
Mitigating DDoS Attacks Using a
Resource Sharing Network

by

Farabi Fardin Khan
17101136

Nafis Mohaimin Hossain
17101133

Toushif Mahmud
17101128

Sad Bin Anwar
21341041

Sirajul Islam
17101467

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
October 2021

© 2021. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Farabi Fardin Khan
17101136

Nafis Mohaimin Hossain
17101133

Toushif Mahmud
17101128

Sad Bin Anwar
21341041

Sirajul Islam
17101467

i

Approval
The thesis titled “Mitigating DDoS Attacks Using a Resource Sharing Network ”
submitted by

1. Farabi Fardin Khan(17101136)

2. Nafis Mohaimin Hossain(17101133)

3. Toushif Mahmud(17101128)

4. Sad Bin Anwar (21341041)

5. Sirajul Islam(17101467)

Of Summer,2021 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science on October2,2021 .

Examining Committee:

Supervisor:
(Member)

Ms.Jannatun Noor Mukta
Lecturer

Department of Computer Science and Engineering
Brac University

Thesis Coordinator:
(Member)

Md.Golam Rabiul Alam,PhD
Associate Professor

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

ii

Ethics Statement
Whatever result we have found from this thesis is purely our original work. We have
read several papers, journals, and articles to help increase our knowledge on the
topic but the findings and analysis are our own work. Materials from other sources
have been properly cited in this thesis.

iii

Abstract
Cloud computing is crucial to the internet just as air is crucial to breathing. Most
users do not even come to think how the cloud architecture is one of the giant pillars
on which the entire internet and all its related services depend. In recent times, cloud
computing has gained noticeable popularity due to its ability to radically improve
computing power through the application of virtual machines. In this era of the
internet, however, security threats are increasing and it costs many businesses. The
seemingly legitimate traffic of these application-level attacks renders the previous
detection and mitigation methods ineffective. These cyber-attacks have grown ever
so sophisticated and the detection and mitigation of these attacks have become
one of the major concerns of security researchers and cloud service providers all
around the globe. In our paper, we are trying to analyze existing research and
implementation of the cloud architecture. This analysis will give us insight into
the core mechanisms of the cloud architecture and DDoS attacks. Furthermore, we
will apply this understanding of ours to design and build an universal mitigation
technique for DDoS attacks. An universal solution that works for all scenarios, may
take at least a few dozen developers working years on end to develop. Therefore,
the goal of this paper will be to lay the foundation on which one day the universal
solution may be created.

Keywords: DDoS; Attack; Detection; Network; Server; Mitigation,System, Re-
questes, Time.

iv

Dedication
To our parents, we dedicate our thesis. Because of their unending support, love, and
encouragement, we are inspired. Above all, we owe our parents’ love and support to
them. We will continue to draw from both of you for the strength and courage you
both gave me as we strive to reach for the heights and chase our ambitions. Thank
our brother and sister too.

v

Acknowledgement
Firstly, all praise to the Great Allah for whom our thesis have been completed with-
out any major interruption.
Secondly, to our advisor Ms. Jannatun Noor Mukta madam for her kind support
and advice in our work. We really want to thank her for being an incredible listener.

vi

Table of Contents

Declaration i

Approval ii

Ethics Statement iii

Abstract iv

Dedication v

Acknowledgment vi

Table of Contents vii

List of Figures ix

List of Tables x

Nomenclature xi

1 Introduction 1
1.1 Introduction . 1
1.2 Background . 2
1.3 Problem Statement . 2
1.4 Research Objective . 3

2 Related Work 4
2.1 Literature Review . 4

3 Methodology 10
3.1 Methodology of our research: . 10
3.2 Methodological analysis of previous research: 10

3.2.1 SCEF . 10
3.2.2 Hadec . 11
3.2.3 Low Rate Detection . 11
3.2.4 Assymetric DDoS detection Using Finelame 11

3.3 Implementing previous research and their drawbacks: 12
3.4 Summary of drawbacks of existing security measures: 12
3.5 Our proposal: . 13
3.6 Methodology of our system: . 14

vii

4 System Design 16
4.1 System design of previous systems . 16

4.1.1 DDoS Detection by deep learning 16
4.1.2 Hadec: Hadoop based DDoS Detection 17
4.1.3 Low-Rate DDoS Detection Based on Factorization Machine . 17
4.1.4 Detecting Asymmetric Application-layer DDoS Attacks In-

Flight with FineLame . 19
4.1.5 Machine Learning DDoS Detection for Consumer Internet of

Things Devices . 19
4.1.6 SCEF: A Model for Prevention of DDoS Attacks From the

Cloud . 19
4.1.7 Detection and Mitigation of DDOS Attack on SDN Con-

trollers using Deep Learning 20
4.2 Introduction of our System Design 21

4.2.1 Description of the system . 22
4.2.2 Detection used by us . 23
4.2.3 Configuration of VM . 23
4.2.4 Configuration of Nginx . 24
4.2.5 Topology of our network . 24
4.2.6 Details of the demo site . 25

5 Tools and Components 26
5.1 Virtual Machines(VM) . 26

5.1.1 Virtual Machines simulation 27
5.1.2 Description of Virtual Machines used in our tests 27

5.2 JMeter . 28
5.2.1 Jmeter in our testing . 28

5.3 Operating Systems used for testings 28
5.3.1 Significance of Linux distributions in tests 29

5.4 NGINX . 29
5.4.1 Uses of NGINX . 29
5.4.2 Utilization of NGINX in our tests 30

5.5 Docker . 31
5.5.1 Uses of docker . 32

6 Testing and Result 33
6.1 Phase 1 (Testing the tools) . 33
6.2 Phase 2 (Live detecting, Traffic handler testing) 37
6.3 Phase 3 (Testing response time of websites using our network) 39

6.3.1 Analysis of findings . 40

7 Conclusion 41
7.1 Future work . 41

Bibliography 44

viii

List of Figures

1.1 DDoS attack . 3

3.1 Visualization of data Flow in our System 14
3.2 Target Machine Algorithm . 15

4.1 Http get attack . 22
4.2 Nginx Code . 24
4.3 nginx in mesh topology . 24

5.1 KVM vs VM . 27
5.2 Mesh Topology with Nginx . 30
5.3 nginx least connected method . 31

6.1 Graphical comparison of final tests on all three websites 39
6.2 Testing Result comparison . 40

ix

List of Tables

5.1 Summary of most used tools in the tests and network creation. 32

6.1 Summary of 100 users per sec(1st website) 35
6.2 Summary of 500 users per sec(1st website) 35
6.3 Summary of 100 users per sec(2nd website) 36
6.4 Summary of 500 users per sec(2nd website) 36
6.5 Summary of 1000 users per sec(2nd website) 36
6.6 Summary of 5000 users per sec(2nd website) 36
6.7 Summary of all UI load tests . 37

x

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

API Application Programming Interface

CSP Cloud Service Provider

DDoS Distributed Denial of Service

DNN Deep Neural Network

FS Feature Selection

HTTP Hypertext Transfer Protocol

KVM Kernal-based Virtual Machine

UI User Interface

VM Virtual Machine

WOA Whale Optimization Algorithm

xi

Chapter 1

Introduction

1.1 Introduction
The advent of knowledge and communication technologies and increasing accessibil-
ity to the net, the net becomes a target for varied kinds of DDOS attacks. Moreover,
DDOS attacks can totally down the servers, and users become unable to use the
server. The primary objective of this attack is to totally destroy server resources for
example memory, sockets, metrics, etc. As a result, the server becomes inaccessible
to the users. Over the years, many major companies has hit by DDoS and infras-
tructures of internet, feat necessary losses in credits. One in every of the primary
major DDoS flooding attacks that created their services offline for regarding two.
The reason DDoS attacks keep a significant threat even once such tons of years is
as a result of they have matured and progressed over the years. The attacks at first
relied on victimization distorted packets or flooding with network layer packets in
the device. As a result of the architecture became tons a lot of refined and defenses
at the network layer became tons a lot of study against these attacks, attackers
enraptured on to the application layer. DDoS attacks at the application layer have
been on the increase for some years.

The complexities of DDoS attacks at the application layer are expected to grow over
time. Application layer attacks give a lot of refined versions of DDoS attacks within
the sense that they’re rather more the same as traditional user traffic and therefore
cause a significant challenge in however they will be known. The attacks are applied
to victimization legitimate user requests, which rule out the chance of inspecting
a packet to label it as malicious or not. As a result, each network-layer defenses
and a few of the prevailing internet Application Firewalls (WAFs) fail to sight these
attacks. The actual fact that these attacks are dead victimization multiple protocols
at the applying layer, each association familiarized and connection-less compounds
the danger. To detect DDOS attacks there are many ways and most of them are
very pricey. In this paper, we propose a way to detect DDoS attacks and in that
method, we can handle DDoS attacks. We use some filtering method to track the
IP addresses and after that,the unnecessary IP requests send to the proxy server
and the unwanted IP packet request will be deleted thereby memory management
system. In this way, DDoS can be detected with less cost.This paper is based on the
ground values to detect Denial of Service attacks and mitigating it with a minimum
cost:

1

• We tried various storage and hosting services through driver storage of our
home devices as well as various premium cloud service providers. By this, we
tried to get the idea of storage hosting services.

• We tried analyzing tools to focus on certain attacks and extract valuable data
from them. Such analysis helps to move towards our goal, which is maneuver-
ing the number of requests in a server.

• A network of shared computing resources also assisted us to tackle unwanted
demands. These processes also have their margins, our tests are not performed
in a perspective of a massive amount of traffic a regular host/server is used
to.

1.2 Background
In the time period of the web, DDoS attacks failed to get enough attention and
it had been a not severe threat. In 1996, the primary DDoS attacks occurred in
Panix[29], Panix was knocked by an SYN flood[29]. GitHub, a preferred online code
management service employed by several developers was hit with the biggest ever
DDoS attack. The platform was accustomed to high levels of traffic however what
it had been not ready for was the huge flow of traffic that beat at a record-breaking
one.3 terabits per second. The GitHub attack failed to involve botnets however
instead used a way referred to as Memcached an info-catching system accustomed
to speed up websites and networks.[17]. In 2020 the AWS was hit by a big DDoS
attack[29][11]. it had been the foremost extreme DDoS attack ever [29][11]. The
spectacular part of the attack was the AWS got to strike a pair of.3 terabytes per
second and it lasted for three days. Moreover, Government websites are generally
targets of such attacks, and conjointly the inspiration is typically policy disagree-
ments between the govt. and conjointly the attackers. Next, in keeping with Cisco,
the entire variety of DDoS attacks have seen around seven.9 billion in 2018 and it’ll
be doubled one thing over fifteen million at intervals 2023[12] . as a result of around
2023, the number of web users is going to be 5.3 billion [12]. These DDoS attacks
bare the inherent at intervals the govt infrastructure and conjointly the shortage
of security measures in place. Banking and e-commerce sites are prime targets for
DDoS attacks. Moreover, in 2016 the biggest DDoS attack was directed at force unit
a serious DNS supplier in Oct 2016 [12]. The attack was massively tumultuous and
brought down the websites of over eighty of its customers together with amazon,
Netflix, Airbnb, Spotify, Twitter, PayPal and Reddit employing malware known as
Mirai hackers created an enormous botnet of a hundred thousand webs of things.

1.3 Problem Statement
DDoS attacks can disrupt the proper functioning of websites, servers, and any other
web services. Usually, it temporarily suspends the hosting servers/website but per-
manent unavailability’s are also there. It is hard to detect DDoS attacks when they
happen simultaneously. A huge amount of time and money is lost for Denial of Ser-
vices every year around the globe. The dependency of e-commerce in the world can
not be compared, disruption to it brings suffering to both consumer and producer.

2

The server downtime for just an hour can make a vast impact on the earnings of a
company. Legitimate users have been suffering the most from these attacks. As we
enter a new era, the implementation of advanced sciences is visual. In order to im-
prove efficiency, it is vital to have a comprehensive understanding of the application
of new technology.

