Intrusion of Malware (DDoS) Detection in IoT Devices Using
Machine Learning on Cyberspace

Istiak Al Amin
17201025
Salsabil Lamiya
17201115
Noshin Anjum Sheikh
17201114
S. M. Tanjimul Haque
17301095

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of
B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
January, 2022

(©2022. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is our own original work while completing degree at Brac
University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Tabiek Al Aerin Salsabil Looméyq

Salsabil Lamiya

Istiak Al Amin 17201115
17201025

Nokize — TTaniir

S. M. Tanjimul Haque
Noshin Anjum Sheikh 17301095

17201114

Approval

The thesis titled “Intrusion of Malware (DDoS) Detection in IoT Devices
Using Machine Learning on Cyberspace” submitted by

1. Istiak Al Amin (17201025)

2. Salsabil Lamiya (17201115)
3. Noshin Anjum Sheikh (17201114)
4. S. M. Tanjimul Haque (17301095)

Of Fall, 2021 has been accepted as satisfactory in partial fulfillment of the
requirement for the degree of B.Sc. in Computer Science on January 20, 2022.

Examining Committee:

Supervisor:
(Member)

Program Coordinator:
(Member)

Head of Department:
(Chair)

Hossain Arif

Hossain Arif

Assistant Professor

Department of Computer Science and Engineering
Brac University

Dr. Md. Golam Rabiul Alam

Associate Professor

Department of Computer Science and Engineering
Brac University

Sadia Hamid Kazi

Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

i

skazi@bracu.ac.bd
Signature

Dedication

We would like to dedicate our research to our beloved family members. Without
their unwavering support, encouragement and faith in us, we would not be able to
do our task successfully. We would also like to dedicate our humble efforts to all our
well-respected teachers.

1l

Acknowledgement

First and foremost, we are grateful to the Almighty Allah for providing us with the
opportunity, direction and guidance to complete this research within time. Secondly,
we wish to express our sincerest gratitude to our honorable thesis supervisor Hossain
Arif who relentlessly supported, mentored and guided us through a challenging topic.
We were able to overcome the obstacles because of their unwavering support and
constant feedback. Despite an ongoing pandemic, he managed to spare time for us
and offer constructive insights to improve our work and we will forever be grateful
for that. Thirdly, we would like to take this chance to thank all of the faculty
members for the help and support they have provided in our time in Brac University.
Lastly, we would like to express our gratitude towards our beloved parents for their
continued prayers, encouragement, and support.

v

Table of Contents

Declaration i
Approval ii
Dedication iii
Acknowledgement iv
Table of Contents \Y%
List of Figures vii
List of Tables viii
Nomenclature ix
Abstract 1
1 Introduction 2
1.1 Background 2
1.2 Motivation 2
1.3 Thesis Orientations 3

2 Literature Review 4
3 Research Initials 9
3.1 Research Problem 0. 9
3.2 Research Objectives 11

4 Methodology 12
4.1 Workflow of the Methodology 12
4.2 Description of the Data 14
4.2.1 Data Collection 14

4.2.2 Data Preprocessing 14

4.2.2.1 Data Parsing and Cleaning 14

4.2.2.2 Data Normalization 15

4.2.2.3 Feature Engineering 16

5 Classification 17
5.1 k-Nearest-Neighbors 17

5.2 Support Vector Machine,
5.3 Random Forest
5.4 Naive Bayes Classifier
5.5 Artificial Neural Network

Implementation of Algorithms
6.1 Implementation
6.1.1 Input Data Preprocessing
6.2 k-NN Algorithm Implementation
6.3 SVM Algorithm Implementation
6.4 Random Forest Algorithm Implementation
6.5 Naive Bayes Algorithm Implementation
6.6 Artificial Neural Network Algorithm Implementation

Performance Evaluation of the ML Models
7.1 Performance Metrics
7.2 Confusion Matrices

8 Experimental Results and Analysis
9 Conclusion

Bibliography

vi

22
22
23
23
25
25
26
26

28
28
29

32

35

37

List of Figures

4.1

4.2
4.3

5.1
5.2
2.3
5.4
9.9
2.6
5.7

6.1
6.2
6.3
6.4

7.1
7.2
7.3
7.4
7.5

8.1

The flow chart of the proposed DDoS detection model. This diagram shows

a direct proposition of our work.
Example of Data Normalization.
Algorithm for Data Normalization.

Example of k-NN classifier.
Equation of k-NN classifier. 0.
Example of the piecewise function of SVM classifier.
Example of SVM classifier.
Deriving Karnel for SVM classifier.
Example of Random Forest classifier.
Example of ANN classifier.0

A Glimpse of Dataset.
Some Features for Feeding ML Algorithms.
Importing Libraries for Python Coding.
Importing Dataset. e

The confusion matrix chart of the k-NN model
The confusion matrix chart of the SVM model
The confusion matrix chart of the Random Forest model
The confusion matrix chart of the Naive Bayes model
The confusion matrix chart of the Neural Network model

Bar Graph on the Accuracy of the ML Model

vil

List of Tables

8.1 PERFORMANCE COMPARISON IN TERMS OF ACCURACY,
PRECISION RECALL AND F1 SCORE

8.2 PERFORMANCE COMPARISON IN TERMS OF AUC AND CON-
FUSION MATRIX

viil

Nomenclature

The next list describes several symbols and abbreviation that will be later used
within the body of the document.

ML Machine Learning

IoT Internet of Things

NN Neural Network

DDoS Distributed Denial of Service
NB Naive Bayes

k-NN k-Nearest Neighbor

RF Random Forest

LM Levenberg Marquardt

ANN Artificial Neural Network
AUC Area Under the Curve

SVM Support Vector Machine
ReLU Rectified Linear Activation Unit

1X

Abstract

Nowadays, the number of interconnected devices (IoT) is increasing dramatically.
This expansion poses new security problems for network operators, IoT service
providers, and users. Security measures implemented on IoT devices are getting
complex due to their heterogeneity and constraints. Attackers have utilized IoT
devices to execute massive attacks like DDoS, Zero-Day-Exploitation, Ransomware,
etc. The most significant measure to safeguard services from insecure IoT devices
is to increase security consciousness in the core network. On the other hand, this
thesis suggests a machine learning DDoS detection and diminution technique. The
proposed approach was assessed by applying five supervised machine learning clas-
sification methods. The evaluation findings reveal that k-NN and Random Forest
algorithms outperform ANN, SVM, and Naive Bayes algorithms. Consequently, the
findings of this study can assist academics in further research on malware detection
systems for IoT devices.

Keywords: IoT; DDoS; k-Nearest-Neighbour; Random Forest; Naive Bayes; Ar-
tificial Neural Network; Support Vector Machine; Cyberspace.

Chapter 1

Introduction

1.1 Background

Extending the power of the internet beyond computers and smartphones to other
environments, genres of devices define the insights of [oT. IoT devices have access
to enormous private data, which naturally raises security and privacy concerns. To
be more precise, the most concerning attack, for now, is the DDoS attack. Mainly,
denial-of-service (DDoS) attackers target network services and websites. The goal is
to use enormous traffic of data requests that exceed the network’s or server’s scope.
As a result, the service or website becomes out of reach. With the evolution of
threats, ordinary threshold-based methods are useless to correctly classify regular
traffic and malicious traffic. These scenarios can be improved and be made more
sophisticated by using a more accurate machine learning approach. With the help
of a prominent machine learning approach, the accuracy rate of DDoS detection
can be improved drastically and the false alarm rate can be suppressed to the min-
imum. We have proposed a preferable approach to machine learning compared to
most shallow learning approaches in our solution. Here, k-NN is used by us as it
contains characteristics that are preferred to our objectives. Among those, qualities
like simplicity of implementation, efficiency of computation, and high accuracy are
preferred. Moreover, we would need to use a weighted tokenized approach to ensure
proper pre-training of our solution set. In our proposed solution, a type of support
vector machine (SVM) is used to construct a weighted feature set. Finally, the cher-
ished outcome of our proposed work is to get more accuracy from other machine
learning approaches.

1.2 Motivation

In the early 2000s, the notion of the Internet of Things was initializing, but as we
approach 2021, trends reveal that this invention is here to stay. According to reports,
by 2021, 35.82 billion IoT devices will be installed worldwide, and by 2025, 75.44
billion [1]. This scenario steamed us most to work on this field firsthand. Though
this field is not complete without some threats.

The issue is that DDoS attacks could be extremely vulnerable to the Internet of

Things (IoT) devices. Regular basis software security updates are being lacked. As
a result, they are rapidly infected and are being controlled by attackers, which are
then used as weapons to attack another internet of things devices. As a result, a
machine learning workflow is proposed utilizing binary classification, data gathering
and feature extraction in order to monitor the traffic of IoT data. Our solution
approach will solve the DDoS attack more efficiently than most shallow learning
processes of machine learning.

