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Abstract

Epilepsy, a chronic neurological disorder, causes seizure- a fast, uncontrollable elec-
trical disturbance in the brain. Seizures that last for a long time might result in
memory loss, weariness, photo sensitivity, paralysis, or death. The early diagnosis of
seizures may assist reducing the severity of damage and can be utilized to aid in the
treatment of epilepsy patients. Predicting seizures before they occur is a challenge
that many researchers are working to overcome by monitoring the brain’s activity;
but achieving high sensitivity and precise prediction remains a barrier. Our objec-
tive is to predict seizure accurately by detecting the pre-ictal state that occurs prior
to a seizure. We have used the CHB-MIT Scalp EEG Dataset for our research and
implemented the research work using Butterworth Bandpass Filter and simple 2D
Convolutional Neural Network to differentiate the pre-ictal and inter-ictal signals.
We aim to propose a generalized approach for epileptic seizure prediction rather
than patient-specific approach. We have achieved accuracy of 89.5%, sensitivity
89.7%, precision 89.0% and area under the curve (AUC) is 89.5% with our pro-
posed model. In addition, we have addressed several researchers’ seizure prediction
models, sketched their core mechanism, predictive effectiveness, and compared them
with our work. Our long-term goal is to develop an implantable device to with high
accuracy and low errors that may effectively warn patients of oncoming seizures to
initiate antiepileptic therapy so that those who are afflicted with the epilepsy can
enjoy a healthy and risk-free life.

Keywords: Bandpass filter, Chronic neurological disorder, Convolutional neu-
ral network, CHB-MIT Scalp EEG Dataset, Deep learning, Epilepsy, Generalized
model, Prediction, Seizure.
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Chapter 1

Introduction

1.1 Overview

Seizures have different signs and symptoms depending on the type. As a general
guideline, signs, and symptoms include: rigid or stiffening movements such as jerking
the arms and legs or stopping breathing, staring for short periods of time, appear-
ing confused or in a haze, and rhythmic nodding of the head when there is a loss of
awareness or consciousness, as well as periods of rapid eye blink and staring [1].

Not every seizure is epileptic. Brain cells interact by delivering regular electrical
signals. Epileptic seizures, in contrast to other types of seizures, are triggered be-
cause of the dysfunction in the brain. The electrical storms in the brain are what
cause seizures in people with epilepsy. These aberrant electrical signals might be
localized to a certain area of the brain or they can be more widespread. Diabetes,
for example, may trigger a seizure. Some other causes can be brain anomalies, low
oxygen, brain injury, infection, stroke, brain tumor, etc [2].

Generalized seizures, focal seizures (previously called partial seizures), and epileptic
spasms are three forms of epileptic seizures. A clinician can classify seizure/epilepsy
types based on a patient’s medical history, EEG results, and other supporting data.
During focal seizures, a localized area of the brain is affected and it processes emo-
tions and short-term memory, causing euphoria, anxiety, déja vu, sensing taste and
smell, hallucinations, etc. Generalized seizures begin with aberrant electrical activ-
ity in the whole brain, which may result in the loss of consciousness, whole-body
stiffness, and rapid jerking movements. When generalized seizures become severe,
they begin in bilaterally scattered neuronal networks. In generalized seizures, the
most common kinds include generalized tonic-clonic seizures, myoclonic, as well
as absence seizures and atonic seizures (GTC). There is no obvious impaired con-
sciousness when people have myoclonic seizures because the movements are so rapid
and transient (“lightning-fast”). Generalized myoclonic seizures or focal myoclonic
seizures are both possible. When an atonic seizure occurs, there is a lack of muscle
tone throughout the body, which can lead to a head drop or fall. The neuronal
networks that generate focal seizures are restricted to one hemisphere of the brain.
During a focal seizure, different areas of the brain exhibit distinct clinical signs and
symptoms. Occipital lobes, can cause visual abnormalities, for example, can cause
periodic clonic or tonic muscle activity; and the postcentral gyrus can cause sensory



symptoms like paresthesia or a focal seizure that originates in the precentral gyrus.
Auras, which are focused seizures in which the patient remains conscious and ex-
hibits motor, sensory, autonomic, or psychic symptoms, can precede seizures on rare
occasions. In the case of epileptic spasms, the cause is unknown. Extensive or quick
flexing of the affected person’s limbs will occur for a brief period of time. These
muscle spasms can strike anyone of any age [3].

Seizures and epilepsy are diagnosed using a combination of history, physical exam-
ination, and laboratory testing [4]. Doctors may find it challenging to distinguish
between seizure types. In order to appropriately diagnose a seizure and ensure that
the therapies provided are effective, the doctor may request certain tests. A variety
of factors can trigger a seizure, which includes migraine headaches, sleep deprivation,
over working, hormonal changes, dehydration, high levels of psychological stress, etc.
Other illnesses that can induce seizure-like behavior can be ruled out through lab
tests. A spinal tap to rule out illness and a toxicology screening to look for drugs,
poisons, or toxins are some of the procedures that may be conducted to check for
electrolyte abnormalities in the blood. An electroencephalogram (EEG) can be used
by doctors to detect a seizure. During a seizure, monitoring brain waves from an
EEG test can help a doctor figure out what kind of seizure the patient is having.
Imaging tests such as a C.T. scan or an MRI scan, which provide a clear image of
the brain, can also be effective [5].

When it comes to Epileptic Seizure prediction research, there are various advan-
tages to using EEG. Its inexpensive cost makes it ideal for epilepsy research because
it can be used on a wide range of patients and can keep records of data for an ex-

tended period of time. More expensive and cumbersome equipment is needed for a
number of different methods, such as fMRI or MEG.

EEG signals can be acquired by using headsets along with processed/stored with a
sampling rate which ranges from 200 Hz to 5000 Hz following digitization. Neurol-
ogists apply specialized software to evaluate the signals that indicate the beginning
and termination of seizures. Numerous researchers have presented seizure predic-
tion algorithms based on deep learning and machine learning using strategies which
are preprocessing, feature extraction, and classification. The first phase involves
preprocessing the EEG data to remove noise and enhance the Signal-to-Noise Ratio
(SNR) [6]. Among the preprocessing methods often used on EEG data in the time
domain are bandpass Butterworth and notch filters [7], as well as notch filters in
the frequency domain [8]. If you apply the common spatial pattern filter and the
optimized spatial pattern filter on EEG data, you will see a significant increase in
the signal-to-noise ratio [9]. It is also extremely effective for preprocessing EEG
signals because it provides intrinsic mode functions and increases the signal-to-noise
ratio by retaining low-frequency components. Empirical mode decomposition [10]
can be used to generate intrinsic mode functions and increase the signal-to-noise
ratio by retaining low-frequency components. Additionally, the Fourier and wavelet
transformations may be used to preprocess EEG data in order to make it appro-
priate for input into convolutional neural networks [11], in order to enhance the
precision of the outcomes. Feature retrieval is carried out once the noise has been
eliminated, and relevant features with a big interclass variance and a small intra-



class variance are selected [12]. For the objective of anticipating epileptic episodes,
researchers retrieved unique temporal and spectral patterns. Following the growth
of deep learning algorithms, various researches have utilized automatic feature ex-
traction [13] using CNN, which has been shown to be effective due to the fact that
these features are derived utilizing class information supplied alongside the data.
After selecting 2 features, classification is carried out using the machine learning
classifiers or deep learning techniques. SVM, Naive Bayes, Random forest, Multi-
layer perceptron and KNN were used for classification. Classification may also be
accomplished by the use of deep learning classifiers, such as RNN, LSTM, or CNN.

In this study, we present comprehensive findings of EEG data using freely acces-
sible “CHB-MIT Scalp EEG Database.” [14] The experimental campaign, which
was confirmed using cross validation, demonstrates the high prediction capability
with a very low false alarm rate of a couple of minute’s prediction horizons after the
seizure onset. Developing a model that has high accuracy and the lower false alarm
rate for epileptic seizure is the goal of this study. For this rather than counting all
the features, we will extract the features using the foremost significance and pre-
process EEG signals accordingly using Butterworth Bandpass Filter. Afterwards,
we will use automated feature extraction instead of traditional handcrafted feature
extraction and utilize CNN along with several functions to classify the data to dif-
ferentiate the pre-ictal and the inter-ictal state.

1.2 Usefulness/Importance:

Epilepsy may affect anyone at any time. Epilepsy affects both men and women of
all races, ethnic origins, and ages, and it affects both children and adults. In the
United States alone, the yearly expenditures associated with epilepsy are projected
to be $15.5 billion dollar in direct medical bills as well as missed or reduced earnings
and productivity, according to the Epilepsy Foundation [15]. Despite the fact that
the vast majority of people who suffer with epilepsy have full and active lives, there
is an elevated risk of death or substantial disability connected with the condition.
Some anti-seizure drugs, which are also used to treat mania and bipolar illness,
having suicidal thoughts or acting on such ideas may increase your likelihood of
having them, according to some study. At this time, there are no drugs or other
treatments that have been proven to be effective in the prevention of epilepsy. In
certain circumstances, the risk factors that contribute to epilepsy can be reduced or
eliminated altogether.

Epilepsy is mostly treated pharmacologically, with surgical intervention being used
only in rare cases. Antiepileptic medicines, on the other hand, have their limi-
tations and are unsuccessful in around 20-30 percent of patients, and surgery is
not always an option. In this situation, being able to predict the commencement
of epileptic seizures (like detecting a pre-ictal state) is crucial in order to intervene
and prevent an oncoming seizure or to decrease seizure-related harm from occurring.