1.4 Research Objective
This report is based on the ground values to detect Denial of Service attacks and
mitigating it with a minimum cost. The detection of such attacks is difficult to
measure let alone diminish. Many renowned Cloud Computing companies have
their own secured network designs. We tried various storage and hosting services
through driver storage of our home devices as well as various premium cloud service
providers. By this, we tried to get the idea of storage hosting services. But, this
was the very beginning of our experience. It requires certain tools to load test the
number of services a website/server can provide. We tried analyzing tools to focus
on certain attacks and extract valuable data from them. Such analysis helps to
move towards our goal, which is maneuvering the number of requests in a server. A
network of shared computing resources also assisted us to tackle unwanted demands.
These processes also have their margins, our tests are not performed in a perspective
of a massive amount of traffic a regular host/server is used to.

Figure 1.1: DDoS attack

3

Chapter 2

Related Work

2.1 Literature Review
Hoai Viet Nguyen and Luigi Lo Iacono in their paper [12]. talked about the new
system of web store attacks. They proposed a model which inducing an error on the
main server that was not recognized by the intermediary caching system, the cache
has been tainted by the page created by the server and is programmed to give this
meaningless rather than the content one planned. Therefore, rendering the victim
service inaccessible. They gathered the default HTTP request header limitations
used by various HTTP engines and caching systems in an exploratory investigation.
They also experiment with the Feasibility of HMC attacks, HHO attacks. Finally,
they described three specific CPDoS attack types driven by inconsistencies in the
HTTP method override header, header size constraints, and metacharacter parsing.

Next, In this paper [18], the author presented LUCID which was a viable, lightweight
deep learning DDoS detection solution that uses Convolutional Neural Networks
(CNNs) to identify as far as traffic flows go, this might be classified as harmful
or benign. They suggested a DL-based identification construction that uses CNNs
to have a better understanding of with minimal processing overhead and attack
detection time, DDoS and benign traffic flows may be detected quickly in online
resource-constrained scenarios.

De Assis, M. V. O., Novaes, M. P., Zerbini, C. B., Carvalho in their paper [5] pre-
sented an online protection model into the SDN network to reduce DDoS attacks.
MLP-DS, PSO-DS, and Wave Detect are three ways of acting on the detecting mod-
ule that they present. Their first one needed the data from the past and then it
is supervised while the other two ways remain unsupervised. They explained in
their paper that the MLP-DS can easily catch the anomaly whereas the other two
approaches collect the information to mitigate the correct attacks. Finally, they
put their method to the test using Data on IP traffic and that was generated. by
the Mininet network emulator and a floodlight controller and found that the given
mechanism of defense performed well in both detection and mitigation processes.

Additionally, In this paper [22], they Attempt to find new ways to combat DDoS as-
saults in cloud settings based on containers. They used new methods which are based
on a mathematical model. This model mainly surveys the pros and cons of their

4

proposed model and from the feedback, they can develop their model more sharply.
dynamic DDoS mitigation solution that may dynamically manage the number of
container instances serving different customers while also coordinating to maximize
service quality, resources should be allocated to these instances. In the end, through
simulations and test bed-based trials, their research confirms the strategy’s validity
where they find their experiment output is very much positive to detect the low rate
attacks by using a small number of resources.

The author of[16], performed a systematic model that is in a sliced directory, invert
the directory’s Show that the directory may be utilized to bootstrap conflict-based
cache attacks on the last-level cache in a non-inclusive cache hierarchy. After that,
they showed two attacks on this hierarchy system where one is named prime plus
probe attack. It works in state-of-the-art non-inclusive sliced caches like Skylake-X
without requiring the victim and attacker to share cores or virtual memory. The
second attack is a unique, high-bandwidth Evict plus Reload assault that makes use
of a multi-threaded opponent to get around non-inclusive cache replacement restric-
tions. Finally, a new system was developed which detects the cache lines from the
visible slice and the non-inclusive LLC.

The author of this study [9] gives an overview of DDoS attacks and REDUCE so-
lutions in the cloud computing domain. They discovered that a DoS attack is the
most common type of DDoS assault in the cloud. They proposed three ways to solve
this problem. When compared to traditional DDoS solutions, multilevel solutions
particularly created for the cloud and their characteristics will undoubtedly perform
better than they show in their paper. Finally, they set up a model which is named
a multi-layer that can test the attack and provide a successful assessment for this
attack. This study was done in a private cloud environment utilizing Tor Hammer
as an attacking tool and an Intrusion Detection System to build a fresh dataset.
Various methods based on machine learning are employed in this project: like for
classification, Support Vector Machine, Naive Bayes, and Random Forest are used
and Support Vector Machine, Random Forest, and Naive Bayes, respectively, had
an overall accuracy of 99.7.

Wani, A. R., Rana, Q. P., Saxena, U., and Pandey, N. in their paper[15] per-
formed a dataset and a class which is respectively nine and four. Support Vector
Machine, Naive Bayes, and Random Forest where the data was analyzed using
machine-learning algorithms. They have seen the SVM system provide prominent
rightness among the others and Because of its strong performance, the SVM model
was utilized for intrusion detection. Finally, they talked about resolving the problem
of this attack as the uses of this are growing so fast and this attack is carried out
by the transmission of a flood of bogus request packets so it is hard to find out the
source of these attacks.

In another paper [21], the author proposed a cloud computing context, which was a
machine learning-based solution that has been developed to identify DDoS problems.
The system was designed using voting extreme learning machines as a classifier. It
detects the attack by using numerous extreme learning machines at the same time.
Firstly, they examined the VELM’s ELMs that are all trained on the same dataset

5

which computes the result. If the majority of votes are for the attack, the sample is
classified as an attack sample; otherwise, it is classified as a normal sample. Finally,
they found that their proposed system showed a greater positive result. The Vari-
able system characteristics were used to undertake a complete study of performance.

In a research paper[13], the author deals with potentially harmful distributed denial-
of-service attacks and they talked about possibly making the production site useless
by flooding the server network with malicious code which might send thousands of
malicious requests to the server, or the service might be brought down by exploiting
software flaws. Then the researchers evaluated the system to resolve these DDoS
attacks. First one names egress and ingress which prevents the attack in the cloud
by using the system of NEIF. Whereas the other one is honeypots which can take
the attacks and can store the attacks behaviors. Because each field has its own set
of dangers, each methodology may be improved further.

Gupta, B.B., Badve, O.P. in their paper[1], gives an overview of DoS attacks, dis-
tributed DoS assaults, and various protective techniques, ideas, and devices that
may be used in a Cloud setting. In the cloud environment, legitimate packets and
illegitimate packets should know very well. They claimed that there are many differ-
ent types of DoS attacks as a result there is no one-size-fits-all solution to detect this
problem. According to them, these defense mechanisms are based on two factors.
The first one is the place where this tool has happened and the other is the time of
this system. Furthermore, the Author discusses the IP traceback mechanism in this
way we can find the true source of the attack. After that, the author discusses the
management info base where by analyzing the info it can conclude the destination
of attack. After that, the packets are being marked and It features a dynamic tech-
nique for filtering the traffic of attackers. This filtering gets the IP from the stored
data and it gets through the end station. In their paper, the author talks about the
system but When the amount of the attacker’s traffic rises, the filtering mechanism
becomes ineffective.

In this paper[1], the dynamic detection method is described. This approach is used
on edge routers that are close to the victim’s location. They also explain how to
detect DDOS attacks at several levels. To identify DDOS attacks, neural networks
and data mining techniques are described which require shorter memory by getting
the speedy detection.

Zerki, Kafahali, Aboutabit, and Saadi in their paper[3], talk about the main methods
triggering a DDoS attack, economic/financial gain, cyber warfare, intellectual Chal-
lenge, and ideological belief. The authors suggested DDoS detection that is both
quicker and more accurate, Using the C4.5 algorithm and a decision tree methodol-
ogy, which works by eliminating redundant packets in a particular format. In their
paper, it proposes a model of Low computing cost, quicker observation rate, net-
work DDoS detection in a Cloud context, scalability, low false positives, and false
negatives, and high validity of the data. To provide high detection precision, they
coupled their approach with signature detection techniques.

Kriti Bhushan and B. B. Gupta mention in their paper [4], SDN has a number of key

6

characteristics that make it an ideal networking solution for cloud computing. In
this SDN architecture, they briefly discuss models of OpenFlow, OpenFlow switch,
SDN-based cloud, Security challenges in the system cloud, and attack detection de-
fense in the selected cloud. They also describe the Using of a queuing mathematical
model based on theory and then calculate the flow table-space of a switch. This
gives them the ideas to solve this selected problem. Moreover, in their paper, they
proposed a model named novel flow table which can detect the attack ion the SDN-
based cloud. They explain that restricting the dimensions of flow tables is the root
cause of flow table overloading DDoS assaults in SDN. They also devised a flow
table sharing strategy to solve the problem of insufficient flow table space.

Kesavamoorthy and Soundar in their paper[8], talk about a novel approach It sug-
gests detecting and defending Using autonomous multi-agent systems to defend
against DDoS assaults and to communicate effectively, the agents employ parti-
cle swarm optimization. They explained a common thought which is to detect the
attacks and by cooperating among them it is updated the agent. The coordinator
agent examines their situation utilizing the entropy and covariance approaches to
look for flaws to detect the problem. The suggested technology in the cloud platform
as a consequence may effectively block various types of DDoS attacks.

Other author in their paper [14], talk about the different kinds of DDoS problems
and talk about the outcome of these problems. In this paper, they tried to solve
issues like Approaches to prevention, detection, and mitigation. They gathered a
variety of approaches and It allows a susceptible server to continue serving requests
at the same rate. They bring attention to something. Cloud multi-tenancy for ef-
ficient hardware Another cloud computing difficulty that requires consideration is
the appropriate usage of powerful servers and multi-tenancy. Finally, they point out
the software network which helps them to reduce the problem with the help of both
cloud and topology. This aids the survey’s analysis of the benefits and drawbacks
of various assaults and their remedies.

Gaurav, Manoj, Dheeraj, Mauro, and Rajkumar in their paper [2], provide a thor-
ough examination of the characterization, prevention, detection, and mitigation
techniques of DDoS attacks. To mitigate these attacks, they describe Some of the
important criteria of the required solution are precise auto-scaling choices, multi-
layer mitigation, and protection leveraging extensive cloud resources. They also
show when compared to traditional DDoS solutions, multilayer solutions are par-
ticularly created for the cloud and their characteristics will undoubtedly perform
better. The authors finalize stating, guideline-based solutions for multi-layer solu-
tions can be checked for efficient assessment of their cloud infrastructure.

In another paper, the authors talk about the victimization Moving Target Defense
[19], the researchers projected a DDoS traffic mitigation framework that is given to
support the Cloud-Fog Platform victimization the MTD technique (CFPM). CFPM
applies the migration MTD technique at the fog layer to mitigate DDoS attacks
within the cloud. It detects attackers among all the legitimate shoppers proactively
at the fog layer and isolates it from regular shoppers. Finally, they use CFPM that
has good request processing methods for load equalization and assailant segregation

7

procedure that aims to attenuate interruptions to cloud servers also as serving fog
servers. What is more, within the paper.

This paper focuses on the mechanism for low-rate [25] DDoS problems and the
author then offers a DDoS attack with many features and a Factorization Machine-
based detection technique. The information gleaned from the flow rules is utilized
so DDoS attacks with a low rate of occurrence can be detected and then the use
of FM machine learning techniques to identify low-rate DDoS attacks has been de-
ployed. This paper also got their experimental result which shows that the approach
detects low-rate DDoS attacks on the SDN data layer well, and the maximum level
of detecting accuracy is achieved. Finally, this research suggests a technique of
protection based on the Deletes flow rules dynamically and performs experiments
to demonstrate the efficiency of the defensive method, simulation and analysis are
used, and the success rate of forwarding normal packets reaches the top.

Shidaganti, Inamdar, Indhuja V. Rai in their paper proposed a system known as
SCEF: A model for a bar of DDOS attacks[24] from the cloud, the authors projected
a system known as SCEF, wherever the systems check the network is vulnerable or
not. The author likes Wireshark and dynamic thresholds for police investigation of
the packets. The authors have shown the simulation of protocol SYN flood, DNS
reflection, SSH Brute Force attacks, and ICMP flood attacks. The simulation will
scale back the victim VM.