1.3 Thesis Orientations

The following is how the rest of the article is structured. This section provides a
brief description of the topics that have been covered in each chapter of this thesis
paper. After explaining the purpose of the study and what we hope to accomplish,
here the rest of the article is put together in a sequential manner.

e Chapter 2 includes the Literature Review where we summarize related works
and information collected from various scholarly articles relevant to this thesis.

e Chapter 3 presents the research objectives in details.
e Chapter 4 includes the methodology suggested for the whole study’s workflow.
e Chapter 5 describes five algorithms for our ML model proposed for the study.

e Chapter 6 describes the machine learning algorithms approach to detect DDoS
attacks.

e Chapter 7 evaluates the performance of the ML models.
e Chapter 8 outlines the experimental results and analysis.

e Chapter 9 concludes this thesis with subsequent plans.

Chapter 2

Literature Review

In quest of information related to the cybersecurity of IoT sector and DDoS attack,
we have gone through some fantastic works done by several scholars. Here we would
like to mention some of the gist of their work.

In [10], throughout the IoT network Farhan Ullah et al. introduced a comprehen-
sive approach to detecting pirated and malware infected application. In addition
with the deep NN, using source code TensorFlow has offered to identify pirated
application. In industrial IoT an architecture model is propose for cybersecurity
protection and threats measures. In this system, Farhan Ullah et al has developed
four databases in cloud storage so that Farhan Ullah et al may handle malware files
and software files which are pirated. According to Farhan Ullah et al the initial
database provides new data to the pre-processor to process the new data and ap-
prehend valuable features. From the signatures in databases two and four, Farhan
Ullah et al pre-processed data in later submitted to the detection process to capture
malware and pirated software. By using an image classification problem with four
phases, Farhan Ullah et al. also show that the color images are developed from orig-
inal binary flies thus they can control the malware detection problem.On the other
hand, TFIDF and LogTF weighting techniques focus the importance of each token
and screen the noisy data regarding plagiarism in the original code. Moreover, color
image visualized deep CNN is used in order to detect malicious IoT network infec-
tions, which contains five modules. First and foremost, the convolution layer is used
by Farhan Ullah et al. in order to reduce noise and improve the signal properties.
Secondly, Farhan Ullah et al. uses the pooling layer in order to reduce data overhead
while still retaining important information. After that, Farhan Ullah et al. utilized
a fully connected layer to turn the two-dimensional array into a one-dimensional
array, which is subsequently sent on to the appropriate classifier for further pro-
cessing. The classifier is used by Farhan Ullah et al. to identify malware families
from respective photos in the fourth and final step. Farhan Ullah et al. conclude by
showing interest in working for unknown malware families in the future.

For detecting false alarm rate, scalability and accuracy Diro A. Abebe and Chil-
amkurti N. in 9] proposed a novel distributed learning technique of DDoS attack
detection in fog-to-things computing where they claim their experiments have shown
that shallow models are less superior than deep models. To be more precise, the fog-
to-things network is especially the network of user-end intelligent devices designed

as distributed intelligence; we may also use them as responsive hosts of security ser-
vices, analyzing big data, etc. Diro A. A. and Chilamkurti N. then claimed that, like
other facilities, fog-to-things devices have always faced plenty of vulnerabilities such
as probing, DoS, ransomware, smurf, etc attacks due to limited resources, which
can be overcome by using time-window-based statistics and previous n-connection
based approach. Moreover, they compared saying that, in attack detection, clas-
sical machine learning approaches lack several features; thus, DL with its stacked
autoencoder (SAE) is introduced, enriched by its automatic hierarchical feature and
pre-trained (such as softmax regression) to determine actual attack more efficiently.
After reviewing many papers, Diro A. A. and Chilamkurti N. conclude that the main
objective of their paper is to employ distributed deep learning through parameters
and model exchange where most of the employed DL architecture has successfully
used pre-training for feature extraction. They also claim that the SGD (stochas-
tic gradient descent) for fog-to-things computing is not practical, so they proposed
the multi-fold technique, which can be defined by the master IDSs responsible for
revamping parameters using GD (gradient descent); at the same time, the workers
IDSs diagnose harmful events locally. Furthermore, the data set used here is called
the NSC-KDD dataset and the examination process was conducted on Keras on
Theano DL package with the Apache Spark framework. The process they followed
is encoded the categorical features into the discrete features and by using a stacked
autoencoder, all the hidden features were extracted by applying softmax algorithm
classification. Diro A. A. and Chilamkurti N. clarified test results denoting that they
found accuracy: 99.20% and detection rate (DR) is about 99.27%, where shallow
learning shows DR of 97.50%, which results from a clear win situation of DL ap-
proach. They have concluded with an expectation of investigating its performance
on different data sets and other neural networks.

The paper [4] starts with discussion on Distributed Denial of Service (DDoS)
attacks’ severities. This type of attack can be used to deplete the bandwidth sup-
plies for crucial WA (web applications), causing these services inaccessible to users
or even banning internet connections for a significant geographic portion, resulting
in significant economic losses. In this paper, Kai Wang et al. aims at significantly
improving the security of data sharing, and then the security of the whole net-
work, even the whole CPS by design a Secure Networking architecture, combining
blockchain and Al together (named as SecNet). SecNet, a blockchain-based data
sharing mechanism was introduced, where any sharing ready data need to be reg-
istered into a blockchain, named Data Recording Blockchain (DRB). In addition,
only DRB can examine the genuineness and probity of data. Besides, SecNet en-
sures financial incentives between different entities for sharing data and exchanging
security service. In this way, data security and encouraging data sharing throughout
the CPS is executed by SecNet.

In [12]|, Chih-Ta Lin et al. state that many infrastructure production facilities,
enterprise management systems (EMS) are widely utilized. In order to, monitor pro-
duction operations using industrial network control protocols, most existing public
industrial installations use a human-machine interface (HMI) such as the SCADA
system and the programmable logic controller (PLC). Due to the lack of authen-
tication and encryption mechanisms in this system, it is effortless for hackers to
penetrate the network and release attack commands. Previous related work has

always focused on securing the network layers, third layer from OSI model, but it
couldn’t identify penetration attacks such as spoofing attacks. This paper focuses
more on cyber incursions in the OSI model (the data link layer). It proposes a
two-phase intelligent intrusion detection method to record the typical behavior pat-
terns, and later it is used to detect abnormal behavioral events in developed ICS
test bed. Firstly, in the training phase, all network communication has monitored
using a data packet parser, and using machine learning statistical analysis approach,
they establish the system’s normal behavior patterns. In the Detection phase, col-
lected normal behavioral patterns used to detect the system’s anomalous behavior.
In conclusion, they suggested focusing more on the machine learning phase to make
classification-based learning methods to detect malware intrusion in the future.

This paper [14] presents a detailed methodology for threat identification and
prevention during the implementation of medical devices. During medical device
deployment, this article focuses on risk assessment, threat detection and manage-
ment. In the existence of unknown security threats, it is important to maintain
solitude and security; IoT Devices can detect and analyze risk significantly, follow-
ing that they take automatic action plans when the risk is raised. Here, in order
to provide limitless threat elimination during device activation, Aakarsh Rao et
al. introduced a threat detector with real-time action with a dynamic risk estima-
tion technique Markov Models are used here for threat detection. These models
use cumulative distribution functions during run time, collecting both normal and
abnormal behavior of medical IoT devices. As a result, they developed a proba-
bilistic approach to risk analysis. To evaluate the current system risk in framework
design Aakarsh Rao et al. used Composite Risk Model, which will be revised signifi-
cantly. Threat reduction method either disables access to the influenced component
or changes the current functioning method to limit the risk while maintaining critical
operations. To identify the critical operations, the software application is probabilis-
tically studied and described in the device’s combined infection model to build the
normal execution model, all for per window Risk Assessment and Management Unit
for window N. To explain the architecture, the Aakarsh Rao et al. approaches a
smartly-linked pacemaker prototype and injects malicious virus into it.

In the beginning of 8], Mohamad Syahir Abdullah et al. figured that with the
appearance of ransomware attacks, along with malevolent cyber activities done by
individuals and governments, an instructive savvy is needed. In order to process
those enormous volumes of data, the writer proposed to classify the data and figure
out a model made of a word-level feature set and a sentence-level form to obtain more
precision. Furthermore, it also should be noticed that by advancing in the cyber
sector, new terms need to be included, and classifiers like Named Recognition Entity,
CREF, and LSA need to be forced to eliminate data redundancy. After that, the
Mohamad Syahir Abdullah et al. combinedly have worked on and explored different
techniques like NER, CRF, etc for making efficient data retrieving mode. With
unstructured global data, the term weighting approach using SVM and NB was used.
In addition to that have used the LSA technique to solve ambiguity problems, where
Mohamad Syahir Abdullah et al. have used Porter Stemmer to pre-process text.
After that, NER is used in order to find a keyword that was integrated manually via
python programming. At this point, CRF-classifier will be trained to classify news
and an approach called f-measure will be used to measure the information processing.

To conclude, as ongoing research, the researchers have created the feature set for
cyberattacks and the CRF classifier with the LSA approach is yet to be done.