Doctors often focus on the symptoms of the condition that can be controlled by
standard or alternative therapies, with the goal of improving people’s overall qual-



ity of life. However, if this illness is detected early enough, it may be controlled.
In order to do so, we are analyzing the “CHB-MIT Scalp Dataset”[14] in order to
forecast indications as soon as we possibly can. Being able to distinguish between
distinct stages of epileptic seizure states may be helpful in treating the seizures at
different stages. Even though there have been several classifications developed so
far, medical professionals are nonetheless concerned as to why and how this par-
ticular pattern identified the casualties. Thus, medical professionals would be able
to provide their patients with valuable information regarding their current health
status as well as the grounds behind the forecasts provided by various classifications.

1.3 Current scenario and Motivation

It is estimated that there are around 50 million individuals suffering with epilepsy
in the globe, with almost 80 percent of those persons living in third-world nations.
Epilepsy affects around 150,000 people each year, according to recent studies [15].
Because epileptic seizures are unpredictable events, they have an impact on the
daily lives of those who suffer from them, causing sudden fatalities and heightened
emotional stress.

A comprehensive research on the application of Machine Learning algorithms for
epilepsy seizure prediction has yet to be published, despite the fact that several ar-
ticles specifically address epilepsy seizure prediction utilizing EEG information. For
example, Mormann et al.[16] reviewed the seizure evolution forecasting systems from
the 1970s to 2006 and examined the crucial problems associated with seizure predic-
tion technique. Gadhoumi et al. [17], for example, provided a thorough discussion of
appropriate methodologies for the epileptic seizure prediction, as well as a thorough
analysis of the statistical significance of the forecast’s findings. In a recent publica-
tion, Kuhlmann et al.[18] provided a concise overview of epileptic seizure prediction
advances. They came to the conclusion that these developments in standard statis-
tical assessments are setting the framework for the creation of ES prediction tools,
and they altered current criteria to make this development more feasible. Because
it gives thorough answers to concerns such as why machine learning techniques are
necessary for the epileptic seizure prediction, this research is unique in that it is the
first of its kind, how relatively newer techniques such as deep learning are proving
to be extremely useful for Epileptic Seizure prediction, and discusses future research
directions in this area.

Epileptic seizures are common in both developing and industrialized nations in Asia,
and they are associated with age, gender, socioeconomic and cultural background,
among other factors. There are a lot of risk factors for epileptic seizures, and the
social and economic consequences of this condition are yet unclear. Because of the
consequences of epileptic seizures, they have become a significant socioeconomic
burden in several populated nations. In these nations, the function of nursing staff
management has been debated for quite some time. Some countries in South Asia
are likewise worried about the occurrence of epileptic seizures. There is relatively
little information available about the number of people who suffer from epileptic
seizures in the third world nations.



The identification of Epileptic Seizure is now in its infancy stage in the third world
nations. Consequently, patients and their families are continually presented with a
wide range of issues as a result of their condition. The amount of money available
for performing epileptic seizure research is restricted. In order to train models in the
near future, we are working on a recent dataset “CHB-MIT Scalp EEG Dataset”
[14]. Using it will allow us to train the models using a data set based on Epileptic
Seizure patients in these countries.

1.4 Research Objective

Patients with epilepsy are at an increased risk of injury. These arise as a result of
the fact that seizures may strike suddenly and without notice, leaving the patient
defenseless. If epileptic seizures can be anticipated, patients may be relieved the
sufferings the seizures cause. Researchers are working to enhance medical care via
the use of Al, Neural Networks, and Machine Learning approaches. The following
are the paper’s objectives:

1. The goal of this study is to make people more aware of epilepsy. We have included
a comprehensive description of Epileptic Seizures, including its phases, symptoms,
and various methods for predicting and detecting seizure start in advance. With this
knowledge, people will feel more comfortable discussing this sickness, since although
Epileptic Seizure is prominent in many instances in Bangladesh, people often do not
pay enough attention to minimizing the disease’s prevalence.

2. The specific objective of this research is to provide an approach that is gen-
eralizable rather than patient-specific and capable of accurately predicting seizure
with high accuracy and a low computational complexity. This will provide a solution
recommendation that may be applied to a wide range of patients.

3. Our objective is to identify features that separate inter-ictal and pre-ictal states
using automated feature extraction. We aim to present an approach for seizure pre-
diction that combines minimal feature engineering with convolutional neural net-
works.

4. Our approach aims to assist people in predicting Epileptic Seizure in its ear-
liest stages, so that when the initial stage, pre-ictal, is detected, patients and others
can take necessary precautions to avoid or prepare for the final stage of Epileptic
Seizure, and to assist the patient in dealing with it.

5. We want to provide insight from a larger perspective, by reviewing the most
recent seizure prediction techniques, sketching their background and primary pro-
cess, and assessing their predictive ability. Numerous seizure prediction algorithms
and gathered information have shed light on epilepsy and the fundamental processes
behind seizure generation.

6. Our objective is to give information on publicly accessible EEG datasets for
analyzing patterns and predicting seizure the onset. With advancements in technol-



ogy and a rise in the number and quality of accessible EEG channels, it has become
more vital to uncover patterns that may incorporate all available EEG channels for
signal processing that extracts all available valuable information.

7. Additionally, by introducing future challenges in the detection of epileptic seizures,
the methods we are using will be able to detect and predict risk factors for epileptic
seizures, while also providing a better opportunity for researchers, making it ex-
tremely valuable for rapid discovery and treatment.

8. Our long-term goal is to build an implanted device capable of effectively alert-
ing patients in advance of an oncoming seizure attack and also producing seizure
prediction time adequate to initiate triggering antiepileptic treatments.

1.5 Thesis Outline

There is a total of seven chapters to this thesis. An epileptic seizure prediction
model is the primary objective of this thesis, which aimed to build a model that
could predict the probability of a patient having a seizure relying on their indica-
tors. We aim to build the best possible model with not only higher accuracy but also
with better explanation with includes providing graphical explanations for analysis.
The present chapter provides a detailed overview to introduce the epileptic seizure
and its symptoms, available diagnosis, EEG signals descriptions followed by the
usefulness/importance of this research, the motivation and objectives to the thesis
at hand. Furthermore, a brief explanation of the present condition of the Epileptic
Seizure in the globe and how our study will be of great assistance in the medical

field is included.

Chapter 2 reviews the earlier research and the current research direction in seizure
prediction, describing and evaluating a variety of different methodologies and no-
table works. Researchers’ notable accomplishments in the field of Epileptic Seizure
are discussed in detail in Chapter 2. Additionally, the absence of current method-
ologies was over-viewed.

Chapter 3 provides more details about the techniques presented in later chapters.
It also combines all the proposed methods together and presents a comprehensive
study. Chapter 3 discusses the background analysis of Epilepsy seizure prediction
on different stages, followed by details about EEG and scalp EEG. Later on, a visual
overview of CNN models and Activation functions is provided in this chapter.

In Chapter 4, we discussed the data collection process and the dataset we will
be working with. We went into great detail about our observations on raw EDF
files. Seizures that begin before the scalp EEG shows signs of rhythmic activity can
be predicted using data from other physiological indicators in Chapter 4.

Furthermore, in Chapter 5, we explained our model implementation using prepro-
cessing and CNN. We've also provided some details on our test and training datasets.
This chapter describes a computationally efficient data-driven approach to seizure
prediction, using CNNs and factor graph inference. It is demonstrated that the pro-



posed algorithm can capture temporal correlation at reduced complexity and our
approach can achieve a better performance compared to prior works.

Chapter 6 presents the results, evaluating the process of noise and outlier removal,
performing statistical analysis of the computed patterns, discussing the separation
of the patterns belonging to different classes, and analyzing the classification re-
sults. When a seizure is predicted, this Chapter demonstrates how the procedures
described in Chapters 4 and 5 were incorporated into a real-time system in response.

Chapter 7 is the concluding chapter of the thesis that highlights the findings cor-
responding to studies detailed in each chapter as well as strengths and limitations
of our proposed technique. It also describes future research directions in seizure
prediction and classifications.



Chapter 2

Literature Review

2.1 Related Works

As technology advances, there has been significant improvement in the treatments
of neurological diseases. The ability to detect, predict, and classify epileptic seizures
has vastly increased in recent years. Although the terms “seizure detection” and
“seizure prediction” sound similar, they have different meanings. Researchers over
the years have developed advanced techniques for correction, prediction, and early
detection, and the classification of seizure attacks. All the epileptic seizure detec-
tion, prediction and classification process is completed analyzing the neural signals
[19]. Epileptic seizure detection is the process of detecting the occurrence of seizure
while having one. The seizure prediction involves an early forecast of seizure onset,
that is, recognizing the possibilities of getting a seizure. Seizure classification is to
spot which sort of seizure has occurred by analyzing the region of the brain that has
been affected.

Using categorization, doctors can distinguish between pre-ictal, inter-ictal, and final
seizure stages in epileptic seizure forecasting. For the most part, scientists have
relied on classifiers based on Machine Learning and Deep Learning. In addition to
K-nearest neighbor and other traditional classifiers for classification, there are also
Extreme Learning Machines, Convolutional Neural Networks, Linear Discriminant
Analysis, Generalized Regression Neural Networks (GRNN), Domain matching, and
Artificial Neural Networks for classification [20].