In another paper, the researcher observes DDOS attacks, and also the value is low in
distinction, within the paper, police investigation uneven application-layer DoS At-
tacks with the use of FINELAME [10], authors introduced a language-independent
framework known as “Finelame” to observe uneven DoS attacks. If a low-level re-
source is required to cause a considerably higher level of failure of a system that’s
known as an associate uneven attack. They collected knowledge to coach a model
that utilizes every and each individual request for a period of time. Then resource
monitors use the model parameters to catch sinning requests in the time period,
keeping with resource allocation.

Some researchers talked about the internet of things matter [6], they claimed the
data number is increasing on a daily basis as a result they proposed a new system
to detect this problem automated. In their paper, they show that by implement-
ing IoT-specific network characteristics which have a selected number of starting
times and the duration time between the passing packets. by using these results
the problem of the attack can be measured. These findings suggest that residential
gateway routers are useful Other network middle boxes might identify local traffic
automatically and flow-based and protocol-independent traffic data.

In another paper[7], the authors propose a detection framework to tackle the efficient
analysis of flooding DoS attacks by using tools like MapReduce and HDFS. The au-
thor enforced a counter-based DDoS detection rule for major flooding attacks such
as, TCP-SYN, HTTP GET, UDP, and ICMP in MapReduce, which is made up of
map and scale back functions. The framework is totally automatic, tracing the logs,
sending them to the Hadoop detection cluster for starting the detection mechani-

8

cally. This system consists of major phases and that they square measure Network
traffic analysis and log generation, log transfer, DDOS detection, and finally, giving
an output of results based on this information. Every part of the above mentioned
phases is enforced as different parts that communicate with one another to per-
form their appointed task. Traffic capturing and log generation square measures are
handled at the detection server and DDoS detection and result notification square
measures are performed by the detection system. Log transfer is handled through
internet services. The author uses the T-shark library to capture live network traffic.

In this paper, the authors[27] performed three methods which are the complication
of the neural network. Another one is deep learning which is mainly a dummy and
finally, they talk about the short and long-term memories. In their paper, they show
the probability and the ability of their methods to reduce the attacks. The act of
their proposed system is judged on the basis of the accurate rate, recollection of
the data, and the original anti-positive amount. Moreover, this paper focuses on
flood assaults against the controller using TCP, UDP, and ICMP and they contrast
between machine learning and deep learning. The authors find out the RNN LSTM
which is given the best result to detect the attacks among all the detection methods.
Finally, they show the split percentages of their models which are the most.

The purpose of this study is to detect attack traffic[23] by focusing on the SDN’s
centralized control feature as the control layer in unsafe DDoS attacks. The re-
searcher found that for identifying malicious traffic in the SDN area, multiple ma-
chine learning approaches are being used for these reasons It’s difficult to choose
relevant characteristics and accurate classifiers for attack detection. For better de-
tection accuracy, in this work, kernel principal component analysis combined with
genetic methods aids the Support Vector Machine. The authors proposed an SVM
model and KPCA which is used for reducing the dimension of feature vectors and
GA which is used for optimizing different SVM parameters. An improved kernel
function is presented to decrease the noise produced by feature difference. The find-
ings of the experiments reveal that, when compared to a single-SVM model, the
suggested model exhibits greater generalization and classification accuracy. Fur-
thermore, the suggested model may be implemented inside the controller to build
security rules that would restrict attackers from launching attacks.

In this paper, the author[20] suggests that the ISP implement a dynamic learning
system. The dynamic learning system is a complete autoencoder-based unsupervised
ensemble model to separate the attack. This CA always gets the attack whereas the
autoencoder can work only when the CA is active. When the expected quantity of
regular IP addresses has been exhausted The CA switches the IP address classes for
50 percent of the total IP addresses.

9

Chapter 3

Methodology

In this section, we will go through the methods or in other words, the procedural
steps which were undertaken by us from the beginning of our research as well as the
steps that followed. We will also be analyzing some methodologies of existing DDoS
mitigation techniques, which has refined our understanding. Analyzing previous
methodologies of DDoS mitigation will unfold our motivations towards the actions
that were performed. Also, it will help to understand the paths not taken by us. It
is noteworthy that this sort of comparative analysis is what helped us to get to the
point we are now, hence its significance.

3.1 Methodology of our research:
The first step is very straightforward and simple. We went through papers of existing
research on DDoS mitigation and we looked into the future works put forward by
the respective authors. We looked at the cost-benefit ratio of these solutions and
selected mitigation to work on which increases the benefits of the cost-benefit ratio.
At the same time, it was in the back of our head that the finalized solution has to
solve a wide range of problems.

3.2 Methodological analysis of previous research:

3.2.1 SCEF
The methods employed by the researchers were to implement a monitor VM in a
network of VMs to collect and monitor network traffic in and out of the VMs[24].
Until there was no attack detected, the component that was responsible for the mit-
igation was not activated and the system is seemingly invisible. When an attack
was detected, the mitigation method consisted of taking two parameters as input to
detect the source of the attack and the victim VM.

The threat neutralization method employed isolating the victim VMs. Once isolated
the victim VM could not be used as a zombie VM in a botnet. Also the mitigation
method uses different techniques for mitigating different kinds of attacks. In such
an attack named DNS reflection attack, the mitigation method includes taking the
source IP, which causes a security issue. Furthermore, this issue has not been solved
by the authors.

10

3.2.2 Hadec
The first step is capturing the live traffic using MapReduce. The traffic log file is
then sent to their own HDFS storage where this log file is analyzed[7]. T-shark open
source library is used here to analyze the log file to target the foul requests among
the log file. After that the Hadoop cluster deletes the malicious requests from the
log file. This is how their framework works.

This method of detection does not always work in the case of low-rate DDoS attacks.
The MapReduce function takes more time than usual to send notifications to the
other two components in case of low-rate DDoS attacks. And as the volume of the
traffic climbs higher, the detection rate drops. As well as the time to detect becomes
less efficient.

3.2.3 Low Rate Detection
FM algorithm, a defense methodology supported dynamic detection of flow rules.
Firstly, in an extreme system, low-rate attacks against the knowledge layer, though
DoS attacks are also distributed invisibly victimization low-rate data[25]. It is in
charge of constructing packets to forward rules for the entire network. Each animal
sends the identical packet to the switch with the real address. The flow rule is the
map to the switch once it gets a replacement packet.

Secondly, in feature extension of low-rate attacks in software distributed network,
the target of low-rate DDoS attacks on the data layer in SDN or software distributed
network is to run through the flow table resources, Over the duration of time, the
flow rule refers to the number of packets that are matched to the complete kind of
packets. As a result of the attacking flow, the rule ought to be constantly matched
in an extremely low-rate DDoS attack against the knowledge layer.

Thirdly, DDoS attacks detection supported FM, here the feature combination tech-
nique is developed throughout this study using the FM methodology to work out the
correlation between each feature sample, resulting in a great deal of actual featuring
samples being used to updating parameters, enhancing the detection rate, funda-
mental quantity detection of attacking flow rules, and provides dependable criteria
for defending against low-rate. Next, a defense methodology supported dynamic
detection of flow rules, this analysis provides a defensive strategy for dynamically
removing flow rules, that would be a defensive mechanism against DDoS attacks at
the knowledge layer, based on this theoretical foundation. This method can’t tell
the difference between genuine and malicious communications. Moreover, Malicious
traffic cannot be eliminated and the address of this attack is hard to find out. As a
result, this is not that much effective to detect the mitigation.

3.2.4 Assymetric DDoS detection Using Finelame
If a low-level resource is needed to cause a significantly higher level of failure of a
system that is called an asymmetric attack. The authors, introduced a language-
independent framework called “Finelame” to detect asymmetric DDoS attacks. Their
framework Finelame uses three components to detect DDos attacks. It’s made for

11

communicating with modern distributed systems, runs orders of magnitude faster
than previous techniques, and can detect attacks on an application that haven’t
been seen before.They collected knowledge to coach a model that utilizes every and
each individual request for a period of time. Then resource monitors use the model
parameters to catch sinning requests in the time period, keeping with resource al-
location. The framework is less optimized than the two battle-tested Apache and
Node.js.

3.3 Implementing previous research and their draw-
backs:

e are simulating DDoS attacks, testing the tools we’re using to simulate these at-
tacks, testing the servers and various web building technologies to find the best
suited from these for our tests as well as finding the standards against which to
measure these. These have been explained in detail in the testing and analysis sec-
tion of our paper. After the analysis of the effects of these test attacks on various
types of databases, our focus is narrowed down. Furthermore, the methodological
analysis of previous systems helps us to be more confident in our approach.

There are many DDoS detection and defense mechanisms which claim to filter out
the malicious requests from the legitimate requests but this mechanism is not full
proof. Zhijun, Qing, Jingjie, Meng, Liang in their paper[10] mentions that their
mitigation method cannot always distinguish between legitimate and malicious traf-
fic. This can cause a drop in user experience which leaves a huge impact on any
company. The system Hadec[7] can not detect slow-rate DDoS attacks in its live
detection method. Shidaganti, Inamdar, Rai, Rajeev’s paper[24] comes up with a
solution that deals with a wide range of application layer DDoS attacks. Yet it raises
a security problem of its own while tackling the DNS reflection attack.

3.4 Summary of drawbacks of existing security
measures:

As discussed previously, a typical DDoS attack will send multiple simultaneous re-
quests to a server, which generally seems legitimate to the server. The servers are
overwhelmed with these sorts of requests when finally, it reaches its peak capacity
and finally crashes. Recent history of large-scale DDoS attacks has taught us that no
matter the capacity of the server, it can be overwhelmed. In 2020 alone, two of the
giants of the cloud computing industry, Google and AWS have been under attack
by large scale DDoS attacks[17]This goes to show that DDoS attacks can victimize
even those most prepared to neutralize it. Moreover, the most successful DDoS de-
fense services providers use their large capacity of servers to distribute the load of
requests to handle malicious requests which can not be filtered but these companies
charge a lot of money for their services because creating such a network of servers
costs a lot of investment in infrastructure. In addition, these defense mechanisms
do not always work as expected. In short, there are many filtering, detection and
defense mechanisms which work to some extent but they do not always work.

12

In 2018, GitHub was under attack by one of the largest DDoS attacks in history
[17]. Specialists say that GitHub had already implemented many defense strategies
that employed mechanisms which could have prevented an attack even 4 or 5 times
larger in volume. The findings methodological analysis is summarized as follows:

• Malicious requests can be filtered to some extent but no filtering method is
100

• The victimization of industry giants prove that a dire need of neutralizing the
threat at the very core is desperately needed.

• DDoS attacks only become a considerable threat when volume of requests per
second topples the target servers computing capacity but the total number of
requests is not always a key threat.

• Finally, an universal solution has to be created with
-Cost-neutrality in mind
-It has to be a large enough eco-system of nodes where each node is inter-

linked
-All the nodes have to support each other once a threat has been detected.

3.5 Our proposal:
Looking at the facts that DDoS attacks are evolving and adapting, made us realize
that we need to combat DDoS attacks at the very core of what makes it danger-
ous. This realization is what led us to look into a universal solution to DDoS attacks.

A universal solution means creating a network which can share the load of DDoS
attacks on any of the nodes of the network, so that any single node can not be
overwhelmed with requests. Finally, this network needs to be monitored and main-
tained by all the nodes of the network which is the only way that such a vast network
can exist. This model increases the cost-benefit ratio in favor of benefits. Also it
combats a wide range of DDoS attacks. Our inspiration for creating this network
came from a project which was used in the research of COVID-19 vaccine. The
project boasts a massive 165,000 nodes, 6.8 million cores and 50,000 GPUs on its
website[28]. These specifications are more than enough to combat the largest DDoS
attacks in history. Our proposal is simply creating a similar network for the pur-
pose of spreading out the number of requests in a large span of time, which may be
the only universal solution of DDoS. Meaning we want to create a network which
spreads out the number of requests once an attack is detected but also employs the
filtering techniques to filter out as many requests as possible.

13

Figure 3.1: Visualization of data Flow in our System

3.6 Methodology of our system:
DDoS attacks are seemingly authentic requests sent by a malicious user for spiteful
purposes. So the point is, these are not viruses which spread in seconds within
contact with a machine but in most cases of DDoS attacks can not do more damage
than taking the server offline for a certain period of time, if not followed up by
another type of cyber attack. From our research, we have drawn the conclusion that
the only way a DDoS attack can cause damage is by using up the target servers’
computing resources. By managing to prevent the target server from receiving all
the requests all at once, we can therefore render all sorts of DDoS attacks useless
and unable to damage the system in any way. The service may slow down for a little
bit but with time, a system can be produced that is developed enough to reduce the
overhead.