In this study [11], Rohan Doshi et al. using IoT-specific network behaviors to
guide feature selection, Rohan Doshi et al. argued that it can lead to high accu-
racy DDoS detection in IoT network traffic using some ML algorithms, including
NN. Moreover, Rohan Doshi et al. develop a machine learning pipeline designed to
monitor network middleboxes (such as routers, firewalls, and network switches) for
unusual gridlock and associated machines that could be part of a bot-net. There
are four steps in the anomaly detection pipeline. Firstly, the traffic capture process
will record all data packets sent from smart home devices, including the source port,
source IP address, destination port, destination IP address, timestamp and packet
size. To operate as a middlebox, they set up a Raspberry Pi v3. Rohan Doshi et
al. then capture regular (non-DoS) traffic. On the other hand, to overcome the
challenges of collecting DoS traffic, Rohan Doshi et al. proposed Kali Linux VM as
a source. They collected victim and victimizers data from an Apache Web Server
executed by Raspberry Pi 2 which was considered the DoS victim. Secondly, Each
[oT device’s packets are split by their originating IP address. Thirdly, stateless and
stateful characteristics are generated for each packet based on domain knowledge
about IoT device behavior in the Feature Extraction part. Fourthly, in the BC (bi-
nary classification) part, K-NN, decision trees, SVM, RFC and DNN can accurately
distinguish between DoS attack traffic and normal traffic. Rohan Doshi et al. con-
clude by showing the interest in research into ML malware detection in the future
to safeguard networks against vulnerable IoT devices.

In paper [13], Hafiz M. Farooq and Naif M. Otaibi introduced numerous mod-
els for utilizing Machine Learning analytics to improve Cyber security monitoring
alongside detecting many other common cyber threats using an optimal algorithm.
This paper compared K-Means, DBSCAN, BIRCH to analyze upload and down-
load traffic crucial for detecting cyberattacks. In windows process execution, they
used kernel-based classification approaches such as one class support vector ma-
chine (OCSVM) for analyzing anomalous windows registry entries and used logistic
regression to do transaction analysis. Moreover, a linear regression algorithm uses
to compare abnormal activity with behavioral baseline. Lastly, for message classi-
fication, the paper showed to use of a random forest classifier ML algorithm. To
conclude, OCSVM (one class SVM) are easier to train, less expensive, and more
appropriate to allowing SOC Analysts to conduct originality detection and discover
new signs of understanding.

Merging these ideas, in the IoT sector, DDoS assaults are most vulnerable and
individuals become the hostage of attackers in the worst-case scenario [5]. Acknowl-
edged by the severity of DDoS attacks in IoT devices from [9], [11] and [4], it was
our clear choice to work on the detection of intrusions of malware in [oT devices.

We have got our initial idea from [10], where Farhan Ullah et al. have proposed
an image processing approach to detect piracy on software. The image processing
approach was pretrainable and it introduced us to deep learning (DL). According
to [9], the deep learning approach is more accurate and the intrusion detection rate
(DR) is 99.27% prominent from the ML approach, which is 97.50%. Regardless of
prominency, we chose to implement our malware detection system with ML because

deep learning usually needs a significant amount of training data to ensure that
the network contains millions of parameters to exclude overfit the data. According
to [11], in order to obtain faster results, machine learning methods are preferable.
They are easier to train and use less processing power, where deep learning models
take time to train. As a result, ML was our clear choice over deep learning.

In order to observe different algorithms of machine learning, we studied [13]| and
become aware of clusters, classifiers and probability models to implement machine
learning. Among all other techniques, the K-means clustering and OCSVM classifier
captured our attention the most. The K-means clustering works faster than most
other clustering algorithms such as DBSCAN, BIRCH. On the other hand, Hafiz M.
Farooq and Naif M. Otaibi, from [13], stated that OCSVM is easier to train and less
expensive in parallel to other Decision Trees or Naive Bays classifiers.

To make our approach the most accurate based on a more user-friendly environ-
ment, we decided to use these two methodologies in our paper.

Chapter 3

Research Initials

3.1 Research Problem

With so many possibilities, [oT technology is expected to advance well beyond any-
one’s wildest expectations. However, as IoT devices become more prevalent, there
will be an increase in IoT application development as well as security concerns and
difficulties. By 2019, global internet expenditures are predicted to reach $745 bil-
lion, up 15.4% from $646 billion in 2018. By the end of the projected period in
2022, the market will have surpassed the $1 trillion worth of market value [3]. This
massive number of devices will produce vast sets of data that consist of different
structures and will be impactful in so many ways in human advancement. In order
to tackle those vulnerabilities, the term cybersecurity is introduced. Cybersecurity
is the process of ensuring protocol in all devices and virtual platforms connected
to the internet to prevent unwelcome appearance, access blockage, illegal control in
personal space, data stealing etc. DDoS attacks, which adversely affect not only
internet infrastructure but also its applications, which are amongst the most de-
structive forms of network attacks, and they are becoming more common. In rare
cases, attackers might employ this form of attack to drain the bandwidth supply for
popular and critical online applications, leaving these services inaccessible to con-
sumers or even prohibiting internet access for a large area of a nation, causing severe
economic losses. As a consequence of everyone on the internet exchanging security
rules, we will see a significant reduction in the victimization that DDoS attackers
may exploit. This will result in a more thorough understanding of network security

[4].

DDoS attacks are carried out through the use of networks of computers that
are connected to the internet. These networks are made up of compromised IoT
devices that an attacker may remotely manipulate. Bots are individual devices;
however a botnet is a group of bots that work together to attack a target [5]. If an
attacker has successfully constructed a botnet, he or she may conduct an attack by
sending remote commands to each bot in the network. Whenever a botnet attacks
a victim’s system or network, every bot sends queries to the user’s IP address,
possibly overwhelming the system or network and enabling it to become unavailable
to normal traffic. Although each bot is a legitimate internet device, it might be
difficult to distinguish between infected and regular traffic.

With the aim of obtaining an efficient solution for DDoS attacks, machine learn-
ing techniques are proposed. Learning via inference and patterns without explic-
itly programming using algorithms and statistical approaches is known as machine
learning (ML). This last decade has seen a huge advancement in machine learning
technology. We proposed a strategy based on five fundamental techniques of ML
to cope with DDoS attacks on [oT devices. The techniques, we proposed to apply
here, are k-NN, SVM, Artificial Neural Network, Random Forest and Naive Bayes.

The first technique to be applied on our problem will be k-NN classifier. There
are various classification methods available, including k-means, Linear Regression
and Decision Tree etc. k-NN algorithm has been proven to be very successful for
a wide range of problem areas, including text categorization and classification. It
seems to be using the class labels of a test sample and k of its neighbors to determine
the class label for the test example. The similarity score amongst each k nearest
document and also the test document is determined in order to establish the weights
assigned to the categories in a k - nearest document. It has been successfully used
to the calculation of the distance between neighbors.

The Random Forest algorithm comes next, and this is a sanctioned learning
approach that merges classification trees in the same method that each tree is de-
pendent on the very same random variable of the sample vector. For its great
performance and simplicity, Random Forest is often utilized for classification and
regression. The random forest algorithm makes easy to understand predictions. It
processes huge datasets well. The random forest algorithm outperforms the decision
tree method in predicting outcomes. This algorithm calculates the result based on
the predictions made by the decision tree. It makes predictions by taking the av-
erage of the findings from different trees. When we increasing the number of trees
precision also improves.

Furthermore, In terms of classification algorithms, the Nave Bayes Classifier
is among the most basic and productive options accessible today. It aids in the
creation of quick machine learning methods that can give correct predictions in a
short timeframe. The field of machine learning has made considerable strides in
current years, and it has shown itself to be not just simple, but also reliable. This
is a classification algorithm, which means that it generates predictions estimate the
probability of an item existing in a certain situation. The Bayes theorem has been
at the heart of this classifier. It has been effectively applied to a variety of tasks, but
it performs particularly well when dealing with problems involving natural language
processing (NLP), real time prediction etc.

Artificial neural networks (ANNs) are computer programs that employ learning
techniques to adapt to the information they receive. Thus, they are excellent for non-
linear statistical data modeling applications like as Al systems with deep learning
capabilities are important in machine learning as well as the larger subject of Al
There are three or more layers in an artificial neural network. The first layer is
made up of input neurons. They transmit information to deeper layers, that in
turn transmit information to the peripheral output layer. Inside the outer layers are
units that translate the intelligence gathered from one layer to the next, which are
concealed from view. It is possible for the ANN to comprehend more intricate things
thanks to the input and output layers. It is all of these convolutional nodes that

10

are together referred to as the neural layer. Practical applications include corporate
intelligence, spam email identification, natural language processing in automation,
and a variety of other applications.

The other method to apply here will be a type of linear regression model called
Support Vector Machine which uses a space to divide data into two groups. This
space can be linear, Gaussian, non-linear, sigmoid, polynomial etc depending on the
function used in the model. Using more than one space, data can be splitted into
more than two classes by SVMs. We are using this methodology to break them
down into component classes such as HT'TP, FTP, SMTP, etc and evaluate internet
gridlock patterns [6]. In part due to the fact that SVM is a supervised machine
learning approach, it is commonly used in applications that may imitate attacks,
such as those that utilize network traffic produced during testing process as training
data.