Among the strategies used in early studies on the epileptic seizure prediction in
the 1970s were linear feature extraction techniques [21]. However, despite the fact
that these approaches were developed in the 1980s, the introduction of non-linear
methodology made their use of feature extraction more straightforward owing to the
non-linear structure of EEG data [22]. It was also used to identify ES throughout
this decade, in combination with the detection of epilepsy-related EEG patterns,
including pre-ictal and ictal patterns as well as inter-ictal patterns. In 1998, Salant
et al. [23] presented an early seizure prediction. Drogenlen et al., amended this
prediction in 2003 [24] and it is now trusted. The Kolmogorov entropy was used to
predict ES occurrence 2-40 minutes before the trial started. In 2002, on the basis
of multi-day EEG recordings supplied by many epileptic centers, the first worldwide
symposium on Epileptic Seizure prediction was held. This dataset has since been



studied 8 in depth [25]. In 2003, Mormann et al., revealed that before the seizure
onset, the phase synchronization utilized to predict the seizure onset for certain
EEG channels decline. [26].

Throughout the first decade of the twenty-first century, studies using enormous vol-
umes of EEG data cast doubt on the accuracy of the previous century’s observations.
When the researchers used large and hitherto untapped data sets, they discovered
that the outcomes of previous studies could not be duplicated. Preprocessing re-
duces noise from EEG signals, and achieving high sensitivity and specificity requires
a high SNR (signal-to-noise ratio). Using bandpass Butterworth filters to filter EEG
signals in the temporal domain [27] is a standard preprocessing approach. Prepro-
cessing EEG signals using the Fourier transform [28] [29] [30] and wavelet transform
[29] can also be utilized to make them acceptable for feeding into convolutional
neural networks (CNN). Recent research [28] [29] [30] indicates that preprocessing
raw EEG data into a time-frequency domain matrix achieves a conversion rate of
between 75% using the wavelet transform [29] and 95% using the short-time Fourier
transform (STFT). Because it can catch short-term variations, the stochastic Fourier
Transform produces superior preprocessing results for EEG signals. Usman (2021)
Demonstrated using Butterworth bandpass filters that the CHB-MIT scalp EEG
dataset [14] has 90.8% specificity and 92.7% average sensitivity, followed by STFT.
[27]

The use of Convolutional Neural Network (CNN) is prevalent in predicting a typ-
ical seizure in many types of research [27] [28] [29] [30] following preprocessing for
feature extraction from refined data. To eliminate noise from EEG recordings, re-
searchers utilized empirical mode decomposition [28] and three-layer Convolutional
Neural Networks. The resulting images are flattened to form a feature vector after
applying these three layers of CNN. The study’s sensitivity rate was 95%.

Medical image analysis and bioelectric signal processing are two examples of where
deep learning is now being used. It outperforms classic feature extraction and ma-
chine learning approaches in the areas of pattern identification and picture recogni-
tion. EEG seizure detection is increasingly relying on deep learning methods, no-
tably convolutional neural networks (CNN). Troung and colleagues detected epilep-
tic episodes, utilizing EEG and 13-layer depth CNN with an accuracy rate of 88
percent [30] . EEG characteristics were extracted and identified using CNN and
SVM algorithms in another study [29]. Seizures may be detected with an accuracy
of 86.25 percent using this approach. The sensitivity (i.e., the probability of detec-
tion) is taken into account while measuring classification performance. Ozcan et al.,
classified the EEG data with 89% accuracy using CNN [19], whose findings were
reported in Neurolmage. Using a CNN architecture with six convolutional layers,
Khan et al. [31] were able to extract features from EEG wavelets with an 87.8%
sensitivity rate.

Additionally, Hjorth parameters, statistical moment, and spectral band power were
used in this work [19]. When these features were created independently for each
EEG channel, the moving window analysis revealed an accuracy rate of 85.7% in-
cluding a 0.096 percent/h false prediction rate. Using the CHB-MIT database [14],



as recommended in another study, allows for a certain level of artifact tolerance
without the need for filtering techniques [32]. So, even without preprocessing, they
suggested 9 method for feature extraction utilizing the fast Fourier transform (FFT)
achieves 100 percentage accuracy, but falls short of reaching an exceptionally low
false alarm rate (FAR). In a study published in the Journal of Biomedical Research,
to extract features from EEG signals, researchers used signal decomposition repre-
sentations based on EMD and DW'T approaches which enabled them overcoming
the non-linearity and non-stationary nature of EEG signals while achieving a 100%
accuracy rate [20].

Extracted data must be categorized in order to be assigned to the inter-ictal, pre-
ictal, or ictal states. To classify the retrieved feature, support vector machines [27],
RNN [28], k-nearest neighbor, Random Forest, convolutional networks, and the ma-
chine learning algorithms and deep learning approaches were used. We can see that
studies that use SVM to extract features produce better outcomes in terms of sen-
sitivity and preciseness. This technique separates data into two groups drawing a
line between them, and it is part of supervised machine learning. Ansari’s research
[33] suggests that using a small number of set features is preferable. The study used
a single-feature long short-term memory (LSTM) to attain an accuracy of 95.71%.
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Chapter 3

Background Analysis

3.1 Epileptic Seizure Prediction

The typical method for identifying Epileptic Seizure activity in the brain is to an-
alyze EEG signals. EEG recordings are an essential diagnostic tool for evaluating
whether or not a patient has Epileptic Seizure. EEG data may be utilized to de-
termine the phases of an epileptic seizure as well as the features of each episode
throughout the pre- and post-seizure periods. Numerous researchers [28] [29] [30]
[19] [31] have analyzed the association between EEG synchronization patterns and
seizures, indicating that the pre-ictal state, ictal state, inter-ictal state, and post-
ictal state may be distinguished.

(i) Pre-ictal State: This is the period of time before the seizure; typically, 30 to
90 minutes before to the onset of the seizure. Mood swings, anxiety, feeling light-
headed, trouble sleeping, difficulty staying focused, experiencing a sense of déja vu,
nausea, and headache are some of the symptoms that might occur. It is not always
visible. Alterations in the basic signals are used to predict seizures. To be therapeu-
tically effective in a warning system, a pre-ictal condition must be detected early
enough to reduce time spent in false alarm [18].

(ii) Ictal State: A shift in electroencephalogram (EEG) data that occurs during
a seizure is referred to as the ictal state. This is the state of seizure itself. In this
state, the person’s brain experiences an electrical storm. Until the brain stimulation
stops, autonomic nervous system control movements that tend to continue rapidly
and rhythmically.

(iii) Inter-ictal State: This state is the interval between the onsets of two con-
secutive seizures. The quantity of cortical area, epileptogenic neurons, and seizure
length may all be varied in the same person.

(iv) Post-Ictal Condition: This is the final state, the typically lengthy period of
recovery after a seizure has occurred. The length of time it takes for a person to
recover to normal depends on the severity, type, and location of the seizure in their
brain.

11



Inter-ictal Preictal Ictal Post-ictal

Figure 3.1: Four Stages of seizure

The epileptic seizure prediction process mainly includes dataset collection, pre-
processing of data, feature extraction, classification, and post-processing of all parts
of the epileptic seizure prediction process to validate the result [10]. Recognizing
neurological diseases prior to time will relieve the load on healthcare providers,
policy-makers, and also the medical system itself. The prognosis of a chronic nerve

condition will advance research while also improving the quality of life for patients
[17].

In general, pre-processing data entails cleansing and removing unnecessary material
from raw data to make it more useful and acceptable. The term “pre-processing”
refers to the process of reducing undesirable noise from EEG signals in order to
obtain superior brain signals. Preprocessing EEG data is required for numerous
reasons. First, the signals picked up by the scalp are not always precise represen-
tations of the brain’s signals, since spatial information is lost. Second, EEG data
tends to be noisy, which might mask weak EEG signals. Moreover, blinking or mus-
cle movement may taint data and distort images. Noise is removed in this stage to
enhance the signal-to-noise ratio in the EEG signal. Artifacts are eliminated from
the primary signal during pre-processing to identify the artifact-free signal. To filter
the data in this procedure, band-pass filter is used [27].

The importance of feature extraction in this study cannot be overstated. After
pre-processing, Feature Extraction removes irrelevant characteristics from the im-
proved data. So, in order to reduce the enormous amount of data, feature extraction
and selection could also be used to reduce the complexity of the classification system
and increase the computation of machine learning algorithms. The signals’ statisti-
cal moments in the time domain, frequency domain moments, entropy, approximate
entropy, Hjorth parameters, Lyapunov exponents, phase angle, the amplitude, and
power spectral density are all extracted by researchers [31]. Automated feature ex-
traction for EEG signal is an emerging part of research. Manual approaches for
extracting features need a lot of time and effort since they are based on theory. Au-
tomated EEG signal feature extraction can save time, effort, and complexity. With
automation, the process of extracting features becomes more efficient.
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Classification is the process of classifying things into groups or classes based on
their shared characteristics. When it comes to distinguishing between a seizure and
a non-seizure state, this is a critical first step. In order to classify test data using
the training data of several classifiers, classification is used. Data sets are used to
train a classifier’s parameters. By modeling the relationship between classes and
attributes, a trained classifier may identify new instances in an unknown testing
dataset. Classification of EEG data using traditional classifiers has shown promis-
ing results. However, the general feature extraction method’s classification impact
is unstable as data changes. Feature extraction and classification may be performed
separately using CNN-based classification. When faced with varying sampling fre-
quencies or varying sample data lengths, it tries to get excellent and consistent
classification results.

3.2 EEG Signals

In diagnostic and therapeutic uses, the electroencephalogram (EEG) has been widely
utilized to capture the electrical activity of the human brain. Multichannel record-
ings of electrical activity produced by groups of neurons in a brain are made from
scalp EEG recordings. Due to its low cost and non-invasive nature, EEG is an ex-
tensively utilized noninvasive neuro-diagnostic tool globally. In 1929, Hans Berger,
a German psychiatrist, devised EEG, a non-invasive functional imaging technology
for gaining a better understanding of the brain that enables clinicians to establish
a neurological diagnosis and plan future neurosurgical operations [4].

