 10000 and
2 millisecond for 100000 and. 500000 data. MongoDB on the other hand, took 9
millisecond for deleting 1000, 10000, 100000 and. 500000 data. Here we can see that
PostgreSQL took less time then MongoDB for both select and Very complex select
operation. So PostgreSQL is performing better than MongoDB.

Select Operation insert 1000 data insert 10000 data insert 100000 data insert 500000 data

MongoDB 9 milliseconds 9 milliseconds 9 milliseconds 9 milliseconds

PostgreSQL 1 millisecond 1 millisecond 2 millisecond 2 milisecond

Table 4.12: DELETE operation query execution time table

Starting the following hypothesis: H0: Performance of MongoDB for delete is better
than the performance of PostgreSQL. H1: Performance of MongoDB for delete is
not better than the performance of PostgreSQL

35

Figure 4.5: UPDATE operation query execution

Calculation:
Grand Total T =

∑
x1 +

∑
x2

= 6 + 36

= 42

(4.19)

Connection Factor = T2/N

= 422/8

= 220.5

(4.20)

Sum of Square between sample ssc = 62/4 + 362/4− 220.5

= 112.5

Df = c− 1

= 1
(4.21)

SST =
∑

x12 +
∑

x22 − T 2/N

= 10 + 324− 220.5

= 113.5

(4.22)

Sum of square within sample SSE = SST-SSC

= 113.5− 112.5

= 1

(4.23)

One way Anova table:
F(1,6)=112.5/0.1667 =675
Hence, the F(calculated) is 675. F(tabulated) is 5.99 F(calculated) is greater than
F(tabulated). Therefore the H1 is completed meaning the performance of MongoDB
is not better than PostgreSQL for delete

36

Source of variation Sum of square Degree of freedom Mean sum of square

Between sample SSC=112.5 c-1=1 MSC=112.5/1=112.5

Within sample SSE=1 n-c=6 MSE=1/6=0.1667

SST=113.5 n-1=7

Table 4.13: Anova Table for DELETE Operation

Figure 4.6: DELETE operation query execution

37

Chapter 5

Comparison

5.1 SIMPLE SELECT OPERATION ANDCOM-

PLEX SELECT OPERATION COMPASION

Records in milieconds 1000 records 10,000 records 100,000 records 500,000 records
PostgreSQL Simple Select 1 1 1 1
PostgreSQL Complex Select 1 1 1 1
MongoDB Simple Select 3 3 3 3
MongoDB Complex Select 3 3 3 4

Table 5.1: Select Operation Comparison time table

Figure 5.1: Comparison between Simple SELECT and Complex SELECT

In comparison of simple select and complex select operation, we can see that for
simple operation PostgreSQL took 1 milliseconds time for 1000 record and for com-
plex select it also took 1 milliseconds for 1000 records. As shown in the table
PostgreSQL took 1 milliseconds for performing the select and complex select oper-
ation for all 10,000 data, 100,000 data, 500,000 data. On the other hand MongoDB

38

took 3 milliseconds for entering 1000 data for simple select operation and for per-
forming complex selet operation it took 3 milliseconds. For 10,000 data, 100,000
data, 500,000 data respectively it took 3 milliseconds for performing simple select
operation and took 3 milliseconds for performing complex operation till 100,000
records. But MongoDB took 4 milliseconds to perform complex select opertation
which is 1 milliseconds slower then simple select operation time. Here we can see
that PostgreSQL took less time then MongoDB for both select and Very complex
select operation. So PostgreSQL is performing better than MongoDB.

5.2 SIMPLE SELECT OPERATION ANDVERY

COMPLEX SELECT OPERATION COMPA-

SION

Records in milieconds 1000 records 10,000 records 100,000 records 500,000 records
PostgreSQL Simple Select 1 1 1 1
PostgreSQL Very Complex Select 1 1 1 1
MongoDB Simple Select 3 3 3 3
MongoDB Very Complex Select 4 4 4 4

Table 5.2: Select Operation Comparison table

Figure 5.2: Comparison between Simple SELECT and Very Complex SELECT

In comparison of simple select and very complex select operation, we can see that
for simple operation PostgreSQL took 1 milliseconds time for 1000 record and for
very complex select it also took 1 milliseconds for 1000 records. As shown in the
table PostgreSQL took 1 milliseconds for performing the operation for all 10,000
data, 100,000 data, 500,000 data. On the other hand MongoDB took 3 milliseconds
for entering 1000 data for simple select operation and for performing very complex