3.2 Research Objectives

The primary objective of this study is to create an intrusion detection system for
detecting DDoS attacks by combining classifier machine-learning approaches such
as k-NN, Random Forest, Naive Bayes, ANN along with support vector machine
(SVM). Typically, an IoT device receives a variety of data and delivers it to a
central system via gateways for additional processing. The proposed methodology
could identify malware in data sent by IoT devices. The proposal of our research is
summarized in the followings:

1. This research utilizes a number of different machine learning models. We
employed five models to identify DDoS attack patterns, and we found that
they were all accurate.

2. Certain Machine Learning algorithms’ performance has produced excellent
findings, which are noticeably better than those obtained from previous re-
search conducted on this dataset.

3. This paper provides an overview of a comparative analysis of the performance
of some Machine Learning models that were used in the development of this
thesis.

4. Appraising the detection model with different dataset and more combination
of deep learning algorithms to gain more accuracy.

11

Chapter 4

Methodology

4.1 Workflow of the Methodology

By observing the packets and traffic parameters that change unusually in each phase
of the attack, we study the procedures of the DDoS attacks. As a result, we are
in need of a method that acquires more specific results with more accuracy. In
this present work, mainly we have discussed five classifier algorithms such as k-
Nearest-Neighbors (k-NN), Naive Bayes, Random Forest, Support Vector Machine
(SVM) and Artificial Neural Network (ANN). In order to work with these advanced
machine learning algorithms, first we need to collect a dataset or arrange one from a
simulated DDoS attack. After that, we need to work on the dataset as there exists
tons of redundant data which need to be got rid of or merged with some meaningful
values. Moreover, it is necessary to choose the premier features from the dataset by
which it would be possible to figure out the malicious behavior of that data. After
figuring out the features, the dataset needs to be trained by the machine learning
approach. The figure 1, depicts the comprehensive view of our detailed work.

1. Dataset Preparation: Our data collection process resulted in the creation of a
comma separated value (csv) file. After reading the dataset, it was transformed
to a data frame using the Panda library for easy display and analysis.

2. Data Preparation: The data gathered in the preceding step may include du-
plicate records, unavailable data or noisy data. As a result, it is essential to
understand the various characteristics of the data. At this point, the data has
been split into a collection of distinct features.

3. Training and learning over the normal dataset: In this step, we would divide
the dataset into two parts [60:40] for training and testing our model.

4. Testing and evaluation: Finally, our proposed model needs to be evaluated for
accuracy.

As we have used two machine learning algorithms to build two different DDoS
detection models, here we would run an accuracy test for more efficient results.

12

Workflow

Data Set

Data Preprocessing

/

Data

Feature

Normalization

Cleaning

Engineering

;’ﬁflodel Evaluatior‘{"{-'
~.. [Accuracy]

] No
Using Confusion

Matrix

<]

DDoS Detectio

Uncorrupted
Data

Data j
60% Train 40% Test
Data Data
I. T] ML
O RF Classifier
e K
Generate
| Final Model

Malicious
Data

Figure 4.1: The flow chart of the proposed DDoS detection model.

This diagram shows a direct proposition of our work.

13

4.2 Description of the Data

4.2.1 Data Collection

Primary collection and secondary collection are the two most common methods of
gathering data and putting it together into a dataset. Primary data collection is
the process of gathering information directly from the field while doing research.
Researchers start by analyzing and collecting data from the scratch.

Secondary data collection is the process of gathering information from previously
conducted studies, tests, and primary data in order to continue their study. For the
purpose of our study, we have collected our data through the use of secondary data
sources.

The unprocessed network packets (Pcap files) in the BoT-IoT dataset were pro-
duced in the Cyber Range Lab of the Australasian Center for Cyber Security (ACCS)
by the use of the T-Shark program. The dataset contains a mixture of normal and
anomalous traffic. Ostinato and Node-red were used to create simulated network
traffic for testing purposes (for non-IoT and IoT respectively). A variety of source
files for the dataset are given, including the original Pcap files, the produced AR-
GUS files, and ultimately a CSV formatted version. It was decided to divide the
files depending on attack category and subcategory in order to make the labeling
procedure easier. In this dataset, there are over 1 million entries and 47 columns.

4.2.2 Data Preprocessing

Machine Learning requires preprocessing of data before fitting any model since ma-
chines are only capable of understanding numerical data. During this step, we start
preparing our data to be used for the learning processes and for the extraction of
unique patterns. Many components are included in this step, including data clean-
ing, data normalization, feature selection, feature extraction, and the division of the
data into training and testing datasets. By preprocessing, we can extract the clean
and original data. There are some steps for preprocessing.

4.2.2.1 Data Parsing and Cleaning

The information gathered in the prior phase may include duplicate records, missing
information, or noisy information. As a result, it is essential to understand the
various characteristics of the data. At this point, the data has been segmented into
a number of distinct features. Each feature includes a large amount of data. Data
redundancy needs to be removed so we need to replace any items that have been
lost on average. In addition, as mentioned in algorithml, it is essential to remove
and exclude any duplicate information. The data is then saved in a database, and
the values of each feature are calculated using the minimum, maximum, mean, and
standard deviation values.

14

Algorithm 1 - Data Cleaning

Function:
Input —(DS) Mixed of normal and abnormal (malicious) Datasets
Output —Return cleaned and transformed Datasets

Data Cleaning:
array of data —DS.csv
for i: array of data. Length
Remove Redundant data
End for loop
End of Data Cleaning

4.2.2.2 Data Normalization

Data may include a range of values, a varied mean, and a variable variance, all of
which contribute to learning difficulties and reduce the efficiency and accuracy of the
learning process. As stated in algorithm2, we utilized the min-max scaling method
to mitigate the detrimental effect of marginal values. Thus, all data values in the
range 0 to 1 are represented. This method is often referred to as feature scaling,
and its formula is given in eql.

_ Xold Amin

Xnew = (4.2)

Xmax— Xmin

Figure 4.2: Example of Data Normalization.

15

Algorithm 2 - Data Normalization
Function:

Input < (DS) Mixed of normal and abnormal (malicious) Datasets
Output «<— Return cleaned and transformed Datasets

Data Normalization:

Array of Features <— feature extraction

for i: Array of Features. Length
for j: array of data[i]. Length
min <— minimum value
max < maximum value
new transformed value calculated from equation 1
End for loop

End for loop

End of Data Normalization

Figure 4.3: Algorithm for Data Normalization.

4.2.2.3 Feature Engineering

On the other hand, we might look at two groups of characteristics and examine
why they are important in distinguishing between regular and malicious IoT data.
Individual packet attributes that are not reliant on the flow may be used to generate
stateless characteristics. These characteristics are produced without the need to
segment the incoming traffic stream according to its IP source. As a result, these
characteristics are the most lightweight. Stateful variables are used to record the
evolution of network traffic over time. Because we divided network data into brooks
per device and divide the per-device streams into time windows, there is an inherent
cost in producing these features. As a basic time series, the time windows serve the
representation of the devices’ changing network activity, which is represented by the
time windows. These characteristics need aggregating data over many packets inside
a time frame; although the middle-box conducting classification must maintain state,
the quantity of state retained may be reduced by utilizing brief time windows.

16

Chapter 5

Classification

In order to evaluate system performance and identify unexpected occurrences that
are incompatible with typical network behavior, machine learning techniques are
used. Even in network systems with large amounts of data flowing, anomalous
behaviors may be recognized by mathematical models built using machine learning
techniques, and preventative measures can be implemented in real time within those
networks. The characteristics of the machine learning methods that were applied in
this research are briefly discussed in this section.

5.1 k-Nearest-Neighbors

Classifier algorithm k-NN has the characteristics that will be used to identify DDoS
attacks and categorize the network state into several categories [15]. Following that,
we consider assigning the present network state to one of the classes. For document
classification, there are many well-known techniques available including NN, rough
set and fuzzy logic. We pick the k-NN technique because it has characteristics that
are conducive to our objectives. These characteristics include ease of implementa-
tion, efficient calculation, and high accuracy. One of the similarity-based learning
algorithm called the k-NN has shown to perform very well in a different of problem
areas, including classification issues. The k-NN method locates a test element dt’s
k-nearest-neighbors among the training components that define dt’s neighborhood.
The class for dt is determined by majority vote among the neighborhood compo-
nents. As shown in Fig. 5.1, we begin by identifying the k elements that are closest
to the sample to be classified. We select the best appropriate class for the test
element by examining the k nearest items.

@ st
O Class 2

@ Item need be classified

Figure 5.1: Example of k-NN classifier.

17

The word 'near’ can also be defined as degree to which two components are com-
parable. There are many methods for determining the degree of similarity between
two components. However, the technique based on the cosine formula is the most
often used method for calculating the degree of similarity. This method is used in
this research to calculate the similarity degree. Additionally, we define each element
using the vector space model (VSM). As a result, each element is represented as an
n-component vector. An example is given as follows. For the two components X =
{x1,x2,.. xn}andY = {yl, y2,..., yn}, W = {wl, w2,..., wn} denotes the weighted
vector and wi denotes the weight of the component i in the general vector. After
that, computing the similarity between two elements X and Y as follows:

T (epxwy) X (yixw;)

Similarity (X, Y) = Cosine (X, Y, W)=
JZ?:l(xiXWi)z JZ?:l(inWi)z

5.1

Figure 5.2: Equation of k-NN classifier.