It is important to note here, the total number of requests is not always enough
to take down a server. When the number of requests per second climbs beyond the
servers’ capabilities, that is when a server fails. We are aiming to devise a strategy
that takes the load off the server in a way that the number of requests per second is
decreased. In other words, we are not aiming to decrease the overall total number
of requests sent by the attacker. Although, we are using an existing DDoS detection
and filtering technique in our tests. This filters out more obvious malicious requests.
To sum up, our method of combating DDoS is a method that works at the very core
of what makes DDoS attacks dangerous, volume of requests per second.

14

Figure 3.2: Target Machine Algorithm

15

Chapter 4

System Design

System design is mainly describing a system with the help of graphs, flowchart,
model architecture, equation, etc. By system design, we can easily understand how
the system is working and its processes. System design helps us to get the core
knowledge of the system and its components. It also gives the simulation and data
by using those we can assume or predict the result.

In this section firstly we described some of the systems of other authors how they
design their system and also the work method and lastly, we talked about the system
design of our proposed system

4.1 System design of previous systems
We started by analysing the system, individual components of those system and how
the components works for DDoS detection and mitigation thus we came through
some exciting new methods and techniques for tackling DDoS.So we chose some of
the existing papers which are closely related to our proposed topic and started to
analyze their papers and understand what they tried to implement in their work.
After analyzing their system and related components we find some drawbacks in their
system design which can be fatal for security concerns. To handle the drawbacks
and problems of the previous system we required to list the drawback of the system
and thus we thought of implementing a new system of our own that can be a much
more efficient method to handle the drawbacks and DDoS attacks.

4.1.1 DDoS Detection by deep learning
In this paper, the authors tried to implement an IDS-based security mechanism to
automatically notify the administrator about any harmful activity[26]. For that
purpose, a lightweight attack recognition system with a deep learning method is
suggest to arrange simple and attack details. The mechanism consists of a data-
set and algorithm. In the data preparation and prepossessing module min-max
formalization is executed which falls under the concept, transformations that are
linear by portraying the allocated value.
Analyzing Based Whale Optimization Algorithm (shortly FS - WOA) is an algorithm
that can be compared to a whale’s hunting behavior because it selects the best

16

feature sets. Then those feature sets reclaimed from FS-WOA are added as inputs
of the DNN(Deep Neural Network). The output function acts as the output of the
entire system. The final result is set on by reducing the error function getting the
network model. when error reaches its lowest point the network automatically closes
the iteration and starts to protect the sensitive data in the cloud database.
Then that sensitive details acquired from the classified algorithm is saved in the
cloud storage after securing by doing encryption and further prepossessed.The safety
process is done by using homomorphic encryption algorithm. For preventing further
attacks the cloud service provider(CSP) checks all access requests. Upon getting
a request, the CSP asks for the verifying process. If the user gives the correct
information which is required for verifying then the CSP gives access to the iser;
otherwise, it will simply reject the whole process.

4.1.2 Hadec: Hadoop based DDoS Detection
In this paper, the authors work on four major phases for higher results and conjointly
the square of the system measure network traffic capture and generations of log,
transfer of log, half detection of DDOS, and notification of result[7]. Every of the
phases is enforced as separate components that communicate with one another to
perform their own assigned task. Among the initial half, an online interface is
provided by HADEC where the capturing server can be tuned by the admin with
wanted parameters.
Throughout this half, the live detection process starts in operation to capture traffic
networks. The echo class gets the property file from the traffic handler and starts
capturing the live network whenever the admin is completed with configuration.
During the second half (log transfer), once the file of the log is generated, the handler
of the traffic will notify the server for detection and share the information with it
via an online service. There are two interfaces this half capturing server has, one is
for incoming traffic and another one is for human activity to the server of detection.
The detection server in the main works to transfer log data files from native storage
to HDFS.
Moreover, to require care of a healthy storage capability both the servers delete the
precise file from their native storage. Thirdly, their square measures two core com-
ponents which consist of an Apache server. Throughout this technique, Name Node
disjoints the knowledge into identical size big blocks and allocates them among nodes
of the cluster. The method transfers pre-packed codes for nodes to the technique in
parallel.
Finally (in the result notifications), when the method task is finished the result
will save in HDFS, and once the result is notified every input and output folder
square measure progressing to be deleted for higher memory management. r square
measure progressing to be deleted for higher memory management.

4.1.3 Low-Rate DDoS Detection Based on Factorization Ma-
chine

The authors worked supported four system designs and conjointly the systems square
measure low rate DDOS attack, feature extension of attacks in SDN and detection

17

algorithm supported FM, a defense methodology supported dynamic detection of
flow rules[25].
Firstly, in an extreme system, low-rate attacks against the knowledge layer, though
DoS attacks are also distributed invisibly victimization low-rate data. The controller
may well be a robust half in SDN. It is in charge of constructing packets to forward
rules for the entire network. Each animal sends the identical packet to the switch
with the real address. The flow rule is the map to the switch once it gets a replace-
ment packet. Per second, the attackers send out a few dozen packets, but the attack
on the button sends out over thousand packets per second, all with wrong addresses.

Secondly, in feature extension of attack the distributed network, targeted on the
data layer in SDN software distributed network is to run through the flow table
resources, hence this DDOS attack will endlessly transmit packets to occupy the
flow table for a lengthy time. Over the duration of time, the flow rule refers to the
number of packets that are matched to the complete kind of packets. As a result of
the attacking flow, the rule ought to be constantly matched in AN extremely low-
rate DDoS attack against the knowledge layer; the attacking flow rule’s field value
is greater than the legal flow rule’s field value. The DoS attack flow is regular of the
packet delivery interval and somewhat smaller than the timeout, according to the
DDoS attack model provided in the study. The everyday user, on the other hand,
will send several data packets per unit time attributable to their objective needs,
and conjointly the interval between these data packets square measure progressing
to be unpredictable and variable. For this reason, they accept the relative dispersion
for his or her detection feature.

Thirdly, DDOS attacks detection supported FM, here the feature combination tech-
nique is developed throughout this study using the FM methodology to work out the
correlation between each feature sample, resulting in a great deal of actual featuring
samples being used to updating parameters, enhancing the detection rate, funda-
mental quantity detection of attacking flow rules, and provides dependable criteria
for defending against low- rate DDoS attack in software distributed network data
layer. Because each flow entry samples the input sample, this algorithm can also ob-
serve that the attack flow rules are followed precisely, therefore A more fine-grained
DoS attack detection can be carried out. Next, the function has been hashed to the
desired space of order of magnitude and conjointly the work parameters, the rate of
learning. Next, a defense methodology supported dynamic detection of flow rules,
this analysis provides a defensive strategy for dynamically removing flow rules, that
would be a defensive mechanism against DDoS attacks at the knowledge layer, based
on this theoretical foundation.

The strategy relies on police investigation low-rate attacking against the knowledge
layer successfully. The flow rule grouping will continue if it’s reached seconds. If
the timer reaches t seconds, the switch will receive the message of FLOW MOD
with the command to delete all flow rules in SDN, reducing the number of flow rules
among the switch, then clearing the chip and information SDN.

18

4.1.4 Detecting Asymmetric Application-layer DDoS Attacks
In-Flight with FineLame

In this paper, annotations are superimposed by programmers to purpose once a
request is being processed[10]. Even for advanced applications, FineLame entirely
needs a few annotations to properly assign resource usage to requests. A multi-
layer anomaly detection model that learns ancient behavior and detects attacks as
shortly as they depart from it. Request mapping: FINELAME permits programmers
to annotate their applications victimization the three request mapping operations
therefore as for resource monitors to properly assign usage to the textual matter of
invite (start method, attribute request, and processing). Ideally, the annotations
have to be compelled to cowl as much of the code base as possible; however, not all
resource utilization is attributed to 1 request. In such instances, programmers have
a great deal of state in but they map: for true application overhead—rather than
request method overhead—utilization is left unattributed, and for shared overhead,
utilization is divided or delegated stochastically.

4.1.5 Machine Learning DDoS Detection for Consumer In-
ternet of Things Devices

In another paper on Machine Learning DDoS Detection, the author worked on
anomaly detection pipeline, feature engineering, and stateful features. Moreover, the
anomaly detection pipeline has four parts which square measure trafficking capture,
the groups of packets by time and device, extraction of feature, and classification
of binary. In traffic capture, The process of traffic recording is documented at the
availability science address[3].All packets have a timestamp, a port, a destination’s
own IP address, a packet area, and a port. science packets sent from smart home de-
vices. Likewise, in the second half, the IoT device packets square measure separated
by offer science address. By timestamps, each device’s packets are recorded at the
middlebox and separated into non-overlapping time intervals. In the extraction of
features, Stateful and stateless choices square measure individual packets which are
dependent on the domain knowledge behavior. The stateless choices square mea-
sure principally packet header fields, on the hand mixture flow information measures
by the stateful choices over within very little time, requiring restricted memory to
support on-router activity[29]. Moreover, classify- cation of binary, neighbors of
K-nearest, random forests, call trees, vector machines support, and deep neural
networks can differentiate normal traffic from DoS attack trafficking with high pre-
cision. On the alternative hand, IoT devices square measure distinguished by the
limited kind of goals thereupon they convey.

4.1.6 SCEF: A Model for Prevention of DDoS Attacks From
the Cloud

The system model suggested throughout this paper detects associated actions once
an attack is detected. The SCEF system is effectively clear beneath usual conditions
until an associated attack is detected from one or a great deal of VMs[24]. The
system is deployed once the collected knowledge from the detector VM triggers an
alarm that an associate attack is ongoing.

19

Once an associate attack is not detected, network traffic flows swiftly as a result of
it might within the different network. Once an associated attack is detected, the
system filters out the malicious traffic from entering the network, thus protecting
the alternative VMs among the network. And simply just in case, any VM among
the network is already affected by the attack, the system isolates the affected VM
to protect it from being utilized in AN extremely botnet.
The SCEF detects two parameters as input from the VMM for each VM beneath
its control-whether the associate attack is current and conjointly the sort of attack
being performed. The algorithm that drives the SCEF system can be drawn as
for each VM, it receives parameters, whether the associate attack is current and
conjointly the sort of attack. If there is no attack, the packet square measure is
allowed to own. When the system detects the associate attack and conjointly the
attack kind is believed, then the component that works as a result of the mitigation
of a section of that attack is activated. For associate unknown attack kind, the
default mitigation techniques square measure used.
Finally, The SCEF then returns to being transparent. All of these three systems
square measure customary and kind at the very core of the system.

4.1.7 Detection and Mitigation of DDOS Attack on SDN
Controllers using Deep Learning

The author experimented with some parameters for this experience. At each switch,
the number of packets received is counted, Each flow packet is counted, the IP
address of the Source and Destination and the number of packets passed on at each
switch is counted[4].
According to the Author, the network’s regular functioning is constant, which is
the foundation of their anomaly detection and protection mechanism. Moreover,
the detection engine is trained off-device, with the model only being exported and
utilized on the controller. In their research, a Mininet is implemented which consists
of seven switches and eight hosts. Then Flood attacks on TCP, UDP, and ICMP
were simulated. UDP, TCP, and ICMP were the three types of traffic created by
the hping3 program. The first batch of data was categorized as ”usual traffic.” Then
Hping3 was used to produce malicious traffic for different UDP, TCP, and ICMP
floods, which were classified as malicious traffic.
The information obtained was used to create binary classification models using ma-
chine learning models. The following key performance metrics were used to evaluate
each model’s performance: recall, accuracy, true negative rate, and the time spent
detecting and mitigating DDoS attacks. In the study, three possibilities were exam-
ined. In the first case, 80percent of the data was utilized for training purposes, and
the 20percent was used for testing. In the second case, 70percent of the data was
used for training and 30percent for testing. Sixty percent of the data was utilized for
training in the third scenario, while forty percent was used for testing. Finally, they
implemented automatically matching packets based on the detection algorithm’s
output that was used to construct the defensive mechanism.