39

selet operation it took 4 milliseconds which is 1 milliseconds slower then simple
select operation. For 10,000 data, 100,000 data, 500,000 data respectively it took
3 milliseconds for performing simple select operation and took 4 milliseconds for
performing very complex operation. From the above states tics we can see that
PostgreSQL took less time then MongoDB to perform. We can state that mongoDB
is not performing better than PostgreSQL

5.3 RESULT ANALYSIS

From the experiment, insert operation is faster in MongoDB database then the Post-
greSQL database. From our own perspective, it is expected to us because MongoDB
database insert and store data in objects documented way. So, when we push large
amount of JavaScript objects to the MongoDB database, it processed those objects
and stored faster way than PostgreSQL.

The update, delete, select operations is faster in PostgreSQL than in MongoDB. It
is because, data is stored in PostgreSQL structured way. SQL database performs
fast and better performance when data is stored in structural relation matter. For
that reason, PostgreSQL performs fast in select, update, join and delete operations
and fast processing speed on those operations.

Designing enterprise level solution and millions of user will use their products or
services and big amount of data is generated, and those data that have to be pro-
cessed or operate frequently in a database or process multiple concurrent requests
from the database like as our experiment as we processed large amount of complex
queries in our system and measured time, so, if the application’s model of data or
types of data is structured and maintained in a relational model, SQL database in
our example provide better performance.

On the other hand, when the big data follows more unstructured model or not ob-
vious, then NoSQL database give better performance in their system.

So, the goal is to provide the ability of decision making in creating big data appli-
cation for better performance to their customers or users. In this way, the research
helps to make appropriate decision as well as give better performance on the appli-
cation with great user experience.

40

Chapter 6

Conclusion

The thesis provides the analysis of MongoDB and PostgreSQL databases. Besides
it provides comparative performance results for insert, select , update and delete
operations for simple to complex queries. Through this experiment PostgreSQL
database is faster than MongoDB for update, delete and read operations. But on
the other hand, insert operation is faster in MongoDB database than PostgreSQL
database. MongoDB performs well when data is unstructured and can easily be
inserted as objects which is in the document form.

41

Chapter 7

Future Works

There are still a lot of room for imporvement keeping aside above works. For im-
proving the performance of MongoDB then designing an unstructured data model
is required. On the other hand, PostgreSQL provides better performance in struc-
tured data models. Besides, PostgreSQL performs well in the join operation to find
the desired output by joining multiple tables. So, both database performs well de-
pends on the data structure or type of data in the application system. There may
be some limitations regarding system configuration, internet speed for getting the
desired output. It is useful when we analyze the system, the types of data opera-
tion and features complexity to make a decision that which database is useful. So
thinking about every operation and feature of a big data application to determine
which database can solve the problem efficiently. The result can create an impact
in big data applications having a huge collection of data that have to perform in the
database. So, the thesis provides the decision making steps when choosing a right
database in the big data generating application

42

Bibliography

[1] T. K. Sellis, “Global query optimization,” in Proceedings of the 1986 ACM
SIGMOD international conference on Management of data, 1986, pp. 191–
205.

[2] G. Leptoukh, “Nasa remote sensing data in earth sciences: Processing, archiv-
ing, distribution, applications at the ges disc,” in Proc. of the 31st Intl Sym-
posium of Remote Sensing of Environment, 2005.

[3] D. Pritchett, “Base: An acid alternative: In partitioned databases, trading
some consistency for availability can lead to dramatic improvements in scala-
bility.,” Queue, vol. 6, no. 3, pp. 48–55, 2008.

[4] N. Leavitt, “Will nosql databases live up to their promise?” Computer, vol. 43,
no. 2, pp. 12–14, 2010.

[5] Z. Wei-Ping, L. Ming-Xin, and C. Huan, “Using mongodb to implement text-
book management system instead of mysql,” in 2011 IEEE 3rd International
Conference on Communication Software and Networks, IEEE, 2011, pp. 303–
305.