We may determine the k nearest elements using the cosine method stated before.
Following that, we must identify the most appropriate class for these elements.
We count the number of iterations of each class type to determine which has the
maximum rate. This is the class that may carry the test element.

5.2 Support Vector Machine

When only "normal" datasets are provided and no boundaries are known, the SVM
method developed by SchOlkopf et al. [16] is sufficiently well fitted for originality
identification scenarios. Therefore, we collected our 'normalized’ data and then put
it into the SVM classification algorithm.

As an example, SVM maps the input dataset into a hyper-dimensional variable
space H and iteratively searches for the hyper-space with the highest margin that
best splits the data subsets from the source.

+1ifx€S

-1ifx€eS (5-2)

f(XJ={

Figure 5.3: Example of the piecewise function of SVM classifier.

In our scenario, let x1, x2,..., x | be training samples belonging to a single class
X, where X is a compact subset of the RN. Let ¢ : X —H be a kernel map that con-
verts the training samples into a different space. Afterwards, in order to distinguish
the data set from the origin, it is necessary to solve the quadratic programming
problem outlined below:

18

A
*e o
oo
i ¥

Figure 5.4: Example of SVM classifier.

min ol + Za

Subject to (@, p(x;)) = ¢ — &, & = 0. (5.3)

If o and p solve this problem, then the decision function

f(x) = sign(w, p(x)) = p (5.4)
Figure 5.5: Deriving Karnel for SVM classifier.
will be positive for most models x; included in the training set.

During the study of command line parameters, we utilized a variety of Kernels,
such as Gaussian, Linear, Polynomial, Radial, to analyze the data.
When using SVM, choosing the most "suitable" kernel with the most acceptable
kernel parameters is a very essential part that is highly dependent on the particular
task at hand. When compared to other kernels, such as 2-degree polynomial, radial
and additionally available kernels, the linear kernel provided more "stable" decision
boundaries and produced a greater number of confirmed anomalies throughout our
study.

5.3 Random Forest

Technically, it is an ensemble technique (based on the divide-and-conquer strategy)
of decision trees created on a randomly divided dataset that is applied to a large
number of decision trees. The forest is a set of decision tree classifiers that is used
to classify data. Information gain, gain ratio, and Gini index are used to create the
separate decision trees for each variable. Each tree is based on a distinct arbitrary
model. In a classification problem, the class with the most votes is picked as the
final output when each tree casts a single vote. On basis of regression, the end
result is the standard of all the tree outputs, which is calculated as the final result.
RN is both simpler and more powerful to utilize comparing to the other non-linear
classification algorithms.

Suppose the RF classifier is R(z); decision tree i is denoted as t(x), R(z) =
ti(x), i € [0, n— estimators], where the number of decision trees in the RF is

19

EEN
Decision Tree-1 Decision Tree-2 Decision Tree-N
Result-1 Result-2 Result-N
L»{ Majority Voting / Averaging F—J

Final Result

Figure 5.6: Example of Random Forest classifier.

represented by n-estimators, x is the input training sample for classification, and
sign(z) € S is the tag value of x, in which S is the set of labeled attributes,
the output of the ¢;(x) is a constant value in S, and the output of the R(x) is the
mode of the estimated value of ti(z), i € [0, n — estimators]. While RF is used
for testing, x is from the new training dataset which is randomly generated by
resampling method in the attribute training set; there should be only two kinds of
labeled data in DDoS attack-detection, which define attack or normal. To mark the
attack sample labels and normal sample labels, S = { 1,0 }, and sign(x) can only
take the value 1 or 0, respectively.

5.4 Naive Bayes Classifier

The Naive Bayes classifier is the most basic kind of probabilistic classifier, and it
is most often used. In the case of probabilistic classifiers, the output Pr(Eventl
| Event2) represents the probability that the data Event2 belongs to the category
Eventl. Each data includes terms by which probabilities have been assigned de-
pending on the number of times they have appeared in that specific dataset. The
pattern of evaluating a collection of test data that has been properly classified and,
therefore, comparing the contents in all categories may be learned via supervised
training, and Naive Bayes can learn this pattern by developing a list of features and
the probability of their occurrence. As a result, a list of data appearances may be
used to categorize new data into the appropriate categories based on the greatest
posterior probability distribution.

Bayes theorem is stated mathematically as the following equation:

f(EventHEventZ) _ P(Event2)\};igzzzié))*P(Eventl) (55)

Where: Eventl and Event2 are events
P (Eventl) and P (Event2) are the probabilities of Eventl and Event2 independent
of each other
P (Eventl|Event2), a conditional probability, is the probability of Eventl given that
Event?2 is true

20

P (Event2|Eventl), is the probability of Event2 given that Eventl is true

5.5 Artificial Neural Network

An Artificial Neural Network (ANN) is a kind of information processing paradigm
that is constructed up of a large number of densely linked processing components
(neurons) that work together to solve particular problems. ANNs, like humans,
learn by observing and imitating. An artificial neural network (ANN) is trained
to perform a certain task, such as pattern recognition or data categorization, using
a learning process. Because of their exceptional capacity to extract patterns from
intricate or inaccurate data, neural networks may be used to extract patterns and
discover trends from data that would be impossible to detect using other computa-
tional approaches. A trained neural network examines the information provided with
maximum accuracy. Afterward, this technique may be used to generate predictions
for new circumstances that are of interest to the researcher.

N/ DN
e e

\'/\ Ng/

Input Layer Hidden Layers Output Layer

o~
~

/

\

Figure 5.7: Example of ANN classifier.

Based on the studies and discoveries made in relation to ANN use models and
their advantages, a three-layer ANN feed-forward model has been developed and
implemented with a modification of principal component analysis (PCA) for dimen-
sionality reduction in the research. A dimensionality reduction process is provided
in order to lower the storage and computation cost of a Levenberg-Marquardt learn-
ing algorithm for deriving the Jacobian matrix for large NN models, such as used in
the proposed thesis, in order to improve performance. The ANN model used in this
implementation is seen in Figure [5.3], in which the decreased measurement input
features are supplied to the ANN model before training.

21

Chapter 6

Implementation of Algorithms

6.1 Implementation

As we have chosen Python programming language for our work, the Jupyter Note-
book was the best choice for implementing the codes for our study. In order to get
the work done, we first need to import some libraries of Python such as, Pandas,
KNeighborsClassifier, svm, train _test split. For training purposes, we utilize the
terms packet, time, source, destination, protocol, and size. On the basis of increas-
ing prediction accuracy, we may or may not select Info fields to include. The same
feature set is applied to all of the classifiers in an equal way in order to find the one
that performs the best in terms of accuracy.

To get the accuracy from the data that we gathered previously for training purposes
we use sci-kit-learn and the pandas which are the Machine Learning libraries. As
a result, for training and testing purpose we split the data into two groups, in the
proportion of 60:40, and to check for inaccuracies we use a confusion matrix.. Using
the confusion matrix, we can determine whether or not a result is accurate by look-
ing at the first diagonal, and whether or not a result is incorrect by looking at the
other diagonal, from which we can determine whether or not a result is accurate.
Prior to this stage, we must get the data for training in the form of a CSV file,
which contains all of the data in a scaled and normalized format. This will need the
completion of the data mining phase.

The information gathered by Wireshark must be stored as a PCAPNG file and then
converted to a CSV file for further processing. It is not possible to utilize this data
for training since the scales of the data are all different. As a result, we must first
clean the necessary data, which may be accomplished in such a manner that labels
can be provided and text content can be converted to appropriate numbers. There
may be some gaps in the data in certain regions. We therefore make use of the
notion of binning to enter fake data into the proper places. As a result, the data
would be in a variety of scales, which would need to be combined into a single scale
before being fed into the activation function of the ML algorithm. We utilized the
Pandas library from the Python programming language to do all of this. Following
classification, we must plot the accuracy distribution on a graph, which may be
accomplished with the help of mat-plot-lib.

22

6.1.1 Input Data Preprocessing

In our research, we have chosen to get data from a secondary source, which is
composed by famous experts that have gathered, tested, and then created a suitable
simulated dataset for further investigation. Since the data we had gathered was in
a PCAPNG format, it was not clean enough. A CSV file was created next, which
we exported. As a consequence, we were able to access the dataset with ease and
modify it as required. An example of uncleaned data is given.