To detect seizure diseases such as epileptic seizures and stress-related disorders,
depending on their severity, EEG is used. An EEG uses small metal discs known
as electrodes which are connected to the scalp which is a painless and safe test to
detect electrical activity in the brain [9]. Even as we sleep, electrical impulses carry
signals between our brain cells, and this creates wavy lines on an EEG recording.
The brain cells have specific wave patterns when we are awake or asleep, but when
a person experiences a seizure, the wave patterns shift [28].

EEG electrodes are placed on a patient’s scalp to record scalp EEG signals, or
electrodes can be implanted into the brain to monitor intracranial EEG signals. A
patient’s scalp is considered to be divided into four different lobes- frontal, parietal,
temporal, and occipital. The EEG electrodes are placed in those parts of the crown
of the skull. The numbers and names of these channels are employed in the data
analysis. Neuronal activity evident in the scalp EEG is constrained in its occur-
rence and features because of the principles of EEG generation. For example, the
left hemispheric frontal lobe is represented in the channel “FP1 - F7”. This is how
we may identify the kind of seizure, such as Localized, Myclonic, or Generalized, as
well as its severity. Any time a seizure occurs, the brain’s electrical activity changes
rapidly, and this can be detected in scalp EEG recordings as a sudden redistribution
of spectral shifts. EEG results may suggest seizure activity was not happening at
the time of the test, if they appear normal.

EEG monitors brain electrical activity in two ways: amplitude and frequency. This
includes Delta (up to 4 Hz) and Theta (from 4 to 8 Hz), as well as Alpha (from
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8 tol2 Hz), Beta (from 12 to 26 Hz), and Gamma (from 26 to 100 Hz). The four
sub-bands namely -1 (from 30 to 50 Hz), -2 (from 50 to 75 Hz), -3 (from 75 to 100
Hz), and -4 (from 100 to 128 Hz) comprise of the band. It is avoided that the 60
Hz power line noise and harmonics are used in the spectral power calculations [19].
During an Epilepsy Seizure attack, EEG plays an efficient role to study the brain
functional anatomy [12].

As a first step in using EEG data to diagnose an illness or interpret brain activity
for neuropsychological testing, one needs to use spectral information or extract the
features from the raw data [34]. The raw data that we get from the EEG tests
cannot be used for diagnosing because it is difficult to interpret the data from a
single pair of EEG electrode pairs. So the EEG dataset is fed into the preprocessing
phase. Then, feature extraction is used to reduce the dimension of the raw EEG
signals [12], which is critical in extracting distinctive patterns from the raw data
for consistent categorization. The selection of features is a crucial stage in classi-
fication [20]. Redundant features may overburden the system, preventing the best
possible outcome. As a result, reducing the number of features will assist the classi-
fier in learning more robustly and achieving good performance. ML-based classifier
is trained using extracted features or processed raw data as input for automatic
feature extraction. In order to identify different brain disorders, analyzing EEG
data can assist in distinguishing between normal and abnormal brain activity [25].
Longer-duration EEG recordings are required for effective epilepsy prediction. Ex-
pert neurologists evaluate EEG signals collected over a period of days, weeks, or
even months in order to pinpoint the source of epilepsy.
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Figure 3.2: EEG Cap layout for scalp electrodes positions
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3.3 Butterworth Bandpass Filter

Noise and artifacts contaminate measurements in the area of brain research, one of
the most challenging issues. Examples of such sources include background noise,
instrument noise, and internal signal sources that aren’t relevant to the experiment.
Noise may either conceal or complicate the accurate analysis of the intended signal.
However, if the signal and interference are situated in discrete spectral parts of the
spectrum, it may be possible to boost the SNR applying a filter to the data.

The Butterworth Bandpass filter is one of the most used frequency domain filters,
also known as the maximally flat filter. Throughout its bandpass, it is a form of
Active Filter that has a reasonably flat frequency response. Because the filter has a
strong frequency roll-off feature, a magnitude function that changes monotonically
with frequency, and a more linear phase response in the passband when compared
to other traditional filters, it is more efficient.

In 1930, British scientist and engineer Stephen Butterworth first discussed the But-
terworth filter in an article. As a result, the Butterworth filter was given its name
[35]. Digital Butterworth filters and Low pass Butterworth filters are two examples
of Butterworth filter types. Increasing the Butterworth filter order brings the wall
response and filter closer together, which in turn brings up the number of cascaded
stages in the design. This filter is to attenuate noise, remove artifacts and enhance
target activity, making EEG recording analysis more accurate and precise. This
filter aims to keep the unique frequency of the signal, and the information received
from the clean EEG signal can be utilized for therapeutic applications, such as the
detection of epilepsy, coma, brain damage and stroke amongst other things [35].

3.4 Convolutional Neural Network (CNN)

Neural networks are mathematical models that store knowledge via the use of brain-
inspired learning mechanisms. Similar to the brain, the neural networks are com-
posed of several neurons which are connected through numerous connections. In
a variety of applications, neural networks have been used to simulate unknown
relationships between various parameters using a huge number of samples [36]. Ad-
ditionally, neural networks are increasingly being applied in medicinal applications.
A Neural Network’s fundamental an input layer, an output layer and one or more
hidden layers are all components of architecture. As illustrated in the example below.
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Figure 3.3: A simple 3-layered Neural Network

The data is transmitted to the input layer, which distributes it appropriately to the
hidden layer (s). All calculations and conclusions are made here before they are sent
to the output layer. The fact that neural networks usually include several hidden
layers piled on top of one another characterizes deep learning.

Images were initially processed in pixels using a multi-layer architecture known as
CNN. Traditional neural networks are not appropriate for image processing since
the pictures must be entered as reduced-resolution bits [37]. But CNNs can be used
for signal processing as well. Therefore, CNNs have their nodes, or neurons, orga-
nized more like the frontal lobe of the brain, which is responsible for visual stimuli
processing in living beings. This way, the layers are organized in such a way that
the entire image may be processed at once rather than separately. The neurons
in the network’s layers are organized in three dimensions, two of which are input
dimensions, and the third of which is the activation volume.

CNNs are constructed with input and output layers and contain a number of layers
that are hidden. Also, convolutional, fully connected and pooling layers are typically
found in CNN’s hidden layers. Before sending the output to the next layer, Con-
volutional layers convolutedly transform the input. Convolution replicates a single
neuron’s response to visual input. Pooling layers in convolutional networks forms
one neuron in the succeeding layer by merging the output of neuron clusters in a
single layer [38].The value obtained from the average of each cluster of neurons in
the preceding layer is used in mean pooling. By progressively reducing the number
of parameters, computations in the network as well as the spatial dimension of the
depiction, and to minimize overfitting, we utilized a pooling layer.
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3.4.1 Activation Functions

The activation functions of artificial neural networks (ANNs) are crucial in defining
the output of deep learning models. Neural network output may be predicted using
this tool. Each neuron in the network has a function that decides whether or not it
should be active based on the information it provides to the model [39].

Deep Learning models’ accuracy and computing efficiency are both determined by
activation functions, which may make or break a large-scale neural network. Addi-
tionally, it has a significant impact on the neural network’s capacity to and pace at
which it can converge. Normalization can also be helped by the activation function
[40]. The Activation function has a value that might be anything from 0 to 1 or
from -1 to 1.

Sigmoid, for example, is a popular activation function that may be utilized in the
output layer of binary classification. Using TanH in the network’s lower levels is
possible; This activation function is particularly easy to implement compared to
other activation functions, such as ReLU, since it just activates neurons depending
on the output, meaning that if the output goes below zero, the neurons are detached
from the network [41]. In recent years, the ReLU (Rectified Linear Unit) has become
the most common non-linear activation function. TanH and sigmoid functions are
not included in this comparison. Several layers of neural networks, or deep neural
networks, can be constructed using ReLU.

The ReLU equation indicates that the output of this method is the highest fea-
sible value between 0 and the input value being utilized. The output equals to 0
when the input is negative; and when the input is positive, the output equals input.
The rectified linear activation unit (ReLU) may be utilized in convolutional layers
since it is compatible with layers. The pooling layer [38], sometimes referred to as
the down-sampling layer, pools the output of the convolutional layer in order to
retain higher-level representations. After convolutional and pooling layers, the sig-
nals are generally sent into fully connected layers for the purpose of classification [41].

CNNs clearly outperform traditional classifiers when it comes to evaluating large
datasets. Parameter sharing is used to manage and decrease the number of param-
eters in convolutional layers of CNNs, a technique that CNNs employ. To avoid
overfitting, a pooling layer is employed to gradually lower the spatial size of the
network, as well as the number of parameters and computations [37]. CNN was fed
with a multichannel time series based on signals in the time or frequency domain as
the input layer.
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Chapter 4

Dataset Analysis

We begin this chapter by describing how we acquired the dataset for our research.
Then we’ll dive deep into analysis of our selected dataset and it’s features.

4.1 Data Acquisition

The term “data acquisition” refers to the process of gathering data from relevant
sources prior to storing, cleaning, and preprocessing any data. It is the process of
gathering relevant data from all acceptable sources and putting it into a machine-
readable format so that the machine may be taught and become accustomed to the
decision-making process. Our initial objective was to search for and retrieve publicly
accessible EEG databases. Despite the fact that there are only a few open-access
scalp EEG databases available, we will use the CHB-MIT Scalp EEG Database [14]
from Children’s Hospital Boston. The CHB-MIT Scalp EEG database [14] seemed to
be the most trustworthy because it is one of the most widely used research resources
for scalp EEG analysis The CHB-MIT Scalp EEG Database [14] is unique among
databases in that it comprises raw EDF files of seizure and non-seizure recordings
from persons of various ages, as well as a summary file. Due to the prevalence of raw
EDF files in the database, it becomes easier to preprocess the raw files according to
the purpose.