To summarize, the key drawbacks of system design of the papers discussed above
are:

• Security issues during DNS reflection mitigation due to IP capture. [SCEF]

20

• Can not always accurately differentiate between legitimate and malicious traf-
fic.[Low Rate]

• Not suitable for both volumetric and low-rate DDoS attacks. [Hadoop]

This tells us that these systems are not always successful in detecting and mitigating
DDoS attacks of all sorts. So, it is not that safe to rely on those systems fully because
in real-life scenarios, DDoS attacks may consist of both huge amounts of packets or
a low-rate attack.
With that in mind, we are designing a system which counters all the aforementioned
drawbacks as well as can serve as an universal system for combating DDoS. For this
reason, we are setting up a list of minimum requirements for our system, which
includes:

• Using a hash function to store or capture IPs, if necessary.

• Works for both slow-rate DDoS and volumetric attacks. In other words, it can
combat all forms of DDoS attacks.

• Does not disrupt regular traffic for authentic requests in case the detection
technique does not work.

• Reduces data-redundancy of load balancing.

• No central authority. Network is maintained by all the nodes of the system.
This removes any influence that any single organization may have on the
network and its workings.

4.2 Introduction of our System Design
The system we have designed is based on HTTP request re-routing (Nginx reverse
proxy/Nginx load balancing). In previous research, we have seen that one of the
many traditional DDoS mitigation techniques is using multiple cache servers to bal-
ance the load of the incoming traffic. This mitigation technique causes companies
to invest highly in infrastructure, which would be better spent elsewhere.

Our system is based on the same design with one key difference. The difference
is that, unlike conventional load balancing methods, the HTTP requests will not be
redirected to other servers bought or paid for by the company. This network will
be open to use for everyone starting from an individual to a technological giant.
All the nodes of the network will have to allocate some computing resources which
can be considered an ‘entry fee’ to enter the network. After joining the network,
all the computing resources of all the nodes in the network will be used as a giant
distributed computer.

Whenever any node of the network detects a DDoS attack, all the malicious re-
quests that are sent to that node will be redirected to other nodes of the network.
But no node will be overwhelmed with more requests than it can handle. In other
words, only the amount of computing resources that any node has decided to share
with the network will be used for this purpose.

21

What we are proposing is creating an open-source network that is similar to the
blockchain network but due to time constraints, we are not able to implement it in
an actual blockchain network. So, what we are doing with this system is emulating
the blockchain network using Nginx to show the potential of our proposal.

4.2.1 Description of the system
For this system, we’re using a demo website that will be hosted in localhost using
Nginx. We will be creating multiple VMs (25-500) which will emulate the nodes
in the network. These VMs will be used to redirect traffic during our tests. These
VMs will not hold any data of the actual website but will work as a buffer so that
the actual server from which the website is hosted, does not get more requests than
it can handle.

A DDoS detection method has been installed on this server to detect or initially
filter out the malicious requests. This detection method only filters out requests
which are obvious. In this method, after filtering HTTP requests we use a proxy
server to pass the HTTP request. Note that, only those requests that are very much
similar to authentic requests will be able to pass through this filtering method. After
that, we have used JMeter, Wireshark for detecting HTTP requests. For data col-
lection, we have used the JMeter to gather data and represent it in an MS Excel file
and sort them according to packet count, request count, average response time, and
median response time. By Request tracking, we monitor how many requests have
been received and possibly identify correlations between them. Recently, hackers
are creating HTTP requests that most filtering methods can not filter out. For our
design, we are assuming that is the majority case.

After the initial filtering, if the server is still about to be overwhelmed with more
requests, we are using the ‘least connected’ method which is built-in Nginx, to redi-
rect the requests from the server. To be specific, within the network the nodes that
have served the least of the requests will be forwarded the next incoming request.
The IPs of these buffer VMs are stored in the Nginx config files.

Figure 4.1: Http get attack

22

4.2.2 Detection used by us
We have started our detection technique by capturing live network from free hosting
sites and by Wireshark we captured IP address, packets request, source and des-
tination. Wireshark permits us to filter the log either before the capture starts or
throughout analysis. Wireshark is an open-source library that is suitable for detect-
ing DDOS attacks.

After detecting the live network, the information’s about packet requests, source
and destination send to the detection server. We have used two types of inter-
faces; among them one is for capturing live network and another one is for notifying
the details about the attacks to the detection server. Next, the detection server is
started working after being notified and in the server, there are two major roles,
one is notifying our proxy server and transferring the detected data’s information
including IP address, source, destination and the size of the packets to the memory
management system. While send IP address’s information we use hashing so that
we can filter the authentic IP address for example: if a user is trying to login to
the server at the same time of attacking and there is no filtering process, the users
request will consider as a part of DDOS attack and the server will deny the request
of the users. That is why we used hashing to prevent this problem, otherwise there
is no outcome of detecting DDOS attack.

Furthermore, the memory management system is started working to make delet-
ing unnecessary files from the storage. After that the detection phase is began to
split the attacker request and by using JMeter the detection phase was completed.
Whenever we have finished detecting the DDOS attacks, the detection phase was
notified to the proxy servers and the memory management system. Next, the dis-
associate packet is sent to the proxy servers. We have used few proxy servers for
handling DDOS attacks, these servers will receive the detected http request, IP ad-
dresses etc. as block size and by this time the notification will be sent to every step
of throughout the detection.

The block size packets are handled by the proxy servers and because of that DDOS
attacks are able to detect and handle. There is an infinite loop in the proxy servers
and these block size requests is going to fell in the loop and continuously rotating
to the servers and the memory management is deleting the attack request by this
time. And that is how storage can stay healthy and at the same time DDOS can be
detected.

4.2.3 Configuration of VM
Each VM is using Ubuntu 18.04 desktop image. We are using 2 cores and 2048 MB
of RAM for each VM.

23

4.2.4 Configuration of Nginx
We are configuring the Nginx servers to listen to port 80 in each case. The server
name after the listen port value is the IP of the demo website. The upstream contains
the IPs of the alternative servers meaning the buffer VMs. More upstream IPs are
being added as the nodes or the number of buffer VMs is increasing. In the nginx
configuration of the VM, the upstream value will be the IP of the website. This
configuration is what is making the traffic flow to be redirected back to the original
server.

Figure 4.2: Nginx Code

4.2.5 Topology of our network
In our system, we used mesh topology. Mesh topology is a setup where each com-
puter and network system is interconnected with each other so that if one system
faces a problem then another system can recover it easily so it does not hamper or
waste any work and time. As we are working with a heavy load of data and if a huge
amount of DDoS attack happens we will not lose any data and time for recovery as
other systems connected to the network will come to aid with the problem

Figure 4.3: nginx in mesh topology

24

4.2.6 Details of the demo site
We created a demo website to test the performance of the buffer VM network. It is a
very basic single-page login page which has not been made too complicated because
our focus is on testing the performance of the network, not the website itself. We are
serving the website using nginx as mentioned before form our localhost but using a
public domain. The issue of not having a real ip at home has been solved by using
the ’No ip’ website.The features and configurations of the new network:

• Consists of multiple VMs. We start from only 10 VMs to initially create the
network. We are increasing the number to a maximum of 500, if the tests
require.

• Each VM is configured to detect malicious traffic. The filtering method filters
out as many malicious requests as possible.

• Once an attack is detected, the extra load on the particular VM is re-directed
via nignx to other VMs in the network.

• The requests that are redirected to the VMs are redirected back to the target
server once the load of the DDoS wears off.

25

Chapter 5

Tools and Components

This part of the report is the description of all the tools that we’re using for the tests,
deriving the results, and finally analyzing the results. We are describing these tools
to the extent of our concern. In other words, we are not describing these tools in full
length. Just the parts and significance that concern our work. Some necessary and
noteworthy components are also being described in brief including the discussion of
its significance. Without understanding the tools and these components that have
been discussed here, we would never have been able to follow through with our plan.
Let alone, derive the necessary results and the analysis for this report. We are listing
these tools firstly, in two groups. 1. Tools used in creating the network. 2. Tools
used in testing. The tools that were used for both purposes are mentioned in both
places. The VM is used to create the network and the JMeter, Docker is using for
the Testing.

5.1 Virtual Machines(VM)
VMs are an emulation of an operating system inside another. The system that con-
tains VM is known as the host operating system and another VM is known as the
visitor operating system. At the time VM is put in a host, it simulates the behavior
of an actual operating system. A virtual machine is a software-based machine that
simulates the functionality of a physical machine. The CPU, RAM, hard drive, and
network are the major components of a physical machine, and in a virtual machine,
the software makes the operations of these components act as a genuine machine.
Virtual machines are usually hosted on or run on physical hardware.

A hypervisor is provided by the hosted physical machine in order for a virtual
machine to function. By separating a portion of the CPU, memory, hard disk, and
network, assigning these to the virtual machine, the hypervisor virtualizes a physi-
cal machine. The virtual machine’s OS identifies these components as those used to
build a computer and consequently uses them to run the virtual machine’s operating
system and apps. Next, we will discuss the need for VMs in our tests.

26

Figure 5.1: KVM vs VM

5.1.1 Virtual Machines simulation
VMs are ideal for creating test environments. It is even better when Linux machines
are used for testing purposes. They are usually very lightweight meaning they re-
quire very little computational resources to operate efficiently. This feature makes
them ideal for test environments as they can be deployed with ease and very quickly.
Moreover, multiple VMs can be used in a single machine which allows for more re-
sources to be put to work simultaneously. This multiplies the testing capabilities of
our machines.

These VMs are limited to the use case of these tests only and we will not be using
this to create our proposed network. Virtual machines can be saved as appliances
once the operating system has been deployed and fully configured in them. This ap-
pliance can be used by another person and easily copied and pasted onto a different
computer.

5.1.2 Description of Virtual Machines used in our tests
We are using Virt-manager to create these VMs which is known as KVM. Unlike
other virtual machines which emulate an operating system inside another operating
system, kernel-based virtual machines emulate virtual machines based on the kernel
rather than on top of another operating system. In comparison to real computers,
these KVMs are easier to maintain. On these types of Virtual Machines, the host
process is simple to carry out. It saves time and value because numerous devices
are created to run on the same machine’s hardware. On the same machine, different
OS environments can exist and run. The KVM can make several copies of itself on
the same machine, reducing the cost of purchasing multiple machines for different
activities. In other words, kernel-based VMs give us more control over the physical
machine even as we are simulating an OS while testing. This is why KVMs(Kernel-
based Virtual Machine) is more useful during testing.

27

5.2 JMeter
An open-source performance load testing tool, is one of the most widely used. The
Apache JMeter program is free and open-source software that is entirely written
in Java. This tool is developed by the Apache Software Foundation using the java
framework. It was created to test Web applications, but it has now been expanded
to include other test functions like Stress testing, Load testing. With an impor-
tance on online applications, this tool is mostly used to analyze and measure the
performance of a range of services. This tool uses the HTTP and FTP servers for
testing. In a normal JMeter test, a loop and a thread group are created. With
a predetermined delay, the loop replicates successive requests to the server. This
thread group side by side simulates the whole testing. A loop and a thread group
are generated in a typical JMeter test. The loop sends consecutive requests to the
server with a preset delay. It also offers an API that allows Java applications to
conduct JMeter-based tests.

5.2.1 Jmeter in our testing
Our initial test consists of two significant testing phases. One of which is testing the
existing server’s load capacity. We are testing to find out the capacity which breaks
these servers. Jmeter helps to create multiple thousands of HTTP requests within
minutes and can create necessary graphs, charts, and tables for direct comparison of
these existing servers. We are also testing out some of the existing DDoS mitigation
techniques which require a lot of loads to be put under stress. This is where Jmeter
shines. Jmeter’s simple UI also helps to complete these tests within a short time
and the learning curve of Jmeter is not so steep. This ease of learning helped us
to focus more time on researching a mitigation technique and figuring out how to
simulate it.

5.3 Operating Systems used for testings
Two operating systems were used for our testing, the main server which is an Arch-
based Linux distribution named Manjaro another is the popular Ubuntu 18.04-
desktop which is a popular and common Linux-based distro. Hence, its use in our
testing. We wanted to create test environments that are very similar to real-world
scenarios.