No. Time Source Destinatio Protocol Length Info

4936 12.07511 117.219.2:192.168.1. TCP 1014 443 > 50450 [ACK] Seq=2839122 Ack=4449 Win=421 Len=960 [TCP segment of a reassembled PDU]
4937 12.07511 117.219.2:192.168.1.TCP 298 443 > 50450 [PSH, ACK] Seq=2840082 Ack=4449 Win=421 Len=244 [TCP segment of a reassembled PDU]
4938 12.07511 117.219.2:192.168.1. TCP 1014 443 > 50450 [ACK] Seq=2840326 Ack=4449 Win=421 Len=960 [TCP segment of a reassembled PDU]
4939 12.07511 117.219.2:192.168.1. TCP 1014 443 > 50450 [ACK] Seq=2841286 Ack=4449 Win=421 Len=960 [TCP segment of a reassembled PDU]
4940 12.07511 117.219.2:192.168.1.TCP 1014 443 > 50450 [ACK] Seq=2842246 Ack=4449 Win=421 Len=960 [TCP segment of a reassembled PDU]
4941 12.07511 117.219.2:192.168.1. TCP 1014 443 > 50450 [ACK] Seq=2843206 Ack=4449 Win=421 Len=960 [TCP segment of a reassembled PDU]
4942 12.0752 192.168.1.117.219.2: TCP 54 50450 > 443 [ACK] Seq=4449 Ack=2844166 Win=8317 Len=0

4943 12.07685 117.219.2:192.168.1. TCP 1014 443 > 50450 [ACK] Seq=2844166 Ack=4449 Win=421 Len=960 [TCP segment of a reassembled PDU]
4944 12.07686 117.219.2:192.168.1.TCP 1014 443 > 50450 [ACK] Seq=2845126 Ack=4449 Win=421 Len=960 [TCP segment of a reassembled PDU]
4945 12.07693 192.168.1.117.219.2: TCP 54 50450 > 443 [ACK] Seq=4449 Ack=2846086 Win=8317 Len=0

4946 12.07887 117.219.2:192.168.1.TCP 1014 443 > 50450 [ACK] Seq=2846086 Ack=4449 Win=421 Len=960 [TCP segment of a reassembled PDU]
4947 12.07888 117.219.2:192.168.1. TCP 1014 443 > 50450 [ACK] Seq=2847046 Ack=4449 Win=421 Len=960 [TCP segment of a reassembled PDU]

Figure 6.1: A Glimpse of Dataset.

After obtaining the dataset, we processed it using the Python programming
language in order to utilize it for further machine learning classifications. After
cleaning the dataset, we identified many significant features from the raw data.

Time Source Destinatio Protocol Length
12.07511 117.219.2:192.168.1. TCP 1014
12.07511 117.219.2:192.168.1. TCP 298
12.07511 117.219.2:192.168.1. TCP 1014
12.07511 117.219.2:192.168.1. TCP 1014
12.07511 117.219.2:192.168.1. TCP 1014
12.07511 117.219.2:192.168.1. TCP 1014
12.0752 192.168.1.117.219.2: TCP 54
12.07685 117.219.2:192.168.1. TCP 1014
12.07686 117.219.2:192.168.1. TCP 1014
12.07693 192.168.1.117.219.2: TCP 54
12.07887 117.219.2:192.168.1. TCP 1014
12.07888 117.219.2:192.168.1. TCP 1014

Figure 6.2: Some Features for Feeding ML Algorithms.

From here, we will apply machine learning classifiers in order to get result and
build a training model.

6.2 k-NN Algorithm Implementation

k-NN algorithm is one of few most famous and used algorithms for classification and
regression in machine learning. In our study, first we have imported some additional
libraries.

After that, we have imported our dataset for preprocessing. During this phase,
we prepare large-scale data in order to improve learning processes and the extraction
of distinguishing features. Many components are included in this step, such as data

23

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

Figure 6.3: Importing Libraries for Python Coding.

cleaning, data normalization, feature engineering and the splitting of the data into
training and testing datasets.

df_train = pd.read_csv('E:/thesis/DD0OS/UNSW_2018_ IoT_Botnet_FullSpc_1l.csv')

Figure 6.4: Importing Dataset.

As a preventive measure against over-fitting, we will split our dataset into train-
ing and testing divisions. This will provide us with a better understanding in the
testing phase that how our algorithm operated all over As it would be in a produc-
tion application, our algorithm is tested on unseen data. We divided the dataset as
60 percent of the data being train data and 40 percent being test data. It is usually
a good idea to scale the features, In the time of generating any real predictions so
that regardless of their relevance, they may all be examined in the same approach.

In a large number of algorithms for machine learning, if the range of values in
raw data is too massive then objective functions will not operate correctly. This
is because in some machine learning algorithms a range of possible values in raw
data is too wide. For example, the Euclidean distance is used by the vast majority
of classifiers to compute the distance between two endpoints between them. If one
of the features has a large variation, the distance between the two points will be
determined by that specific feature. Consequently, the scale of all characteristics
should be normalized to say that each feature contributes an equal amount to the
final distance.

Normalized to say that each feature contributes an equal amount to the final dis-
tance. Furthermore, when features are normalized the gradient descent algorithm is
utilized by many other machine learning algorithms which converge more efficiently.
Particularly in the time of utilizing the Scikit-Learn library, It seems very simple to
train the k-NN algorithm and using it to generate predictions.

Sklearn library is used to import the K-Neighbors Classifier class which is very nec-
essary. The initial step in this process is the Neighbors library. In the second line of
code, Initialization of this class is done with a single statement, n neighbors. This
is basically the value for the k. k cannot be defined perfectly, and the number that
is selected as the best fit is the product of considerable testing and evaluation.

The most often used metrics While evaluating an algorithm is the confusion ma-
trix, accuracy, recall, and f1 score. These metrics may be calculated with the help of
the confusion matrix of the sklearn.metrics library. The findings indicate that our
k-NN algorithm was capable of recognizing all of the data in the test set with high
accuracy.

24

6.3 SVM Algorithm Implementation

To read data from a CSV file read csv function of the panda’s library is the
smoothest and the most elementary method. The preprocessing procedure includes
Splitting the data into attributes and labels and dividing the data into training and
testing sets.

At first, all of the columns of the "UNSW 2018 IoT Botnet Full5pc 1" dataframe
are placed in the x variable, which corresponds to the label column. After that, the
dataframe is saved in the y variable, which corresponds to the label column. The
drop() function removes all of the unnecessary columns from the table. After that,
in the y variable only the class column is being stored. The y variable has labels to
those attributes to which the x variable contains.

The last stage in the preprocessing procedure is to separate the data into training
and test sets, after all of the data has been separated into attributes and labels.
Fortunately, the train test split method allows us to perfectly divide data into
training and test sets which are contained in the model selection library of the
Scikit-Learn library.

Now our task is to train the collected SVM on the training data. Scikit-Learn
library provides built-in classes for a variety of SVM methods where SVC class is
included. we will use the support vector classifier class that is denoted by SVC in
Scikit-Learn’s SVM library, as we’ll be doing a classification job. The type of kernel
is the only parameter of this class. Linearly separable data is the only data that
basic SVMs can classify that is the reason this is very necessary. We simply set this
parameter to "linear" in the first place, in the case of a simple SVM.

For each SVC class, the fit method is invoked. By using the training data, the fit
method trains the algorithm that is given as a parameter to it. To create predictions,
the predict method of the SVC class is utilized. To represent the accuracy of the
data and the outcomes of our study, we further utilized metrics such as the confusion
matrix, F'1 measure, recall, and precision.

It can be seen from the observations that the SVM method was only marginally
outperformed by the k-NN approach.

6.4 Random Forest Algorithm Implementation

The Random Forest offers a strong indicator of feature selection because of its ran-
dom nature. An additional variable is included with the model by Scikit-learn, and
this variable indicates the relative importance or contribution of each feature to the
prediction. When the training phase is complete, it automatically calculates the rel-
evance score for each feature. Then it reduces the importance to the point where the
sum of all values corresponds to 1. In order to begin, we first divided the columns
into dependent and independent variables (or features and labels). After that, we
divided the variables into two groups: a testing set and a training set.

Utilizing the divided data, we trained the model on the training set and made
predictions on the test set, after splitting the data. Following training, it is crucial
to compare the accuracy of the model with the actual and projected values. Some
features were discarded, such as "id," "saddr," and "sport" features, among others,

25

because they are of low value. Fifteen features were chosen from the remaining
features. A model was created based on specified training set features, predictions
were made for selected test set features, and the predicted values were compared
with the actual value[17].

Increasing accuracy was achieved by deleting the least important features. That’s
because decreasing the amount of inaccurate data and noise results in higher accu-
racy. A smaller number of characteristics also minimizes the amount of time required
for training.

6.5 Naive Bayes Algorithm Implementation

The Gaussian Naive Bayes classifier is one of the simplest Naive Bayes classifiers
to comprehend. According to this classifier, the data from each label is selected
from a basic Gaussian distribution, which is assumed to be accurate. Loading our
data file into the program was the first thing we did. The data is in CSV format,
which means there is no header line and no quotation marks. The open function
may be used to open the file, and the reader function to read the data lines from
the dataset, in the CSV module. After that, we split the data into two groups: the
testing dataset and the training dataset.

The class value divides the mean and standard deviation for each attributes that
are included in the summary of the collected training data. These are needed to
determine the probability of particular attribute values belonging to each class value
in the time of making predictions.