4.2 CHB-MIT Scalp EEG Dataset

The database contains scalp electroencephalograms of twenty-three patients with
intractable focal epilepsy, nine of whom are men and seventeen of whom are women.
Each case contains nine to twenty-four EDF files compiled from continuous EEG
waves from the patients. Digitalized EEG signals contained in EDF files have ex-
actly one-hour length. The bulk of files contain 23 channels in total. The data
has a resolution of 16 bits and 256 samples per second sampling rate. This dataset
contains a total of 198 seizures. It is possible to locate recordings labeled “chb_n”,
with the nth sample for the suitable subject denoted by the number n.
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Table 4.1: The CHB-MIT EEG DATASET description. GENDER:Female(F) AND

Male(M)
| Case \ Gender Age | Number of seizure(s) |
chb01 F 11 7
chb02 M 11 3
chb03 F 14 7
chb04 M 22 4
chb05 F 7 5
chb06 F 1.5 10
chb07 F 14.5 3
chb08 M 3.5 )
chb09 F 10 4
chb10 M 3 7
chbl1 F 12 3
chb12 F 2 40
chb13 F 3 12
chb14 F 9 8
chb1b M 16 20
chb16 F 7 10
chb17 F 12 3
chb18 F 18 6
chb19 F 19 3
chb20 F 6 8
chb21 F 13 4
chb22 F 9 3
chb23 F 7 7
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4.3 Observations on Raw EDF Files

The International 10 to 20 systems of EEG electrode placements and nomenclature
were employed in order to obtain the EEG recordings. These groups of electrodes,
which are twenty-one in number, are positioned on the scalp. In addition to the
21 electrodes of the 10-20 system, which is widely used around the world, it is also
feasible to employ intermediate 10% electrode sites. The CHB-MIT Dataset [14]
is comprised of a total of 23 channels: “FP1-F7”, “FP2-F4”, “F7-T7”, “P3-01”,
“P7-T77, “T7-P7T7, “T7-FT97, “F4-C4”, “FP2-F8”, “FP1-F3”, “P7-01”, “F8-T8",
“F3-C37, “T8-P8”, “C3-P3”, “FT9-FT107, “T8-P8”, “P8-027, “P4-02", “CZ-PZ",
“FT10-T8”, “FZ-CZ”. It shows the central, parietal, frontal, frontal polar, occipital,
and occipital-temporal relationships. Cases chb0O1-chbl1 and chb23 all had 23 chan-
nels, as determined by analyzing the dataset. Up to five “dummy” signals (marked
as “~") were inserted between EEG readings in some situations, including chb12-
chb19 and chb20-chb22; although these “dummy” signals can be ignored. While
evaluating the dataset, it is discovered that channels in chbl1-chb23 are altered
many times. Channels between chb12 and chb23 have been altered at least three
times. When the channels are changed, the difference between one electrode and a
weighted average of electrodes in it’s proximity changes as well.

Figure 4.1 which is of raw data of chb15 01 is a non-seizure file with a less gen-
eralized spike or poly-spike or a quicker wave discharge than 3-5 Hz in the EEG
signals. We can see the insertion of 4 dummy signals marked as “-07, “17, “-27
“-3” after the channels “P7-017, “P3-01”, “CZ-PZ”, “P4-02” respectively.

Figure 4.1: Raw non-seizure data of chb15_01

As seen in Figure 4.2 , even the cases of chb12 contain 4 dummy signals, as indicated
in Figure 4.1 (marked “-”). A seizure attack is depicted in this image. In contrast
to Figure 4.1, we can see continuous spikes at around 1600 seconds and again at
3400 seconds of in the first five channels in Figure 4.2. In focal epilepsy, it is also
noticed that the seizure duration is short, even if the patient has multiple seizure
attacks as shown in Figure 4.2.
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Figure 4.2: Raw seizure data of chb12_06

The power spectral density (PSD) per unit frequency of a signal describes the power
of the signal as a function of frequency. PSD depicts the strength of related periodic
signals. The PSD vs. Frequency graph of a non-seizure example is shown in Figure
4.3. Tt exhibits a sharp peak at ~ 17 Hz, ~ 34 Hz, indicating that noise is at its
highest here, and because it’s a harmonic signal, it will happen every 17 Hz or so as
the power decreases.
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Figure 4.3: PSD of non seizure data of chb01_01
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At ~ 18 Hz and ~ 35 Hz, the seizure case in Figure 4.4 exhibits the same charac-
teristics of the noisy signal as the seizure case in Figure 4.3. Other frequency levels,
such as 0 Hz, 50 Hz, 78 Hz. However, accumulate noisy signals as well in Figure
4.4. When we look at both the seizure and non-seizure PSDs, we can see that, the
seizure one has a noisier signal than the non-seizure scenario.
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Figure 4.4: PSD of seizure data of chb07_13
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Chapter 5

Model Implementation

5.1 Proposed Model

When it comes to computer-aided disease diagnosis, deep learning is now signifi-
cantly contributing. For deep learning, there is no need for manual or expert based
feature selection. Instead, raw data can be used to create an efficient optimal rep-
resentation that incorporates that data. As a healthcare system, manual selection
might be exhausting when dealing with a large number of patients with the same
disease. The convolution neural network is distinct from the basic neural network
in that it has 150 or more layers. This feature of CNN helps to cope with large
datasets and enhance accuracy in several disciplines.

From Figure 5.1, We have a clear picture of the steps we need to take in order
to make a reliable seizure prediction. To begin, we used the “CHB-MIT Scalp EEG
Dataset” [14] to get our data and after this data acquisition process we have firstly
analyzed the patients’ seizure and non-seizure files thoroughly for better understand-
ing. It took us a while to do the dataset analysis since we are new to the EDF format
data. After analyzing the dataset, we figured out that we can focus on working with
the first 10 patients and with 18 common channels. The findings on the common
channel has helped us extensively in generalization of the model.

Right after selecting our desired cases and channels, we moved to the pre-processing
part of our study. Since we are dealing with EDF file, it is very crucial to pre-process
the signals. The pre-processing part took the longest time. Before pre-processing it
was necessary for us to have a good understanding about the seizure signals. We had
to have proper understanding about the inter-ictal, pre-ictal, ictal, post-ictal seg-
ments of the signals. The preprocessing of EEG signals is required to at least lessen
the pre-ictal and ictal state imbalance complication, boost the SNR, and remove
undesired artifacts. For preprocessing, the raw EEG data, we employ the Butter-
worth Bandpass filter with a cutoff frequency of 5-50 Hz [42]. Then we concatenate
the ictal signals with the pre-ictal signals as 30 minutes time frame from the entire
signal and define as pre-ictal/ictal signals [43], and cut off the rest of the data as
inter-ictal signals. After successfully extracting inter-ictal and pre-ictal/ictal signals
from the data signal, we finally got the shape of (12,1280) and got 35132 files in
total that is fed to the CNN as input.
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In computer vision and natural language processing, CNN is a well-known deep neu-
ral network architecture that has been widely used. We employed a ReLLU function
in conjunction with four convolution layers in our study. Following a batch normal-
ization and max pooling layer, each convolution layer is made up of two conv2D
layers. Following the convolution unit rather than using only Fully Connected (FC)
layers which is most commonly used in the CNN models,in the goal of achieving
greater precision, We opted to employ a Global Average Pooling (GAP) that cre-
ates a feature map for each category’s associated classification task. By requiring
correspondences between feature maps and categories, global average pooling has the
benefit of making the convolution structure more native than fully connected layers.
Thus, the feature maps may be simply understood as confidence maps for categories.

Additionally, overfitting at this layer is prevented since there is no parameter to
optimize in global average pooling. A dropout unit with a rate of 0.4 was utilized
after the GAP layer in order to use two dense (FC) layers. Each neuron in the dense
layer gets information from all of the neurons in the layer preceding it due to the
dense layer. Finally we used Sigmoid activation function the output layer which is
also called a logistic function. We found that it is suitable for our proposed CNN
model since we are using binary classification of data.
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Figure 5.1: Proposed Model for Epileptic Seizure Prediction

5.2 Input Data

Originally, our data was saved in the edf format in the dataset. It’s challenging to
work with such a file format. Thus, we begin by reading the raw edf files using
Python programming language’s mne.io.read raw_edf() function. Next, we used the
Python’s getdata() function to extract raw data from edf files and store it in a
numpy.ndarray named edf_numpy. Because our goal is to develop a generic method
for seizure prediction that can be applied to all patients, we chose the first ten cases,
or a total of 55 seizure files, for our research. Additionally, we chose to deal with the
common 18 channels because they are present in all cases. It’s difficult to evaluate
without identifying the common channels because the electrode used for each patient
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in numerous trials is different. The following are selected cases from all recordings,

along with their associated channel names:

Table 5.1: Selected Cases and Channels as Input Data

|

Cases and Channels

|

Description

Selected Cases

Cases from chb01-chb10
with  seizure recordings
only.

Due to the fact that not
all electrode placements are
identical and hardware is-
sues caused in gaps between
sequential edf files, during
which the signals were not
captured; in most cases,
the intervals are 10 sec-
onds or fewer, but occasion-
ally there are substantially
larger gaps.

Selected Channels

“FPI-F7T “F7-T7,“T7-
P7",“P7-01”,“FP1-
F37,“F3-C3",“C3-P3" “P3-
017, “FP2-F4" “F4-
C4”,“C4-P4”" “P4-

02", “FP2-F8" “Fs-
T8”,“T8-P8-0", “PS-

02" “FZ-CZ" ,“CZ-PZL".