28

5.3.1 Significance of Linux distributions in tests
Linux-based distributions allow access to the hardware more easily which means
these OSs can be used to gain more control and access to the actual CPU, RAM,
and memory management. This feature gives it a significant advantage to be used
for research and development purposes. Linux distributions are operating systems
based on the Linux kernel. It’s benefitted users by giving them variety. The user
has the option of selecting a distribution as their needs. Rolling release distros like
Arch Linux can be utilized when a user needs a distro that always has the newest
software. Its main function is to make use of time-consuming articles. The number
of Linux distros available reduces the amount of time required to learn non-essential
information and allows users to focus on the distro’s intended function. The finest
feature about Linux, in our opinion, is that it allows you to gain a deeper under-
standing of a system by allowing you to directly watch the machine’s statistics and
instructions flow. Windows, on the other hand, is more like a BlackBox, blocking
out a great deal of information about the computer. Other dominant operating
systems such as Microsoft make it very difficult to do the same thing because they
have multi-layer protection in place which creates a gap between the hardware and
the actual user.

5.4 NGINX
Nginx is a web-server technology that is widely used for load balancing and as a
reverse proxy server. It is easy to deploy. Nginx is an open-source free HTTP server
that can be utilized as a mail proxy or a reverse proxy server. It can efficiently
handle a large number of concurrent users while using minimum resources. When it
comes to dealing with large amounts of online traffic, it comes in very helpful. This
is likely the only web server capable of handling large amounts of traffic with little
hardware resources.
Nginx protects Apache servers by acting as a sort of shock absorber when challenged
with security flaws and unexpected traffic spikes. It operates on the Linux operat-
ing system and can therefore be called a stand-alone server. It doesn’t require a
second server, but it works best in situations where there are multiple servers and
With a dedicated pair of Load Balancers in front of it, it is highly recommended.
Nginx is a lightweight and fast web server that is well optimized and can provide
an advantage to some of its applications over hosting with Apache. IIS is capable
of hosting more complex websites, such as.net and SharePoint sites. It has a lot of
functions, including basic layer-4 load balancing, but it can be improved much more
with a dedicated load balancer.

5.4.1 Uses of NGINX
It can handle hundreds of concurrent requests without the strange process and child
setup that Apache requires. Some of the uses that we used in our testing by using
NGINX are:

29

• Web Server: It can serve static websites and contains modules that allow it to
run PHP, Python, and other programming languages.

• Load Balancer: It can distribute the load among numerous servers running
the same application.

• Reverse Proxy: Depending on the desired domain, it can send requests to
several servers. For example, Having several domains but only one server.

• API Gateway: Based on the request URI and other parameters, it can route
requests to several servers.

Figure 5.2: Mesh Topology with Nginx

5.4.2 Utilization of NGINX in our tests
We have used Nginx to deploy our demo website from the Manjaro desktop server.
We are configuring it to use the default server in case no DDoS attack is detected.
But in the case of detection, the configuration file includes an ‘upstream’ configura-
tion which is basically a list of alternative servers. We are configuring this upstream
to take the IPs of the VMs that are designated to be used as buffers. NGINX in-
creases the speed of our website by caching both static and dynamic content replies.
When a visitor comes to our website, they are sending a request to the webserver on
our hosting account. The web server processes the request, and the desired material
is delivered to the visitor.

30

Figure 5.3: nginx least connected method

5.5 Docker
Docker is a service for managing containers. The main point of Docker is to create
apps that can be deployed from any location as containers. The Docker platform
was created to make developing distributed applications easier as In the cloud, it
could be more productive. It is essentially a technology that supports the creation
of isolated environments. It is comparable to virtual machines in that it can help
us launch operating systems and run programs on them, but it is much lighter. It’s
the only container-based system available that In a hybrid environment provides an
address for all apps. More than a technology, a container platform that provides
businesses with solutions to handle mixed problems arising from a variety of resource
and information requirements. It removes the software’s connection from its back-
ground. For example, Isolation between deployments and staging environments. It
aids in the resolution of disagreements across teams utilizing various applications on
the same infrastructure. Docker now allows infrastructure, apps, and developers to
be truly independent.

31

5.5.1 Uses of docker
Docker is an open-source project that makes developing, deploying, and running
applications easier. It allows apps to execute in a lightweight environment. The
applications are bundled in a Docker container that includes all of the requirements
required to deploy the app. An application can be simply transported from the de-
veloper’s laptop to the testing environment, and finally to production, using Docker.
Since all of the application dependencies are contained within the container, we don’t
have to worry about whether the application will operate on the production server.
As it is lightweight, this consumes only a small portion of the resources that are allo-
cated to them. It is free and open-source software. It offers perfect separation from
other programs. Each application is carried out, complete with its dependencies and
resources, and therefore each container is isolated from the others.

Tool
name

Creating
network

Used in
testing Usage

Max
output

capacity

VM No Yes

1. Creating test
environment.
2. As a node in
the network.

N/A

Jmeter No Yes

1. DDoS simulation.
2. Response time,
deviation time.
3. Graph generation.

10000
requests/

second

Nginx Yes No Used as load
balancer. N/A

Docker Yes No

1. Duplicating test
environment.
2. Duplicating VM,
nginx configuration.

8 containers
per host.

Table 5.1: Summary of most used tools in the tests and network creation.

32

Chapter 6

Testing and Result

In our final analysis, there are three phases of testing. This section discusses the
tests starting from testing out the tools, servers, existing mitigation techniques to
testing our mitigation techniques. We are going in-depth and analyzing each test to
draw the conclusion of each test in its own perspective.

6.1 Phase 1 (Testing the tools)
We are testing all the tools that we have selected for our testing and development
purposes first. We have initially set some metrics for these tools. These metrics are
set by us based on some prior assumptions. These assumptions are discussed at the
beginning of each test.

• 1 Jmeter: We are using Jmeter for the purpose of simulating application layer
DDoS. DDoS attacks can range from 1000 users per second to millions of users
per second. We are assuming that an average DDoS attack will send at least
2000-5000 users per second. Based on this assumption, we start our tests on
the Jmeter itself. The purpose of this test is to find out how many concurrent
requests can be sent by Jmeter. We start the tests slowly with only 100 users
per second and will be doubled with each test. If we find that for a number
of requests, Jmeter is failing, we will go back to the previous number and
this time we will not double the number but increase ever so slightly. After
repeating this process over and over again multiple times we find that Jmeter
can send at most 5000 users per second without crashing. Although there is
no limit set by Jmeter, after increasing the number from 5000 to 6000, Jmeter
fails to respond. We have taken this as a clear indication that Jmeter can not
send more than 5000 users per second. Even if it does send more than that,
it will not be an efficient testing environment.

• 2 Free hosting sites: The free hosting sites that we’ve created use the fol-
lowing hosting. One is ‘000webhost’ and the other is named ‘zyrosite’ and
finally ‘firebase’ from google. We have used basic wordpress templates to cre-
ate websites to be hosted on the first two of these servers. For ‘firebase’ we
have created an online chatroom application. The purpose for doing this is

33

to test the response time of all these servers under different sorts of DDoS
attacks. These attacks will start from only 100 users per second to 5000 users
per second. We’re using servers from three different categories for the purpose
of comparing servers of the lowest capacity side by side with the servers of the
highest capacity.

• 3 Wireshark: We have used Wireshark to capture network traffic on the
native network and Wireshark will capture network traffic from local area
networks, Wi-Fi etc. Wireshark permits either before or after the capture
begins, we can filter the log and throughout analysis, thus we have a tendency
to slender down and that we may simply trace around for what we want
within the network trace. for instance, if we have a tendency to set a filter
to check transmission control protocol traffic between two IP addresses. We
are able to set it solely to indicate to us the packets sent from the PC. What
is more, one amongst the most important reasons for exploitation Wireshark
is it shows details regarding the chosen packets. It shows the amount order
of the packet that got captured, the capturing time is additionally shown
by Wireshark. After that, the supply of the packets, the destination of the
packets, the protocol of the packets, the length of the packets in bytes and
therefore the info of the packets and therefore the actual quantity of packet
size in hex value.

UI-load testing: In this phase, To determine the standard behavior, reliability, and
peak load of the system we tested two free web-hosted websites which is called UI
load testing. We created these two websites using the free hosting service ‘000web-
host’. The first website was hosted in the service’s default hosting which is a Word
Press based website. The second website was hosted using a different hosting named
‘zyrosite’.

• (1st website is https://springtest2021.000webhostapp.com

• And the 2nd website is https://spring2021.zyrosite.com)

Our reason for using these two hosting services are diffrent, electing 000webhost
because, it is one of the most common free hosting services and as we explained
previously, we want to test all categories of hosting services from the lowest grade
to the top tier hosting services and find out the gap between them. That’s why
our tests began with the most commonly available free hosting service. Conversely,
zyrosite is unique in its interface and have the most powerful tools.

The summary of tests (1st website): At first, we tested the 1st website with
100 users or Threads within 1 second. After successfully finishing this we upgraded
our threads to 500 users within 1 second but unfortunately our website could not
take that load and crashed

Analyzing the summary of the data from the tests on the first website, we can see
that the throughput is 8.5/sec for each of the websites. The average response time
of the two tests is sequential, 2355ms and 3605ms.

34

Label #Samples Average
(ms)

Min
(ms)

Max
(ms)

St. Deviation
(ms)

Error
(%)

Throughput
(per second)

000webhost 300 3315 404 21004 5134.62 40.67 4.3
000webhost 100 3419 292 21003 6115.33 100.00 2.5
000webhost 100 457 290 5199 684.93 100.00 1.6
000webhost 100 308 288 600 41.08 100.00 1.6

Total 600 2355 288 21004 4630.53 70.33 8.5

Table 6.1: Summary of 100 users per sec(1st website)

Label #Samples Average
(ms)

Min
(ms)

Max
(ms)

St. Deviation
(ms)

Error
(%)

Throughput
(per second)

000webhost 1780 4731 377 22194 5785.49 67.47 4.5
000webhost 596 5577 292 21259 7741.31 100.00 1.6
000webhost 591 850 290 6033 77.50 100.00 1.6
000webhost 589 963 288 21002 1711.17 100.00 1.4

Total 3556 3605 288 22194 5577.71 83.72 8.5

Table 6.2: Summary of 500 users per sec(1st website)

This means that each of the users was getting a response around 2 seconds later and
it increased to around 3.5 seconds as the users count became 500. The deviation
is 4630.53 for the first test and 5577.51 for the second test. The difference in the
average response time was only around 1.5 seconds. The difference in the deviation
of the two tests is 946.98. Analyzing the differences in the average response time
and deviation tells us that this website cannot handle traffic of more than 500 users
but the user experience does not change that much no matter how many users there
are in that range. So, we can conclude that to DDoS this website we’ll need to
throw over 500 requests in 0.5 seconds which will crash the server immediately and
we’ll keep the background traffic to 250 users while simulating an attack on this site.

The summary of tests (2nd website): As the 1st website crashed so we pro-
ceeded to our 2nd website. Similar to our first step for the 1st website we recorded
it in Badboy Software then exported the JMX file to JMeter and started our UI
load test again.

At first, we gave the website 100 users within 1 second and it ran successfully.
Then we updated the User count to 500 and it also worked fine. So, we upgraded
it to 1000 users this time, and the load-testing went smoothly as well. As the load
testing is running successfully for our 2nd website, we now upgrade the user count
to a massive amount of 5000 users in 1 second. The website was also able to take
that kind of load. At last, the website ran down when we tried to upgrade our user
count to more than 5000 users. JMeter is stopping at a certain period. The Apache
JMeter was crashing so we assumed that our 2nd website cannot take a load of more
than 5000 users within one second. Now, we are graphically comparing the tests on
all three websites.