Following the splitting procedure, it is time to create predictions based on the sum-
maries of our training data that have been prepared. it is important to determine
the probability that a given data instance belongs to each class, and then to select
the highest probabilistic class to make predictions [18]. Finally, our team develop
our main function, which executes all of the methods we have explained one after
one to regulate the accuracy of our model.

6.6 Artificial Neural Network Algorithm Implemen-
tation

In order to solve a specific problem the neurons those work together as a combined
system are known as Artificial Neural Network(ANN). Neurons communicate with
one another and are a collection of connected units or nodes known as Artificial
Neuron. An artificial Neural Network consists of artificial neurons. Each link has
the capability of transmitting a signal to neighboring neurons. Afterward, these
neurons process the signal and transmit it to other neurons that are connected to
them. An input signal is a real number. Some non-linear functions’ sum of the
inputs determines the output of each neuron. Interconnections between two nodes
are known as Edges. As the learning process continues, weight changes in which
Neurons and edges are often assigned. The weight has an effect that either increases
or decreases the strength of the signal at a connection. Neurons may be programmed
with a threshold such that if the collection of signals crosses the threshold at that
moment a signal is only transmitted. Neurons are generally assembled together into

26

layers. A variety of changes may be applied to different layers to their respective
inputs. There are three types of layers used here. The first one is the input layer
where the signals move from then the second one is the output layer where the
signals comes from the input layer and another one is hidden layers which are the
layers in between input and output layer.

Python is used for writing Deep learning API Keras and machine learning plat-
form TensorFlow is used for running it. In order to facilitate rapid experimentation,
it was designed with the goal of allowing researchers to go from idea to result as
swiftly as possible. In Keras, layers serve as the fundamental building blocks of
neural networks. Layers are made up of two parts in TensorFlow, : method which
means a Tensor in Tensor-out computation function and TensorFlow variables as
weights store some state. A Layer instance can be called in the same way that a
function can be called. Layers, in contrast to functions, keep track of their state,
which is updated as the layer gets data during training and is kept in the layer.
Weights variable. In the Keras layers API, there are several different built-in layer
activation functions. For our computation, we have selected the ReLLU function,
which is the most often used of the available functions.

The rectified linear unit activation function (ReLU function) is applied using this
function. This function returns the typical ReLLU activation: max(x, 0), the element-
wise maximum of 0, and the input tensor x where the default values are used|20].

27

Chapter 7

Performance Evaluation of the ML
Models

To assess and define a comparative analysis of the results, the F1 score, precision,
accuracy, recall, and Confusion Matrix for each of these models have been generated
with the goal of evaluating and establishing a comparative analysis of the results
for the pre-trained ML models. In this chapter, we will provide the equations for
the performance measures that will be applied in this paper. Following that, we
illustrate the Confusion Matrices of each of the machine learning models that we
have developed so far.

7.1 Performance Metrics

The equations of the performance metrics used are specified as follows:

1. Accuracy Formula[19:

TP + TN
P+N

(TP + TN)
~ TP+TN+FP+FN (7.1)

Accuracy =

2. Precision Formula[19]:

PPV = 7;{;3 ><+TFPPR
— 1-FDR (7.2)
3. Recall Formula|19]:
PPV - 1z
— 1 -FDR (7.3)

4. F1-Score Formula[19]:

_ PPVXTPR
Fl1 =2x o

_ 2xXTP
- (2><TP)>f|—FP+FN (7.4)

28

Here, the respective abbreviations are, TP = True Positive, TN = True Neg-
ative, P = Positive Case, N = Negative Case, FP = False Positive, FN = False
Negative, PPV = Positive Predictive Value, TPR = True Positive Rate, FDR =
False Discovery Rate

7.2 Confusion Matrices

A classification model’s performance can be evaluated and represented using a con-
fusion matrix. Therefore, utilizing the test data, we have created confusion matrices
for each of the Machine Learning models used in this thesis. Here, all the figure
below depict the Confusion Matrices for all of the ML models studied in this paper.

Class 0 Class 1

700000

Class 0 €00000

500000

400000

Expected

- 300000
Class 1 1 - 200000

-100000

Predicted

Figure 7.1: The confusion matrix chart of the k-NN model

Here, in the K-NN model it shows the high number of true positive and true
negative cases with 771554 and 769703 respectively. Besides, a low number of false
negative and false positive with 55973 and 1293 respectively.

Class 0 Class 1

700000

600000
Class 0

500000

- 400000

Expected

- 300000
Class 1 1 - 200000

- 100000

Predicted

Figure 7.2: The confusion matrix chart of the SVM model

29

Here, in the SVM model it shows the high number of true positive and true
negative cases with 746148 and 622784 respectively. Besides, a low number of false
negative and false positive with 146942 and 25426 respectively.

Class 0 Class 1

700000

Class 0 600000

500000

- 400000

Expected

- 300000
Class 1 1 - 200000

~100000

—te{J
Predicted

Figure 7.3: The confusion matrix chart of the Random Forest model

Here, in the Random Forest model it shows the high number of true positive and
true negative cases with 771574 and 769721 respectively. Besides, a low number of
false negative and false positive with 46955 and 1206 respectively.

Class 0 Class 1

700000
Class 0 1 €00000
500000

400000

Expected

- 300000
Class 1 1 - 200000

100000

Predicted

Figure 7.4: The confusion matrix chart of the Naive Bayes model

Here, in the Naive Bayes model it shows the high number of true negative and
false positive cases with 769461 and 549156 respectively. Besides, a low number of
true positive and false negative with 222418 and 265 respectively.

30

Class 0 Class 1

700000

Class 0 600000

500000

400000

Expected

- 300000

Class 1 1 - 200000

-100000

Predicted

Figure 7.5: The confusion matrix chart of the Neural Network model

Here, in the Neural Network model it shows the high number of true positive
and true negative cases with 769993 and 719344 respectively. Besides, a low number
of false negative and false positive with 50382 and 1581 respectively.

31

Chapter 8

Experimental Results and Analysis

In this part, we analyze the achievement of the Machine Learning models used in
this study. As a consequence of studying the experimental findings presented in the
tables || and ||, we can conclude that the Random Forest, k-NN, and Neural Network
models performed much better than the other two models, which were the SVM and
the Naive Bayes models. The accuracy of the Machine Learning models is indicated
in the bar graph in Figure [|. Random Forest and k-NN models have reached max-
imum accuracy of 96.97 and 96.42 percent. Among the other pre-trained Machine
Learning models, Neural Network achieved 92.62 percent accuracy, SVM achieved
88.81 percent accuracy, and Naive Bayes achieved 64.35 percent accuracy, respec-
tively. The Naive Bayes model, on the other hand, achieved the lowest accuracy of
64.35 percent, which is not able to accomplish our criteria because it assumes that
each input variable is independent, which is a very unrealistic assumption in a real-
world situation. This is the primary reason why the Naive Bayes model achieves
satisfactory accuracy. The studies show that pre-trained models are quite strong
and can be more accurate than untrained models due to the significant learning rate
seen during training and the faster convergence experienced during testing. In addi-
tion, we see that the outcomes of the Random Forest and k-NN models, as presented
in Table || and Table [], are extremely close to one another. It should be observed
that all of the high-performing models have a significant number of layers in their
design, but the two underperforming models, namely the SVM and the Naive Bayes
model, have a relatively small number of layers in their architecture.

Table 8.1: PERFORMANCE COMPARISON IN TERMS OF ACCURACY, PRE-
CISION RECALL AND F1 SCORE

Models Accuracy | Precision | Recall F1

k-NN 96.42% 98.88% | 95.39% | 96.58%
Random Forest | 96.97% 93.89% | 99.31% | 96.71%
Neural Network | 92.62% 90.93% | 94.63% | 93.55%

SVM 88.81% 86.64% | 91.49% | 86.94%

Naive Bayes 64.35% 63.82% | 60.46% | 65.76%

32

Accuracy is the ratio of total correctly predicted cases and the total number
of cases. Here in the following table, K-NN has an accuracy of 96.42% followed
by the random forest classifier accomplished with the highest accuracy of 96.97%.
Then, the neural network with an accuracy of 92.62%. SVM perform poorly with an
accuracy of only 88.81%. and naive Bayes with the lowest accuracy of only 64.35%.
Besides, precision is the ratio of total correctly predicted positive cases and the
total predicted positive cases. Here, we can see the K-NN and the Random Forest
classifier has the precision of respectively 98.88% and93.89%. On the other hand,
naive Bayes has the lowest precision of 63.82%. Additionally, recall is the ratio of
total correctly predicted positive cases and total positive cases. Similarly, here also
random forest classifier shows the highest recall value of 99.31% followed by K-NN
with the value of 95%. Nalve Bayes shows the lowest recall value of 60.46%. Lastly,
the f1 score is the weighted average of precision and recall. Here, the random forest
classifier has the highest level with 96.71%. Then, K-NN and NN have the {1 value
of 96.58% and 93.55% respectively. Naive Bayes shows the F1 of 65.76% which
is the lowest rather to other classifiers. In short, we can see from the table that
RFC accomplished the best performance meanwhile naive Bayes shows very poor
performance.