Additionally, this dataset
includes up to 31 channels
with dummy signals. How-
ever, upon the study of the
data, we discovered that all
patients utilize these com-
mon channels. As a result,
we have narrowed our anal-
ysis to these common chan-
nels.
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5.3 Pre-Processing

Pre-processing is critical in predicting epileptic seizures. To begin, we must import
the following libraries: mne; pandas; numpy; matplotlib.pyplot; scipy; filtfilt, but-
ter, and lfilter from scipy.signal; and stats from scipy. Following the selection of the
ten cases and the common 18 channels, we proceeded to the pre-processing stage.
We removed all channels except the common ones and placed them in edf numpy,
a 2D numpy array for our convenience. We employed the Butterworth Bandpass
filter to remove the baseline and power line noise in selected cases. In comparison
to other BBs, we chose a fifth-order BB since it provides a linear response. The
frequency cutoff was between 5 Hz and 50 Hz because the irregular discharge asso-
ciated with epilepsy seizures occurs primarily at frequencies between 5 and 50 Hz
[42]. The low-cut and high-cut frequencies are 5 Hz and 50 Hz, respectively. Cutoff
frequency is the frequency where the response is 3 dB lower than the passband’s
level, which is what determines the frequency of the filter’s cutoff. Depending on
the filter’s design, all other frequencies will be attenuated once the cutoff frequency
has been reached. These two frequencies were removed because they were deemed
to constitute noise. As a result, we chose a frequency range of 5-50 Hz.

Prior to algorithm implementation, the seizure prediction horizon must be deter-
mined. Seizure occurrence period (SOP) is an important factor to examine since
it indicates the likelihood that a seizure will occur. The seizure prediction horizon
(SPH) defined as the clinical intervention that is a minimum timeframe between the
prediction of seizure and the start of SOP [43] . However, the prescribed pre-ictal
horizon remains debatable. Seizure prediction facilitates the prediction of seizures
ahead of their occurrence, allowing patients to get prompt and appropriate treat-
ment. Unfortunately, by the time the ictal signal has been located, the ideal response
time has elapsed. As a result, distinguishing the ictal state for epileptic seizure pre-
diction makes no sense. So, we have incorporated them into the prediction time
frame. For the sake of our experiment, we concatenate the ictal and preictal signals
as 30 minutes pre-ictal/ictal signals (i.e. 30 minutes prior to the commencement of
a seizure) for each patient’s seizure. [43] After delimiting the pre-ictal/ictal signals,
the remainder of the recording of the seizure files is referred to as the inter-ictal
signals.

Following the specification of the BB cut off frequency, we begin filtering the 18
common channels, one by one using the BB Filter Algorithm and appending them
in data_channel filtered 2D numpy array. After retrieving the seizure end time, we
separate the inter-ictal and pre-ictal/ictal signals by setting the pre-ictal /ictal signal
files to 30 minutes or 1800 seconds and the rest of the file duration to the inter-ictal
signal. We use the pre-ictal/ictal end time of each patient as the product of the
sampling rate and seizure end time. As previously stated, the pre-ictal/ictal start
time begins 1800 seconds earlier at the pre-ictal/ictal end time. Similarly, we define
the inter-ictal start and end time as the seizure recording file start time and pre-
ictal/ictal start time respectively.

If we take chb02_19 seizure case as an example which has a seizure end time at
3036 seconds of it’s one-hour file recording. Traversing backwards from the ictal
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end time which is 3378 xsampling_rate or 3378 x256 or 864768 seconds, then pre-
ictal/ictal start time will be (3378-1800)x256 or 403968 seconds.We can get the
pre-ictal /ictal start time and end time by slicing the data_channel filtered numpy
array within range 403968 seconds and 864768 seconds. For inter-ictal part, it starts
at 0 second that is the starting time of the file recording and ends at the starting of
the pre-ictal/ictal start time at 403968 seconds.
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Figure 5.2: Raw Signal Data of chb02_19 seizure file (a) and Filtered Data of
chb02_19 seizure file (b)

27



One of the challenges we ran into during pre-processing was that not all of the file
recordings were exactly one-hour long. Cases like chb03_36, chb04_05, chb06_01,
and chb10_31, for example, had longer records, so we cut off the standard 1800
seconds for the pre-ictal/ictal signal and used the rest of the data for the inter-ictal
signal. Another issue we encountered was dealing with multiple seizures for the
same recording. The recording in chb04_28, for example, is four hours lengthy and
includes two seizure episodes. So, for the second seizure, we started trimming the
pre-ictal /ictal and inter-ictal first. We cropped the inter-ictal period till the first
seizure occurred. Finally, we set the pre-ictal/ictal period for 1800 seconds for the
first seizure occurrence and trim the inter-ictal segment from the rest of the data
as previously. The pre-ictal/ictal and inter-ictal signals split into five second signals
[42] for binary classification trials and saved as numpy files.
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Figure 5.3: 5s Signal segmentation without overlapping

At the end of pre-processing we get a total of 35,132 numpy files and 14,269 pre-
ictal/ictal files and 20,863 inter-ictal files. Finally, we get the shape of (18,1280) as
the output of the pre-processing stage.
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54 CNN as Automated Feature Extractor and
Classifier

Due to its capacity to learn spatially invariant characteristics across many scales,
CNNs have become the dominant approach in computer vision [44]. There have been
significant advancements in the use of image processing techniques to the analysis of
a wide variety of one- and two-dimensional structures for medical classification and
prediction. Even when dealing with one-dimensional data and time series, CNNs are
gaining popularity as a substitute for the more traditional Recurrent Neural Network
approach (RNN). In comparison to RNNs, CNNs with wide receptive fields can also
be trained significantly quicker, which enables them to outperform RNNs in the area
of extended sequence analysis. Additionally, CNNs can only learn functions created
by highly ordered convolutions, limiting their capacity to overfit in the absence of
sufficient training data [44].

5.4.1 Initial Setup
We have used AMD Radeon RX 5600 XT GPU and i9-10850K processor. For the

initial setup of out model, firstly we import the keras and layers from tensorflow.
We used the classic 2D CNN model that takes input the formulated EEG signal
samples. The samples were cropped with a 5s time-frame for both the inter-ictal
and pre-ictal/ictal samples without overlapping. The samples have exactly 1280
elements in the time axis but only the selected 18 elements in the channel axis.

Since we have two categories of data, we use binary classification. The number
of classes are 2 so we have used Label=0 for distinguishing inter-ictal and Label=1
for pre-ictal/ictal. There are 32 training samples in a batch size of 32, which we
have chosen, and each iteration uses a different set of 32 training data. Then, for
the training and validation datasets, we randomly divided our data into 80 percent
and 20 percent of the samples, respectively, based on the target size.We filled our
datasets for training and validation according to the percentages.

5.4.2 CNN Model Creation

In our proposed CNN Model we have kept the input shape same as our sample size
(18 x 1280) to begin with in the input layer. We propose a model that includes
four convolution layers and a 2D Global Average Pooling layer following the conv2d
layers, excluding the input and output layers. The activation function for each of the
CNN'’s convolution layers is a rectified linear unit (ReLU). A Batch Normalization
layer and a 2D max-pooling layer follow each convolution layer. Figure 5.4 shows
the kernel sizes for convolution kernels and max-pooling kernels.
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input: | [(None, 18, 1280, 1)]
output: | [(None, 18, 1280, 1)]

!

input: (None, 18, 1280, 1)
output: | (None, 18, 1280, 32)

!

e e input: | (None, 18, 1280, 32)
batch_normalization | BatchNormalization
output: | (None, 18, 1280, 32)

max_pooling2d | MaxPooling2D

!

input: | (None, 9, 640, 32)
output: | (None, 9, 640, 64)

!

e e input: | (None, 9, 640, 64)
batch_normalization_1 | BatchNormalization
output: | (None, 9, 640, 64)

max_pooling2d_1 | MaxPooling2D

!

input: | (None, 4, 320, 64)
output: | (None, 4, 320, 128)

I

e L input: | (None, 4, 320, 128)
batch_normalization_2 | BatchNormalization
output: | (None, 4, 320, 128)

max_pooling2d_2 | MaxPooling2D

!

input: | (None, 2, 160, 128)
output: | (None, 2, 160, 256)

I

e L input: | (None, 2, 160, 256)
batch_normalization_3 | BatchNormalization
output: | (None, 2, 160, 256)

max_pooling2d_3 | MaxPooling2D

!

i input: | (None, 1, 80, 256)
global average pooling2d | GlobalAveragePooling2D
output: (None, 256)

input: | (None, 256)
output: | (None, 64)

)

input: | (None, 64)
output: | (None, 64)

!

input: | (None, 64)
output: | (None, 32)

I
'

input: | (None, 32)
output: | (None, 1)

input_1 | InputLayer

conv2d | Conv2D

input: | (None, 18, 1280, 32)
output: (None, 9, 640, 32)

conv2d_1 | Conv2D

input: | (None, 9, 640, 64)
output: | (None, 4, 320, 64)

conv2d_2 | Conv2D

input: | (None, 4, 320, 128)
output: | (None, 2, 160, 128)

conv2d_3 | Conv2D

input: | (None, 2, 160, 256)
output: | (None, 1, 80, 256)

dense | Dense

dropout | Dropout

dense_1 | Dense

input: | (None, 32)
output: | (None, 32)

dropout_1 | Dropout

dense_2 | Dense

Figure 5.4: Summary of Proposed CNN Model
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Convolutional Layers, Pooling Layers, and Fully-Connected Layers are used to con-
struct ConvNet designs. These layers will be stacked to create a complete ConvNet
architecture. Neurons in ConvNet layers are organized in three dimensions: width,
height, and depth. In this context, “depth” refers to the activation volume’s third
dimension. It is the primary building block of a Convolutional Network, which per-
forms the majority of its computation. The output volume is controlled by three
hyperparameters: depth, stride, and padding. The depth parameter specifies the
number of filters to utilize; each filter looks for something unique in the input. Sec-
ond, we defined the stride along which the filter slides. We utilized a stride of 1
to ensure that the filters leap one unit at a time as we move them. This results in
spatially reduced output volumes. We set the padding="‘“same” so that the output
size is the same as the input size which is convenient while training the model for
when the stride is set to 1.