35

Label #Samples Average
(ms)

Min
(ms)

Max
(ms)

St. Deviation
(ms)

Error
(%)

Throughput
(per second)

zyrosite 100 3781 2940 5150 468.28 0.00 18.1
zyrosite 200 0 0 0 0 100.0 0.0
zyrosite 100 18836 10298 25856 3356.05 0.00 3.8
Total 400 5654 0 25856 7948.30 50.0 15.3

Table 6.3: Summary of 100 users per sec(2nd website)

Label #Samples Average
(ms)

Min
(ms)

Max
(ms)

St. Deviation
(ms)

Error
(%)

Throughput
(per second)

zyrosite 600 14229 2323 1071642 61352.29 1.50 25.2
zyrosite 1196 0 0 0 0 100.0 0.0
zyrosite 598 62116 3704 106269 30478.56 0.33 1.2
Total 2394 19082 0 1071642 42729.94 50.42 2.2

Table 6.4: Summary of 500 users per sec(2nd website)

Label #Samples Average
(ms)

Min
(ms)

Max
(ms)

St. Deviation
(ms)

Error
(%)

Throughput
(per second)

zyrosite 1599 271817 1180 1881282 644880.38 19.57 28.1
zyrosite 2753 0 0 0 0 100.0 0.0
zyrosite 1376 100261 3704 1879771 196449.14 27.40 24.2
Total 5728 99964 0 1881282 372035.50 60.11 3.0

Table 6.5: Summary of 1000 users per sec(2nd website)

Label #Samples Average
(ms)

Min
(ms)

Max
(ms)

St. Deviation
(ms)

Error
(%)

Throughput
(per second)

zyrosite 1065 62338 12871 163650 61447 66.20 6.5
zyrosite 1558 0 0 0 0 100.0 0.0
zyrosite 1544 9791 286 35129 6882.18 93.59 10.8
Total 4167 19560 0 163650 40356.75 88.98 25.5

Table 6.6: Summary of 5000 users per sec(2nd website)

Analyzing the summary of the data from the tests on the second website, we can see
that the throughput is 15.3/sec, 2.2/sec, 3.0/sec, and 25.5/sec consecutively for each
of the tests. The average response time of the four tests are, sequentially, 5654ms,
19082ms, 99964 ms, and 19560 ms. This means that each of the users was getting a
response around 5.6 seconds later and it gradually changed to 19.08 seconds, 99.96
seconds, and 19.56 seconds as the later tests added more users. The deviation was
7948.30, 42729.94, 372035.50, and 40365.75. The difference between the highest and
lowest average response time was only around 94 seconds. The difference between
the highest and lowest deviation of the tests was 364087.2.
Analyzing the differences of the average response time and deviation tells us that
this website can handle traffic of around 5000 users but the user experience takes a
major downgrade as soon as we hit 500 users. So, we can conclude that to DDoS

36

this website, we’ll need to throw over 1000 requests in 0.5 seconds which will down-
grade the service but the server will keep running. If we want to completely ruin the
server, we’ll test it with 5000 requests in 0.5 seconds which may cause the server to
be permanently down. We’ll keep the background traffic to 250 users as well while
simulating an attack on this site, as a site like this in real life would never target to
host more than that number. Because if it does, the downgrade in user experience
will mean that the site will continuously lose customers due to low user experience.

Test bed details Attacker details

Serial
no. Domain Average

RT(ms)

Standard
deviation
(ms)

User
count Attack Type No. of

requests

Attack
duraiton
(minutes)

1 Zyrosite 471 600 100 N/A N/A 1
2 Zyrosite 5990 27544.95 100 HTTP GET 5604 1
3 Zyrosite 1083 16764 100 HTTP POST 9989 1
4 Zyrosite 1037 10303 100 HTTP PUT 9956 5
5 000webhost 1316 1558.74 100 N/A 156731 5
6 000webhost 19128 26520.71 100 HTTP GET 171331 5
7 000webhost 15949 23571.67 100 HTTP POST 175050 5
8 000webhost 22460 2499.59 100 HTTP PUT 160982 5
9 Firebase 271 344.43 500 HTTP GET 254092 5

Table 6.7: Summary of all UI load tests

6.2 Phase 2 (Live detecting, Traffic handler test-
ing)

In this second phase, we have tested many existing mitigation systems, among them
first we have tested in such a way where we captured live detection networks by
using Jmeter and Wireshark library. Both are open source libraries and by using
them we were able to capture HTTP requests. We also have tuned Jemeter and
during the detection phase, Wireshark should only output the information that is
requested.
After detecting http requests and IP addresses the admin can forward the informa-
tion to the next step and that is log transfer. In log transfer, the admin will notify
the detection server with the file’s IP address, file name, file data path, etc. The
traffic handler sends the property file to the echo class and starts capturing the live
network whenever the admin is completed with configuration. During the second
half (log transfer), The traffic handler will alert the detection server and share file
information after the log file has been generated with it via an online service.

Throughout this half capturing server has two interfaces, one is for incoming traffic
and another one is for human activity to the detection server. Next, these files will
go to the proxy memory server, the proxy server is used to pass the HTTP request
by the admin and these requests are going to be deleted by the system. Once the

37

HTTP request is deleted, the result will be notified to every step because the mem-
ory management system can delete the attack request, and also for healthy memory
management it will delete the spam requests. Moreover, The SCEF system is effec-
tively clear beneath usual conditions until an associated attack is detected from one
or a great deal of VMs.

The system is deployed once the collected knowledge from the detector VM trig-
gers an associate alarm that an associate attack is ongoing. Once an associate
attack is not detected, network traffic flows swiftly as a result of it might within
the different network. Once an associated attack is detected, the system filters out
the malicious traffic from entering the network, thus protecting the alternative VMs
among the network. And simply just in case, any VM among the network is already
affected by the attack, the system isolates the affected VM to protect it from being
utilized in AN extremely botnet.

Furthermore, in this method the method can detect two types of parameters as
input from the VMM for each VM beneath its control-whether the associate at-
tack is current and conjointly the sort of attack being performed. The algorithm
that drives the SCEF system can be drawn as for each VM, it receives parameters,
whether the associate attack is current and conjointly the sort of attack. If there is
no attack, the packet square measure is allowed to own. When the system detects
the associate attack and conjointly the attack kind is believed, then the component
that works as a result of the mitigation of a section of that attack is activated. For
associate unknown attack kind, the default mitigation techniques square measure
used.

Applying k-nearest neighbors, random forest, binary classification will differenti-
ate normal traffic from Dos attack traffic with high accuracy. On the other hand,
we try to achieve in a simple way detecting DDoS attacks through request tracking,
analyzing the request stream. In this method, we tried to observe users’ HTTPS
requests and analyze the request.

By Request tracking, we Keep track of the number of inquiries gotten. and possibly
identify correlations between them. Moreover, we have used the metrics for ana-
lyzing the results are throughput, average response time, and deviation of response
time. Throughput indicates how many requests were successful. Average response
time takes a few response times and gives an average. But the key metric will be
the deviation of response time because it indicates the difference of response time
of each of the responses. A higher deviation or a higher number indicates that the
difference of the response that the users are getting is very high meaning, the user
experience is very poor. A lower deviation number, on the contrary, indicates a
better user experience.

38

6.3 Phase 3 (Testing response time of websites
using our network)

After completing the initial setup of the network we are replicating the VMs using
Docker. We then use JMeter to attack the website using the public IP address of
the website. We complete the test using 10 VMs and users in JMeter are 5000 with
other configurations and settings set to previous values. We keep JMeter configu-
rations the same throughout the tests and increase the number of VMs gradually
by 10. The second test is conducted using 20 VMs, the third test with 30 VMs,
the fourth test with 40 VMs and lastly the final test is for 50 VMs. This process
is repeated for two other websites we tested previously. Now we are comparing the
final tests using on our network using all three of the websites. The metrics that are
being used is response time over time.

Figure 6.1: Graphical comparison of final tests on all three websites

Finally, we are comparing the final test results side by side with the test results on
the websites derived without using the network. The first bar is the response time
of the respective website with DDoS simulation without using our network. The
second bar is the response time of the same website with DDoS simulation using our
network. We can see a significant improvement of response time for each website
using our network.

39

Figure 6.2: Testing Result comparison

6.3.1 Analysis of findings
For the tests on the first two sites, the average response time is less than 400 ms.
For the tests on ’zyrosite’, the response time is greater than 6000 ms. Meaning, only
for zyrosite, the DDoS attack was successful. For the rest of the tests, the proposed
method was successful. We conducted a total of 15 tests on all three websites using
our proposed solution. A total of 5 tests failed to mitigate DDoS in our case. In
other words, the success rate of DDoS mitigation in our tests is 66.67%. We need
to keep in mind that, we used nginx to complete the tests because the technology
for creating our proposed network does not yet exist. Moreover, the configuration
of nginx is not optimized for our proposed network. So, we can hope for greater
results in future if we can create an optimized solution for this network.

40

Chapter 7

Conclusion

Cloud computing is becoming more popular, but with increased cloud usage comes
to the challenge of cloud security. The Distributed Denial of Service Attack (DDoS)
or simply Denial of Service Attack is one of the most serious risks to Cloud security
(DDoS) and a threat to thousands of business. Money, time, clients, and even cred-
ibility may be lost in the case of DDoS attacks. It is critical to provide a strategy to
avoid DDoS attacks in order to increase resource availability. The detection trigger
technique may efficiently identify abnormal flow occurrences and conserve controller
resources. DDoS attacks may also be efficiently mitigated with the defense plan in
place. It is high time that the DDoS, a name of terror for many businesses and
services, be nipped in the bud. We need to focus our attention, our resources and
efforts towards this goal. We hope our mitigation technique can be the guideline for
future works.

7.1 Future work
In this paper we initially planned to test our system using 500 VM but we could
only test the network using 50 VMs. In the future we are going to increase the
number of VMs for our testing purpose and we believe that the results that we get
will be enough for the network to be deployed in a LAN at least. Moreover, we have
planned for using 500 VM but for real life scenarios, meaning for networks larger
than a LAN, we need to test the network using at least few thousands VMs and
analyze the results but again due to time constraints we could not make it. So, in
near future we will further test our system using the specifications mentioned above.

In addition, we have planned to build a mitigating system that is based on a ledger
system which can be something like a block chain network. The resources that any
single node shares with the whole network can be an entry in the ledger system. We
predict that our system combined with the block chain technology can become the
ultimate-universal solution for DDoS mitigation, although the network will have to
be working faster than block chain networks work today.

41

Bibliography

[1] B. B. Gupta and O. P. Badve, “Taxonomy of dos and ddos attacks and desir-
able defense mechanism in a cloud computing environment,” Neural Comput-
ing and Applications, vol. 28, pp. 3655–3682, Apr. 2016. doi: 10.1007/s00521-
016-2317-5.

[2] G. Somani, M. S. Gaur, D. Sanghi, M. Conti, and R. Buyya, “Ddos attacks in
cloud computing: Issues, taxonomy, and future directions,” Computer Commu-
nications, vol. 107, pp. 30–48, Jul. 2017. doi: 10.1016/j.comcom.2017.03.010.

[3] M. Zekri, S. E. Kafhali, N. Aboutabit, and Y. Saadi, Ddos attack detection
using machine learning techniques in cloud computing environments, IEEE
Xplore, Oct. 2017. doi: 10.1109/CloudTech.2017.8284731. [Online]. Available:
https://ieeexplore.ieee.org/document/8284731 (visited on 06/12/2021).

[4] K. Bhushan and B. B. Gupta, “Distributed denial of service (ddos) attack
mitigation in software defined network (sdn)-based cloud computing environ-
ment,” Journal of Ambient Intelligence and Humanized Computing, vol. 10,
pp. 1985–1997, Apr. 2018. doi: 10.1007/s12652-018-0800-9. [Online]. Avail-
able: https://link.springer.com/article/10.1007/s12652-018-0800-9.

[5] M. V. De Assis, M. P. Novaes, C. B. Zerbini, L. F. Carvalho, T. Abrãao, and
M. L. Proença, “Fast defense system against attacks in software defined net-
works,” IEEE Access, vol. 6, pp. 69 620–69 639, 2018. doi: 10.1109/ACCESS.
2018 .2878576. [Online]. Available: https :// ieeexplore . ieee . org/document/
8514012?fbclid=IwAR0BwrGkD_HVCQsEylYMB_cFzb5NQrOx6mzz4Dum9BdEL9F1qjWtYbcC_
BA (visited on 10/03/2021).

[6] R. Doshi, N. Apthorpe, and N. Feamster, “Machine learning ddos detection
for consumer internet of things devices,” in 2018 IEEE Security and Privacy
Workshops (SPW), 2018, pp. 29–35. doi: 10.1109/SPW.2018.00013.

[7] S. Hameed and U. Ali, “Hadec: Hadoop-based live ddos detection framework,”
EURASIP Journal on Information Security, vol. 2018, Jul. 2018. doi: 10.1186/
s13635-018-0081-z.