Bar Graph on the Accuracy of the models

0963736756 0.964272101

0.926286252

0.888167132

0.64353403

Random Forest KNN SVM Naive Bayes ANN

Figure 8.1: Bar Graph on the Accuracy of the ML Model

33

Table 8.2: PERFORMANCE COMPARISON IN TERMS OF AUC AND CONFU-

SION MATRIX

CONFUSION
MATRIX

MODELS | AUC Score | TP FP FN TN
k-NN 96.42% 771554 1293 55973 769703
Random 96.97% 771574 1206 46955 769721
Forest
Neural 92.62% 769993 1581 50382 719344
Network
SVM 88.80% 746148 25426 146942 622784
Nailve 64.39% 222418 549156 265 769461
Bayes

The area under the curve (AUC) is the measurement of the ability of a classifier
to differentiate among the classes. Here in the following table we can see that RFC

has the highest AUC score of 96.97% followed by k-NN 96.42%, NN 92.62% and
SVM and naive bayes have a poor score with 88.80% and 64.39% respectively.

34

Chapter 9

Conclusion

In our research we examined IoT related security problems as part of the major
study topic by detecting DDoS attack patterns. In order to accomplish this goal, we
conduct extensive study on DDoS attack patterns in the data we have collected. Fur-
thermore, we do a detailed study on Machine Learning algorithms’ capabilities that
are mainly the key attributes for originating an attack detection model. Therefore,
in order to identify DDoS attacks, we advised that a deep search can be implemented
in patterns correlating labeled malicious data and then we can identify authentic
attacks with the help of machine learning classifiers. we marked the normal and
DDoS data based on our obtained dataset. Then, we applied supervised machine
learning techniques thus we detect DDoS using five classification algorithms as k-
NN, SVM, Random Forest, Naive Bayes, and Neural Network. The Neural Network
algorithm we chose is called Artificial Neural Network which gave us some interest-
ing results. To carried out our experiments in order to evaluate the performance of
the algorithms against the dataset, we used ROC curves and confusion matrix. The
results show Random Forest, k-NN and Neural Network (with 96.97%, 96.42% and
92.62% accuracy) perform with high accuracy while SVM (88.81% accuracy) and
Naive Bayes (64.35% accuracy). We focused only on a few attributes in this thesis
work because these are the most important features to detect an attack. Accord-
ing to our understanding, researching and testing with key aspects, the results may
provide understanding on how to identify all forms of attacks in the dataset. In our
findings, very few studies have used the supervised machine learning approach to
identify Internet of Things based distributed denial of service (DDoS) attacks. In
future, we hope to find more accuracy in DDoS attack detection of IoT devices and
try new methods to strengthen our findings.

35

Bibliography

1]

2l

3]

4]

5]

(6]

17l

8]

9]

[10]

11

Steward, J. (2021, December 5). 21+ Internet of Things Statistics, Facts &
Trends for 2022. Findstack. Retrieved January 16, 2022, from https://findstack.
com/internet-of-things-statistics/

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey.
ACM computing surveys (CSUR), 41(3), 1-58.

Johnes, S. (2021, April 2). 10 IoT Trends to Disrupt the Tech World in
2021. Iotforall. Retrieved January 16, 2022, from https://www.iotforall.
com/10-iot-trends-to-disrupt-in-2021?tbclid=IwAR1IBWMBGI1gbN
dXXwNqCtlxIMzjraKWOKWM9IMsNsx90On05Y GAP6 M3KBhQ.

Wang, K., Dong, J., Wang, Y., & Yin, H. (2019). Securing data with blockchain
and Al Teee Access, 7, 77981-77989.

What is a distributed denial-of-service (DDoS) attack? (n.d.). Cloudflare.
Retrieved January 16, 2022, from https://www.cloudflare.com/learning/ddos/
what-is-a-ddos-attack/

Zeadally, S., Adi, E., Baig, Z., & Khan, I. A. (2020). Harnessing artificial
intelligence capabilities to improve cybersecurity. leee Access, 8, 23817-23837.

Pramana, M. I. W., Purwanto, Y., & Suratman, F. Y. (2015, August). DDoS
detection using modified K-means clustering with chain initialization over land-
mark window. In 2015 International Conference on Control, Electronics, Renew-
able Energy and Communications (ICCEREC) (pp. 7-11). IEEE.

Abdullah, M. S., Zainal, A., Maarof, M. A., & Kassim, M. N. (2018, November).
Cyber-attack features for detecting cyber threat incidents from online news. In
2018 Cyber Resilience Conference (CRC) (pp. 1-4). IEEE.

Abeshu, A., & Chilamkurti, N. (2018). Deep learning: The frontier for dis-
tributed attack detection in fog-to-things computing. IEEE Communications
Magazine, 56(2), 169-175.

Ullah, F., Naeem, H., Jabbar, S., Khalid, S., Latif, M. A., Al-Turjman, F.,
& Mostarda, L. (2019). Cyber security threats detection in internet of things
using deep learning approach. IEEE Access, 7, 124379-124389.

Doshi, R., Apthorpe, N.; & Feamster, N. (2018, May). Machine learning ddos
detection for consumer internet of things devices. In 2018 IEEE Security and
Privacy Workshops (SPW) (pp. 29-35). IEEE.

36

https://findstack.com/internet-of-things-statistics/
https://findstack.com/internet-of-things-statistics/
https://www.iotforall.com/10-iot-trends-to-disrupt-in-2021?fbclid=IwAR1BWMBGI1g5N_dXXwNqCtlxlMzjr3KWOKWM9MsNsx9On05YGdP6M3KBhQ.
https://www.iotforall.com/10-iot-trends-to-disrupt-in-2021?fbclid=IwAR1BWMBGI1g5N_dXXwNqCtlxlMzjr3KWOKWM9MsNsx9On05YGdP6M3KBhQ.
https://www.iotforall.com/10-iot-trends-to-disrupt-in-2021?fbclid=IwAR1BWMBGI1g5N_dXXwNqCtlxlMzjr3KWOKWM9MsNsx9On05YGdP6M3KBhQ.
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/

12|

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

Lin, C. T., Wu, S. L., & Lee, M. L. (2017, August). Cyber attack and defense on
industry control systems. In 2017 IEEE Conference on Dependable and Secure
Computing (pp. 524-526). IEEE.

Farooq, H. M., & Otaibi, N. M. (2018, March). Optimal machine learning
algorithms for cyber threat detection. In 2018 UKSim-AMSS 20th Interna-

tional Conference on Computer Modelling and Simulation (UKSim) (pp. 32-37).
[EEE.

Rao, A., Carredn, N., Lysecky, R., & Rozenblit, J. (2017). Probabilistic threat
detection for risk management in cyber-physical medical systems. IEEE Soft-
ware, 35(1), 38-43.

Nguyen, H. V., & Choi, Y. (2010). Proactive detection of DDoS attacks utilizing
k-NN classifier in an anti-DDoS framework. International Journal of Electrical,
Computer, and Systems Engineering, 4(4), 247-252.

Scholkopf, B., Smola, A. J., & Bach, F. (2002). Learning with kernels: support
vector machines, regularization, optimization, and beyond. MIT press.

What is a distributed denial-of-service (DDoS) attack? (n.d.). Cloudflare.
Retrieved January 16, 2022, from https://www.cloudflare.com/learning/ddos/
what-is-a-ddos-attack/

Ajagekar, S. K., & Jadhav, V. (2018, May). Automated approach for DDOS
attacks detection based on naive Bayes multinomial classifier. In 2018 2nd In-
ternational Conference on Trends in Electronics and Informatics (ICOEI) (pp.
1-5). IEEE.

Nicholson, C. Evaluation metrics for machine learning-accuracy, precision, re-
call, and f1 defined, 2019.

Ahanger, T. A. (2017, March). An effective approach of detecting DDoS using
artificial neural networks. In 2017 International Conference on Wireless Com-
munications, Signal Processing and Networking (WiSPNET) (pp. 707-711).
IEEE.

37

https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/

	Declaration
	Approval
	Dedication
	Acknowledgement
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Abstract
	Introduction
	Background
	Motivation
	Thesis Orientations

	Literature Review
	Research Initials
	Research Problem
	Research Objectives

	Methodology
	Workflow of the Methodology
	Description of the Data
	Data Collection
	Data Preprocessing
	Data Parsing and Cleaning
	Data Normalization
	Feature Engineering

	Classification
	k-Nearest-Neighbors
	Support Vector Machine
	Random Forest
	Naive Bayes Classifier
	Artificial Neural Network

	Implementation of Algorithms
	Implementation
	 Input Data Preprocessing

	k-NN Algorithm Implementation
	SVM Algorithm Implementation
	Random Forest Algorithm Implementation
	Naive Bayes Algorithm Implementation
	Artificial Neural Network Algorithm Implementation

	Performance Evaluation of the ML Models
	Performance Metrics
	Confusion Matrices

	Experimental Results and Analysis
	Conclusion
	Bibliography