To normalize the output of the conv2d layer, we used a Batch Normalization layer.
A transformation known as batch normalization is used to keep the output mean
and standard deviation as near as possible to 0 and 1, respectively. Fit() normalizes
the layer’s output based on the mean and standard deviation of the current batch
of inputs during training.

The Max pooling 2D layer follows, and Max pooling is a discretization method
based on samples. The goal is to down-sample to reduce the dimensionality of an
input representation so that assumptions may be made about features. For example,
we can see in our figure, for the first conv2D the input sample size is (18 x 1280)
and batch normalization the output is fed into the Max pooling layer which takes
it as input, reduces the dimension to (9 x 640). The sample size (9 x 640) is the
again fed as input in to the next conv2D layer. The input is again fed into batch
normalization layer and then the second layer of Max pooling 2D, which takes that
as input and reduces that to (4 x 320) to provide the output. This is done in all the
four layers. Thus, the number of kernels for the 4 convolution layers is 32, 64, 128,
256 respectively.

The convolution layers use a (3 x 3) convolution kernel and a (2 x 2) max-pooling
kernel. The four convolution layers that we used each have 32, 64, 128, 256 kernels.
After the 2D Global average pooling layer we used two Fully Connected layers (FC)
of the ReLLU activation function.Standard ReLLU activation is returned by default:
max(x, 0), which is the element-wise maximum value of 0 as well as the input tensor.
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Figure 5.5: Proposed CNN Model for Seizure Prediction

For each of the input channels, the global average pooling block accepts a tensor of
size (input_width) x (input_height) x (input_channels) and computes the average
value of all values throughout the whole (input_width) x (input_height) matrix for
each of the (input_channels). We then proceed to use two FC levels, each of which is
deeply linked to the prior layer. Which means that the layer’s neurons are connected
to each neuron in the preceding layer at a dropout rate of 0.4.The output layer uses
Sigmoid activation function for binary classification. Layers that are fully linked
are prone to overfitting. We employed a regularizer with a dropout rate=0.4 to set
the activations of dense layers to zero randomly during training. It has enhanced
generalization capacity and substantially reduces overfitting.

5.4.3 Training parameters

For training our model we have used all patient data for generalization. We have
used the callbacks API. Actions are carried out at different stages throughout the
training process by this, and we have used the relevant methods of callbacks that
will be called at each stage of training. After each epoch we have periodically saved
our model to HDD. Then we have used the EarlyStopping and ReduceLROnPlateau
class from Tensorflow to monitor the quantity of the training and stop training when
a monitored metric has stopped working. In order to limit the learning rate, the
factor parameter has been set to 0.1. So,

New_learning rate = learning rate x Factor

The patience parameter is set to 10 for the EarlyStopping class which is the number
of epochs that will be monitored before stopping the training when there is no
improvement. While increased iteration during the training phase improves training
accuracy, it also results in overfitting the training data. In order to avoid the CNN
model from overfitting, we used earlystopping. When the error on the validation
set starts to expand, the training is halted in this technique. Additionally, all prior
iterations’ network settings stay unchanged, as well as any errors in verification.
Network settings are reset when the validation error rises over a certain threshold.
The value of 5 is used for the ReduceLROnPlateau. We didn’t change the metrics
that keep track of things like recall, accuracy, and precision. After that, the model is
compiled using the Adam optimizer, binary crossentropy as a loss, and the metrics
were passed. Lastly, we run the model through 100 epochs of training. After 50
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epoch it is found that the test set classification accuracy comes in at 89.5%, the
Sensitivity is 89.7%, AUC is 89.5% and Precision is 89.0% .

5.4.4 Graphical Representation

Matplotlib was used to visualize the model’s historical accuracy, AUC, precision, and
sensitivity data. Accuracy is a metric used to assess the model’s accuracy. Simply
expressed, accuracy refers to the amount of true predictions provided by our model
given the entire number of inputs. The Area Under The Curve (AUC) is used to
quantify a classifier’s ability to discriminate across classes. The greater the AUC, the
more accurate the model is at classifying the classes. The precision metric indicates
how accurate the model is at classifying samples as Positive. The precision goal is
to correctly categorize all Positive samples as Positive and to avoid misclassifying
a negative sample as Positive. Sensitivity is a benchmark that indicates how well
a model predicts true positives for each available category. For each scenario, we
preserved the epochs on the x axis and plotted only the accuracy, AUC, precision
and sensitivity score during training and validation on the y axis.
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Figure 5.6: Visualization of accuracy of CNN Model
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Figure 5.8: Visualization of AUC of CNN Model
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Figure 5.9: Visualization of sensitivity of CNN Model
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Chapter 6

Experimental Result and Analysis

6.1 Performance Evaluation

Our work employs four evaluation criteria to assess algorithm performance: Accu-
racy, Sensitivity, area under the curve (AUC), and Precision.

Table 6.1: Patient wise Performance Evaluation of our proposed method

’ Patient No. ‘ Accuracy ‘ Sensitivity ‘ AUC ‘ Precision ‘
01 0.92 0.94 0.92 0.93
02 0.89 0.88 0.90 0.89
03 0.90 0.91 0.88 0.87
04 0.90 0.87 0.87 0.90
05 0.89 0.89 0.89 0.90
06 0.88 0.92 0.91 0.91
07 0.89 0.87 0.90 0.93
08 0.90 0.89 0.89 0.89
09 0.90 0.91 0.90 0.85
10 0.89 0.89 0.89 0.83

Average 0.895 0.897 0.895 0.890

The table below illustrate the train and validation accuracy of the models using 70
and 30 epochs, respectively. Although the accuracy does not improve significantly
with increasing epoch but rather degrades over time, we wanted to provide the
findings for clarity.

Table 6.2: Associated Numerical Metric Score for proposed CNN

’ Train/Val \ Epochs \ Accuracy \ Precision \ AUC \ Sensitivity ‘

Train 70 0.855 0.907 0.837 0.879
Train 30 0.927 0.967 0.917 0.937
Validation 70 0.825 0.850 0.815 0.875
Validation 30 0.887 0.907 0.887 0.900
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6.1.1 Comparison of evaluation metrics of 5s trial with 10s

From Figure 5.6 we can see that with a 5s trial of EEG signal data we achieve an
accuracy of 89.5%. To compare the results of accuracy we implemented the proposed
CNN model for a 10s trial as well. From figure 6.1 we see that the trial of 10s EEG
signal data runs for 50 epochs and we reach an accuracy of 78.3%. So using a 5s
trial provides 11.2% higher accuracy.

History of Accuracy

10
= {rain accuracy
— yal accuracy

0.8 4

0.6

044

0.2 4

0.0 - r : T 1 r

0 10 20 30 40 50
Epoch

Figure 6.1: Visualization of Accuracy of CNN Model for a Window of 10s

From figure 5.9 we can see that with a 5s trial of EEG signal data we achieve
an sensitivity of 89.7%. To compare the results of sensitivity we implemented the
proposed CNN model for a 10s trial as well. From figure 6.2 we see that the trial
of 10s EEG signal data runs for 50 epochs and we reach an sensitivity of 75.8%. So
using a s trial provides 13.9% higher accuracy.
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Figure 6.2: Visualization of Sensitivity of CNN Model for a Window of 10s

6.1.2 Comparison of evaluation metrics of 5s trial with 2.5s

From figure 6.3 we see that the trial of 10s EEG signal data runs for 25 epochs and
we reach an accuracy of 82.6%. So using a 5s trial provides 6.9% higher accuracy.
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Figure 6.3: Visualization of Accuracy of CNN Model for a Window of 2.5s

From figure 6.4 we see that the trial of 10s EEG signal data runs for 25 epochs and
we reach an sensitivity of 58.9%. So using a 5s trial provides 30.8% higher accuracy.
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Figure 6.4: Visualization of Sensitivity of CNN Model for a Window of 2.5s

6.2 Comparison of our work to prior works

Table 6.3 shows that the performance of the proposed method in terms average sen-
sitivity and accuracy is in comparison to some previous works using existing relevant

methods.
Table 6.3: Comparison with previous work
Method No. of No. of No. of Feature Classifier | Sensitivity | Accuracy
patients | seizures | channels | Extraction (%) (%)
Truong et 13 59 23-31 Automated 2D 89.1 -
al. [45] CNN
Wang et 7 42 23-31 Automated | Dilated 85.8 80.5
al. [46] 3D
CNN
Ozcan et 16 7 23-31 Spectral 3D 85.71 -
al. [19] power, CNN
Statistical
moments,
Hjorth
parameters
Liu et al. 2 12 23-31 Automated | Multi- 91.5 85.5
[47] view
CNN
This work 10 55 18 Automated 2D 89.7 89.5
CNN
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Comparing our work to the aforementioned papers in the table demonstrates that,
despite the use of a simple 2D CNN model, our research outperforms state-of-the-art
approaches. The major goal of our study was generalization of seizure prediction
instead of patient based approach, so we considered the common 18 channels unlike
Wang [46], Truong [45], Ozcan [19], Liu [47] who considered all channels. The idea
of selecting the common channels has improved our evaluation metrics considerably.
We have also shown the performance of our proposed model if we had worked with
all the 23-31 channels.The idea of selecting the common channels has improved our
evaluation metrics considerably.
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Figure 6.5: Visualization of Accuracy of CNN Model for 23 channels
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Figure 6.6: Visualization of Precision of CNN Model for 23 channels
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Figure 6.7: Visualization of Sensitivity of CNN Model for 23 channels
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Our proposed technique is suitable since no patient-specific engineering has been
done available at a particular stage. We trained the entire dataset, and tested on
each patient for generalizing the proposed model. We considered the mean of the
evaluation metrics for the performance of our proposed model. Ozcan [19], Truong
[45] have also proposed a generalizable approach for predicting seizure of individ-
ual patients. However, Liu [47] and Wang [46] have proposed patient-specific models.