[6] A. Boicea, F. Radulescu, and L. I. Agapin, “Mongodb vs oracle–database
comparison,” in 2012 third international conference on emerging intelligent
data and web technologies, IEEE, 2012, pp. 330–335.

[7] V. Abramova and J. Bernardino, “Nosql databases: Mongodb vs cassandra,”
in Proceedings of the international C* conference on computer science and
software engineering, 2013, pp. 14–22.

[8] S. Khan and V. Mane, “Sql support over mongodb using metadata,” Interna-
tional Journal of Scientific and Research Publications, vol. 3, no. 10, pp. 1–5,
2013.

[9] S. H. Aboutorabiª, M. Rezapour, M. Moradi, and N. Ghadiri, “Performance
evaluation of sql and mongodb databases for big e-commerce data,” in 2015 In-
ternational Symposium on Computer Science and Software Engineering (CSSE),
IEEE, 2015, pp. 1–7.

[10] S. Chickerur, A. Goudar, and A. Kinnerkar, “Comparison of relational database
with document-oriented database (mongodb) for big data applications,” in
2015 8th International Conference on Advanced Software Engineering & Its
Applications (ASEA), IEEE, 2015, pp. 41–47.

[11] C. Győrödi, R. Győrödi, G. Pecherle, and A. Olah, “A comparative study:
Mongodb vs. mysql,” in 2015 13th International Conference on Engineering
of Modern Electric Systems (EMES), IEEE, 2015, pp. 1–6.

43

[12] M.-G. Jung, S.-A. Youn, J. Bae, and Y.-L. Choi, “A study on data input and
output performance comparison of mongodb and postgresql in the big data
environment,” in 2015 8th International Conference on Database Theory and
Application (DTA), IEEE, 2015, pp. 14–17.

[13] J. Pokorn, “Database technologies in the world of big data,” in Proceedings
of the 16th International Conference on Computer Systems and Technologies,
2015, pp. 1–12.

[14] E. Andersson and Z. Berggren, A comparison between mongodb and mysql
document store considering performance, 2017.

[15] A. Oussous, F.-Z. Benjelloun, A. A. Lahcen, and S. Belfkih, “Nosql databases
for big data,” International Journal of Big Data Intelligence, vol. 4, no. 3,
pp. 171–185, 2017.

[16] W. Puangsaijai and S. Puntheeranurak, “A comparative study of relational
database and key-value database for big data applications,” in 2017 Interna-
tional Electrical Engineering Congress (iEECON), IEEE, 2017, pp. 1–4.

[17] M. Sharma, V. D. Sharma, and M. M. Bundele, “Performance analysis of
rdbms and no sql databases: Postgresql, mongodb and neo4j,” in 2018 3rd
International Conference and Workshops on Recent Advances and Innovations
in Engineering (ICRAIE), IEEE, 2018, pp. 1–5.

[18] M. Karimi, “Benchmarking of rdbms and nosql performance on unstructured
data,” Ph.D. dissertation, 2019.

[19] A. Makris, K. Tserpes, G. Spiliopoulos, and D. Anagnostopoulos, “Perfor-
mance evaluation of mongodb and postgresql for spatio-temporal data.,” in
EDBT/ICDT Workshops, 2019.

[20] B. S. Shetty and K. Akshay, “Performance analysis of queries in rdbms vs
nosql,” in 2019 2nd International Conference on Intelligent Computing, In-
strumentation and Control Technologies (ICICICT), IEEE, vol. 1, 2019, pp. 1283–
1286.

44

	Declaration
	Approval
	Ethics Statement
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Research Problem
	Research Objectives

	Literature Review
	Methodology
	Experiment Model Design
	Implementation
	Data Creation Process
	Query Execution Process

	Analysis
	INSERT OPERATION
	SIMPLE SELECT OPERATION
	COMPLEX SELECT JOIN OPERATION
	VERY COMPLEX SELECT JOIN OPERATION
	UPDATE OPERATION
	DELETE OPERATION

	Comparison
	SIMPLE SELECT OPERATION AND COMPLEX SELECT OPERATION COMPASION
	SIMPLE SELECT OPERATION AND VERY COMPLEX SELECT OPERATION COMPASION
	RESULT ANALYSIS

	Conclusion
	Future Works
	Bibliography