[8] R. Kesavamoorthy and K. Ruba Soundar, “Swarm intelligence based autonomous
ddos attack detection and defense using multi agent system,” Cluster Com-
puting, Mar. 2018. doi: 10.1007/s10586-018-2365-y. (visited on 10/25/2019).

[9] A. Bakr, A. A. A. El-Aziz, and H. A. Hefny, “A survey on mitigation techniques
against ddos attacks on cloud computing architecture,” International Journal
of Advanced Science and Technology, vol. 28, pp. 187–200, Oct. 2019. [Online].
Available: http://sersc.org/journals/index.php/IJAST/article/view/1211
(visited on 10/03/2021).

42

https://doi.org/10.1007/s00521-016-2317-5
https://doi.org/10.1007/s00521-016-2317-5
https://doi.org/10.1016/j.comcom.2017.03.010
https://doi.org/10.1109/CloudTech.2017.8284731
https://ieeexplore.ieee.org/document/8284731
https://doi.org/10.1007/s12652-018-0800-9
https://link.springer.com/article/10.1007/s12652-018-0800-9
https://doi.org/10.1109/ACCESS.2018.2878576
https://doi.org/10.1109/ACCESS.2018.2878576
https://ieeexplore.ieee.org/document/8514012?fbclid=IwAR0BwrGkD_HVCQsEylYMB_cFzb5NQrOx6mzz4Dum9BdEL9F1qjWtYbcC_BA
https://ieeexplore.ieee.org/document/8514012?fbclid=IwAR0BwrGkD_HVCQsEylYMB_cFzb5NQrOx6mzz4Dum9BdEL9F1qjWtYbcC_BA
https://ieeexplore.ieee.org/document/8514012?fbclid=IwAR0BwrGkD_HVCQsEylYMB_cFzb5NQrOx6mzz4Dum9BdEL9F1qjWtYbcC_BA
https://doi.org/10.1109/SPW.2018.00013
https://doi.org/10.1186/s13635-018-0081-z
https://doi.org/10.1186/s13635-018-0081-z
https://doi.org/10.1007/s10586-018-2365-y
http://sersc.org/journals/index.php/IJAST/article/view/1211

[10] H. M. Demoulin, I. Pedisich, N. Vasilakis, V. Liu, B. T. Loo, and L. T. X. Phan,
Detecting asymmetric application-layer denial-of-service attacks in-flight with
finelame, www.usenix.org, 2019. [Online]. Available: https://www.usenix.org/
conference/atc19/presentation/demoulin (visited on 10/03/2021).

[11] Z. Li, L. Wei, W. Li, L. Wei, M. Chen, M. Lv, X. Zhi, C. Wang, and N.
Gao, “Research on ddos attack detection based on elm in iot environment,”
in 2019 IEEE 10th International Conference on Software Engineering and
Service Science (ICSESS), 2019, pp. 144–148. doi: 10.1109/ICSESS47205.
2019.9040855.

[12] H. V. Nguyen, L. L. Iacono, and H. Federrath, “Your cache has fallen,” Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security, Nov. 2019. doi: 10.1145/3319535.3354215. [Online]. Available:
https://cpdos.org/paper/Your_Cache_Has_Fallen__Cache_Poisoned_
Denial_of_Service_Attack__Preprint_.pdf.

[13] U. M. Shahil, M. Deekshitha, N. Anam M, and M. Basthikodi, Ddos attacks
in cloud computing and its preventions, papers.ssrn.com, May 2019. [Online].
Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3708159.

[14] K. Srinivasan, A. Mubarakali, A. Saad Alqahtani, and A. Dinesh Kumar, A
survey on the impact of ddos attacks in cloud computing: Prevention, detection
and mitigation techniques, springerprofessional.de, 2019. [Online]. Available:
https://www.springerprofessional.de/en/a-survey-on-the-impact-of-ddos-
attacks-in-cloud-computing-preven/17060314 (visited on 10/03/2021).

[15] A. R. Wani, Q. P. Rana, U. Saxena, and N. Pandey, “Analysis and detec-
tion of ddos attacks on cloud computing environment using machine learning
techniques,” in 2019 Amity International Conference on Artificial Intelligence
(AICAI), 2019, pp. 870–875. doi: 10.1109/AICAI.2019.8701238.

[16] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and J. Torrellas,
“Attack directories, not caches: Side channel attacks in a non-inclusive world,”
2019 IEEE Symposium on Security and Privacy (SP), May 2019. doi: 10.1109/
sp.2019.00004. (visited on 10/03/2021).

[17] Cisco, Cisco annual internet report - cisco annual internet report (2018–2023)
white paper, Cisco, Mar. 2020. [Online]. Available: https://www.cisco.com/
c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/
white-paper-c11-741490.html.

[18] R. Doriguzzi-Corin, S. Millar, S. Scott-Hayward, J. Martinez-del-Rincon, and
D. Siracusa, “Lucid: A practical, lightweight deep learning solution for ddos
attack detection,” IEEE Transactions on Network and Service Management,
vol. 17, pp. 876–889, Jun. 2020. doi: 10.1109/tnsm.2020.2971776.

[19] V. Kansal and M. Dave, “Proactive ddos attack mitigation in cloud-fog en-
vironment using moving target defense,” arXiv:2012.01964 [cs], vol. V1, Dec.
2020. [Online]. Available: https : / / arxiv . org / abs / 2012 . 01964 (visited on
10/04/2021).

[20] I. Ko, “Adaptable feature-selecting and threshold-moving complete autoen-
coder for ddos flood attack mitigation,” Journal of Information Security and
Applications, vol. 55, Oct. 2020. doi: 10.1016/j.jisa.2020.102647.

43

https://www.usenix.org/conference/atc19/presentation/demoulin
https://www.usenix.org/conference/atc19/presentation/demoulin
https://doi.org/10.1109/ICSESS47205.2019.9040855
https://doi.org/10.1109/ICSESS47205.2019.9040855
https://doi.org/10.1145/3319535.3354215
https://cpdos.org/paper/Your_Cache_Has_Fallen__Cache_Poisoned_Denial_of_Service_Attack__Preprint_.pdf
https://cpdos.org/paper/Your_Cache_Has_Fallen__Cache_Poisoned_Denial_of_Service_Attack__Preprint_.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3708159
https://www.springerprofessional.de/en/a-survey-on-the-impact-of-ddos-attacks-in-cloud-computing-preven/17060314
https://www.springerprofessional.de/en/a-survey-on-the-impact-of-ddos-attacks-in-cloud-computing-preven/17060314
https://doi.org/10.1109/AICAI.2019.8701238
https://doi.org/10.1109/sp.2019.00004
https://doi.org/10.1109/sp.2019.00004
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://doi.org/10.1109/tnsm.2020.2971776
https://arxiv.org/abs/2012.01964
https://doi.org/10.1016/j.jisa.2020.102647

[21] G. S. Kushwah and V. Ranga, “Voting extreme learning machine based dis-
tributed denial of service attack detection in cloud computing,” Journal of
Information Security and Applications, vol. 53, p. 102 532, Aug. 2020. doi:
10.1016/j.jisa.2020.102532. (visited on 06/04/2020).

[22] Z. Li, H. Jin, D. Zou, and B. Yuan, “Exploring new opportunities to defeat low-
rate ddos attack in container-based cloud environment,” IEEE Transactions
on Parallel and Distributed Systems, vol. 31, pp. 695–706, Mar. 2020. doi:
10.1109/tpds.2019.2942591. (visited on 03/13/2020).

[23] K. S. Sahoo, B. K. Tripathy, K. Naik, S. Ramasubbareddy, B. Balusamy, M.
Khari, and D. Burgos, “An evolutionary svm model for ddos attack detection
in software defined networks,” IEEE Access, vol. 8, pp. 132 502–132 513, 2020.
doi: 10.1109/ACCESS.2020.3009733.

[24] G. I. Shidaganti, A. S. Inamdar, S. V. Rai, and A. M. Rajeev, “Scef: A model
for prevention of ddos attacks from the cloud,” International Journal of Cloud
Applications and Computing, vol. 10, pp. 67–80, Jul. 2020. doi: 10.4018/ijcac.
2020070104. (visited on 10/14/2020).

[25] W. Zhijun, X. Qing, W. Jingjie, Y. Meng, and L. Liang, “Low-rate ddos attack
detection based on factorization machine in software defined network,” IEEE
Access, vol. 8, pp. 17 404–17 418, 2020. doi: 10.1109/access .2020.2967478.
(visited on 02/02/2021).

[26] A. Agarwal, M. Khari, and R. Singh, “Detection of ddos attack using deep
learning model in cloud storage application,” Wireless Personal Communica-
tions, Mar. 2021. doi: 10.1007/s11277-021-08271-z. (visited on 09/19/2021).

[27] D. Gadze, A. Bamfo-Asante, J. Owusu Agyemang, H. Nunoo-Mensah, and K.
Opare, “An investigation into the application of deep learning in the detection
and mitigation of ddos attack on sdn controllers,” Feb. 2021. doi: 10.3390/
technologies9010014.

[28] K. Moskvitch, Covid-19 hpc consortium, localhost, Apr. 2021. [Online]. Avail-
able: https://covid19-hpc-consortium.org/?fbclid=IwAR0fus4vQxBfs8rufv30AxIf96hwcA3ro7IsAfuqtw4VbdnDQtSIBhhPIHI
(visited on 10/04/2021).

[29] M. Pinho, Aws shield threat landscape review: 2020 year-in-review, Amazon
Web Services, May 2021. [Online]. Available: https://aws.amazon.com/blogs/
security/aws-shield-threat-landscape-review-2020-year-in-review/ (visited on
10/04/2021).

44

https://doi.org/10.1016/j.jisa.2020.102532
https://doi.org/10.1109/tpds.2019.2942591
https://doi.org/10.1109/ACCESS.2020.3009733
https://doi.org/10.4018/ijcac.2020070104
https://doi.org/10.4018/ijcac.2020070104
https://doi.org/10.1109/access.2020.2967478
https://doi.org/10.1007/s11277-021-08271-z
https://doi.org/10.3390/technologies9010014
https://doi.org/10.3390/technologies9010014
https://covid19-hpc-consortium.org/?fbclid=IwAR0fus4vQxBfs8rufv30AxIf96hwcA3ro7IsAfuqtw4VbdnDQtSIBhhPIHI
https://aws.amazon.com/blogs/security/aws-shield-threat-landscape-review-2020-year-in-review/
https://aws.amazon.com/blogs/security/aws-shield-threat-landscape-review-2020-year-in-review/

	Declaration
	Approval
	Ethics Statement
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Introduction
	Background
	Problem Statement
	Research Objective

	Related Work
	Literature Review

	Methodology
	Methodology of our research:
	Methodological analysis of previous research:
	SCEF
	Hadec
	Low Rate Detection
	Assymetric DDoS detection Using Finelame

	Implementing previous research and their drawbacks:
	Summary of drawbacks of existing security measures:
	Our proposal:
	Methodology of our system:

	System Design
	System design of previous systems
	DDoS Detection by deep learning
	Hadec: Hadoop based DDoS Detection
	Low-Rate DDoS Detection Based on Factorization Machine
	Detecting Asymmetric Application-layer DDoS Attacks In-Flight with FineLame
	Machine Learning DDoS Detection for Consumer Internet of Things Devices
	SCEF: A Model for Prevention of DDoS Attacks From the Cloud
	Detection and Mitigation of DDOS Attack on SDN Controllers using Deep Learning

	Introduction of our System Design
	Description of the system
	Detection used by us
	Configuration of VM
	Configuration of Nginx
	Topology of our network
	Details of the demo site

	Tools and Components
	Virtual Machines(VM)
	Virtual Machines simulation
	Description of Virtual Machines used in our tests

	JMeter
	Jmeter in our testing

	Operating Systems used for testings
	Significance of Linux distributions in tests

	NGINX
	Uses of NGINX
	Utilization of NGINX in our tests

	Docker
	Uses of docker

	Testing and Result
	Phase 1 (Testing the tools)
	Phase 2 (Live detecting, Traffic handler testing)
	Phase 3 (Testing response time of websites using our network)
	Analysis of findings

	Conclusion
	Future work

	Bibliography