Our 2D CNN Model, like Wang [46] , has a GAP layer, but unlike Ozcan [19],
Truong [45], and Liu [47], does not include any flatten layer. In addition to dropout

Figure 6.8: Visualization of AUC of CNN Model for 23 channels
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layers, Liu [47] employed the ¢2 regularizer to prevent the model from overfitting;
however, we overcame overfitting using GAP. We reduced the number of parame-
ters in the model by using the GAP layer, which helps to reduce overfitting and
improves performance. GAP layers perform a more drastic reduction in dimension,
reducing a tensor with dimensions Hx Wx D to dimensions 1x1x D. The one-
dimensional GAP block accepts a two-dimensional tensor (data point channels) and
computes the average of all values (data points) for each channel. GAP has reduced
the amount of parameters, resulting in a model that is shallow and quick enough
for real-time use.

Additionally, to train very deep neural networks we used batch normalization tech-
niques such as Truong [45]. It standardizes inputs to each mini-batch layer. It has
resulted in a significant reduction in the number of training epochs necessary for
deep networks to be trained. However, Wang [46] , Ozcan [19], and Liu [47] did not
utilize a normalizing procedure. The layer normalizes its output during testing by
taking the mean and standard deviation of batches it encountered during training
are calculated as a moving average.

In our study, the GAP layer is followed by two tightly linked layers with ReLU ac-
tivation function, and then the GAP layer. A Softmax function, on the other hand,
with only one FC layer with is implemented in Wang’s proposed model [46].Truong
[45] used two fully-connected layers using the sigmoid activation.

A fully connected layer in Liu’s multi-view CNN has a different activation func-
tion than a convolutional layer, and that activation function is tanh. Only Wang
[46] has used the activation function in the FC layer similar to our study. However,
due to using different activation functions, the sensitivity and accuracy of the papers
have affected and varied accordingly. In our study, the output layer uses Sigmoid
Activation function instead of the typical Softmax function unlike Wang [46], Ozcan
[19]. Truong [45] uses Sigmoid Activation function like us.

In Liu [47], they utilized stochastic gradient descent to optimize the model; in this
case, we used Adam’s optimizer. While Liu [47] utilized two convolutional layers,
we used four. Due to a shortage of training data, initially, Liu [47] presented five
convolutional layers comprised multi-view CNN that was susceptible to over-fitting.
Reduced CNN architecture, to address this problem, with just two convolutional
layers was employed afterwards.
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Figure 6.9: Sensitivity comparisons for individual patients among Ozcan et al.,
Truong et al., Liu et al., and this work.

Truong [45] utilized scalp EEG data without using any de-noising procedures other
than the removal of the power line noise. They converted the raw EEG data to a
2D matrix with frequency and time axes using the Short-Time Fourier Transform.
They efficiently reduced the power line noise in the frequency domain by removing
components at 47-53 Hz and 97-103 Hz, as well as 0 Hz at the DC component.
Ozcan [19] eliminated power line noise and harmonics at 60 Hz for his proposed
model, by using frequency ranges 57-63 Hz and 117-123 Hz, which are not often
employed in spectral power calculations. At 0 Hz, the DC component was likewise
eliminated. We used BB for de-noising of scalp EEG.

Although our paper has worked with 10 patients but adequate data was gener-
ated from these patients, and GAP layer has reduced our overfitting significantly.
According to Liu [47], there were only two individuals in the scalp database who had
acceptable pre-ictal and inter-ictal sections. Even in the lack of training data for
a complicated multi-view CNN model, they concluded that 5 convolutional layers
are vulnerable to over-fitting when used in the absence of training data, so they
used two convolutional layers. They believe that the classifier is unable to correctly
separate the data points in the new space based on the retrieved attributes because
the classifier does not have enough information.

We analysed that instead of using handcrafted feature extraction, we opted for
an automated feature extraction process unlike Ozcan [19]. Ozcan [19] considered
preserving the picture’s spatial structure while analyzing the characteristics gath-
ered from the EEG data. Seizures were successfully predicted utilizing cascade CNN
and LSTM networks, using the multicolor image series acquired from multichannel
EEG data, and this was done without involving the patient.



Chapter 7

Conclusion

7.1 Conclusion

In order for people with epilepsy to enjoy healthy and risk-free lifestyles, it is im-
portant that they have accurate seizure prediction. The aim of this thesis was to
create, analyze, and medically evaluate a seizure prediction algorithm, which was
accomplished through extensive research. Rather of focusing on a single patient,
the paper’s goal was to provide a solution that may be applied to many patients.
Because our approach is primarily focused on the medical sector, it is vital for pa-
tients suffering from epileptic seizures to have more accuracy and fewer data loss
than other patients. As demonstrated by testing with actual dataset “CHB-MIT
Scalp EEG Database,” [14] the computationally viable threshold-based technique
described in the article is capable of identifying variations in synchronization that
occur a few minutes before the onset of a seizure. When we used the models we pro-
vided to 10 patients in the dataset, we confirmed that they had an average accuracy
of 89.7% and average sensitivity of 89.5%, according to our research. In the future,
we believe that our findings will assist scientists in better understanding the role
that model interpretation plays in predicting behavior patterns and find real-world
solutions for the seizure prediction.

7.2 Limitations

Seizure prediction has always been a time-consuming operation that needs the use
of reliable data as well as the expertise of an experienced interpreter to analyze the
data. Because the data is in the form of a time series, the process of analyzing it
has traditionally been done manually. Several strategies have developed in recent
decades, but selecting a single methodology that gives excellent prediction has al-
ways been a difficult task, due to the vast amount of data that must be analyzed.

In order to get the information we need, we were unable to obtain patient data
owing to the epidemic and accompanying possible health risks. There was also a
restriction to share the patients’ data locally, which prevented us incorporating local
statistics and conditions into research.

Although the accuracy percentages we obtained from our training models were sta-
tistically significant, there is still opportunity for improvement because our initial
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aim was to attain values more than 90 percent, which represents a potential limita-
tion.

Finding a prediction rate for generalized high epileptic seizures is still a challenge,
which is another limitation. Each individual experiences an epileptic seizure in a
different way. In order to accurately predict an epileptic seizure, it is necessary
to consider the possibility that the same patient may experience several types of
seizures. Patients may have abnormal brain activity only while they are having
seizures, which make it difficult to anticipate when they will have another seizure.

However, to determine its overall effectiveness, the method should be extensively
evaluated with a larger number of participants in a variety of clinical circumstances
and age groups, owing to the fact that the “CHB-MIT scalp EEG dataset” [14]
collection is comprised of young individuals mostly. One of the most significant
limitations of many researches like this one, in which machine learning is applied
to medical science, is the lack of data available for training the classifiers to begin
with. While merely completing the EEG test, it is possible to identify patterns
in the brain that are normal or abnormal [48]; nevertheless, this is a particularly
important issue in seizure prediction.

It is also difficult to draw a boundary between how high accuracy has to be as
well as when it can be applied in a detecting device that takes immediate action
on the basis of the model. If the epilepsy symptoms are extremely severe, a tiny
percentage of misinterpretation can be a risk worth taking in some circumstances.

7.3 Future Work

When compared to existing approaches, our suggested method combines feature ex-
traction with CNN and classification with the use of a machine learning classifier to
obtain higher sensitivity and specificity. Although there has been progress in many
areas, there is still room for development. First and foremost, more data collection
could be a promising avenue to pursue for future work. The increase in the amount
of data points is critical to increase the accuracy of the classifiers, as a consequence,
to better detect likely pre-ictal data.

Additionally, if the preprocessing is further improved, it has the potential to enhance
the signal-to-noise ratio. We faced the class imbalance issue which was inherent in
the dataset design. In future, we will work to improve the class imbalance problem
by introducing artificial signals.

When employing machine learning and deep learning algorithms for feature ex-
traction or classification, a huge number of parameters must always be studied in
order for the system to function properly. As a result, additional research can be
conducted in order to minimize the number of parameters. The approach we present
can predict the occurrence of seizures in a specific patient. More study will be nec-
essary in the future to develop approaches for predicting epileptic seizures that are
not limited to a single patient.
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To make the approaches even better, we will aim for a more hands-on approach
to develop a system of alarm generators that draws on the decision function of the
classifiers to provide automatic alerts. As a result of this implementation, algorithms
could be trained on patient data obtained from the hospital system, and these algo-
rithms could then be used to predict seizures based on real-time data recorded by
the wearable’s system acquisition.

In this work, for seizure prediction the EEG signals are focused; nevertheless, in
the field of Brain Computer Interfaces, the signals are also extensively utilized,
among the rest of the disciplines. As a result, one of the next objectives for our
suggested approach is to apply it to these areas.
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